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Essentially, all models are wrong, but some are useful.

George E. P. Box [4§]

The internal motion of water assumes one or other of two broadly dis-
tinguishable forms - either the elements of the fluid follow one another along
lines of motion which lead in the most direct manner to their destination, or
they eddy about in sinuous paths the most indirect possible.

Osborne Reynolds [39]
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Turbulence phenomena and non-linear dynamical systems are two important fields in
physics and mathematics. Both have been studied intensely in the last and actual
century. Each topic has a long history for itself. Although both fields are well-developed,
the overlap between them is relatively small.

On the one hand, turbulence is typically studied in physics, while non-linear dynamical
systems are a domain of mathematicians, on the other hand. The last two decades
have shown, that it is very useful to study both topics. Turbulent behaviour can be
respresented as a problem of non-linear dynamical systems. A huge amount of tools can
therefore be used to analyse turbulent behaviour. Additionally, experiments on turbulent
pipes can be used to visualise new aspects of dynamical systems. These results can be
used by theoreticians to develop new theories in the dynamical systems framework.

This thesis will deal with the interactions between fluid dynamics and non-linear dynam-
ical systems. Notions from fluid dynamics will be explained from a dynamical systems
point of view. We will see, that very interesting results can be obtained, when taking
a model into account, which is influenced by results from both 'worlds’. This thesis is
an access into both fields and builds a bridge between fluid dynamics and non-linear
dynamical systems theory.
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Chapter 1

Introduction

Turbulence is encountered everywhere in every day life. Examples reach from vortices
behind a starting aircraft, over the aerodynamics of cars to water pouring into a bathtub.
A flowing fluid is described by the NAVIER-STOKES equations (1.1.6). In contrast to
smooth and time-independent solutions of these equations, which are called laminar
flow, turbulent flow refers to a time-dependent, non-ordered flow. Turbulent fluid is
in a highly dissipative state. A reduction of turbulence in pipelines can therefore save
much energy during oil or gas transport. For this reason, the investigation of turbulence
phenomena is not only a challenge to fundamental research but also very important in
many applications.

This thesis deals with the special case of turbulent pipe flow. For moderate flow speed it
exhibits localised turbulent regions, i.e. ’puffs’, that travel down the pipe with constant
velocity and are believed to decay eventually. For higher flow rates, there is a transition
to ’slugs’, where the front of the turbulent region propagates faster than the back side,
such that the size of the turbulent region is growing linearly in time.

We will focus on some key questions:

e Which mechanisms can lead to finite-size turbulent puffs ?
e What determines their lifetime?

e What can cause a transition from puffs to slugs?
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1.1 Historical Review

Although there still is a sizable and very active research community working on the
transition to turbulence in pipe flow, the problem how a pipe becomes turbulent is over
a hundred years old. The first study goes back to OSBORNE REYNOLDS in 1883 (cf.
figure 1.1 and [39]).

Figure 1.1: Reynolds’ experiment in 1883. Reprinted from [1].

Reynolds injected a coloured thread into a pipe. The ink travels along a straight line
for small flow velocities (cf. figure 1.2, a))

The thread becomes unsteady for higher velocities (cf. figure 1.2, b)) and eventually
splits completely into eddies for even higher velocities (cf. figure 1.2, ¢) and d) ). But
this is not the most striking discovery. It is the result, that the flow only depends on
one dimensionless parameter. This parameter depends on the average flow velocity U,
the diameter of the pipe D and the kinematic viscosity v of the fluid. The number is
now called the Reynolds number Re to honor its discoverer. It is defined as

_U-D

v

Re (1.1.1)
Reynolds studied the question, if there is a critical value Re,., above which the laminar
state is unstable. This behaviour is well-known from RAYLEIGH-BENARD convection [38|
or TAYLOR-COUETTE flow [43, 44|, where the steady state becomes unstable above a
critical Rayleigh R or Taylor number 7, respectively.

Reynolds observed, that flow of a 'normal’ pipe becomes unstable above Re &~ 2000 .
Turbulence is the only observable state then. But he also used much smoother pipes
and less-perturbed initial conditions. In those experiments, the laminar flow could be
preserved for Re &~ 13000. Therefore, it is widely accepted now [30, 34|, that laminar
flow is linearly stable for all Re. There is no critical Reynolds number.

This has been observed for the first time by Reynolds. The transition mechanism to
turbulence in pipe flow is still an open question, because linear stability theory fails to
describe the transition. The importance of the Reynolds number is also obvious in the
equations of motion.
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Figure 1.2: Top to Bottom: A laminar flow is stable for small Reynolds numbers. It
begins to wiggle, if the Reynolds number is increased. For higher Reynolds
numbers above a critical threshold, the flow becomes turbulent. Reproduced
from [46].

Although, the flow fields can be very complicated for different geometries, the describing
equations are well-known since the investigation of NAVIER and STOKES. By applying
the momentum conservation for fluids, one finds the Navier-Stokes equations [1]

p(Bii + (- V) i) = =Vp+ Vi + f (1.1.2)

Here, p and v are the density and kinematic viscosity of the fluid, respectively. (7, 1)
is the flow field at each space ¥ and time ¢, p is the pressure and fis an external body
force. This equation is a partial differential equation of second order. Additionally, it
is non-linear, because of the convective term (¢ - V) d. This makes the solution of the
equation extremely complicated. A closer look reveals, that these equations are three
differential equations for the four unknowns « and p. In order to complete the system,
a fourth equation, the continuity equation for the mass density, is needed,

0up + V (i) = 0 (1.1.3)

Assuming incompressibility, the density p does not depend on time or space. As a
consequence, the continuity equation reduces to

V=0 (1.1.4)

The Navier-Stokes equations can be formulated in a dimensionless way by applying the
transformations

P === (1.1.5)
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where L and U are a characteristic length scale and velocity of the system, respectively.
This leads to the dimensionless Navier-Stokes equations

O+ -Vii = —Vp+Re 'V (1.1.6a)

V-© = 0 (1.1.6h)

£y

The external force and the additional primes have been dropped for simplicity. The only
free parameter of the dimensionless Navier-Stokes equatuion! is the Reynolds number
Re.

