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Essentially, all models are wrong, but some are useful.George E. P. Box [48℄
The internal motion of water assumes one or other of two broadly dis-tinguishable forms - either the elements of the �uid follow one another alonglines of motion whih lead in the most diret manner to their destination, orthey eddy about in sinuous paths the most indiret possible.Osborne Reynolds [39℄
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Chapter 1IntrodutionTurbulene is enountered everywhere in every day life. Examples reah from vortiesbehind a starting airraft, over the aerodynamis of ars to water pouring into a bathtub.A �owing �uid is desribed by the Navier-Stokes equations (1.1.6). In ontrast tosmooth and time-independent solutions of these equations, whih are alled laminar�ow, turbulent �ow refers to a time-dependent, non-ordered �ow. Turbulent �uid isin a highly dissipative state. A redution of turbulene in pipelines an therefore savemuh energy during oil or gas transport. For this reason, the investigation of turbulenephenomena is not only a hallenge to fundamental researh but also very important inmany appliations.This thesis deals with the speial ase of turbulent pipe �ow. For moderate �ow speed itexhibits loalised turbulent regions, i.e. 'pu�s', that travel down the pipe with onstantveloity and are believed to deay eventually. For higher �ow rates, there is a transitionto 'slugs', where the front of the turbulent region propagates faster than the bak side,suh that the size of the turbulent region is growing linearly in time.We will fous on some key questions:� Whih mehanisms an lead to �nite-size turbulent pu�s ?� What determines their lifetime?� What an ause a transition from pu�s to slugs?
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2 CHAPTER 1. INTRODUCTION1.1 Historial ReviewAlthough there still is a sizable and very ative researh ommunity working on thetransition to turbulene in pipe �ow, the problem how a pipe beomes turbulent is overa hundred years old. The �rst study goes bak to Osborne Reynolds in 1883 (f.�gure 1.1 and [39℄).

Figure 1.1: Reynolds' experiment in 1883. Reprinted from [1℄.Reynolds injeted a oloured thread into a pipe. The ink travels along a straight linefor small �ow veloities (f. �gure 1.2, a))The thread beomes unsteady for higher veloities (f. �gure 1.2, b)) and eventuallysplits ompletely into eddies for even higher veloities (f. �gure 1.2, ) and d) ). Butthis is not the most striking disovery. It is the result, that the �ow only depends onone dimensionless parameter. This parameter depends on the average �ow veloity U ,the diameter of the pipe D and the kinemati visosity ν of the �uid. The number isnow alled the Reynolds number Re to honor its disoverer. It is de�ned as
Re =

U · D
ν

(1.1.1)Reynolds studied the question, if there is a ritial value Rec, above whih the laminarstate is unstable. This behaviour is well-known fromRayleigh-Bénard onvetion [38℄or Taylor-Couette �ow [43, 44℄, where the steady state beomes unstable above aritial Rayleigh R or Taylor number T , respetively.Reynolds observed, that �ow of a 'normal' pipe beomes unstable above Re ≈ 2000 .Turbulene is the only observable state then. But he also used muh smoother pipesand less-perturbed initial onditions. In those experiments, the laminar �ow ould bepreserved for Re ≈ 13000. Therefore, it is widely aepted now [30, 34℄, that laminar�ow is linearly stable for all Re. There is no ritial Reynolds number.This has been observed for the �rst time by Reynolds. The transition mehanism toturbulene in pipe �ow is still an open question, beause linear stability theory fails todesribe the transition. The importane of the Reynolds number is also obvious in theequations of motion.
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Figure 1.2: Top to Bottom: A laminar �ow is stable for small Reynolds numbers. Itbegins to wiggle, if the Reynolds number is inreased. For higher Reynoldsnumbers above a ritial threshold, the �ow beomes turbulent. Reproduedfrom [46℄.Although, the �ow �elds an be very ompliated for di�erent geometries, the desribingequations are well-known sine the investigation of Navier and Stokes. By applyingthe momentum onservation for �uids, one �nds the Navier-Stokes equations [1℄
ρ(∂t~u + (~u · ∇) ~u) = −∇p + ρν∇2~u + ~f (1.1.2)Here, ρ and ν are the density and kinemati visosity of the �uid, respetively. ~u(~r, t)is the �ow �eld at eah spae ~r and time t, p is the pressure and ~f is an external bodyfore. This equation is a partial di�erential equation of seond order. Additionally, itis non-linear, beause of the onvetive term (~u · ∇) ~u. This makes the solution of theequation extremely ompliated. A loser look reveals, that these equations are threedi�erential equations for the four unknowns ~u and p. In order to omplete the system,a fourth equation, the ontinuity equation for the mass density, is needed,

∂tρ + ∇ (ρ~u) = 0 (1.1.3)Assuming inompressibility, the density ρ does not depend on time or spae. As aonsequene, the ontinuity equation redues to
∇ · ~u = 0 (1.1.4)The Navier-Stokes equations an be formulated in a dimensionless way by applying thetransformations

~r′ =
~r

L
, t′ =

L

U
t, ~u′ =

~u

U
, p′ =

L

U2

p

ρ
(1.1.5)



4 CHAPTER 1. INTRODUCTIONwhere L and U are a harateristi length sale and veloity of the system, respetively.This leads to the dimensionless Navier-Stokes equations
∂t~u + ~u · ∇~u = −∇p + Re−1∇2~u (1.1.6a)

∇ · ~u = 0 (1.1.6b)The external fore and the additional primes have been dropped for simpliity. The onlyfree parameter of the dimensionless Navier-Stokes equatuion1 is the Reynolds number
Re.We used the no-slip boundary ondition

~u(r = R, t) = 0 (1.1.7)This states, that the �uid stiks to the pipe walls.For pipe �ow, the stationary solution an be alulated analytially. By using ylindrialoordinates (r, φ, z) with the z axis along the pipe, one obtains
~u(r, φ, z) = −∂zp

4
Re(1 − r2)~ez (1.1.8)where ∂zp is the pressure gradient along the pipe, whih is assumed to be onstant.1.2 Reent ProgressThe motivation of our onsiderations are experimental studies on turbulent pu�s in pipe�ow by Hof et al. [16, 17℄The strutures are alled onvetive instabilities, sine they are taken away from theirpoint of origin by the �ow without growing. The transition to turbulene an not bedesribed by linear stability theory, sine the laminar state is linearly stable for all Re.Therefore, one needs a �nite perturbation to the laminar state to trigger a turbulentpu�.Hof et al. triggered a pu� by injeting water into the laminar �ow at some point of thepipe. Resulting pu�s travel through the pipe and reah its end after some time, unlessthey deay on the way. The survival probabilities are shown in �gure (1.3).As expeted, the survival probality is zero for very low Reynolds numbers (laminarlimit, where the lifetime of pu�s is small) and tends to one in the turbulent limit.Measurements has been done for several pipe lengths L. Longer pipes show a smallersurvival probability: due to the onstant veloity of a pu� for �xed Re, it has had moretime to deay in longer pipes and less pu�s reah the end.The next step is to determine the lifetime distribution of turbulent pu�s. The Reynoldsnumber is kept �xed and the survival probability of a pu� is measured for several pipelengths. The survival probability for a �xed length an then be related by the pu�1A general solution for the Navier-Stokes equations is not known up to now.Therefore, it is oneof the most ompliated problems in lassial mehanis. The proof of existene and smoothness ofsolutions is a Clay Millenium prize problem [20℄.
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Figure 1.3: Experimental survival probabilities for di�erent pipes and Reynolds num-bers. L is the distane to the end of the pipe, measured in multiples of itsdiameter D. Reprinted from [16℄.veloity to a survival probability for a �xed time. Measurements have been done fora range of Re and the average lifetime τ(Re) has been omputed. Early work [50℄ for
1550 ≤ Re ≤ 1850 suggested a linear derease of τ−1 with a transition to in�nite lifetimesat Re ≈ 1870 (dashed line in �gure 1.4, a)) In ontrast, numerial and experimentalstudies [18℄ for a range 1750 ≤ Re ≤ 1950 obtained

τ ∼ exp(c1Re), c1 ∈ R (1.2.1)whih is the solid blak line in 1.4, a). This data suggested, that τ remains �nite for all
Re. The most reent high preision data [16℄ for 1550 ≤ Re ≤ 2050 resolve the di�ereneof the previous studies and further underpin the view, that τ remains �nite.

Figure 1.4: a) τ−1 as a funtion of Reynolds number. b) A log-log normal plot shows asuperexponential saling law. Reprint from [16℄.



6 CHAPTER 1. INTRODUCTIONHowever, they suggest a super-exponential inrease of τ like
τ ∼ exp(exp(c2Re)), c2 ∈ R (1.2.2)This expeted saling law is supported by �gure 1.4, b)The data shown in �gure 1.4 has setteled the dispute on qualitative features of τ . Butthe exat form is not quite lear. An alternative �t
τ ∼ exp(c3Ren), c3, n ∈ R (1.2.3)an desribe the data, too (f. [16℄). These saling laws are alled super-exponential. Atransient whih has suh a lifetime saling law is therefore alled super-long transient,in ontrast to long transients, whih obey a power-law saling.However, there is no hope for more data. It is hard to improve the experimental results,beause many problems have to be solved. The very rapid lifetime inrease of a turbulentpu� for Re > 2000 is one problem. Therefore, one needs very long pipes to determinethe lifetime distribution orretly. This is very hard to do, sine the pipes would easilyexeed the dimensions of the lab. Another problem is the experimental setup. The pipeshas to be very smooth. Otherwise one would get wrong lifetimes due to the roughnessof the pipe, whih ats as an additional perturbation [11, 28℄. In addition, there areseveral problems whih has a minor e�et, but are still essential, e.g. keeping a onstanttemperature along the whole pipe or a laminar injetion at the beginning of the pipe.A di�erent method is a omputer simulation. This has the advantage, that one anspeify the state of the system very well. Without the inauray of perturbations inreal experiment, i.e. rough pipe walls, theoretial assumptions an be heked. Almostall simulations on pipe turbulene are based on the Navier-Stokes equations. This isa ommon point to start, sine the Navier-Stokes equations are the equations of mo-tion for �uid dynamis. The time-dependent Navier-Stokes equations an not be solvedanalytially, beause they are non-linear partial di�erential equations(pde). Computersimulations are also very hard to arry out. One problem is to �nd a reasonable dis-retization of spae and time. The simulation results are getting better for a �nerdisretization grid, but at the ost of a long simulation time. Several methods havebeen introdued to takle this problem. One way is to do a mode expansion of the solu-tions [29,31℄. For appropriate modes (Fourier and Chebyshev polynomials), one is ableto arry out simulations rather fast and get notiable results, whih an be omparedto experimental data.Another transition an be observed for even higher Reynolds numbers. Due to thesuper-long lifetime saling law, the average lifetime inreases very fast with Re. Forquite high Re ≈ 2500, a new state, known as a turbulent slug, is observed. A slug isan absolute instability. In ontrast to a pu�, its front veloity is muh larger than itsbak. Therefore, a slug grows while travelling through the pipe and eventually �lls itompletely. The lifetime of turbulent slugs is expeted to be in�nite. This assumptionhas not been heked. A diret measurement in experiments is not aesible, sine thelifetime is quite too long, due to the super-exponential saling law. Sine the lifetime ofslugs is expeted to be in�nite, the growth speed is a better quantity to determine a pu�-to-slug transition. A ritialRecr for the pu�-slug transition an be found experimentally



1.3. SCOPE OF THIS WORK 7and is urrently under investigation. The orret value Recr for the slug transition is anopen question. Therefore, further studies on the growth speed dependene on Re areneeded.Although, there has been many experiments and numerial simulations, the underlyingmehanism for the transitions is not known. Therefore, a good theory is needed to guideexperiments and simulations.1.3 Sope of this workOur aim is to understand the transition from laminar to turbulent �ow in a generalsetting. We will use pipe �ow as a stereotype for transition senarios. But we will notuse the Navier-Stokes equations to simulate pipe �ow. Rather we go a di�erent wayand study low-dimensional models that share some aspets of pipe �ow. Therefore,our results an not diretly be applied to real systems. Instead, we an fous on theunderlying priniples leading to a transition from laminar to turbulent motion. This isuseful, sine even possible mehanisms are unlear. We provide andidates for senariosto hek.The next hapter will brie�y review the basi notions from dynamial systems theoryneeded for our investigations. Chapter 3 will deal with a 2d model system, whih isused to desribe the behaviour of super-long transients. We will espeially emphasizethe importane of the lifetime saling law and ompare it to theoretial preditions.The main part of this thesis is presented in hapter 4. A spatially extended modelis investigated that mimis turbulent pu� and slug behaviour. Therefore, we study aunidiretional oupled map lattie. In partiular, we will deal with the distributionand saling laws for the lifetime and veloity of pu�s. The laminr-pu� and pu�-slugtransition will be determined in the model framework. Additionally, the growth speedwill be studied for the slug regime. The onlusion in hapter 5 will ompare our resultsto real pipe �ow and give an outlook for future work.
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Chapter 2Dynamial Systems Revisited
In order to get an overview about the tools we need for our further work, we will ompilesome onepts of dynamial systems in this setion.De�nition 1. A dynamial system is de�ned by an evolution equation

d

dt
~x = ~F (~x) , (2.0.1)where ~x ∈ R

m is the state of the system and ~F is the evolution operator (i.e. 'veloity'),whih uniquely determines the hange of the state with time [33℄.Dynamial systems are everywhere around us. The word 'dynamial' lets us think ofsystems that show some motion. The ause of the motion is given by a fore, aording toNewton. Examples are very numerous and reah from the movement of a pendulumto shooting a annon ball. But we an also desribe things with dynamial systems,whih are not mehanial, like the voltage harateristi while harging a apaitor orthe indution voltage of a oil. But the dynamial systems approah is not limited tosuh simple systems. Even more omplex systems and tasks, like weather foreasting,population dynamis of bees, the spreading of epidemis or share pries in stok markets,an be desribed by dynamial systems. The most important dynamial system we areinterested in, is the �ow of water through a pipe, whih an be desribed by the Navier-Stokes equations.Mathematially, a dynamial system an be desribed by a set of �rst-order di�erentialequations. The exat de�nitions will be given in the next setion.2.1 De�nitionsDe�nition 1 looks quite restrited, beause not all systems are of �rst order. The mostprominent and probably most important example is Newton's law (here in one dimensionfor simpliity)
ẍ = F (x, ẋ) (2.1.1)9



10 CHAPTER 2. DYNAMICAL SYSTEMS REVISITEDThis is a di�erential equation of seond-order and therefore does not obey the de�nitionof a dynamial system. But we an transform this equation into a system of �rst-orderdi�erential equation by de�ning the veloity v := ẋ. This gives us the following system:
ẋ = v (2.1.2a)
v̇ = F (x, v) (2.1.2b)whih an be written in ompat form as

d

dt
~u = ~F (~u) where ~u = (x, v)T (2.1.3)We have now obtained an equation of the form (2.0.1). This proedure an be generalizedto higher dimensions and to di�erential equations of n-th order. So, our de�nition of adynamial system is quite general.A very simple lass of dynamial systems are those with a disrete time. This an beseen in populations, where we an measure the population of our beehive every year atthe same date and time.A possibility to obtain a time-disrete system is the tehnique of a Poinaré setion[27℄. This tehnique is very useful to study properties of time-ontinuous systems. Weare only investigating models, whih are already time-disrete, so we skip an introdutionon the Poinaré setion tehnique.1In time-disrete systems, a state at time n uniquely determines the state at time n + 1,generally. In this ase, the evolution operator is also alled the mapping ~M of thedynamial system, and we de�ne

~xn+1 = ~M(~xn) (2.1.4)where the disrete time is denoted as n ∈ N0. An expliit time dependene of ~M isnot taken into aount in this thesis. Those systems are alled autonomous. One ~Mis determined, the future of the system an be omputed very easily. To get the stateafter m timesteps, we just need to apply ~M m times.
~xn+m = ~M( ~M(· · · ~M

︸ ︷︷ ︸

m times (~xn))) (2.1.5)For one-dimensional systems, this iteration an be done by hand, even with very oldalulators. To abbreviate this long expression, we de�ne a short version of (2.1.5).
~xn+m := ~Mm(~xn) (2.1.6)We have already mentioned above, that a state ~xn uniquely determines the state ~xn+1.All these possible points build the phase spae or state spae of the system. A point inphase spae uniquely determines the state of the system and therefore de�nes its future.1Time-disrete systems are also very fast to simulate on a omputer. Computers an only deal witha disrete time. Therefore, the time for a disretisation step is saved. This step introdues errors,beause we an not let the length of the timestep to zero. Following timesteps on a omputer di�er atleast in one bit.