We used the no-slip boundary condition
u(r=R,t)=0 (1.1.7)

This states, that the fluid sticks to the pipe walls.

For pipe flow, the stationary solution can be calculated analytically. By using cylindrical
coordinates (r, ¢, z) with the z axis along the pipe, one obtains

0.p
4

i(r, ¢, 2) = ——=Re(1 — r?)é, (1.1.8)

where 0,p is the pressure gradient along the pipe, which is assumed to be constant.

1.2 Recent Progress

The motivation of our considerations are experimental studies on turbulent puffs in pipe
flow by Hof et al. [16,17]

The structures are called convective instabilities, since they are taken away from their
point of origin by the flow without growing. The transition to turbulence can not be
described by linear stability theory, since the laminar state is linearly stable for all Re.
Therefore, one needs a finite perturbation to the laminar state to trigger a turbulent
puff.

Hof et al. triggered a puff by injecting water into the laminar flow at some point of the
pipe. Resulting puffs travel through the pipe and reach its end after some time, unless
they decay on the way. The survival probabilities are shown in figure (1.3).

As expected, the survival probality is zero for very low Reynolds numbers (laminar
limit, where the lifetime of puffs is small) and tends to one in the turbulent limit.
Measurements has been done for several pipe lengths L. Longer pipes show a smaller
survival probability: due to the constant velocity of a puff for fixed Re, it has had more
time to decay in longer pipes and less puffs reach the end.

The next step is to determine the lifetime distribution of turbulent puffs. The Reynolds
number is kept fixed and the survival probability of a puff is measured for several pipe
lengths. The survival probability for a fixed length can then be related by the puff

LA general solution for the Navier-Stokes equations is not known up to now.Therefore, it is one
of the most complicated problems in classical mechanics. The proof of existence and smoothness of
solutions is a Clay Millenium prize problem [20].
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Figure 1.3: Experimental survival probabilities for different pipes and Reynolds num-
bers. L is the distance to the end of the pipe, measured in multiples of its
diameter D. Reprinted from [16].

velocity to a survival probability for a fixed time. Measurements have been done for
a range of Re and the average lifetime 7(Re) has been computed. Early work [50] for
1550 < Re < 1850 suggested a linear decrease of 77! with a transition to infinite lifetimes
at Re ~ 1870 (dashed line in figure 1.4, a)) In contrast, numerical and experimental
studies [18] for a range 1750 < Re < 1950 obtained

T ~ exp(ciRe), g eR (1.2.1)

which is the solid black line in 1.4, a). This data suggested, that 7 remains finite for all
Re. The most recent high precision data [16] for 1550 < Re < 2050 resolve the difference
of the previous studies and further underpin the view, that 7 remains finite.

d 1 : ‘ . : ‘ , ‘ : ‘ b 3.0
01}
25}
0,01}
-3
= 20t
8 s =
s 10 &
= c
§ 10 [ T 15F
g p— ~ linear
14 exponential -
67 L superexponential ’
— - — - superexponential
0 L I L L L 1y L L 0.5 — L | L L L L | s
1550 1600 1650 1700 1750 1800 1850 1900 1950 2000 2050 1650 1700 1750 1800 1850 1900 1950 2000 2050
Reynolds number Re Reynolds number Re

Figure 1.4: a) 77! as a function of Reynolds number. b) A log-log normal plot shows a

superexponential scaling law. Reprint from [16].
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However, they suggest a super-exponential increase of 7 like
T ~ exp(exp(caRe)), s €R (1.2.2)

This expected scaling law is supported by figure 1.4, b)

The data shown in figure 1.4 has setteled the dispute on qualitative features of 7. But
the exact form is not quite clear. An alternative fit

7 ~ exp(czRe™), c3,n €R (1.2.3)

can describe the data, too (cf. [16]). These scaling laws are called super-exponential. A
transient which has such a lifetime scaling law is therefore called super-long transient,
in contrast to long transients, which obey a power-law scaling.

However, there is no hope for more data. It is hard to improve the experimental results,
because many problems have to be solved. The very rapid lifetime increase of a turbulent
puff for Re > 2000 is one problem. Therefore, one needs very long pipes to determine
the lifetime distribution correctly. This is very hard to do, since the pipes would easily
exceed the dimensions of the lab. Another problem is the experimental setup. The pipes
has to be very smooth. Otherwise one would get wrong lifetimes due to the roughness
of the pipe, which acts as an additional perturbation [11,28]|. In addition, there are
several problems which has a minor effect, but are still essential, e.g. keeping a constant
temperature along the whole pipe or a laminar injection at the beginning of the pipe.

A different method is a computer simulation. This has the advantage, that one can
specify the state of the system very well. Without the inaccuracy of perturbations in
real experiment, i.e. rough pipe walls, theoretical assumptions can be checked. Almost
all simulations on pipe turbulence are based on the Navier-Stokes equations. This is
a common point to start, since the Navier-Stokes equations are the equations of mo-
tion for fluid dynamics. The time-dependent Navier-Stokes equations can not be solved
analytically, because they are non-linear partial differential equations(pde). Computer
simulations are also very hard to carry out. One problem is to find a reasonable dis-
cretization of space and time. The simulation results are getting better for a finer
discretization grid, but at the cost of a long simulation time. Several methods have
been introduced to tackle this problem. One way is to do a mode expansion of the solu-
tions [29,31]. For appropriate modes (Fourier and Chebyshev polynomials), one is able
to carry out simulations rather fast and get noticable results, which can be compared
to experimental data.

Another transition can be observed for even higher Reynolds numbers. Due to the
super-long lifetime scaling law, the average lifetime increases very fast with Re. For
quite high Re ~ 2500, a new state, known as a turbulent slug, is observed. A slug is
an absolute instability. In contrast to a puff, its front velocity is much larger than its
back. Therefore, a slug grows while travelling through the pipe and eventually fills it
completely. The lifetime of turbulent slugs is expected to be infinite. This assumption
has not been checked. A direct measurement in experiments is not accesible, since the
lifetime is quite too long, due to the super-exponential scaling law. Since the lifetime of
slugs is expected to be infinite, the growth speed is a better quantity to determine a puff-
to-slug transition. A critical Re,, for the puff-slug transition can be found experimentally
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and is currently under investigation. The correct value Re,,. for the slug transition is an
open question. Therefore, further studies on the growth speed dependence on Re are
needed.

Although, there has been many experiments and numerical simulations, the underlying
mechanism for the transitions is not known. Therefore, a good theory is needed to guide
experiments and simulations.

1.3 Scope of this work

Our aim is to understand the transition from laminar to turbulent flow in a general
setting. We will use pipe flow as a stereotype for transition scenarios. But we will not
use the Navier-Stokes equations to simulate pipe flow. Rather we go a different way
and study low-dimensional models that share some aspects of pipe flow. Therefore,
our results can not directly be applied to real systems. Instead, we can focus on the
underlying principles leading to a transition from laminar to turbulent motion. This is
useful, since even possible mechanisms are unclear. We provide candidates for scenarios
to check.

The next chapter will briefly review the basic notions from dynamical systems theory
needed for our investigations. Chapter 3 will deal with a 2d model system, which is
used to describe the behaviour of super-long transients. We will especially emphasize
the importance of the lifetime scaling law and compare it to theoretical predictions.
The main part of this thesis is presented in chapter 4. A spatially extended model
is investigated that mimics turbulent puff and slug behaviour. Therefore, we study a
unidirectional coupled map lattice. In particular, we will deal with the distribution
and scaling laws for the lifetime and velocity of puffs. The laminr-puff and puff-slug
transition will be determined in the model framework. Additionally, the growth speed
will be studied for the slug regime. The conclusion in chapter 5 will compare our results
to real pipe flow and give an outlook for future work.
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Chapter 2

Dynamical Systems Revisited

In order to get an overview about the tools we need for our further work, we will compile
some concepts of dynamical systems in this section.

Definition 1. A dynamical system is defined by an evolution equation
—7=F(&) , (2.0.1)

where © € R™ is the state of the system and F is the evolution operator (i.e. "velocity’),
which uniquely determines the change of the state with time [33].

Dynamical systems are everywhere around us. The word ’dynamical’ lets us think of
systems that show some motion. The cause of the motion is given by a force, according to
NEWTON. Examples are very numerous and reach from the movement of a pendulum
to shooting a cannon ball. But we can also describe things with dynamical systems,
which are not mechanical, like the voltage characteristic while charging a capacitor or
the induction voltage of a coil. But the dynamical systems approach is not limited to
such simple systems. Even more complex systems and tasks, like weather forecasting,
population dynamics of bees, the spreading of epidemics or share prices in stock markets,
can be described by dynamical systems. The most important dynamical system we are
interested in, is the flow of water through a pipe, which can be described by the Navier-
Stokes equations.

Mathematically, a dynamical system can be described by a set of first-order differential
equations. The exact definitions will be given in the next section.

2.1 Definitions

Definition 1 looks quite restricted, because not all systems are of first order. The most
prominent and probably most important example is Newton’s law (here in one dimension
for simplicity)

&= F(x, 1) (2.1.1)

9
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This is a differential equation of second-order and therefore does not obey the definition
of a dynamical system. But we can transform this equation into a system of first-order
differential equation by defining the velocity v := 2. This gives us the following system:

i = v (2.1.2a)
= F(z,v) (2.1.2b)

which can be written in compact form as

d .,
&ﬁ = F() where @ = (z,v)" (2.1.3)
We have now obtained an equation of the form (2.0.1). This procedure can be generalized
to higher dimensions and to differential equations of n-th order. So, our definition of a

dynamical system is quite general.

A very simple class of dynamical systems are those with a discrete time. This can be
seen in populations, where we can measure the population of our beehive every year at
the same date and time.

A possibility to obtain a time-discrete system is the technique of a POINCARE section
[27]. This technique is very useful to study properties of time-continuous systems. We
are only investigating models, which are already time-discrete, so we skip an introduction
on the Poincaré section technique.’

In time-discrete systems, a state at time n uniquely determines the state at time n + 1,
generally. In this case, the evolution operator is also called the mapping M of the
dynamical system, and we define

—

Tpp1 = M(Z,) (2.1.4)

where the discrete time is denoted as n € Ny. An explicit time dependence of M is
not taken into account in this thesis. Those systems are called autonomous. Once M
is determined, the future of the system can be computed very easily. To get the state
after m timesteps, we just need to apply M m times.

Form = M(M(- - NI(7,))) (2.1.5)
——
m times

For one-dimensional systems, this iteration can be done by hand, even with very old
calculators. To abbreviate this long expression, we define a short version of (2.1.5).