2.2. INVARIANT SUBSETS 11The phase spae an have a low dimension, like in the example of a mathematialpendulum, where we only need two oordinates, i.e. spae and momentum, to de�nethe state of the system. This leads to a two-dimensional phase spae. But the phasespae dimension an even be rather high, e.g. when dealing with thermodynamialsystems with N partiles, where the phase spae dimension is 6N .We will now ome to another important de�nition, whih is used all the time, whenworking with dynamial system.De�nition 2. The evolution of the dynamial system for a given initial ondition isknown as its trajetory or forward orbit T . For a disrete time evolution it is de�nedas2
T := {~xi | ~xi = ~M i(~x0), i ∈ N0} (2.1.7)A trajetory determines the time evolution of an initial value, respeting the dynamisof the system. A trajetory an be a series of measurments in a time disrete ase, e.g.the temperature on day i in Göttingen.Trajetories an be measured even without the knowledge of ~M . Therefore, the analysisof sets of trajetories is the basi step when studying dynamial systems. An interestingaspet is, that trajetories an not interset in phase spae. This is understood bykeeping in mind, that a point in phase spae uniquely determines the future of thesystem. If two trajetories have one point in ommon, their future evolution has to beidential. This fat is very useful, if one is interested in the struture of the phase spae.Another part of the phase spae struture an be analyzed by the determination ofinvariant subsets. This is piked up in the next setion.2.2 Invariant SubsetsBeside the analysis of typial trajetories, one an investigate, if there are subsets of thephase spae, whih are not hanging during the evolution of the system.De�nition 3. A subset A of the phase spae is alled invariant, if the image of A underthe mapping ~M is the same subset A:

A = ~M(A) (2.2.1)An example for an invariant subset is easily found. The logisti map is a frequently usedexample for several aspets of dynamial systems (f. [6, 33℄). It is de�ned by
f(x) = rx(1 − x) r ∈ R (2.2.2)A plot of the logisti map for r = 4 is given in �gure 2.1. For r = 4, the interval I = [0, 1]is an invariant subset for the dynamis, sine we have f(I) = I.There are a bunh of speial invariant subsets. The most simple ones are the �xedpoints.2If ~M is invertible, the omplete orbit is also de�ned for the past, i.e. i ∈ Z [6℄.
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Figure 2.1: a) The logisti map for r = 4. I = [0, 1] is an invariant set. b) I is no longerinvariant for r > 4, sine f(x) > 1 for x ∈
[

1

2
− δ, 1

2
δ
] with δ =

√
r−4

4r
. )Algorithm to onstrut the middle third Cantor set.De�nition 4. A point ~xf of the phase spae, whih is invariant under the time evolutionof the system, is alled a �xed point. It obeys the equation

~xf = ~M(~xf ) (2.2.3)Equation (2.2.3) is therefore alled the �xed point equation [33℄. Fixed points play animportant role in eah dynamial system. They are the most simple invariant subsetsone an think of and are easily alulated in most ases. Often, it is possible to makeinteresting statements of the dynamis only by the knowledge of the �xed points.The next higher level invariant subset is a periodi orbit [33℄.De�nition 5. A point ~x∗ in phase spae lies on a periodi orbit of period p ∈ N, if
~x∗ = ~Mp(~x∗) (2.2.4)The trajetory

T = {~x∗, ~M(~x∗), . . . , ~Mp(~x∗)} (2.2.5)is alled a periodi orbit of period p.The mapping ~Mp is also known as the p-times iterated map. After p iterations, theperiodi orbit has reahed the starting point again. Therefore, a periodi orbit is alosed trajetory. The ondition (2.2.4) applies to eah point on the periodi orbit, suhthat periodiity is a property of the omplete periodi orbit. One an �nd periodiorbits by searhing for �xed points of the p-times iterated map ~Mp.Both �xed points and periodi orbits are invariant subsets of dimension zero, sine bothsets ontain only isolated points. This is di�erent for sets like I in the example of thelogisti map above. The interval is an invariant subset of dimension one.There are more types of invariant subsets. Some of them may even have fratal, i.e.non-integer, dimension. In order to haraterise these sets, we �rst need to introdue ade�nition for the dimension of a set.This exursion will introdue the box-ounting dimension, also known as the apaity.We will �rst think of objets, whose dimension we already know. From that point, wean generalize the notion of a dimension.



2.2. INVARIANT SUBSETS 13Let ǫ be a referene length sale. We form boxes of side length ǫ out of it. For a linewith length L, we need
NL(ǫ) =

L

ǫ
(2.2.6)boxes (i.e. line segments) to over the line. The number of boxes N(ǫ) we need to overthe set is obviously depending on the referene length ǫ. For smaller ǫ we need moreboxes. In analogy to that, we need

NA(ǫ) =
A

ǫ2
(2.2.7)boxes to over an area of size A with boxes of size ǫ2. The saling of N with ǫ isdetermined by the dimension of the set. Equations (2.2.6) and (2.2.7) an also bewritten as

ln NL = ln L + 1 · ln
(

1

ǫ

) (2.2.8a)
ln NA = ln A + 2 · ln

(
1

ǫ

) (2.2.8b)For su�iently small ǫ, the onstant o�set in those relations may be negleted suh thatthe following de�nition is useful.De�nition 6. The box-ounting dimension is de�ned as (f. [33℄)
D := lim

ǫ→0

ln N(ǫ)

ln (1/ǫ)
(2.2.9)By onstrution, this de�nition yields the orret results for the dimension of objetswe already know.On the other hand, a remarkable dimension is found for the Cantor set. We will desribethe onstrution of the Cantor set in brief. A visualisation of this algorithm is givenin �gure 2.1, panel . Imagine an interval of length one, i.e. the interval I from ourprevious example. Delete the middle third from this interval in order to get two stripesof length 1/3. From these stripes, delete the middle third again to get four stripes oflength 1/9 and so on. If we do this proedure ad in�nitum, we get the Cantor set. Wenow want to know the dimension if this set. In order to obtain it, we will use the box-ounting algorithm. We hoose a length sale ǫ =

(
1

3

)n, where n de�nes the iterationstep in the Cantor proedure. In order to over the set, we need N(ǫ) = 2n boxes. Wenow apply the dimension de�nition to alulate the dimension of the Cantor set.
D = lim

ǫ→0

ln N(ǫ)

ln 1/ǫ
= lim

n→∞

ln(2n)

ln(3n)
=

ln(2)

ln(3)
≈ 0.631 (2.2.10)Sine the Cantor set has a non-integer dimension it is alled fratal (f. [6℄). Fratalstrutures typially arise in objets with a self-similar struture. Prominent examplesare the Mandelbrot set [25℄ and the Koh snow�ake [26℄.We an now ome bak to our investigation of invariant subsets. Imagine again thelogisti map (2.2.2). But now hoose r > 4, so that I is no longer an invariant subset



14 CHAPTER 2. DYNAMICAL SYSTEMS REVISITED(f. �gure 2.1, panel b). In eah iteration, there is taken away some mass from I. Theamount is related to the width of the hole
2δ =

√

r − 4

r
(2.2.11)The points that stay forever in I form a Cantor set If . It is notiable, that If is not anempty set! Like in the ase of the middle third Cantor set, If has a fratal dimensionbetween zero and one, depending on the value of r. Sine If is not empty and points in

If never leave If , it is an invariant subset of the dynamis. Those invariant subsets withfratal dimension are alled strange in the terminology of dynamial systems, beauseof there fratal dimension.We have now lassi�ed all important invariant subsets. But the relevane of an invari-ant subset depends on another property, too. This is the stabilty against in�nitesimalperturbations whih will be investigated in the next setion.2.3 Stable/Unstable Diretions in Phase SpaeThe stability of an invariant subset is a very important property. The stability deides,whether a trajetory stays in the viinity of the invariant subset or if it leaves it. Inexperiments one typially observes stable invariant subsets, beause in�nitesimal pertur-bations drive the trajetory away from the unstable subset 3. Errors in the experimentalsetup or the �nite length of numbers in a omputer simulation are enough to let thetrajetory move away from the unstable subset. The exat de�ntion for one-dimensionalsystems will be given in the next setion. After that, we will generalize the notion tohigher dimensions.2.3.1 One DimensionFirst, we will investigate the stability of a �xed point, sine �xed points are the mostsimple invariant subsets. Further we will limit our onsiderations to one dimensionalmappings
xn+1 = f(xn) xi ∈ R ∀ i ∈ N (2.3.1)This proedure is useful to get an intuitive understanding of the notion of stability. Thede�nitions an be generalized to higher dimension very easily in the following setion.We an think of f as a simple mapping, e.g. the logisti map in (2.2.2). Note, that thestability an be de�ned in a general way for arbitrary trajetories. But we will restrainour onsiderations to the analysis of the stability of invariant subsets, sine this is thease we will use most of the time.De�nition 7. A �xed point xf is stable, if for every neighbourhood U of xf there is aneighbourhood V ⊂ U of xf suh that every trajetory starting in V remains in U forall times. This is also alled Lyapunov stability [19℄.3Exeptions are �ows with self-reproduing agents like in atalyti reations or algae.



2.3. STABLE/UNSTABLE DIRECTIONS IN PHASE SPACE 15This rather mathematial de�nition is very intuitive, but hard to apply to model systems.Therefore, we also introdue the notion of linear stability, whih an be applied easily.We assume, that the �xed point xf is perturbed by an in�nitesimal amount δn

xs
n = xf + δn δn ≪ 1 (2.3.2)where δn is the perturbation at time n4. Now we assume that the time evolution of xs

nan be alulated for small δn with a Taylor expansion of order one around xf

xs
n+1 = f(xs

n) = f(xf) + f ′(xf )δn + O(δ2

n) (2.3.3)
= xf + f ′(xf)δn + O(δ2

n) (2.3.4)By applying the de�nition of the perturbation, we get the linear evolution of the per-turbation as
δn+1 = f ′(xf)δn (2.3.5)The result an now be used to de�ne the linear stability.De�nition 8. A �xed point xf is linearly stable, if in�nitesimal perturbations deay intheir absolute value with time.

|δn+1|
|δn|

=
∣
∣f ′(xf )

∣
∣ < 1 (2.3.6)If ∣

∣f ′(xf )
∣
∣ = 1, then xf is metastable. For ∣

∣f ′(xf )
∣
∣ > 1, the perturbations grow and the�xed point is alled unstable [33℄.Linear stability asertains, that small perturbations of stable (unstable)�xed pointsdeay (grow) exponentially. Consequently, for an unstable �xed point the trajetoriesmove away from xf . On the other hand, in the marginal ase f ′(xf ) = 0 one has to fallbak to a more re�ned notion of stability, like Lyapunov stability, to make mathematialstatements.The same idea an be applied to the analysis of the stability for periodi orbits. Wejust use the p-times iterated map f p instead of f and we evaluate it at a periodi point

xp of the periodi orbit instead of at xf . All other de�nitions are the same. It is moreompliated to analyse the stability for invariant subsets, that ontain fratal sets orwhole intervals. One needs de�nitions from the theory of topology, whih we will notdisuss in this work 5.Generally, stable invariant subsets are alled attrators or sinks. On the other side,unstable sets are alled repellers or soures. The most popular attrator is the Lorenzattrator, whih rises in the investigation of Rayleigh-Bénard onvetion. It is lassi�edto be a haoti attrator. We will brie�y disuss the notion of 'haoti' now.De�nition 9. An invariant set is alled haoti, if trajetories on the invariant set areaperiodi and have sensitive dependene on initial onditions (f. [33℄). If the set is alsoa attrator, it is alled a haoti attrator.4 We always assume, that the typial size of the attrator is of order 1. Therefore, δn ≪ 1 refers toan in�nitesimal perturbation.5One way to determine the stability is to use bonds of the Lyapunov spetrum.



16 CHAPTER 2. DYNAMICAL SYSTEMS REVISITEDThe sensitive dependene on initial onditions is determined by the behaviour of neig-boured trajetories.De�nition 10. Let x0 and y0 = x0 + δ0 be two initial onditions on the attrator, where
δ0 ≪ 1 and let δn := yn − xn. If for almost all initial onditions x0, y0 the perturbation
δ0 grows exponentially with time

|δn|
|δ0|

∼ exp(λn) λ > 0 (2.3.7)we say that the attrator has sensitive dependene on initial onditions (f. �gure 2.2,[33℄).Note, that the di�erene δn has to be smaller than the typial diameter of the attratorfor all n.This property leads to the unpreditability of trajetories on haoti attrators. Both inexperiments and in simulations6, we an not de�ne the initial ondition with arbitrarypreision. These small inauraies grow exponentially with time. This fat is knownfrom every days life. Weather foreasts are very preise for the next day. But theforeast turns to guessing, when we would like to know the weather a few weeks inadvane. This is due to the fat, that the weather system has sensitive dependene oninitial onditions.We will now disuss the stability of higher dimensional systems. Those systems are morerealisti, but we have to do some more analysis.

b

b

b

b

~x(0)

~y(0)

~x(t)

~y(t)

~δ(0)

~δ(t)

Figure 2.2: For the de�nition of sensitive dependene on initial onditions.6For some ases, the initial onditions in omputer simulations an be determined to an arbitrarypreision by using sympleti integrators.