Tpym = M™(Z,) (2.1.6)

We have already mentioned above, that a state 7, uniquely determines the state @, .
All these possible points build the phase space or state space of the system. A point in
phase space uniquely determines the state of the system and therefore defines its future.

! Time-discrete systems are also very fast to simulate on a computer. Computers can only deal with
a discrete time. Therefore, the time for a discretisation step is saved. This step introduces errors,
because we can not let the length of the timestep to zero. Following timesteps on a computer differ at
least in one bit.
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The phase space can have a low dimension, like in the example of a mathematical
pendulum, where we only need two coordinates, i.e. space and momentum, to define
the state of the system. This leads to a two-dimensional phase space. But the phase
space dimension can even be rather high, e.g. when dealing with thermodynamical
systems with N particles, where the phase space dimension is 6/V.

We will now come to another important definition, which is used all the time, when
working with dynamical system.

Definition 2. The evolution of the dynamical system for a given initial condition is
known as its trajectory or forward orbit T. For a discrete time evolution it is defined

as’

T := {7 | & = M'(%,), i € No} (2.1.7)

A trajectory determines the time evolution of an initial value, respecting the dynamics
of the system. A trajectory can be a series of measurments in a time discrete case, e.g.
the temperature on day ¢ in Gottingen.

Trajectories can be measured even without the knowledge of M. Therefore, the analysis
of sets of trajectories is the basic step when studying dynamical systems. An interesting
aspect is, that trajectories can not intersect in phase space. This is understood by
keeping in mind, that a point in phase space uniquely determines the future of the
system. If two trajectories have one point in common, their future evolution has to be
identical. This fact is very useful, if one is interested in the structure of the phase space.

Another part of the phase space structure can be analyzed by the determination of
invariant subsets. This is picked up in the next section.

2.2 Invariant Subsets
Beside the analysis of typical trajectories, one can investigate, if there are subsets of the
phase space, which are not changing during the evolution of the system.

Definition 3. A subset A of the phase space is called invariant, if the image of A under
the mapping M is the same subset A:

A= M(A) (2.2.1)

An example for an invariant subset is easily found. The logistic map is a frequently used
example for several aspects of dynamical systems (cf. [6,33]). It is defined by

f(z) =rz(l —x) reR (2.2.2)

A plot of the logistic map for r = 4 is given in figure 2.1. For r = 4, the interval I = [0, 1]
is an invariant subset for the dynamics, since we have f(I) = I.

There are a bunch of special invariant subsets. The most simple ones are the fixed
points.

2Tf M is invertible, the complete orbit is also defined for the past, i.e. i € Z [6].
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a) r=4.0 b) r=42 C) Cantor set algorithm
1 1
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Figure 2.1: a) The logistic map for r = 4. I = [0, 1] is an invariant set. b) I is no longer

invariant for r > 4, since f(z) > 1 for z € [1 —4,36] with § = /=2, ¢)

Algorithm to construct the middle third Cantor set.

Definition 4. A point 7 of the phase space, which is invariant under the time evolution
of the system, is called a fixed point. It obeys the equation

= Mz (2.2.3)

Equation (2.2.3) is therefore called the fixed point equation [33]. Fixed points play an
important role in each dynamical system. They are the most simple invariant subsets
one can think of and are easily calculated in most cases. Often, it is possible to make
interesting statements of the dynamics only by the knowledge of the fixed points.

The next higher level invariant subset is a periodic orbit [33].

Definition 5. A point ©™* in phase space lies on a periodic orbit of period p € N, if

—

7 = MP(7) (2.2.4)

The trajectory
T =A{z", M(Z"),..., MP(z")} (2.2.5)

s called a periodic orbit of period p.

The mapping MP is also known as the p-times iterated map. After p iterations, the
periodic orbit has reached the starting point again. Therefore, a periodic orbit is a
closed trajectory. The condition (2.2.4) applies to each point on the periodic orbit, such
that periodicity is a property of the complete periodic orbit. One can find periodic
orbits by searching for fixed points of the p-times iterated map MP.

Both fixed points and periodic orbits are invariant subsets of dimension zero, since both
sets contain only isolated points. This is different for sets like I in the example of the
logistic map above. The interval is an invariant subset of dimension one.

There are more types of invariant subsets. Some of them may even have fractal, i.e.
non-integer, dimension. In order to characterise these sets, we first need to introduce a
definition for the dimension of a set.

This excursion will introduce the box-counting dimension, also known as the capacity.
We will first think of objects, whose dimension we already know. From that point, we
can generalize the notion of a dimension.
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Let € be a reference length scale. We form boxes of side length € out of it. For a line
with length L, we need

Ni(e) == (2.2.6)

boxes (i.e. line segments) to cover the line. The number of boxes N (€) we need to cover
the set is obviously depending on the reference length e. For smaller ¢ we need more
boxes. In analogy to that, we need

A
Na(e) = = (2.2.7)
boxes to cover an area of size A with boxes of size €2. The scaling of N with ¢ is
determined by the dimension of the set. Equations (2.2.6) and (2.2.7) can also be
written as

1

InN, = InL+1-In (—) (2.2.8a)
€
1

InNy = InA+2-In (—) (2.2.8b)
€

For sufficiently small ¢, the constant offset in those relations may be neglected such that
the following definition is useful.

Definition 6. The box-counting dimension is defined as (cf. [33])

D :=lim In N(c)
e—01n(1/e)

(2.2.9)

By construction, this definition yields the correct results for the dimension of objects
we already know.

On the other hand, a remarkable dimension is found for the Cantor set. We will describe
the construction of the Cantor set in brief. A visualisation of this algorithm is given
in figure 2.1, panel c. Imagine an interval of length one, i.e. the interval I from our
previous example. Delete the middle third from this interval in order to get two stripes
of length 1/3. From these stripes, delete the middle third again to get four stripes of
length 1/9 and so on. If we do this procedure ad infinitum, we get the Cantor set. We
now want to know the dimension if this set. In order to obtain it, we will use the box-
counting algorithm. We choose a length scale ¢ = (%)n, where n defines the iteration
step in the Cantor procedure. In order to cover the set, we need N(e) = 2" boxes. We
now apply the dimension definition to calculate the dimension of the Cantor set.
In N (e) In(2")  In(2)

D=1 = li = ~ 0.631 2.2.10
<20 Tn 1/e e In(37)  In(3) 00 ( )

Since the Cantor set has a non-integer dimension it is called fractal (cf. [6]). Fractal
structures typically arise in objects with a self-similar structure. Prominent examples
are the MANDELBROT set [25] and the KOCH snowflake [26].

We can now come back to our investigation of invariant subsets. Imagine again the
logistic map (2.2.2). But now choose r > 4, so that I is no longer an invariant subset
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(cf. figure 2.1, panel b). In each iteration, there is taken away some mass from I. The
amount is related to the width of the hole

r—4
r

20 =

(2.2.11)

The points that stay forever in I form a Cantor set . It is noticable, that I; is not an
empty set! Like in the case of the middle third Cantor set, Iy has a fractal dimension
between zero and one, depending on the value of . Since I is not empty and points in
I+ never leave Iy, it is an invariant subset of the dynamics. Those invariant subsets with
fractal dimension are called strange in the terminology of dynamical systems, because
of there fractal dimension.

We have now classified all important invariant subsets. But the relevance of an invari-
ant subset depends on another property, too. This is the stabilty against infinitesimal
perturbations which will be investigated in the next section.

2.3 Stable/Unstable Directions in Phase Space

The stability of an invariant subset is a very important property. The stability decides,
whether a trajectory stays in the vicinity of the invariant subset or if it leaves it. In
experiments one typically observes stable invariant subsets, because infinitesimal pertur-
bations drive the trajectory away from the unstable subset 3. Errors in the experimental
setup or the finite length of numbers in a computer simulation are enough to let the
trajectory move away from the unstable subset. The exact defintion for one-dimensional
systems will be given in the next section. After that, we will generalize the notion to
higher dimensions.

2.3.1 One Dimension

First, we will investigate the stability of a fixed point, since fixed points are the most
simple invariant subsets. Further we will limit our considerations to one dimensional
mappings

Tnr1 = [f(20) r,€eR VieN (2.3.1)

This procedure is useful to get an intuitive understanding of the notion of stability. The
definitions can be generalized to higher dimension very easily in the following section.
We can think of f as a simple mapping, e.g. the logistic map in (2.2.2). Note, that the
stability can be defined in a general way for arbitrary trajectories. But we will restrain
our considerations to the analysis of the stability of invariant subsets, since this is the
case we will use most of the time.

Definition 7. A fized point x/ is stable, if for every neighbourhood U of zf there is a
neighbourhood V. C U of xf such that every trajectory starting in V remains in U for
all times. This is also called Lyapunov stability [19].

3Exceptions are flows with self-reproducing agents like in catalytic reactions or algae.
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This rather mathematical definition is very intuitive, but hard to apply to model systems.
Therefore, we also introduce the notion of linear stability, which can be applied easily.

We assume, that the fixed point 2/ is perturbed by an infinitesimal amount &,
=z +6, I,<1 (2.3.2)

where §,, is the perturbation at time n*. Now we assume that the time evolution of z?,
can be calculated for small §,, with a Taylor expansion of order one around x/

v = f@) = f@)+ f'(@h)o, +0(57) (2.3.3)
zf + (25, + 0(5?) (2.3.4)
By applying the definition of the perturbation, we get the linear evolution of the per-

turbation as

o1 = f(z1)0, (2.3.5)
The result can now be used to define the linear stability.

Definition 8. A fized point ' is linearly stable, if infinitesimal perturbations decay in
their absolute value with time.

On

|‘5+‘1| =|f'(=")] <1 (2.3.6)
If }f’(:cf)} =1, then xf is metastable. For ’f’(a:f)’ > 1, the perturbations grow and the
fized point is called unstable [33].

Linear stability ascertains, that small perturbations of stable (unstable)fixed points
decay (grow) exponentially. Consequently, for an unstable fixed point the trajectories
move away from z/. On the other hand, in the marginal case f’(z/) = 0 one has to fall
back to a more refined notion of stability, like Lyapunov stability, to make mathematical
statements.

The same idea can be applied to the analysis of the stability for periodic orbits. We
just use the p-times iterated map f? instead of f and we evaluate it at a periodic point
2P of the periodic orbit instead of at z/. All other definitions are the same. It is more
complicated to analyse the stability for invariant subsets, that contain fractal sets or
whole intervals. One needs definitions from the theory of topology, which we will not
discuss in this work °.

Generally, stable invariant subsets are called attractors or sinks. On the other side,
unstable sets are called repellers or sources. The most popular attractor is the Lorenz
attractor, which rises in the investigation of Rayleigh-Bénard convection. It is classified
to be a chaotic attractor. We will briefly discuss the notion of 'chaotic’ now.

Definition 9. An invariant set is called chaotic, if trajectories on the invariant set are
aperiodic and have sensitive dependence on initial conditions (cf. [33]). If the set is also
a attractor, it is called a chaotic attractor.

4 We always assume, that the typical size of the attractor is of order 1. Therefore, 6, < 1 refers to
an infinitesimal perturbation.
50One way to determine the stability is to use bonds of the Lyapunov spectrum.