2.3. STABLE/UNSTABLE DIRECTIONS IN PHASE SPACE 172.3.2 Higher DimensionThe idea behind the linear stability analysis is the same as in the ase of one dimensionalsystems. But we have to interpret the results from a di�erent perspetive.Again, we will do the analysis for �xed points only. The generalisation is the same asin the one dimensional ase and will not be disussed.We will now investigate the stability of a �xed point ~xf under the system
~xn+1 = ~M(~xn) (2.3.8)Again, we an express a perturbated trajetory by7

~xs
n = ~xf + ~δn with ∣

∣
∣~δn

∣
∣
∣ ≪ 1 (2.3.9)It is worth mentioning, that in this high-dimensional ase, the perturbation has a di-retion. As mentioned below, this is a ruial property of the perturbation with a greatimpat on the dynamis of the system. The perturbation an be expanded in a Taylorseries

~xs
n+1 = ~M(~xf + ~δn) = ~M(~xf ) + D ~M(~xf ) · ~δn + O(~δ2

n) (2.3.10)
= ~xf + D ~M(~xf ) · ~δn + O(~δ2

n) (2.3.11)where D ~M(~xf ) is the Jaobian of ~M , evaluated at the �xed point ~xf . For an N-dimensional system it takes the form
D ~M :=






∂M1

∂x1
· · · ∂M1

∂xN... . . . ...
∂MN

∂x1
· · · ∂MN

∂xN




 (2.3.12)With this expansion, we an determine the evolution of the perturbation ~δn to be

~δn+1 = D ~M(~xf ) · ~δn (2.3.13)The stability of the �xed point is now determined by the eigenvalues λi and eigenvetorsof D ~M(~xf) (f. [19℄).De�nition 11.� if all λi have a negative real part, then ~xf is stable, sine every perturbation deays(∣
∣
∣~δn

∣
∣
∣ → 0

).� if there is at least one eigenvalue λj with positive real part, then ~xf is unstable,sine there is at least one diretion ~ej, where a perturbation grows.� if all λi have a vanishing real part and it exists a omplex-onjugated pair withnon-vanishing imaginary part, then the solution osillates and we have a periodiperturbation, whih is not growing8.7f. footnote 48It is also possible to have only one pair of omplex-onjugated λ. If all other eigenvalies havenegative real part, then th solution is only osilating in a plane, while all other diretions are stable.



18 CHAPTER 2. DYNAMICAL SYSTEMS REVISITEDIt is lear, that the variety of possible perturbation is muh larger than in the onedimensional ase.In higher dimensions, we have a diretion, related to the perturbation. It is possible,that a �xed point has only stable diretions but one, whih is unstable. These pointsare therefore alled saddle, sine they have the form of a saddle in the high dimensionalphase spae. An invariant subset, whih has stable as well as unstable diretions andshows sensitive dependene on initial onditions is alled a haoti saddle.The de�nition of stability leads straight to the onept of Lyapunov exponents.2.4 Lyapunov ExponentsThis setion will introdue the onept of Lyapunov exponents and vetors, whihare named after the Russian mathematiian and physiist Aleksandr Lyapunov.Lyapunov exponents are a widespread tehnique to haraterize stability and haos.The Lyapunov exponents are the exponents of the exponential growth of perturbations(f. [33℄).In equation (2.3.6), we have introdued the de�nition of the stability of a �xed pointvia the growth of in�nitesimal perturbations.
|δn+1|
|δn|

=
∣
∣f ′(xf )

∣
∣ < 1 (2.4.1)This gives us the growth in one iteration step. It an be generalized to the growth for

m iterations
|δn+m|
|δn|

=
∣
∣f ′(xf )

∣
∣
m

= exp(λm) where λ := ln
(∣
∣f ′(xf )

∣
∣
) (2.4.2)The exponent λ is alled the Lyapunov exponent and an be de�ned by

λ := lim
m→∞

lim
|δn|→0

1

m
ln

( |δn+m|
|δn|

) (2.4.3)
∣
∣f ′(xf )

∣
∣ = exp(λ) is often referred to as the Lyapunov number. The Lyapunov exponentsan now be used to determine the linear stability of a �xed point� λ > 0: unstable� λ = 0: marginally stable� λ < 0: stableThe advantage of using Lyapunov exponents is given by the fat, that they an beomputed very easily. The knowledge of the underlying map f is not neesary toalulate λ, sine it is de�ned via the growth of perturbations. Another advantagebeomes obvious in systems of higher dimension. Here, the Lyapunov exponents arethe eigenvalues of the Jaobian, evaluated at the �xed point position. This makes theLyapunov exponents to an essential tool in the analysis of the stability of invariantsubsets.In the next setion we turn to bifuration theory.



2.5. BIFURCATIONS 192.5 BifurationsA qualitative hange of the dynamis of a system while varying a ontrol parameter isknown as a bifuration. Bifurations are analyzed in the mathematial �eld of bifur-ation theory. We will inspet here only some basi bifuration senarios, whih areimportant for the analysis of our model systems.We will deal with bifurations of one-dimensional, smooth funtions f , whih dependsmoothly on a ontrol parameter r. There are three generi bifuration types for thislass of funtions [6,27,33℄, whih an be found in nearly every one-dimensional dynam-ial system. They regard the generation of �xed points and the hange of stability of�xed points.2.5.1 Tangent BifurationThe �rst bifuration type will be introdued by an example. We note, that the �xedpoints of a one-dimensional map are determined by the intersetion points of the map fwith the diagonal line f(x) = x. We will now study the dynamis of f(x) = r exp(x) [6℄.This map is visualized in �gure 2.3. For ontrol parameters r > 1

e
= rc (panel a), thereis no intersetion. Therefore, the map has no �xed points. If we derease r to the value

rc, we an hek easily that we get one intersetion at x = 1. For the speial ontrolparameter r = rc, the map f is tangent to the diagonal line. A further derease of r tovalues r < rc reates two �xed points, as an be seen in panel ). One is stable and theother one is unstable. After all, the slope of the left �xed point has to be smaller andthe one to the right larger one in order to have f(x) ross from above the diagonal tolower values and vie versa. The value rc, where the bifuration takes plae is alled theritial parameter or bifuration parameter.During a hange of r through the ritial value rc, we reate two �xed points from void,while f is tangent to the diagonal for r = rc. This bifuration type is therefore alleda tangent bifuration or saddle-node bifuration, when dealing with systems of higherdimension.
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Figure 2.4: Tangent bifuration sheme. Panel a) is before the bifuration. We do nothave any �xed points. b) After the bifuration, two �xed points emerge.One is stable, the other one is unstable. ) The sheme of the bifuration.Straight lines are stable �xed points, dotted lines are unstable.The sheme of the tangent bifuration is very general. The best way to remember it isto use �gure 2.4 as the basi sheme.2.5.2 Period Doubling BifurationWe will now ome the the seond bifuration type. For this senario, we will have a lookat the well-known logisti map [33℄
f(x) = rx(1 − x) r > 0 (2.5.1)This map has a stable �xed point at

xf = 1 − 1

r
for 1 < r < 3 (2.5.2)This �xed point is getting unstable at r = 3 =: rc, beause the magnitude of the slopereahes one in absolute value (f. de�nition 8)

∣
∣f ′(xf)

∣
∣ =

∣
∣r(1 − 2xf )

∣
∣ = |2 − r| = 1 for r = 3 (2.5.3)
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Figure 2.6: Shemati overview of a period doubling bifuration. Panels a) and b) showthe two-times iterated map before and after the bifuration. The stable �xedpoint loses its stability in the bifuration and gives rise to a stable periodtwo orbit. ) shows the motif for suh a bifuration.The �xed point is therefore unstable for r > rc. But this is not the end of the story. We�rst note, that there is no additional �xed point reated in this bifuration, whih anbe veri�ed from �gure 2.5, panel a). But we an have a look at the two-times iteratedmap. For r < rc, it has only one �xed point, namely the �xed point xf . If we inrease rthrough rc, we see, that there are two new �xed points reated in the two-times iteratedmap. These are stable and form a period two orbit.The basi properties of this kind of bifuration are ompiled in �gure 2.6.A bifuration, where a stable �xed point loses its stability and gives rise to a stableperiod two orbit is alled a period doubling or pith fork bifuration. The name pithfork bifuration omes from the visualisation in panel ) of �gure 2.6.2.5.3 Inverse Period Doubling BifurationThe last bifuration is very similar to the period doubling bifuration and will be men-tioned only brie�y. It ours when an unstable �xed point beomes stable and therebyreates an unstable period two orbit. This proess is alled an inverse period doublingbifuration. We will only give the basi sheme of this bifuration type in �gure 2.7.
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Figure 2.7: Shemati overview of an inverse period doubling bifuration. For r < rc,we have one unstable �xed point. This �xed point gains stability in thebifuration and gives rise to an unstable period two orbit (panel b). Panel) is the shemati motif.



22 CHAPTER 2. DYNAMICAL SYSTEMS REVISITEDAll the generi bifurations we an enounter in one dimension have now been de�ned.All these bifurations an happen in the other diretion as well. This depends on theexpliit de�nition of the ontrol parameter. The shemati desription is obtained byfolowing the shemes in the ) panels of �gure 2.4, 2.6 and 2.7 from the right to the left.2.5.4 Bifuration DiagramsAnother useful tool to visualize bifuration senarios is to use bifuration diagrams.In bifuration diagrams, we plot the stable orbits of the system against the ontrolparameter. Sometimes, additional unstable �xed points are inluded in those diagrams.But in order to have a learly arranged plot, one skips this unstable �xed points mostof the time.
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Figure 2.8: Bifuration diagram for the logisti map. We an see the period doublingroute to haos and the boundary risis at r = 4.One an inspet in bifuration diagrams, how the dynamis of a system evolves from astable �xed point to a haoti behaviour. The most famous mehanism for that is theperiod doubling asade, known from the logisti map. This route to haos is happeningvia suessive period doubling bifurations. After n bifurations, we enounter a periodiorbit of period 2n. n → ∞ for r → r∞ and we have a fully developed haoti dynamisfor r ≈ 3.57 = r∞. The exat point r∞ after in�te period doublings has been determinedby Feigenbaum [9℄. The senario is known as the period doubling route to haos [33℄.There are muh more types of bifurations for higher dimensional systems. The analysisand lassi�ation is muh more involved, so that only a rough sketh an be given. Anexposition on this topi has been given by Arnol'd [2℄.2.6 Transient BehaviourThis setion will give a short introdution to the �eld of transients, whih are related tobifuration theory. Transient behaviour an be interepreted as the opposite of permanentbehaviour. A dynamial system on an invariant subset will never leave this subset.This an be desribed as permanent behaviour. When talking of transient motion, we



2.6. TRANSIENT BEHAVIOUR 23are dealing with a dynamial systems, that has not approahed an invariant subsetand therefore an make a transition between several regions of the phase spae. Oneexample is the transition from a haoti saddle to a stable �xed point, whih is observedin turbulent pipe �ow. A trajetory, whih is making suh a transition is alled atransient. There are many kinds of transients, desribing di�erent kinds of dynamialbehaviour. Some of them, whih are important for our analysis, will be explained inthis setion.The �rst phenomenon we will disuss is intermitteny. We take as granted, that thereis a ritial parameter ac in the system. For a < ac, there exists a stable periodi orbit,whih will be destroyed or get unstable for a > ac. An example is studied by Pomeauand Manneville in [36℄ for the Lorenz system. For a < ac, we an see a periodi signal in�gure 2.9, panel a. As a is slightly above ac, the signal looks very similar to the signalfor a < ac, but is sometimes intermitted with bursts, that are not periodi and show ahaoti motion. If we inrease a further, suh that it beomes signi�antly larger than
ac, the periodi pathes in the signal get less and then dissappear. The system is nowin a true haoti state. It is not possible to investigate the behaviour of every singletrajetory. But we an alulate some statistial features, that give us some insight intothe mehanism of this behaviour.One possibility is to measure the average time T between two subsequent haoti bursts.This quantity tends to in�nity, when approahing ac from above.

lim
a→a+

c

T (a) → ∞ (2.6.1)This means, that the periodi behaviour is restored for parameters values a near theritial value ac.

Figure 2.9: A signal of the Lorenz system. In a), we see a periodi signal. Due tointermitteny, we get bursts in b1), whih are beoming more frequent forb2). In b3), there is no more periodiity and the system has reahed ahaoti state. Reprinted from [33℄.



24 CHAPTER 2. DYNAMICAL SYSTEMS REVISITEDWe have taken T (a) as an interesting measure to haraterize the behaviour. This is atypial quantity to look at, when dealing with transients.One is often interested in the saling law of a harateristi time in dependene on thesystem parameter, or on the distane to a ritial value. For the ommon ase of asaddle-node bifuration (f. �gure 2.4) at ac, one observes a saling law (f. [33℄)
T (a) ∼ (a − ac)

−1/2 (2.6.2)After all, for a value a < ac, we have one stable and one unstable �xed point of our map
f . These two �xed points merge and dissappear in the saddle-node bifuration.This leaves a very narrow tunnel behind, whih an be seen in �gure 2.10. The methodof graphial iteration is used in �gure 2.10. The next state an always be determined bysubsequently going from the atual point to the diagonal and then to the funtion f(x)again. A trajetory, whih is injeted into the tunnel needs a very long time to ross it.This time an be alulated, if we approximate the funtion to quadrati order,

f(xn) = xn+1 = x2

n + xn + ǫ where ǫ ∼ (a − ac) (2.6.3)If we are near the ritial parameter, we obtain ǫ ≪ 1. This means, that a step in thetunnel is very small. Therefore, we an approximate x as a ontinuous funtion of nand rewrite equation (2.6.3) as
dx

dn
= x2 + ǫ (2.6.4)
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2.6. TRANSIENT BEHAVIOUR 25If we injet the trajetory at x0, the time to ross the tunnel is given by
∫ T

0

dn =

∫ ∞

x0

dx

x2 + ǫ
∼ ǫ−1/2 (2.6.5)Even with this oarse approximation, we see that this mehanism reveals the orretresults.After rossing the tunnel, the trajetory obeys a haoti dynamis and will be reinjetedinto the tunnel. This leads to the harateristi time sale for periodi behaviour inbetween the haoti bursts. We note, that the average time sales with the distane tothe ritial parameter ac of the saddle-node bifuration. This behaviour is known asintermitteny and is a quite ommon sheme for transient behaviour.The next part of this setion will disuss the transition from a haoti behaviour intoan absorbing state, i.e. a stable �xed point. This behaviour is typial for a boundaryrises, where an attrator hits its basin boundary. We will study this type of transitionwith the example of the logisti map (2.2.2).

f(x) = rx(1 − x) (2.6.6)For r = 4 =: rc, we have a haoti invariant subset I = [0, 1]. When r is inreased above
rc, I is no longer invariant under the evolution of f . In every iteration, some mass of I ismapped outside of it and we get the Cantor set If , whih has been desribed in setion2.2. I is no longer invariant and we an alulate the average lifetime of a trajetorystarting in I, i.e. the number of iterations until the trajetory leaves I.Sine we lose a onstant fration of our mass at eah iteration, we expet an exponentialdistribution

P (t) ∼ exp(−t/τ) (2.6.7)for the lifetime, whih is also known from radioative deay proesses. τ is the averagelifetime and P (t) is the probability for a trajetory to have a larger lifetime than t. Asin the intermitteny example above, one is interesting in the saling law of the averagelifetime τ with the ontrol parameter r. The probability to esape I is onstant foreah iteration, sine the middle part of I is mapped outside I and the remaining part ismapped to the omplete I again (f. �gure 2.1, panel b). Sine the invariant measureat the ritial point is smooth on I, the esape probability is proportional to the lengthof the hole L

ρ ≃ cL (2.6.8)with a onstant c. The probability, that a trajetory is still in I after n timestepsamounts to
(1 − ρ)n ≃ (1 − cL)n = exp(n · ln(1 − cL)) (2.6.9)Comparison to equation (2.6.7) yields

τ = − 1

ln(1 − cL)
≃ 1

cL
=

1

c

(
r − rc

r

)−1/2

≈ 2

c
· (r − rc)

−1/2 (2.6.10)



26 CHAPTER 2. DYNAMICAL SYSTEMS REVISITEDHere, we used (2.2.11) for the length of the hole. Hene, this boundary risis leads toan average lifetime τ , that sales with the ontrol parameter like
τ ∼ (r − rc)

−γ, γ =
1

2
(2.6.11)This saling law is quite general and also enountered in many boundary rises setups(f. [13℄). Even where the invariant measure prior to the risis is a fratal measure, itstill applies, even though with a di�erent exponent γ. On the other hand, the argumentis restrited to boundary rises, where the basin boundary is smooth. It fails for afratal basin boundary. Sine, in that ase, it is not orret assume a onstant esapeprobability. The holes in the attrator, whih are reated in the boundary risis, aregenerally very small for a fratal basin boundary suh that their size will not salealgebraially like (r − rc)

γ. Sine thus holes are very narrow, one rather obtains asaling law like
τ ∼ exp

[
C(r − rc)

−γ
] (2.6.12)with a onstant C and exponent γ. One observes in this saling law, that the averagelifetime depends ruially on r − rc. Due to the very strong divergene of the averagelifetime τ for r → rc, one alles these transients super-long transients.As shown by Grebogi, Ott and Yorke in [12℄, super-long transients an be reated,for example, by an unstable-unstable pair bifuration.The senario is ompiled in �gure (2.11). We an see two unstable �xed points. Theone on the basin boundary is unstable in the transversal as well as in the longitudinaldiretion, ompared to the boundary. The point on the haoti attrator is a saddle,whih is stable in the transversal diretion and unstable in the longitudinal one. At theboundary risis, these two points merge and reate a very narrow tunnel in phase spae,whih an be seen in panel b. Trajetories on the prior attrator an now esape fromthe haoti region and ross the boundary to leave the viinity and move o� to anotherregion, maybe a stable �xed point.

Figure 2.11: This �gure shows the mehanism of an unstable-unstable pair bifuration.(a) Before the merging risis, we have an unstable pair whih undergoes asaddle-node bifuration in one diretion. (b) After the risis, the unstablepair has vanished leaving a narrow tunnel in phase spae where trajetoriesan esape. The haoti attrator has morphed into a haoti transient.Reprint from [45℄.



2.6. TRANSIENT BEHAVIOUR 27Due to the saling law (2.6.12,) the transients an have a very long lifetime. As aonsequene, it is nearly impossible to distinguish between the motion on a haotiattrator or the motion of a super-long transient. The trajetories look pretty muh thesame for an exeedingly large number of iterations. This problem is also enounteredin turbulent pipe �ow, where the question, if turbulent �ow is permanent or transientwith a super-long lifetime, is not ompletely answered yet [16℄.We have now introdued the most ommon types of transient behaviour. In the nexthapter, we will investigate a model system, whih enounters an unstable-unstable pairbifuration. The ourene of a fratal basin boundary, lifetime distributions and thesaling law (2.6.12) will be veri�ed. Another system with muh higher dimension willbe introdued in hapter 4.



28 CHAPTER 2. DYNAMICAL SYSTEMS REVISITED



Chapter 3A Mean-Field Model for Super-LongTransientsBeside experiments, numerial simulations of the Navier-Stokes equations and analytialsolutions to the Navier-Stokes equations, there is another way to takle the problem. Itould be possible to build a simple, low-dimensional dynamial model system [47℄, whihlet us investigate some, but not all, aspets of turbulent pu�s. With suh a simple modelwe are able to ahieve some analytial results really easily. Another advantage is, thatsimulations of suh a model ould be arried out really fast on present-day omputers.This hapter will introdue suh a model system in order to gain some insight into thenature of super-long transients.3.1 The IdeaIn this warm-up problem, we would like to understand where the super-long lifetimeof haoti transients omes from. We reall some results from [45℄ and apply them toour new model system for pipe �ow. Our aim is to work out the analogy between �uiddynamis and dynamial systems voabulary. At this point we also larify the thingswe will need in the next hapter.The laminar state of pipe �ow is a steady state, that is stable against small perturbationsat least for Reynolds numbers up to 107. This fat let us model the laminar state asa stable �xed point of our dynamial model system. The next thing we will onsideris the super-long lifetime of turbulent pu�s. It has been shown by Ott, Grebogiand Yorke [12℄ that super-long transients are expeted to emerge from an unstable-unstable pair bifuration. In this proess, an haoti attrator ollides with its fratalbasin boundary, whih leads to a boundary risis and a hole in phase spae is left, wheretrajetories an esape. Due to the fratal nature of the boundary, these holes are verysmall, and the trajetories needs a long time to �nd them. This mehanism an be usedto model super-long transients. The third aspet is that the model system should besimple enough. Simple means easy to evaluate on a omputer. This is an importantpoint if we want to do simulations faster than a omplete simulation of the Navier-Stokesequations. The last point is rather tehnial. We expet to do measurements of the pipe29



30 CHAPTER 3. A MEAN-FIELD MODEL FOR SUPER-LONG TRANSIENTSturbulene in disrete time steps. This gives us the possibility to use a disrete timemodel, namely a mapping.These points are now summarized1. existene of a laminar, stable state for all Re2. unstable-unstable pair bifuration gives rise to the transition from turbulene tothe laminar state with super-long transients3. system as simple as possible to ahieve fast simulations4. time-disrete systemIt is obvious, that suh a simple model an neither give us the whole variety of turbulentstrutures nor an it be applied to real systems without limitations. But we an learnsome basi onepts the nature of super-long transients. The simpliity of the model isseen as a feature, not as a lak of appliability. If we aept these onstrains, we anlearn muh about the physis of transients, whih our in several �elds of physis andnature.This model is introdued and disussed in the next setion.3.2 The ModelThis model is supposed to be a mean-�eld model. There is no spatial extension and thestate of the system is de�ned by only two dynamial variables x and y. We an thinkof x as the energy stored in the turbulene and of y as the on�guration of this energy(i.e. a point on an energy shell, f. [47℄). Sine we are dealing with a mean-�eld model,we an only tell if the system is turbulent or not. There is no way to see a transitionfrom onvetive to absolute instability or the moving of a pu� through a pipe.First, we will disuss the single dynamis for x and y seperatly and then introdue theoupling between them.3.2.1 Unoupled DynamisWe will �rst fous on the x-dynamis, whih is the oordinate that determines theturbulene. The simplest non-linear mapping would be a quadrati funtion xn+1 = x2
n,where n ∈ N0 is the disrete time of the system. In order to in�uene the x-dynamis,we introdue a ontrol parameter a, whih shifts the map like xn+1 = x2

n + a. This givesus the opportunity to investigate some bifurations of the system. In addition to that,we need a stable �xed point to model the laminar state. This laminar state is arbitrarilyhosen to be at x = −2.Colletively, we get the mapping (f. �gure 3.1)
xn+1 = f(a, xn) =

{

−x2
n + a , x ≥ x∗

−2 , x < x∗

(3.2.1)
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aFigure 3.1: The left image shows the x-dynamis for a = −0.21. The bifuration dia-gram is shown on the right side. Dots are the simulated points, the dashedline is the omputed position of the unstable �xed point, esaping from thesaddle-node bifuration.where x∗ is the intersetion of the two branhes of f with the value x∗ = −
√

2 + a (f.�gure 3.1). This means that for values x < x∗ the system goes diretly to the laminar�xed point while we have a non-trivial dynamis for x > x∗.We will now have a loser look on the �xed points of f . The �xed point equation (2.2.3)gives us up to three di�erent �xed points
xf

0 = −2, xf
1/2

= −0.5 ±
√

0.25 + a (3.2.2)Here, the ritial value is ac = −0.25. For a < ac we have only one real �xed point,namly xf
0 . In this ase xf

0 is a global attrator, sine x is bounded by max(f) to thetop and values x < x∗ are mapped to xf
0 . Two new �xed points our in a tangentbifuration as a rosses ac from below and xf

0 is no longer a global attrator. This anbe understood by analyzing the stability of the �xed points. Therefore, we alulate the�rst derivative of our map f .
f ′(a, xn) =

{

−2xn , x ≥ x∗

0 , x < x∗

(3.2.3)We already know from setion 2, that a �xed point is stable, if |f ′| ≤ 1. This gives usthe result, that xf
0 is stable regardless of a. We also get that xf

1 is unstable for a > ac.At reation at a = ac, the �xed point xf
2 is stable. It loses its stability at a = 0.75, where∣

∣
∣f ′(xf

2)
∣
∣
∣ rosses 1. The loss of stability of xf

2 gives rise to a period doubling bifuration,as it is well known from the logisti map [9℄.Another interesting point is the basin of attration of these �xed points in the parameterregion a ∈ [ac, 0.75]. The basin of attration for xf
2 is given by I2 := [xf

1 ,−xf
1 ]. Note that

xf
1 < 0. Sine there are only two stable �xed points in this parameter range, the basinof attration for xf

0 is I0 := R \ I2. For a > 0.75 the �xed point xf
2 undergoes a perioddoubling asade to haos. At a = 2 we an ompute that the ondition x∗ = xf

1 = −2is ful�lled. This is the indiator for a non-generi boundary risis, where the attratorin I2 loses its stability. For a > 2 the dynamis are no longer well de�ned, sine x∗ < −2



32 CHAPTER 3. A MEAN-FIELD MODEL FOR SUPER-LONG TRANSIENTSand −2 is no longer a �xed point, whih means that we lose the laminar state and ourmodel makes no sense any more.This results an be ompiled into a bifuration diagram. This diagram an be omputedby a little omputer algorithm, whih is desribed in the following1. hoose a ontrol parameter a2. take N random initial ondition xi, i ∈ {1, . . . , N}3. iterate the xi with the map f for n0 timesteps4. iterate eah trajetory for another n1 timesteps and output the values5. go bak to 1) for another aIt is important to note that our algorithm an only determine the stable orbits1. Thebifuration diagram for f is illustrated in �gure 3.1.We would like to trigger an unstable-unstable pair bifuration aording to the meh-anism in [45℄. Therefore, we are only interested in parameter values near ac. We haveanalyzed the most important aspets of the x-dynamis and an now turn our fous onthe seond diretion.The y-dynamis is responsible for the haoti dynamis, whih we need for the boundaryrisis in the unstable-unstable pair bifuration. It is advantageous to take a periodimap. This keeps the interesting phase spae bounded and one an therefore do fastersimulations. So we propose a map g(y) = g(y + Y ) with some period Y . The obvioushoie would be a simple sine g(y) = sin(y). But there is a problem with this mapping,beause it is impossible to solve the �xed point equation x = sin(x) analytially. Inorder to avoid this tehnial problem, we use a 'linear version' of the sine funtion,whih is de�ned as (f. �gure 3.2,left)
g(b, yn) =







byn ,−0.5 < yn ≤ 0.5

b(1 − yn) , 0.5 < yn ≤ 1.5et. (3.2.4)Another advantage is the symmetry of this funtion, whih further simpli�es the taskto ompute �xed points, their stability and bifuration diagrams. We have hosen theslope b to be the ontrol parameter for this dynamis. The period of the funtion is setto Y = 2.From the �xed point equation, we see that g has also up to three �xed points,
yf

0 = 0, yf
1/2

= ± b

b + 1
(3.2.5)For this speial hoie of g it is quite easy to ompute the stability of the �xed points,beause we have |g′| = b, irrespetive of the point we are interested in. For b < 1, we1Unstable �xed points an be omputed by applying bakward iteration, sine they are stable ofinversed time �ow.
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bFigure 3.2: The left image shows the y-dynamis for b = 2.1. There are three �xedpoints of the map. The bifuration diagram is shown on the right side. Amerging of the two bands is happening at b = 2, where we expet haotibehaviour.have only one �xed point at yf
0 . This �xed point is stable and a global attrator, sine

g is bounded. A non-generi bifuration is enountered at b = 1. At this parameter,we have in�nitely many �xed point, whih are all marginally stable. But at b = 1 + ǫfor an arbitrary small ǫ > 0, we get the three �xed points given in (3.2.5), whih arelearly all unstable. For values 1 < b < 2 there is a deoupling of the two branhes.Initial onditions starting with yi > 0 stay in the positive region, while trajetories with
yi < 0 stay in the negative region. We are e�etively dealing with two independenttent maps, whih have the same dynamis with inversed sign. Sine the tent map istopologially onjugated to the logisti map, we get the same bifuration behaviour likethe logisti map. g is exhibiting a period doubling route to haos. The two independentbands are beoming haoti and merge at b = 2. The two independent branhes startto ommuniate again and we have a haoti dynamis on the whole domain. Thisfat is supported by the investigation of the bifuration diagram displayed in the rightpanel of �gure 3.2. Our aim was to trigger an unstable-unstable pair bifuration. The
y-dynamis has the job to ontribute with a haoti dynamis. For this ase, we hoosethe system parameter to be b = 2.1 for the rest of this setion.We have now a good understanding of the x and y-dynamis seperately. But super-long transients need at least two dimensions (f. [45℄), sine we need a fratal basinboundary for the small holes in phase spae. This rises the question for a su�ientoupling between this two diretions. That problem is takled in the next setion.3.2.2 CouplingAs already mentioned, the unstable-unstable pair bifuration should be triggered by theoupling. The lifetime of the transients is then depending on the oupling strength ǫ.This oupling strength is meant to be the only parameter of the system and is relatedto the Reynolds number. In order to take ǫ as the only system parameter, we need to�x a and b to sensible values. As mentioned above, the y dynamis should be haoti onthe whole domain. Therefore, we set b = 2.1 as a value slightly above the band merging



34 CHAPTER 3. A MEAN-FIELD MODEL FOR SUPER-LONG TRANSIENTSpoint b = 2. In x diretion, we hoose a parameter a = a∗ := −0.21 as a starting point.Sine a∗ > ac, we are above the bifuration point, where a haoti attrator is oexistingwith the �xed point at xf
0 . The idea for the oupling is, that we an introdue it in away, that the y dynamis an trigger the bifuration. This means that a strong ouplingstrength ǫ an destroy the haoti attrator in I2. Therefore, we introdue the ouplingin a way to shift the ontrol parameter a through the bifuration point.

a = a∗ − ǫ |yn| ǫ > 0 (3.2.6)The absolute value of y prevents the oupling to shift a in the wrong diretion. Thestrength of the oupling an be adjusted by ǫ. The maximum shift is given by
max(ǫ |y|) =

ǫb

2
= 1.05ǫ (3.2.7)The de�nition (3.2.6) leads to a ritial oupling strength, whih is de�ned as the ou-pling strength, where we enounter the unstable-unstable pair bifuration, namely at

a = ac. After rearranging (3.2.6), we get
ǫc =

a∗ − ac

b
2

≈ 0.047 (3.2.8)for a∗ = −0.21, ac = −0.25 and b = 2.1.With this oupling de�nition, we have a global attrator at x = −2 for ǫ > ǫc. Wewill mention that the word attrator only refers to the x diretion. The dynamis in
y-diretion is always haoti and we are always using the x dynamis to lassify thebehaviour of the system. Is is worth noting that the y dynamis is not in�uened by x.Therefore, it an be iterated independently. In the ase where ǫ < ǫc there exists two�xed points in x, namely xf

1/2
. This leads to an attrator in the interval IA := [xf

1 ,−xf
1 ].Here we have to keep in mind, that xf

1 depends on a and eventually depens on y. Wewill denote IA as the attrator region.There is another point to make on the de�nition of ǫ. When we ompare it to the ontrolparameter of turbulent pipe �ow, we an try the obvious relation ǫ ∼ Re−1. The valueof ǫ deides, whih lifetime the transient will have. The larger ǫ is, the shorter is theaverage lifetime.The evolution equations an now be summarized as
xn+1 = f(a∗ − ǫ |yn| , xn) (3.2.9a)
yn+1 = g(b, yn) (3.2.9b)This system an be simulated in order to hek, if it shows the expeted behaviour. The�rst step is to analyze the lifetime for di�erent initial onditions. We mark a trajetoryas 'dead' if it is at the stable �xed point x = −2. The algorithm we will now introdueis alled the phase spae algorithm from now on and is de�ned by some simple steps1. reate a grid with mesh size α in the interesting phase spae region2. take the nodes of the grid as the initial onditions for the simulation



3.2. THE MODEL 353. iterate eah initial ondition with the equations (3.2.9)4. assoiate to eah node the number of iteration needed to reah the dead state5. plot the lifetime as a olor-oded plot in phase spaeThe omputational e�ort of this algorithm sales quadratially with the mesh size α,suh that it is very hard to reah very high resolutions.The phase spae plots for two values of ǫ are shown in �gure (3.3). The attrator appearsas a green region. For ǫ < ǫc, the white region is the basin of attration for the attratorin IA and the oulored region is the basin of attration of xf
0 , where these two regions areseparated by the basin boundary. For ǫ > ǫc, the attrator is destroyed in an unstable-unstable pair bifuration. Beyond this bifuration, the white region denotes the regionwhere a trajetory �rst stays in the region of the prior attrator before moving o� to thelaminar �xed point. The oulored region then stand for those initial ondition, whihimmediatly move to xf

0 whithout spending time in IA. The boundary is now alled theedge of haos, whih is sperating trajetories with this di�erent behaviour.In addition to the olor-oded lifetime, we have plotted a single trajetory of the systemstarting in IA for 1010 iterations. The spiky basin boundary attrats the attention whilelooking at the phase spae plots. This suggests a fratal basin boundary, whih is aondition for the unstable-unstable pair bifuration and the super-long transients. Thisfratal behaviour stems from the haoti y dynamis. Another striking aspet is thesymmetry in the plots. This omes from the symmetry of g and the oupling via theabsolute value |y|.