16 CHAPTER 2. DYNAMICAL SYSTEMS REVISITED

The sensitive dependence on initial conditions is determined by the behaviour of neig-
boured trajectories.

Definition 10. Let xq and yo = xo+ 0¢ be two initial conditions on the attractor, where
0o < 1 and let b, := yn, — xpn. If for almost all initial conditions xo,yo the perturbation
0o grows exponentially with time

|0n|

— ~ exp(An) A>0 (2.3.7)
o]

we say that the attractor has sensitive dependence on initial conditions (cf. figure 2.2,

[33]).

Note, that the difference 9, has to be smaller than the typical diameter of the attractor
for all n.

This property leads to the unpredictability of trajectories on chaotic attractors. Both in
experiments and in simulations®, we can not define the initial condition with arbitrary
precision. These small inaccuracies grow exponentially with time. This fact is known
from every days life. Weather forecasts are very precise for the next day. But the
forecast turns to guessing, when we would like to know the weather a few weeks in
advance. This is due to the fact, that the weather system has sensitive dependence on
initial conditions.

We will now discuss the stability of higher dimensional systems. Those systems are more
realistic, but we have to do some more analysis.

81
—~
~
=t

<
—~

o
=

7(0) y(t)

Figure 2.2: For the definition of sensitive dependence on initial conditions.

6For some cases, the initial conditions in computer simulations can be determined to an arbitrary
precision by using symplectic integrators.
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2.3.2 Higher Dimension

The idea behind the linear stability analysis is the same as in the case of one dimensional
systems. But we have to interpret the results from a different perspective.

Again, we will do the analysis for fixed points only. The generalisation is the same as
in the one dimensional case and will not be discussed.

We will now investigate the stability of a fixed point #/ under the system

—

Tpy1 = M(Z,) (2.3.8)

Again, we can express a perturbated trajectory by’

—

=3 +6,  with |0,| <1 (2.3.9)

It is worth mentioning, that in this high-dimensional case, the perturbation has a di-
rection. As mentioned below, this is a crucial property of the perturbation with a great
impact on the dynamics of the system. The perturbation can be expanded in a Taylor
series

B, =M@E +5,) = M@)+DM@E) 5, +0(8) (2.3.10)
= # + DM@ -5, +0(5?) (2.3.11)

where DM (/) is the Jacobian of M, evaluated at the fixed point #/. For an N-
dimensional system it takes the form

oMy, . oMy
81‘1 8:):N
DM := | : o (2.3.12)
oMy . OMy
81‘1 a:L‘N

With this expansion, we can determine the evolution of the perturbation 5, to be
Sps1 =DM (i) - 6, (2.3.13)

The stability of the fixed point is now determined by the eigenvalues \; and eigenvectors
of DM (z7) (cf. [19]).

Definition 11.
e if all \; have a negative real part, then 27 is stable, since every perturbation decays
( 5_;1 — 0).

e if there is at least one eigenvalue \; with positive real part, then 7 is unstable,
since there is at least one direction €;, where a perturbation grows.

o if all \; have a vanishing real part and it exists a complex-conjugated pair with
non-vanishing imaginary part, then the solution oscillates and we have a periodic
perturbation, which is not growing®.

Tcf. footnote 4
8Tt is also possible to have only one pair of complex-conjugated . If all other eigenvalies have
negative real part, then th solution is only oscilating in a plane, while all other directions are stable.
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It is clear, that the variety of possible perturbation is much larger than in the one
dimensional case.

In higher dimensions, we have a direction, related to the perturbation. It is possible,
that a fixed point has only stable directions but one, which is unstable. These points
are therefore called saddle, since they have the form of a saddle in the high dimensional
phase space. An invariant subset, which has stable as well as unstable directions and
shows sensitive dependence on initial conditions is called a chaotic saddle.

The definition of stability leads straight to the concept of Lyapunov exponents.

2.4 Lyapunov Exponents

This section will introduce the concept of Lyapunov exponents and vectors, which
are named after the Russian mathematician and physicist ALEKSANDR LYAPUNOV.
Lyapunov exponents are a widespread technique to characterize stability and chaos.
The Lyapunov exponents are the exponents of the exponential growth of perturbations
(cf. [33]).

In equation (2.3.6), we have introduced the definition of the stability of a fixed point
via the growth of infinitesimal perturbations.

S ,
|‘5Z‘1|:‘f(xf)‘<1 (2.4.1)

This gives us the growth in one iteration step. It can be generalized to the growth for
m iterations

‘i%+]n| = |f'(2")|" = exp(Am) where A :=In (| f/(z7)|) (2.4.2)
The exponent A is called the Lyapunov exponent and can be defined by
A= 1 lim —1 2.4.
ml—rgows\lgom n( |0 | ) (243)

| //(2)] = exp(A) is often referred to as the Lyapunov number. The Lyapunov exponents
can now be used to determine the linear stability of a fixed point

e )\ > (: unstable
e )\ = (0: marginally stable
e )\ < 0: stable

The advantage of using Lyapunov exponents is given by the fact, that they can be
computed very easily. The knowledge of the underlying map f is not neccesary to
calculate A, since it is defined via the growth of perturbations. Another advantage
becomes obvious in systems of higher dimension. Here, the Lyapunov exponents are
the eigenvalues of the Jacobian, evaluated at the fixed point position. This makes the
Lyapunov exponents to an essential tool in the analysis of the stability of invariant
subsets.

In the next section we turn to bifurcation theory.
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2.5 Bifurcations

A qualitative change of the dynamics of a system while varying a control parameter is
known as a bifurcation. Bifurcations are analyzed in the mathematical field of bifur-
cation theory. We will inspect here only some basic bifurcation scenarios, which are
important for the analysis of our model systems.