Figure 3.3: We see a phase spae plot of the system. The olor odes the number ofiteration needed to reah the laminar point at x = −2. Green dots indiatea single trajetory starting at a random initial point in the region around
xf

2 . The left panel shows a plot for ǫ = 0.06, where we do not see an esapingtrajetory. The right panel is for a slightly larger oupling ǫ = 0.065, wherean esaping trajetory is enountered lose to (x, y) = (−0.5, 0.7). Thelast dots of the trajetory have been plotted in larger size to improve theirvisibility.



36 CHAPTER 3. A MEAN-FIELD MODEL FOR SUPER-LONG TRANSIENTSWe do not see any points at the edge of haos for ǫ = 0.06. It seems that all iterationsof the trajetory stay in the region IA, although 0.06 > ǫc. This fat is investigatedfurther in setion 3.4. For ǫ = 0.065 we an see that after about 1.3 · 1010 iterations thetrajetory approahes the edge of haos, rosses it and moves o� to the laminar point.In the next two subsetions, we will determine the shape of the edge of haos with avery high auray then analyse and the distribution of the average lifetimes of thetransients.3.3 Computing the Edge of ChaosThe edge of haos seperates states of fundamentally di�erent behaviour [47℄. States onthe laminar side move diretly to the laminar �xed point, while states on the haotiside move to the haoti region �rst and seem to follow the trajetory of the priorhaoti attrator before they eventually �nd a hole in the boundary and esape to thelaminar point. Sine the holes are very small for a fratal basin boundary near theritial value, the trajetories nearly never notie esape hannels and therefore evolvelike trajetories on an attrator. In pratie, it is often very hard to deide whether anobserved trajetory moves on an attrator or if it is just a transient to another regionin phase spae.The phase spae algorithm desribed above is quite good for sanning the phase spaefor the lifetime at several points, but its high requirements on omputer time, severelyhinders a high resultion of the edge, i.e. a small mesh size. Therefore, we implementedanother algorithm whih is speialized to �nd the edge with high auray. It will bedenoted as the 'edge traking algorithm'.We �rst need to point out, that a �xed point, whih is stable, is unstable if we inversethe time �ow. In forward diretion, points very lose to the edge at the laminar sidemove to the laminar �xed point. The idea is to take an initial point near the laminar�xed point and ompute the preimages of that point, whih rapidly generates a highlyaurate approximation to the edge of haos.Eah bakward iteration yields several preimages. Sine the y dynamis is deoupledfrom x, it is useful to start the bakward iteration proess with y. As seen in �gure 3.2,
yn+1 has up to three preimages yn, depending on its value. Therefore, we need to �ndthe value g(b, b/2), whih gives us the lower bond for where yn+1 has three preimages.This an be easily alulated to be

g(b, b/2) = −b(b/2 − 1) = −0.105, for b = 2.1 (3.3.1)Due to the symmetry of g, we found, that for yn+1 ∈ [−0.105, 0.105], we have threepreimages. Otherwise we get only two. One we found the preimages of yn+1, we areable to alulate those for xn+1. The quadrati part of f gives us two preimages. Theoupling depends on y and therefore we get four to six preimages for a given state
(xn+1, yn+1). But these preimages do not all lie on the boundary. We an see from theplots, that only negative x values build the boundary. Therefore, we do not need to takethe positive x values into aount. We also do not need them in the further appliation



3.4. LIFETIME PLOTS 37of the algorithm, beause positive x values have no preimages, sine max(f) < 0 for thevalues of a and ǫ we are interested in.Now we an think of a little estimate for the resolution quality of the edge trakingalgorithm. As mentioned above, we get two to three interesting preimages. We applythe preimage omputation to a depth of 20 levels, by applying the algorithm to eahpreimage, we got in the �rst step, again and again. This gives us at least 220 interestingpreimages of a point near the laminar �xed point. We suppose that these points areall lying on the edge of haos, sine the phase spae algorithm suggests, that 20 stepsare enough to reah the laminar point, if we have rossed the boundary. The lengthof interest in y diretion is ∆y = 2.1 as an be seen from the phase spae plots. Thatyields a resolution of 2.1/220 ≈ 2 · 10−6 for the edge traking algorithm. This an beompared to the mesh size of the phase spae algorithm, whih is α = 0.001. So we see,that the edge traking algorithm is muh more e�ient for determining the boundarythan the more general phase spae algorithm.A omparison of the two algorithm shows, that the boundary is the same in both ases,but with higher resolution in the edge traking algorithm. The high resolution resultssupport the assumption of a fratal boundary. Although this is not a mathematialproof, we an hek if the lifetime sales like we expet it from the mehanism proposedin [12℄ for fratal basin boundaries. Rather, a fratal basin boundary is also expeted,sine λy > λx for the Lyapunov exponents in x- and y-diretion, respetively (f. [47℄).3.4 Lifetime PlotsWe will now ome to the question of how the average lifetime of the transients behaveswith varying oupling strength. In order to alulate the lifetime, we randomly seleted
N0 = 2000 initial ondition for eah oupling strength in the haoti region and let themevolve until the trajetory is dead. The number of iterations is taken to be the lifetime
τi for this initial ondition. Then we take the average lifetime as

τ =
1

N0

N0∑

i=1

τi (3.4.1)where τi is the lifetime of the i-th random initial ondition.Another possibility we have tried is the following. Sine we are dealing with a deayproess, we expet that the number of initial onditions that are still alive after a time
t sales like

N(t) = N0 exp(−t/τ) (3.4.2)With a log-normal plot we an ompute τ via a linear �t to the data. Both methods ofomputing τ yields the same results within the numerial auray.After having de�ned the omputational methods, the task is now to determine thedependene of the lifetime τ on the distane to the ritial point (ǫ − ǫc). The �rstthing we notie in the phase spae plots is, that even at values quite above ǫc, i.e. at
ǫ = 0.06, we do not enounter any esaping trajetories from the haoti region. In orderto analyze this issue, we ompute the average lifetime for di�erent values of ǫ > ǫc, larger



38 CHAPTER 3. A MEAN-FIELD MODEL FOR SUPER-LONG TRANSIENTSthan ǫ = 0.06. This gives us simulation data for τ(ǫ − ǫc). We �tted this data with thesaling law suggested by [12, 45℄.
τ ∼ exp(C(ǫ − ǫc)

χ) (3.4.3)The plot is shown in �gure 3.4. As we an see from the �t, the expeted saling law isfound in the simulation data. We are now onvined, that we are dealing with super-long transients. The meaning of 'super-long' is well demonstrated by alulating τ fordi�erent oupling strength with our �tted funtion.For ǫ = 0.65 we get τ = 1.3 · 107 out of the �t, whih is in very good agreement withthe data. 107 iterations an easily be done on our omputers2, even with quite someomputing time. We an now alulate the average lifetime for a slightly lower value,where we have not seen any esaping trajetories, namely for ǫ = 0.06. The �t tells us,that we should expet a value like τ ≈ 1028. This is the explanation why we were notable to resolve any transients in this ase. The omputing time for 1028 iterations is farout of reah of omputers.This results shows, that we are dealing with super-long transients esaping from anunstable-unstable pair bifuration. The edge of haos is fratal and supports a superex-ponential saling law for the average lifetime. We see that the average lifetime is verystrongly diverging, whih is due to the fat that χ = −4.49. This saling law assumptionis only valid for ǫ > ǫc and the average lifetime goes to in�nity for ǫ → ǫc. This an be
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Figure 3.4: The average lifetime for di�erent values of ǫ. The �tted data is given bythe saling law τ = τ0 exp(C(ǫ − ǫc)
χ), where τ0 = 79.04, C = 2.1e − 7 and

χ = −4.49. The inset shows a double log-log plot in order to verify (3.4.3).The straight line supports the expeted saling.2We used a omputer with an Intel Core 2 Duo 3GHz CPU and 3GB RAM



3.5. SUMMARY 39ompared to our introdutory question of the average lifetime of turbulent pu�s. For
Re < Rec, we have an exponential saling of the average lifetime of turbulent pu�s,where for Re > Rec the lifetime is in�nity, whih means that a turbulent pu� is neverdeaying.3.5 SummaryAfter motivating the idea for the model, we presented our implementation of the dy-namis. The x-dynamis is responsible for the tangent bifuration while the y-dynamisgive rise to the unstable-unstable pair via the haoti dynamis. The oupling has beenintrodued in a way that it triggers the interesting bifuration by only one parameter,whih is the oupling strength ǫ. Lifetime plots were given for di�erent ǫ in whihwe ould see, that the omputationally resolvable lifetime is enountered for ouplingstrengths far beyond the ritial value ǫc. This is veri�ed a posteriori with the �ttedurve of average lifetime to the simulation data, whih assures the exponential salinglaw of super-long transients and gives us the possibility to alulate the lifetimes forvalues of the oupling strength really near to ǫc.We also investigated the basin boundary between the laminar and the haoti regionwith a very high auray. This supports the suggestion that we are dealing with afratal basin boundary. This fat is also supported by the average lifetime saling law,sine the lifetime is expeted to be super-long only for a fratal basin boundary. Ouredge traking algorithm is presented in a short paragraph to show how good the aurayis ompared to the phase spae algorithm.Summing up, we have found a model system, whih shows super-long transient be-haviour. The model shows, that super-long transients are not exoti objets with nophysial meaning. The quite simple mehanism of an unstable-unstable pair bifura-tion is used as a stereotype of a bifuration, whih reates super-long transients. Thesetransients do not show a power-law saling like at a risis in a syste with one unsta-ble diretion and a smooth basin boundary. Hene, this analysis demonstrates, thatsuper-long transients an be modelled by simple models.The underlying dynamis has been tested and they build the basis for further analysis ofa slightly more ompliated model, namely a unidiretional oupled map lattie, whihis investigated in the next hapter.
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Chapter 4An Unidiretional Coupled MapLattie (uCML) for Pipe Turbulene
Hof et al. [16,17℄ have shown, that turbulent pu�s have a super-exponential saling lawwith the Reynolds number

τ ∼ exp(CReγ) (4.0.1)and may hene be viewed as an instane of a dynamial system with super-long tran-sients. Additionally, very aurate measurements [34℄ and omputer simulations [30℄ onthe Navier-Stokes equations have shown linear stability of the laminar pipe �ow pro�leup to Reynolds numbers of 107. This leads to the well aepted fat, that the laminarstate is a stable �xed point and a turbulent pu� a trajetory on a high-dimensionalhaoti saddle with several unstable diretions [4,7,8,23,24℄. Sine turbulent pu�s havea �nite length, while travelling through the pipe, they are identi�ed to be a onvetiveinstability. They �ow downstream without any signi�ant hange of width.At a larger Reynolds number ReSl the onvetive instability turns into an absoulteinstability. The turbulene spreads throughout the pipe and �nally �lls it ompletely.This state is known as a turbulent slug [32, 51℄. A slug an not be haraterised by its
Figure 4.1: Top: simulation of a turbulent pu� for Re = 2250. The size of the turbulentstruture stays �nite and therefore is identi�ed as a onvetive instability.Bottom: turbulent slug for Re = 2800. The perturbation inreases in sizeand eventually �lls the whole pipe. This is known as an absolute instability.Reprint from [32℄.lifetime, sine this is in�nite per de�nition. The important quantity to look at is theaverage growth, whih an be measured in dependene on Reynolds number.In order to gain qualitative insight into the saling of lifetime of onvetive instabilitiesin quasi one-dimensional systems, i.e. for pu�s, and the transition to absolute insta-bility �ows, i.e. from pu�s to slugs, we onstrut and analyse a spatially extended,41



42 CHAPTER 4. AN UCML FOR PIPE TURBULENCEone-dimensional system. In this hapter, whih shows these transitions. Beause ofthe simpliity of the system one an do very fast omputer simulations and study thetransition mehanisms analytially. This gives us the opportunity to gain insight intothe fundamental aspets of these transitions from a dynamial systems point of viewand helps to improve the understanding of turbulent strutures in pipe �ow.Thus, this model shall give us insight into the behaviour of turbulent pu�s and slugs, justlike the model from hapter 3 gave us some knowledge about the nature of super-longtransients.Sine we are not using the Navier-Stokes equations in our simulations, no statements onreal values like ritial Reynolds numbers, an be made. But there are useful analogiesbetween real parameters and our system parameters. Rather than the Navier-Stokesequations, a oupled map lattie will be studied, as disussed in the following setion.4.1 Why CML?A spatially extended system is needed in order to provide travelling strutures, like pu�sin a pipe. After all, turbulent pu�s are observed in very long pipes.In experimental setups, the length L of a pipe is typially three orders of magnitudelarger than its diameter D. Studies on oherent strutures in pipe �ow have shownthat those strutures an be desribed by the analysis of several ross-setions along theaxis [42℄.All these assumptions an be interpreted as a lattie in one dimension, i.e. a hain,whih has a dynamis that is updated at �xed time steps (f. �gure 4.2).
Figure 4.2: Visualisation of a one-dimensional lattie. The state variables are updatedat disrete time steps. f is the on-site dynamis and g the oupling funtion.Eah site of the hain desribes a slie of the pipe. In addition to that, a quantity todesribe the level of turbulene is needed. This quantity an be taken to be the averageenergy or vortiity of a slie of the pipe. This is a value xi

t ∈ R, whih an be determinedfor eah time t and eah spae i. The quantity xi
t is in�uened by a loal dynamis, i.e.it is strongly a�eted by the Reynolds number. Its on-site dynamis will be desribedby the one-dimensional mapping

f : R → R, xi
t+1 = f(xi

t) (4.1.1)In order to get an interation between sites, a oupling g is neesary. It is generallyde�ned as
g : R

m → R, g(x1

t , . . . , x
m
t ) = xi

t+1 (4.1.2)



4.2. MODEL AND SPACE TIME BEHAVIOUR 43Sine we want to model turbulent pu�s, whih travel downstream, we hoose a undire-tional forward oupling. This means, the oupling only depends on the next upstreamneighbour.All these onditions de�ne a system, whih is referred to as a oupled map lattie intextbooks [3℄.De�nition 12. A Coupled Map Lattie (CML) is a disrete-spae, disrete-time lattiewith on-site dynamis f : R → R and oupling g : R
m → R, whih obeys the evolutionequation

xi
t+1 = αg(x1

t , . . . , x
m
t ) + f(xi

t) ∀i ∈ {1, . . . , m} (4.1.3)
xi

t is the state variable at time t and site i. α is denoted as the oupling strength.For a nearest-neighbour forward oupling xi
t+1 = αg(xi−1

t )+f(xi
t), suh a system is alleda unidiretional CML (uCML).This ompletes the basi de�nitions of the model system.This setion should have made lear, why a unidiretional CML is a good model tostudy, when dealing with turbulent pu�s. This model will give us the opportunity tosimulate strutures similar to turbulent pu�s and slugs. The great advantage is, thatthe simpliity of the uCML enables us to analyse some features analytially. The hoieof mappings is also very good, when it omes to omputer simulations. Simulationsare very fast, beause we only have to ompute the evolution of the state variables fordisrete time and spae.In order to study the spae-time behaviour of the uCML, the on-site dynamis f and theoupling funtion g have to be de�ned �rst. Then we an investigate, how the systemparameters hange the spae-time behaviour and have a look at some spae-time plots.This will be done in the next setion.4.2 Model and Spae Time BehaviourThe de�nition of the general model of a uCML will be ompleted by the onrete on-sitedynamis and oupling. In doing so we try to keep the system as simple as possible. Wewill �rst introdue the on-site dynamis.A turbulent pu� an be seen as a trajetory on a haoti saddle. Therefore, we need aleaky haoti region in our loal dynamis, where trajetories an esape. The simplestmap with those properties is the tent map. It has the advantage to be pieewise linear.This makes analytial alulations very easy to handle. Additionally, it is topologiallyonjugate to the logisti map. Therefore, we already know the �xed points and bifura-tion behaviour from our model in hapter 3. An additional bene�t is that no windowswith stable periodi orbits exist. The height h of the tent is hosen to be the ontrolparameter for the loal dynamis. The seond fat is, that the laminar state shouldbe stable for all Reynolds numbers of interest. Therefore, the loal dynamis shouldhave a stable �xed point for every value of h. This setup allows a transition from the



44 CHAPTER 4. AN UCML FOR PIPE TURBULENCEhaoti saddle to the stable �xed point, whih mimis the relaminarisation senario forturbulent pu�s. These onditions an be used to de�ne the on-site dynamis as
f(x) =







h(x − δ) δ ≤ x < 1 + δ

−h(x − 2 − δ) 1 + δ ≤ x

0 x < δ

(4.2.1)
δ is a free parameter of the system, seen as a shift in the dynamis (f. �gure 4.3). Thedistane δ > 0 seperates the stable �xed point from the haoti region. We will keep
δ = 0.1 �xed throughout the whole work. The parameter dependene of the uCML on δwill not be investigated. This leaves the height h as the only ontrol parameter, whihalso determines the slope

f ′(x) =







h δ ≤ x < 1 + δ

−h 1 + δ ≤ x

0 x < δ

(4.2.2)and therefore, de�nes the stability of �xed points. f has up to three �xed points
xf

0 = 0 , xf
1 =

hδ

h − 1
, xf

2 =
h(2 + δ)

1 + h
(4.2.3)

xf
0 is always stable and mimis the laminar state of the pipe. The stability of xf

1 and xf
2is ontrolled by h.In order to obtain an esaping, haoti dynamis, we use values h ≥ 2. For hc := 2,the system exhibits a boundary risis in whih trajetories an esape from the haotiregion. This an be seen from the bifuration diagram in �gure 4.3, but an also beomputed analytially.The haoti region is de�ned as the region between xf

1 and p := (2 + δ) − (xf
1 − δ) (f.�gure 4.4).
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0 , sine they are mappedto the left of xf

1 , whih is unstable for h > 1. The marginal ondition for an esape fromthat region is therefore given as
f(1 + δ) = p (4.2.4)sine 1+ δ is the point, where f has its maximum, namely f(1+ δ) = h. Using equation(4.2.3), we an express p in term of δ and h

p = 2 + 2δ +
hδ

1 − h
(4.2.5)The ondition (4.2.4) an now be written as an equation that de�nes the ritial height

hc in terms of δ

hc = 2 + 2δ +
hcδ

1 − hc

(4.2.6)This equation has two solutions, hc = 1 + δ and
hc = 2 (4.2.7)The solution hc = 1 + δ marks the point, where the tent hits the diagonal line for the�rst time. This determines the beginning of the bifuration senario, where xf

1 = p.This is an uninteresting point for the simulations of turbulent pu�s. Therefore, weonentrate on hc = 2. This is the point of the boundary risis (f. bifuration diagram4.3, right panel). Sine, we are interested in turbulent pu�s, we will only investigatethe dynamial behaviour for values h > hc. This implies, that the �xed points xf
1 and

xf
2 are always unstable, the Lyapunov number is larger than 1 (f. (4.2.2)). The onlystable �xed point is xf

0 . We an see in the bifuration diagram, that f follows the sameroute to haos as a branh of the pieewise linear sine map from hapter 3. For h = hc,we have a boundary risis, whih gives us the opportunity to see transient behaviour.After having de�ned the loal dynamis f and identi�ed important parameter values wewill now ome to investigate the oupling g. The oupling should have a speial formto support travelling strutures, like turbulent pu�s. This will be done by a forward



46 CHAPTER 4. AN UCML FOR PIPE TURBULENCEoupling. If a site is in the laminar state, it an not spread turbulene to its downstreamneighbour. This �xes g at the �xed point xf
0 = 0 to

g(0) = 0 (4.2.8)In addition to that, we only want to trigger turbulene, if the upstream neighbour is inthe turbulent region. This yields
g(x) = 0 x < δ (4.2.9)We now hoose the oupling in a way, that

g(x) > 0 1 + δ ≤ x < 2 + δ (4.2.10a)
g(x) < 0 δ ≤ x < 1 + δ (4.2.10b)This leads to the behaviour, that a turbulent site in 1 + δ ≤ x < 2 + δ an kikthe downstream laminar neighbour into the haoti state via a positive oupling. Thenegative part of g an redue the turbulene at the downstream site or an even pull itbak to the laminar state. This an be interpreted, that a pu� an take energy from aturbulent downstream region. In onlusion, the oupling is de�ned as

g(x) =

{

−1.5(x − δ)(x − 1 − δ)(x − 2 − δ) δ ≤ x < 2 + δ

0 else (4.2.11)Note, that g has no free parameters, sine δ is �xed. A dependene on α will be explainedseperately setion (f. setion 4.6).Further, g(x) has only one �xed point at 0. This �xed point is stable (f. �gure 4.4, rightpanel) and a linear perturbation does not apply a positive oupling, so that the laminarstate is still stable. After having de�ned th loal dynamis as well as the ouplingfuntion g, we address the question of the orret boundary and intial onditions.A general problem in pipe experiments is the �nite length of the pipes. This problem anbe overome in simulations, where the number of sites an be inreased, within the limitsof omputational power. A better possibility is to use period boundary onditions. Thiskeeps the phase spae small and one needs less memory than storing large latties, inwhih most ells are in the uninteresting, laminar state. Sine the oupling reahes onlyone site downstream, one an therefore implement very e�ient algorithms to simulatethe model. But one has to keep an eye on the length of the strutures. If the strutureextends through the whole pipe, one would get feedbak e�ets due to periodi boundaryonditions. Those trajetories would have no relevane to real systems and thereforehave to be avoided.Sine we want to study turbulent pu�s, we start with a system that is in a laminar state.That means, that eah site is initially at the laminar �xed point xf
0 , orresponding tolaminar pipe �ow. A pu� is experimentally reated by blowing a small amount of waterinto the laminar pipe. This perturbation then travels through the pipe. We will perturbthe �rst site of our uCML and investigate the spae-time behaviour of the system. For



4.2. MODEL AND SPACE TIME BEHAVIOUR 47initial perturbation < δ, it is immediately deaying and the systems remains laminar.This is due to the fat, that the laminar state is linearly stable. For perturbations in
[δ, 2+δ], the on-site dynamis as well as the oupling is non-vanishing. This an produetravelling strutures along the lattie, just like pu�s in a pipe. Therefore, we take a valuein [δ, 2 + δ] as initial ondition for the �rst site.We have now everything we need in order to simulate the system. The spae-timebehaviour is shown in �gure 4.5 for several parameter values.A great variety in the evolution of the states an be seen in the plots. The absissadesribes the time of the system, while the ordinate denotes the site number of ourlattie. The olour is oding the state variable x at eah site. The range is hosen torun from [0, 2 + δ]. Therefore, blak sites are in the laminar state, while oulored siteshave a di�erent degree of turbulene.In panel a), we an see that for h = 2.1 and non-vanishing α = 0.2 no strutures travelthrough the lattie. For larger values, at α = 0.5, there are strutures that run throughthe lattie (panel b) and the lifetime of these struture is signi�antly larger for ouplingstrengths, e.g. α = 0.8 in panel ). For α = 2.8 the front is travelling muh faster thanthe bak. This behaviour will be interpreted as a turbulent slug. Slugs disappear againin our model for larger oupling strengths α > 4.0 (panel e). Panel f) shows, thateven for a small oupling strength of α = 0.5, the lifetime is very long, if we dereasethe height h to values loser to hc. These spae-time plots give a �rst hint about thedi�erent behaviour of the system for varying ontrol parameters α and h. To arive ata more omprehensive desription, we onsider now lifetimes and veloity distributions,obtained by averaging over many trajetories.We will study the dynamis of the uCML for di�erent parameters ombinations in thenext setions. The physial analogies with pipe �ow will expliitly be investigated. Thelimits of the model will also be disussed. In doing so, we will highlight solutions, thatan also be determined analytially, sine they are the best points to learn fundamentalthings. In those ases, we make some preditions from theoretial onsiderations andhek our assumptions with the simulations of the system. The lifetime of turbulentpu�s, as the most prominent quantity, will be disussed �rst.
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a) Timeline CML: δ=0.1 , α=0.2 , h=2.1 , xIni=0.6
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Figure 4.5: Spae time behaviour of the uCML for di�erent α and h. Panel a) showsthe system behaviour for small oupling α. Sine, the oupling is too weak,the perturbation never spreads to distant sites. For α = 0.5, there are somestrutures starting to travel through the pipe (f. panel b). These strutureshave an inreased lifetime for stronger oupling α = 0.8 (f. panel ).Thisis what we all a turbulent pu�. Another transition an be determinedaround α = 2.8, where the lifetime goes to in�nity. This is the turbulentslug regime. Here, the growth is highly inreased. For even larger ouplingin e), the system goes bak to �nite-size strutures. This is a speial featureof our system, whih is disussed in hapter 5.1. Panel f) shows, that forsmaller h, long lifetimes an be expeted for very small α.



4.3. LIFETIME DISTRIBUTIONS 494.3 Lifetime DistributionsThe �nite pipe length is always a limiting fator, when one is interested in lifetimesaling laws for high Reynolds numbers. We will now measure the lifetime of turbulentpu�s in the system desribed in setion 4.2.Turbulent pu�s in experiments relaminarise without a known ause. This deay seemsto be independent of the age of a turbulent pu�, i.e. how far it has travelled from itsorigin. This leads to a lifetime distribution
P (t) ∼ exp(−t/τ) (4.3.1)with a harateristi or average lifetime τ . This lifetime distribution is also expetedin our simulations. If we �rst limit our onsiderations to the unoupled ase α = 0,then the deay is determined by the on-site dynamis f only. f , on the other hand, isontrolled by the height h. Here, like in the example in hapter 3, we always delete aertain fration of our invariant subset in eah timestep. This leads to a distribution(4.3.1), (f. derivation in hapter 2). For the oupled ase, the loal deay rate is stillgoverned by the on-site dynamis f , but is in�uened by the oupling g. This leads toa distribution (4.3.1), but with signi�antly larger τ .To determine τ we onsider N0 = 30.000 initial onditions, i.e. perturbations to the�rst site of our laminar system. These initial ondition are hosen with a onstant stepsize of ∆ = 10−4 starting from x = 0. Then, we iterate the system for eah initalondition until it relaminarises. This time is taken as the lifetime for this partiularinital ondition.After sorting the data aording to the lifetime and numbering eah row, we get thequantity N(t), whih desribes, how many trajetories have still survived until time t.This quantity is proportional to the lifetime distribution, when saled with the numberof initial ondition N0. Therefore, we expet a law like
N(t) ∼ exp(−t/τ) (4.3.2)One would expet a straight line for N(t) on a logarithmi sale, if the assumption of adeay, independent on age, is orret. The plots are given in �gures 4.6 and 4.7.In the large part of the plot, we see that the data for α = 0 and h = 2.1 resemble astraight line. This is exatly, what we have expeted from (4.3.1). The abrupt dereasefor t = 0 omes from initial onditions, that are < δ or > 2 + δ, respetively. Theseinitial onditions deay immediatly, as an be seen from the de�nition of f and g.Therefore, we get a steep derease for t = 0. Although we e�etively lose some ofthe initial onditions, we an determine a linear derease in the logarithmi plot aboutthree orders of magnitude. Another interesting aspet is shown in �gure 4.7. It showsthe lifetime distribution for non-zero oupling α = 0.8. In that ase, there still is anexponential distribution, but with a signi�antly larger τ (beware the di�erent x axissales). We have therefore veri�ed the assumption, that the lifetime of the haotistrutures have an exponential distribution
P (t) ∼ exp(−t/τ) (4.3.3)
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4.3. LIFETIME DISTRIBUTIONS 51We will explore in the rest of this setion, how the average lifetime τ sales with thesystem parameters, i.e. the oupling strength α and the height h.As mentioned above, we an ompute the average lifetime τ from the slope of thelogrithmi plot of the distribution. This gives us τ in dependene on α and h, i.e.
τ(α, h). First, we hek the dependene of τ on h for a �xed α. This analysis will bedone for the unoupled ase α = 0 �rst and then for arbitrary α. For α = 0, τ(h) anbe derived from the on-site dynamis f only. In order to analyse it, we have a look atthe survival probability for one time step.We denote the length from xf

1 to p as L. The length from xf
1 to the intersetion of fwith p will be denoted as ∆ (f. �gure 4.4 for de�nitions). The probability to stay inthe haoti region for one time step is then given as