We will deal with bifurcations of one-dimensional, smooth functions f, which depend
smoothly on a control parameter r. There are three generic bifurcation types for this
class of functions [6,27,33], which can be found in nearly every one-dimensional dynam-
ical system. They regard the generation of fixed points and the change of stability of
fixed points.

2.5.1 Tangent Bifurcation

The first bifurcation type will be introduced by an example. We note, that the fixed
points of a one-dimensional map are determined by the intersection points of the map f
with the diagonal line f(z) = z. We will now study the dynamics of f(z) = rexp(z) [6].
This map is visualized in figure 2.3. For control parameters r > % = r. (panel a), there
is no intersection. Therefore, the map has no fixed points. If we decrease r to the value
r., we can check easily that we get one intersection at x = 1. For the special control
parameter r = r., the map f is tangent to the diagonal line. A further decrease of r to
values r < r. creates two fixed points, as can be seen in panel c¢). One is stable and the
other one is unstable. After all, the slope of the left fixed point has to be smaller and
the one to the right larger one in order to have f(z) cross from above the diagonal to
lower values and vice versa. The value r., where the bifurcation takes place is called the
critical parameter or bifurcation parameter.

During a change of r through the critical value r., we create two fixed points from void,
while f is tangent to the diagonal for » = r.. This bifurcation type is therefore called
a tangent bifurcation or saddle-node bifurcation, when dealing with systems of higher
dimension.

r=1/e + 0.1 r=1/e r=1/e- 0.1

f(x)
f(x)
f(x)

0.5 r exp(x) 0.5 i r exp(x) r exp(x)
- X - X X

0 0.5 1 15 2 25 0 0.5 1 15 2 2.5 0 0.5 1 15 2 2.5
X X X

Figure 2.3: Bifurcation scenario for f(z) = r exp(x), which has a critical point at r, = <.

(a) The control parameter is larger than the bifurcation parameter. f(x) has
no intersections with the diagonal. (b) at the critical value r = r., f(z) is
tangent to the diagonal. For r < r., we get two fixed points, as can be seen
in panel (c). The left fixed point is stable, while the other one is unstable.
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before after tangent bifurcation scheme
a) b) c) 9

Xn+1
X

*n *n
r

Figure 2.4: Tangent bifurcation scheme. Panel a) is before the bifurcation. We do not
have any fixed points. b) After the bifurcation, two fixed points emerge.
One is stable, the other one is unstable. c¢) The scheme of the bifurcation.
Straight lines are stable fixed points, dotted lines are unstable.

The scheme of the tangent bifurcation is very general. The best way to remember it is
to use figure 2.4 as the basic scheme.

2.5.2 Period Doubling Bifurcation

We will now come the the second bifurcation type. For this scenario, we will have a look
at the well-known logistic map [33]

flz) =rz(l —x) r>0 (2.5.1)
This map has a stable fixed point at

1
ef=1-=  forl<r<3 (2.5.2)
T

This fixed point is getting unstable at r = 3 =: r, because the magnitude of the slope
reaches one in absolute value (cf. definition 8)

|f'(@)| =|r@=22")|=[2=r]=1  forr=3 (2.5.3)

1 1 1

0.8 L 0.8

0.6 T 06

1(x)
09
09

0.4 . 0.4
0.2 ' 0.2
) f(x)=r x (1-x) (x)
ol X 0 X
0 02 04 06 08 1 0 02 04 06 08 1

X X X

Figure 2.5: Period Doubling Bifurcation. In a) we see the logistic map for r = 2.8.
There is one stable fixed point. b) shows the two-times iterated map. We
have only one fixed point, which is the same as the fixed point in the normal
map. For r = 3 =: r,, the fixed point becomes unstable. Panel ¢) shows,
that for r > r. the two-times iterated function has two more fixed points.
These new fixed points are stable and form a period two orbit.
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a) before b) after C) period doubling bifurcation scheme

Xn+2

X,

r

Figure 2.6: Schematic overview of a period doubling bifurcation. Panels a) and b) show
the two-times iterated map before and after the bifurcation. The stable fixed
point loses its stability in the bifurcation and gives rise to a stable period
two orbit. ¢) shows the motif for such a bifurcation.

The fixed point is therefore unstable for r > r.. But this is not the end of the story. We
first note, that there is no additional fixed point created in this bifurcation, which can
be verified from figure 2.5, panel a). But we can have a look at the two-times iterated
map. For r < r., it has only one fixed point, namely the fixed point /. If we increase r
through r., we see, that there are two new fixed points created in the two-times iterated
map. These are stable and form a period two orbit.

The basic properties of this kind of bifurcation are compiled in figure 2.6.

A bifurcation, where a stable fixed point loses its stability and gives rise to a stable
period two orbit is called a period doubling or pitch fork bifurcation. The name pitch
fork bifurcation comes from the visualisation in panel ¢) of figure 2.6.

2.5.3 Inverse Period Doubling Bifurcation

The last bifurcation is very similar to the period doubling bifurcation and will be men-
tioned only briefly. It occurs when an unstable fixed point becomes stable and thereby
creates an unstable period two orbit. This process is called an inverse period doubling
bifurcation. We will only give the basic scheme of this bifurcation type in figure 2.7.

a) before b) after C) inverse period doubling bifurcation scheme

Xn+2

X,

n
r

Figure 2.7: Schematic overview of an inverse period doubling bifurcation. For r < r,
we have one unstable fixed point. This fixed point gains stability in the
bifurcation and gives rise to an unstable period two orbit (panel b). Panel
c) is the schematic motif.
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All the generic bifurcations we can encounter in one dimension have now been defined.
All these bifurcations can happen in the other direction as well. This depends on the
explicit definition of the control parameter. The schematic description is obtained by
folowing the schemes in the c) panels of figure 2.4, 2.6 and 2.7 from the right to the left.