ρ1 =
2∆

L
=

2∆

p − xf
1

(4.3.4)This be expressed via the slope of the tent map and is therefore determined by h,
f ′(x) = h =

p − xf
1

∆
∀ x ∈ [xf

1 , 1 + δ) (4.3.5)This yields
ρ1 =

2

h
(4.3.6)Sine the rest of the interval is strehted to the whole length again, and sine theinvariant density is onstant on the interval for a linear map, the survival probabilityafter t timesteps is

ρt
1 =

(
2

h

)t (4.3.7)A omparison with the distribution (4.3.1) then gives
ρt

1 = exp

(

− t

τ

)

⇒ τ =

(

ln
h

2

)−1 (4.3.8)This expetation an now be ompared to the data. Figure 4.8 shows the simulationdata. We will �rst restrit our onsiderations to the unoupled data for α = 0. Thedata points are the green points, whih form the lower urve. The solid red urve is thesaling law (4.3.8), whih has been �tted to the simulation data. The expeted salinglaw �ts the simulation data perfetly. But there is another speialty that need to behighlighted. On top of the data points for the unoupled ase lie the points for a smalloupling α = 0.1. These points are more or less the same as for no oupling. We willstudy this quite astonishing behaviour extensively in the next setion.If we now have a look at the data for larger oupling, we see that these urves are verydi�erent than those for zero oupling. The mehanism, that gives us the orret salinglaw, is not as trivial as in the unoupled ase. Obviously, the divergene for h → hc ismuh stronger than for α = 0. One an think of a senario of an unstable-unstable pairbifuration as an explanation. The haoti saddle is determined by the loal dynamis
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Figure 4.8: The saling of the average lifetime with the height h of the on-site dynamis.We have plotted simulation data for zero oupling and α = 0.1. These datapoints are perfetly desribed by the analytial solution in (4.3.8). For largerouplings α > 0.3. we have a di�erent saling law. The data points an be�tted by the super-long transients saling law (2.6.12).
f for h > 2. The seond unstable diretion an be related to the oupling of g to thenext neighbour. If this mehanism would be a good desription, then we would expeta saling law like (2.6.12). Indeed, in �gure 4.8 we show data for larger ouplings of
α = 0.6, 0.8, 1.0 and 1.2, whih are fruitfully �tted by lines of the form

τ = B exp
(
C (h − hc)

−1
) (4.3.9)aording to the saling law (2.6.12). One an see, that the �ts desribe the data pointswithin a good auray. The interesting �t parameter C(α) is shown in �gure 4.9.The wiggling of the data points around the �t an be desribed by the way, the datapoint were obtained. In order to get one data point, one has to �t the distribution witha linear �t. The main interest lies in quite large lifetimes. Therefore, that �t has to begood for lifetime larger than a threshold. This threshold has to be hanged for eah αand h, sine for α = 0 lifetime of 100 are large, while for α = 0.8 a threshold of about

1000 is needed to obtain good results from the �t. This is the problem with determiningthe asymptotis of lifetime distributions spanning several orders of magnitude. Due tothis fat, the data points are not as aurate as the data for α = 0. Another thing tomention is the behaviour of the prefators B and C with varying α. The urves B(α)and C(α) do not show a simple dependene on α. This an also be seen in the fat,that urves are not properly arranged aording to their α values (f. �gure 4.8). Sine,we have veri�ed the saling law (2.6.12) for quite large ouplings, it is lear that we areindeed dealing with super-long transients. This is a great step forward in the simulationof turbulent pu�s, whih are expeted to have a super-long lifetime saling law.
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Figure 4.9: Fit parameter C(α) for lines in �gure 4.8 and (4.3.9)Sine, the saling law τ(h) is understood, we will now have a look at the dependene of
τ on α. Therefore we �x h = 2.1. The saling law is given in �gure 4.10.The �rst thing, that attrats the attention, is the heavily �utuating lifetime around
α = 0.7. It dereases again for α = 0.8 and rises again for α = 1.2, but this time, theinrease is very steep.The inset shows a magni�ation for small α. In agreement with the �ndings of �gure4.8, there is no inrease in average lifetime until a ritial parameter αcr is reahed. Thewhole struture of τ(α) is really omplex and will not be investagited in detail. Ratherwe fous on the origin and the positions of the sharp inrease in the lifetime lose to
αcr, α ≈ 0.6 and α ≈ 0.8.To learly trae the transitions, we show the omplete parameter dependene in a two-dimensional parameter plot (�gure 4.11), where the average lifetime is shown as olour,enonding the average lifetime on a logarithmi sale, normalised to the single sitelifetime τ(α = 0)1. The omplex struture of the parameter spae beomes visible inthis plot. Partiularly, the large peak shown in �gure 4.10 for h = 2.1 and varying αan be learly seen in the plot. For larger h, the peak at α = 0.8 seems to vanish fasterthan that at α = 1.3. Moreover, there seems to be a lear line for the lifetime inreaseat α = 0.25, i.e. the value αcr = 0.25 appears to depend at best very weakly on h. inthe next setion, we will fous on the sharp inrease of the average lifetimes near αcr,whih marks the onset of turbulene.1The logarithmi sale is useful, sine the average lifetime ranges about many orders of magnitude(f. �gure 4.10). Therefore, yellow points have a 10 times larger lifetime than red points.
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Figure 4.11: The omplete parameter spae of the system. The olour is oding the aver-age lifetime of the system, normalised by the zero oupling lifetime de�nedin (4.3.8). We an see, that the struture is quite omplex. The bound-ary between very long and short lifetime is not smooth but rather spiky.Additionally, we an see a sharp boundary between longer lifetimes and noinrase at all for values α = 0.25. This boundary seems to independent on
h. See setion 4.3 for details.



4.4. ONSET OF TURBULENCE 554.4 Onset of TurbuleneA non-vanishing oupling does not neessarily have to lead to an inreased lifetime, asseen in the last setion. Additionally, the ritial value αcr seems to be vastly indepen-dent of h, as an be seen in the parameter plot 4.11. Simulations for di�erent, �xed hand varying α near αcr will now be presented in order to inspet more losely the onsetbehaviour.To thate end, the same lifetime algorithm as in setion 4.3 is used, but with a higherresolution of α. The data are plotted in �gure 4.12.
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Figure 4.12: Lifetime saling law at the onset of turbulene. Di�erent urves belong todi�erent values of h. With this enhaned resolution one observes that theritial oupling αcr, where a �rst inrease in the average lifetime an bedetermined, dereases slightly when h is inreased (see text).These data show, that αcr is dereasing for inreasing h. We will now answer thequestion, why a lifetime inrease an only be seen for oupling strength substantiallyabove zero.The spae-time plot for α = 0.2 and h = 2.1 in �gure 4.5 reveals, that only the �rstsite is in a turbulent state for α < αcr. The oupling is not su�ient to bring theneighbour into the haoti region. This gives rise to the fat, that the average lifetimefor 0 < α < αcr is the same as the typial lifetime for a single site (α = 0).A neessary ondition for a turbulent pu� is hene a su�iently strong positive ouplingto bring the downstream neighbour into the haoti state. To that end, a value x ∈
[1 + δ, 2 + δ] is needed at the upstream neighbour site. Sine the downstream neighbouris in the laminar state at the beginning, its dynamis is only determined by the oupling
αg(x) from the �rst site.
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Figure 4.13: On-site dynamis f and oupling funtion g. See the text for the de�nitionof interesting values.For α < αcr, the oupling is still not strong enough to kik the neighbour into the haotistate. The lower bound on α for a transition in one step is determined by
αg(xmax) = xf

1 (4.4.1)where xmax is the maximum of g (f. �gure 4.13). This yields a oupling strength of
α =

xf
1

g(xmax)
≈ 0.33 (4.4.2)Comparing with the data in �gure 4.12, these values are to large to determine αcrorretly.Therefore, a multi-step transition is needed in order to trigger a turbulent pu� for small

α. Sine the laminar �xed point is stable, a �nite kik is needed to get a memory into thesystem. Therefore, a kik has to be at least larger than δ, otherwise the loal dynamismaps the perturbation to zero. This gives the ondition
αg(x) > δ (4.4.3)But the multi-step mehanism depends ruially on the hosen x. If we hoose x ∈

[1 + δ, 2 + δ], it is likely to be mapped to values x < 1 + δ, where a negative ouplingdestroys the kik memory. The most e�ient oupling is obtained for x = xf
2 . Althoughthis �xed point is unstable, a trajetory starting near xf

2 will remain in the region ofpositiv oupling for quite some time.These onsiderations an be expressed in a onjeture for the behaviour of αcr

αcrg(xf
2) = δ (4.4.4)Note, that g depends on h via xf

2 . The results from the simulation are given in �gure4.14. Errorbars express the auray in the α grid. The theoretial expetation from(4.4.4) is given as the green urve. That the urve is not a �t. It is the ompleteanalytial result without free parameters.
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Figure 4.14: Simulation data for the onset of turbulene. The ritial oupling strength
αcr is determined from data as shown in �gure 4.12. The theory urve isthe analytial predition (4.4.4), without adjustable parameters!The simulation data is seen to be in perfet agreement with the theoretial preditedurve. The transition to turbulene is therefore understood in our model system2.We further notie, that a spreading proess an not be ahieved by a memory-less system.Muh larger oupling strength are needed in order to obtain travelling strutures withoutmemory.This is one very fundamental result. It gives us muh insight into the dynamis of oursystem. Sine the threshold at αcr is now understand, we will ome to the range andveloity distributions of pu�s in the next setion.4.5 Veloity Distributions and Travelled DistaneWe will now turn to the investigation of the range of a turbulent pu�, i.e. the overalldistane travelled from nuleation to deay. Therefore, the range is zero for an im-mediately deaying struture. This is a �rst step in order to analyse veloities of theturbulent pu�s. The same algorithm is used for the range omputations as for the life-time simulations. Instead of the lifetime of a pu�, the overed distane until its deayis measured.2The presented mehanism is not limited to our model. It seems to be a general mehanism forunidiretinal oupled systems with a super-stable �xed point. The shift δ an be denoted as a thresholdfor memory in the system. It is a ommon sheme in exitable system. This behaviour an be seen innerve pulses, whih show the same threshold behaviour before a neuron is �ring and the impulse travelsalong the axon. In partiular, the mehanism does not depend on the onrete de�nitions of f and g.



58 CHAPTER 4. AN UCML FOR PIPE TURBULENCEThe same onsiderations as in the omputation of the lifetime suggest an exponentialrange distribution
P (s) ∼ exp (−s/σ) (4.5.1)where σ is the average range for a given α and h. Again, a logarithmi plot an be usedin order to determine σ (f. �gure 4.15). Simulations for �xed h = 2.1 and varying α
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Figure 4.15: Range distribution of the uCML for oupling strength α = 0.8.an be used to study the saling law σ(α). The α-dependene of τ and σ is plotted in�gure 4.16.
σ(α) has the same omplex struture as τ(α). A remarkable aspet is the similaritybetween the two urves. Both saling laws basially show the same behaviour. Theonset of inreased range is suitable to determine the onset of turbulene, like in the aseof the average lifetime. Although, both urves look essentially the same, the two salinglaws are not simply proportional to eah other. We have to take into aount, that theplot is given on a log-sale. In order to show this, we plotted the ratio σ/τ in �gure 4.17.The inrease in the ratio supports the fat, that the saling laws are not propotional,otherwise it should stay onstant. Instead, it is inreasing over the whole domain, withan intermittent regime around α ≈ 0.7. This an be explained by the spiky part of thedistributions for that oupling strength.A more interesting quantity than the range is the veloity of a pu�. It an be de�nedby the lifetime t and range s of a turbulent pu� as

v =
s

t
(4.5.2)As usually, we are not interested in veloities of single trajetories, but in the averageveloity for given parameter values. It is worth mentioning, that the average lifetime τ
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Gdf(x) =

1

2

[

1 + erf(x − µ√
2σ2

)] (4.5.3)with the mean µ and the variane σ2 (f. [5℄). A possible �t to the simulated df isshown in the �gure. It is learly seen, that a Gaussian approahes 1 for muh smallervalues of v. This suggests, that we are dealing with a heavy-tailed funtion.In addition to the df, we omputed a histogram of the veloities.As ompared to a Gaussian, the histogram has a higher probability at large veloities,when ompared to a Gaussian. This states for the notation as a heavy-tailed distribution.The average veloity an not be omputed as in the lifetime and range ases above, sine
v has not an exponential distribution. Therefore, we take the mean value

〈v〉 =
1

N

N∑

i=1

vi (4.5.4)as an estimator for the average. A �rst step is to analyse the omputed 〈v〉 by omparingit with the ratio σ/τ . The plot is given in �gure 4.17In addition to that, we have plotted the most probable veloity vw, whih is de�ned asthe maximum of the distribution (f. �gure 4.19).The average 〈v〉 is very di�erent from σ/τ . This is what we expeted from the onsid-eration, that v is orrelated with t. Another interesting aspet is that the urve for themost probable v is very similar to the ratio urve.The great advantage in studying the veloity is, that simulations an be done even forvalues of the oupling strength, whih are not aessable for lifetime simulations due tothe very long lifetime. Figure 4.20 shows the dependene of the veloity on the ouplingstrength. After a slow inrease for α < 1, the average veloity stagnates at 〈v〉 ≈ 0.1
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Figure 4.19: Histogram for the veloities for di�erent oupling strengths. For α = 2.5,the histogram has a lear maximum. The distribution has higher probabil-ity at larger values of v as ompared to a Gaussian and is therefore identi�edas heavy-tailed. For α = 3.1, the distribution is nearly ompletely enteredat v = 1, as expeted from �gure 4.18.
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4.6. TRANSITION FROM CONVECTIVE TO ABSOLUTE INSTABILITY 634.6 Transition from Convetive to Absolute InstabilityWe have already mentioned in the introdution, that a turbulent pu� is a onvetiveinstability, while a slug is an absolute one. Sine slugs have an in�nite lifetime, itmakes no sense to do simulations on average lifetimes and ranges, like we did in thease of turbulent pu�s. The average front veloity is not an interesting quantity for aslug, either. Rather we onentrate on the average growth of a slug to haraterise itsbehaviour. We will now study the dependene of the slug growth on α in our uCMLmodel.The growth G for a trajetory is de�ned as the time derivative of the width w of theturbulent region
G :=

dw

dt
= v − b (4.6.1)It an also be alulated by the di�erene between front v and bak veloity b, sine thewidth is given as w = rf −rb, where r denotes the front and bak site, respetively. Fur-ther, we assume, that G is onstant after a transient time. A simulation of onstant timean be done. G is determined by the width at the end of the simulation. The simulationtime has been hosen to be 1000 time steps, while N = 22.000 initial perturbationswhere taken into aount. The distribution from the simulations are shown in �gure4.21 for di�erent α. The distribution has a non-trivial form for α < 2.8. Therefore, theaverage an only be determined by

〈G〉 =
1

N

N∑

i=1

Gi (4.6.2)
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〈b〉 = 〈v〉 − 〈G〉 (4.6.3)The plot is given in �gure 4.23. The bak is not always propagating with the sameaverage veloity, as ould be expeted. Therefore, there seems to be some orrelationbetween the oupling strength and the lifetime of the bak. The bak veloity is not avery interesting quantity in experiments. Sine pu�s are strutures of onstant size, thebak and front veloity are the same. Therefore, the growth is zero. This has also beenobserved in the simulations (f. �gure 4.22). But it is also seen in the plot, that thebak veloity is not hanging very muh at the slug transition, while the front veloityis greatly inreased (f. �gure 4.20).The strong growth at αsl is pointing to a very e�etive oupling. If a value x∗ is mappedby the oupling to the same value x∗ at the next site, whih has been laminar before, aballisti spreading is observed. This leads to the ondition

αslg(x) = x (4.6.4)
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Chapter 5ConlusionWe will now ome to the onlusion of this work. Most aspets of the system have alsobeen desribed in the orresponding hapters. Here, we will give a little disussion onthe relevane of the results for real pipe �ow and an oulook for future work afterwards.5.1 DisussionThe results will now be interpreted with regard to real experiments. First, there is oneobvious di�erene to real pipes. In inompressible pipe �ow, the only ontrol parameteris the Reynolds number. Instead, the presented model has three parameters. These arethe oupling strength α, the height h of the tent map and δ, whih has been �xed forthis work. This is an advantage of our system, sine we have many knobs to tune. Thestability of the laminar �xed point is ontrolled by δ. The spatial oupling an be tunedby α and the loal instability is determined by h. Therefore, it is possible to separatee�ets that stem from di�erent properties of the system. This is a great advantageomparing to pipe experiments, where e.g. the stability of the laminar �ow an not bein�uened independently of the loal stability.We will now fous on several aspets and highlight them in relation to real pipe �ow.5.1.1 Edge of ChaosOne important results of this work is related to the onset of turbulene. It has beenshown, that the ritial value αcr an be de�ned by simple arguments (f. setion 4.4)as
αcr :=

δ

g(xf
2)

(5.1.1)The veri�ation has been demonstrated in �gure 4.14.No �t parameters are left in this ondition, suh that the simulation data is exatlylying on the theoretial predited urve. The understanding of αcr is a ruial pointin the analysis of the system. It determines the boundary between the laminar andturbulent region. There are no more open questions about that transition point from67



68 CHAPTER 5. CONCLUSIONthe modelling point of view. Here, δ is a measure for the stability of the laminar �xedpoint, while xf
2 has been veri�ed as an optimal oupling state.This observation is alled the double-treshold of turbulent �ow [31℄. A large Reynoldsnumber is not su�ient in order to trigger turbulene, if the perturbation amplitude istoo small. On the other hand, a large perturbation will also not lead to turbulene, ifthe Reynolds number is not high enough. This threshold mehanism is also observedin our model. For ouplings smaller than αcr, no perturbation will lead to turbulene.Even for α > αcr not every perturbation will lead to a turbulent �ow. One needs atleast a perturbation of size δ in order to trigger turbulene. This is a nie relation tothe double-treshold, observed in real experiments [14℄.In real experiments, the boundary between the laminar and the turbulent region is alledthe edge of haos. It separates states that deay immediately from those whih beometurbulent. The idea is to identify states on the edge, whih are both entrane and exitinto or from the turbulent region, respetively. This is fundamentally di�erent in themodel. The entrane state is determined to be xf

2 . But this speial state has nothingto do with the esape from the turbulent region. Completely di�erent states an ourat the deaying state of a turbulent pu� in the model. This is one di�erene to realexperiments.
5.1.2 Heavy-Tailed Veloity DistributionsThe distributions for the lifetime and the range have been predited from simple argu-ments. This is not possible for veloitiy distributions. The veloity v = s

t
is a ratio oftwo non-independent random variables. It is not even simple to determine the average

〈v〉 from a speial point of the distributions. It is not lear, if s is independent of 1/t.Additionally, 〈1/t〉 is not existing, if t has an exponential distribution. This an alsobe seen in �gure 4.17, where 〈v〉 is obviously di�erent from σ/τ . Further, the distri-butions for the veloities are heavy-tailed, possibly due to a orrelation between theaverage lifetime and range. There is a higher probability to �nd faster pu�s, relative toa normal distribution. This fat an also be veri�ed in the histograms of the veloityin �gure 4.19. From those plots, the most probable veloity vw an be determined asthe maximum of the distribution. Interestingly, these values are �tting the ratio σ/τvery well. This is lear, sine τ is the expeted lifetime and σ the expated range, whihyields a most probable vw. That σ/τ does not desribe 〈v〉 is due to the heavy-tailednature of the distributions. If v would be a normal distributed random variable, 〈v〉and vw would desribe the same value. The veloity distributions for turbulent pu�sare very narrow in real experiments. Most of the triggered pu�s travel more or lesswith the same speed. The arise of heavy-tailed distributions near the transition to slugsan be a guide to experiments to hek this predition of the model. By understandingthe heavy-tailed nature of the distributions, one ould gain more information about thetransition mehanism from pu�s to slugs.



5.2. SUMMARY 695.2 SummaryAs a little reminder, we will shortly sum up the results from our studies.5.2.1 Mean-Field ModelWe have introdued a 2d model system with a fratal basin boundary and a boundaryrisis. The ritial parameter for the boundary risis has been omputed analytially.Several simulation runs veri�ed the super-exponential saling law of the average lifetimeof transients. Additionally, an algorithm for traking the edge of haos has been pre-sented, whih ould trak the edge of haos with a very high spatial auray. Thesedata suggests, that the edge of haos is a fratal struture.5.2.2 uCMLAfter introduing the model, we have given some spae-time plots to get an idea aboutthe trajetories of the system. A �rst look revealed the existene of onvetive andabsolute instabilites. First, the exponential lifetime distributions have been veri�ed andthe average lifetime τ has been omputed for several parameter values α and h. Thesaling law τ(h) for α = 0 has been theoretially predited as a 1/log law, whih hasbeen veri�ed by the simulations. Further, the superexponential saling for α > αcr hasalso been veri�ed by a �t. The omplex struture of τ(α) has been determined as welland a omplete parameter spae plot has been given as a false-olor plot. A loser lookrevealed a α dependene of the onset of turbulene. The ritial parameter αcr at theonset has been predited and veri�ed by theory and simulation, respetively. The fol-lowing investigation of range and veloity dsitributions revealed, that the range has nomore information than the lifetime. Despite, the veloity shows a heavy-tailed distri-bution at the slug transition treshold. As a useful quantity for the slug harateristis,the average growth of slugs depending on α has been studied. The ritial point for theslug transition, i.e. αsl, has been predited by theory as a point where a saddle-nodebifuration is happening. This has also been veri�ed in the simulations. The investiga-tion of the average bak veloity showed, that it stays at rather small values for all α.Therefore, the slug transition has been identi�ed to be ruially dependent on the frontveloity.5.3 OutlookThere are muh more interesting questions, that an be answered by further studies ofthe model. We will present some of them in this setion.5.3.1 Saling after αcrAn inrease of the average lifetime is not observed for α < αcr. After studying the onsetregion in a high auray plot the onset mehanism has been presented. The threshold



70 CHAPTER 5. CONCLUSIONhas been predited analytially. It obeys the law
αcrg(xf

2) = δ (5.3.1)This onjeture has been veri�ed by the simulation data, whih are in perfet agreementwith the predited values (f. �gure 4.14).Although, the ritial point αcr has been understood, the saling of τ with α afterthis point needs further investigation. By normalising the lifetime τ(α − αcr) with thesingle site lifetime τ0, the orresponding double-logarithmi plot near the onset suggesta power law saling (f. �gure 5.1). One possible line is given with a slope of 30. It isworth notiing, that the possible �t line is similar for di�erent values of h, whih statesa universal saling law. A detailed study on this saling would help to understandthe mehanism of lifetime inrease and is therefore a good starting point for furtherinvestigation.
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Figure 5.1: Log-Log plot of the saling law of τ . Lifetime is normalised by the single sitelifetime τ0 and shifted by −1 to obtain a straight line through the origin.5.3.2 Perolation TheoryA theoretial aspet, that needs further investigation, is to have a look at the pu�s in aomoving frame of referene. A spae-time plot is shown in �gure 5.2.The front veloity v has been used in order to de�ne the omoving frame
s = s0 − v · t (5.3.2)This plot looks like a struture, that ould be related to a problem of direted perolation(f. [35℄).
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Figure 5.2: Comoving frame of a turbulent pu�. The average front veloity has beenused as the transformation veloity. Growth and splitting events an easilybe deteted in the omoving frame.

Figure 5.3: Direted perolation shemes. The left two images are for a single seedperturbation, while the right ones are for many perturbed sites. ξ⊥ and ξ‖are the spae and time orrelation lengths, respetively. Reprint from [15℄.



72 CHAPTER 5. CONCLUSIONDireted perolation makes a statement about the transition point from �nite strutures,i.e. pu�s, to in�nite, perolating strutures, i.e. slugs. By analysing the simulation datawith respet to this perolation threshold, one would be able to understand the pu�-slugtransition point from a di�erent perspetive.Additionally, the growth of slugs ould be predited just above the perolation threshold.Aording to [15℄, the slopes of slugs (f. �gure 5.3) would have an algebraial salinglaw near the perolation threshold. This has to be heked in simulations or experimentsin the future.Further, splitting events an maybe desribed by direted perolation proesses. As seenin �gure 5.2, a pu� or slug is not ompletely turbulent over its whole width. It has someholes in it, arising, if a front is faster than the rest. The two piees an then mergeagain or deay. This leads to harateristi sizes of the holes, whih ould have a usefulsaling law, when one is near a transition point. Again, further studies are needed tohek these preditions from perolation theory.Pu� splitting events have been studied by Moxey and Barkley [32℄. They simulatedthe inompressible Navier-Stokes equations and analysed the results in terms of diretedperolation. They state, that the transition from pu�s to slugs happens via spatio-temporal intermitteny. This transition an lead to in�nite lifetime, if it is identi�edwith the perolation threshold. Aording to [32℄, the transition from pu�s to slugsan not be solved by lifetime measurements. Sine, lifetimes grow exponentially, theysuggest to study the qualitative hange in behaviour, like in the arise of spatio-temporalintermitteny.5.3.3 Intermitteny Transition before αslThe growth has ben studied in order to haraterise the slug regime. The transitionfrom pu�s to slugs is haraterised by the huge inrease in growth at αsl = 2.845. Ithas been shown, that the slug regime an ompletely be explained by the bifurationsenario of the oupling αg. αsl an be seen as a ritial oupling strength. Turbuleneis always persistent above αsl. Even in real experiments, there is a Reynolds number
Resl, above whih only slugs an be observed. For α . αsl the growth starts to inrease(f. �gure 4.22). This inrease seems to be reminisent to an intermitteny senario.Although, there is no �xed point of αg for α < αsl, a narrow tunnel in phase spae isexisting just before the saddle-node bifuration. Therefore, the system an stay most ofthe time in a region of e�etive oupling. This leads to time periods, where the front ispropagating ballistially, whih are intermittent with periods of slow veloity v0. Theprobability to be in the ballisti state is then related to the oupling strength α.Therefore, it will be possible to determine the inrease of growth with α from the model.This inrease an be another theoretial predition, whih is not depending on any �tparameters. Additionally, the hypothesis of an intermitteny transition an be hekedin experiments. The theoretial and experimental understanding an therefore shed newlight on the transition from pu�s to slugs.



5.3. OUTLOOK 735.3.4 Re QuenhingThe ontrol of turbulene in pipe �ow is very important in engineering problems. Bylowering the Reynolds number in the turbulent regime, it is possible to reover laminar�ow. This state ould remain stable, even after inreasing Re again. That ould be apossibility to e�etively redue turbulene in pipe �ow and is known as Re quenhing.Therefore, another way to study the system is to vary the parameters α and h, while asimulation is running. This has also been done in [32℄ and an reveal parameter values,where a turbulent state goes bak to laminar �ow. A good point to start is in studyinglifetimes and deay modes for ontinuously varying parameters. Interesting questionsare for example:� Is the lifetime of pu�s in�uened by lowering α for a short period of time ?� Whih deay senarios arise near the threshold αcr ?� Are there speial modes, that are more likely to deay ?� Are there strutures, that, one obtained, keep their long lifetime even for smaller
α due to self-preserving e�ets ?As it is obviously seen in this list, there is still a lot of work to do. But some questionshave been answered in this thesis, both theoretially and numerially. Beyond the insightin turbulent pipe �ow, uCMLs also have onsiderable interest from a dynamial systemspoint of view. Coupled map latties have been studied for quite some time. But mostof the obtained results are limited to the ase of di�usively oupled latties [10, 22, 37℄or a global oupling [21℄. Unidiretioal oupled map latties have been investigatedin [40,41,49℄. But this is the �rst time, were a unidiretional oupling has been used inorder to study turbulent pu�s and the transition from onvetive to absolute instabilities.To our knowledge, this is also the �rst time, where suh a model has been studied tothis extent. It is remarkable, that so many theoretial preditions an be made. It isworth notiing, that most of the results have been determined without ontaining anyfree parameters.The author is on�dent, that future studies on these oupled map latties will revealfurther insight.
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Appendix
This appendix will give more tehnial questions for readers, who want to work withthis model themselves.As mentioned above, it is not lear, where the spiky region around α = 0.7 and h = 2.1in the lifetime saling law omes from. This also seems to be related to a speial dynamiin the system, sine the 'hump' is vanishing for larger h (f. �gure 5.5).
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h, while the one at α = 1.3 is still present at least up to h = 2.5. This behaviour is agood starting point in order to get further insight into the dynamis of the system.Further, it has not been studied, how the shape of the perturbation in�uenes theevolution of turbulent pu�s. Instead of perturbing one site, one ould imagine to triggerturbulene in many adjaent sites. These investigations ould be done with the existingalgorithm without muh e�ort. That point has been skipped, beause a great hange inthe behaviour is not expeted. Turbulent pu�s reah several sites very fast. This leads to75



76 APPENDIXa rapid deletion of the memory of the intial onditions. This assumption demonstratesin the onsideration, that the lifetime of a turbulent pu� is independent of its age.Another interesting point is the distribution of states xi
n. The analysis an be donevery easily by storing these values and applying the histogram algorithm also used todetermine the veloity histograms.
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Figure 5.5: Histograms for the distribution of state variables. A harateristi value isobserved as a peak in the histogram. It shifts to the right for larger ouplingstrength α. Even the width is inreased, sine the oupling αg an add alarger value to the next site.This gives us some insight in the ourene of speial values xi
n and ould be a goodstarting point in order to understand the spiky part of the lifetime saling law andtypial behaviour of the system. A related quantity is the distribution of the values xi

nat the front, where the downstream neighbour is still laminar. These plots ould showhow turbulene sets in. If it is triggered over a wide range of values or if it is basiallyspread by only several state values xi
n of the upstream neighbour.A further possibility to analyse the system is the use of return maps. In return maps,states xn+1 are plotted against xn. One return map is shown in �gure 5.6.
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77region at the boundaries of the return maps is observed. This stems from the extremalvalues of g. The slope at those points is zero. Therefore, the probability to gain suh avalue is muh higher than at the steepest parts. A magni�ation of the region for small
xn reveals an even more omplex struture. The origin of these strutures is not learat this point, but it ould be related to the evolution of �xed point or other invariantsubsets. In any ase, an understanding of these urves ould give further insight intopologial aspets of the model.A small additional task would be to determine the invariant densities for f and αg fordi�erent parameter values. This quantity is known for the tent map with h = 2 (f. [33℄).But it would also be of interest to know it for the oupling αg, espeially at the slugtransition α = αsl.
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