2.5.4 Bifurcation Diagrams

Another useful tool to visualize bifurcation scenarios is to use bifurcation diagrams.
In bifurcation diagrams, we plot the stable orbits of the system against the control
parameter. Sometimes, additional unstable fixed points are included in those diagrams.
But in order to have a clearly arranged plot, one skips this unstable fixed points most
of the time.

Bifurcation diagram for the logistic map

0.8 r

0.6

04 r

0.2

Figure 2.8: Bifurcation diagram for the logistic map. We can see the period doubling
route to chaos and the boundary crisis at r = 4.

One can inspect in bifurcation diagrams, how the dynamics of a system evolves from a
stable fixed point to a chaotic behaviour. The most famous mechanism for that is the
period doubling cascade, known from the logistic map. This route to chaos is happening
via successive period doubling bifurcations. After n bifurcations, we encounter a periodic
orbit of period 2". n — oo for r — r,, and we have a fully developed chaotic dynamics
for r = 3.57 = r,,. The exact point r., after infite period doublings has been determined
by FEIGENBAUM [9]. The scenario is known as the period doubling route to chaos [33].

There are much more types of bifurcations for higher dimensional systems. The analysis
and classification is much more involved, so that only a rough sketch can be given. An
exposition on this topic has been given by ARNOL'D [2].

2.6 Transient Behaviour

This section will give a short introduction to the field of transients, which are related to
bifurcation theory. Transient behaviour can be interepreted as the opposite of permanent
behaviour. A dynamical system on an invariant subset will never leave this subset.
This can be described as permanent behaviour. When talking of transient motion, we
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are dealing with a dynamical systems, that has not approached an invariant subset
and therefore can make a transition between several regions of the phase space. One
example is the transition from a chaotic saddle to a stable fixed point, which is observed
in turbulent pipe flow. A trajectory, which is making such a transition is called a
transient. There are many kinds of transients, describing different kinds of dynamical
behaviour. Some of them, which are important for our analysis, will be explained in
this section.

The first phenomenon we will discuss is intermittency. We take as granted, that there
is a critical parameter a. in the system. For a < a., there exists a stable periodic orbit,
which will be destroyed or get unstable for a > a.. An example is studied by Pomeau
and Manneville in [36] for the Lorenz system. For a < a., we can see a periodic signal in
figure 2.9, panel a. As a is slightly above a., the signal looks very similar to the signal
for a < a., but is sometimes intermitted with bursts, that are not periodic and show a
chaotic motion. If we increase a further, such that it becomes significantly larger than
a., the periodic patches in the signal get less and then dissappear. The system is now
in a true chaotic state. It is not possible to investigate the behaviour of every single
trajectory. But we can calculate some statistical features, that give us some insight into
the mechanism of this behaviour.

One possibility is to measure the average time 7" between two subsequent chaotic bursts.
This quantity tends to infinity, when approaching a. from above.
lim 7T'(a) — oo (2.6.1)

+

a—ag

This means, that the periodic behaviour is restored for parameters values a near the
critical value a..

Figure 2.9: A signal of the Lorenz system. In a), we see a periodic signal. Due to
intermittency, we get bursts in bl), which are becoming more frequent for
b2). In b3), there is no more periodicity and the system has reached a
chaotic state. Reprinted from [33].
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We have taken T'(a) as an interesting measure to characterize the behaviour. This is a
typical quantity to look at, when dealing with transients.

One is often interested in the scaling law of a characteristic time in dependence on the
system parameter, or on the distance to a critical value. For the common case of a
saddle-node bifurcation (cf. figure 2.4) at a., one observes a scaling law (cf. [33])

T(a) ~ (a —a,)~/? (2.6.2)

After all, for a value a < a., we have one stable and one unstable fixed point of our map
f. These two fixed points merge and dissappear in the saddle-node bifurcation.

This leaves a very narrow tunnel behind, which can be seen in figure 2.10. The method
of graphical iteration is used in figure 2.10. The next state can always be determined by
subsequently going from the actual point to the diagonal and then to the function f(x)
again. A trajectory, which is injected into the tunnel needs a very long time to cross it.

This time can be calculated, if we approximate the function to quadratic order,

f(2n) = Tpy1 = 22 + 2, + € where €~ (a — a.) (2.6.3)

If we are near the critical parameter, we obtain ¢ < 1. This means, that a step in the
tunnel is very small. Therefore, we can approximate x as a continuous function of n

and rewrite equation (2.6.3) as

d
£ =2’ +e (2.6.4)

2.5 - - - - . . . ;

f(x)

0.5 P ,.. i

O I I I I I I I
O 020406 08 1 12 14 16 1.8

X
Figure 2.10: For control parameters near the critical value, a trajectory needs many

iterations to cross the tunnel. Shown here is the example of the exponential
map f(x) = rexp(z) near the tangent bifurcation at r = 1/e.
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If we inject the trajectory at xg, the time to cross the tunnel is given by

T 00
dn = o e (2.6.5)
0 v T2A€

Even with this coarse approximation, we see that this mechanism reveals the correct
results.

After crossing the tunnel, the trajectory obeys a chaotic dynamics and will be reinjected
into the tunnel. This leads to the characteristic time scale for periodic behaviour in
between the chaotic bursts. We note, that the average time scales with the distance to
the critical parameter a. of the saddle-node bifurcation. This behaviour is known as
intermittency and is a quite common scheme for transient behaviour.

The next part of this section will discuss the transition from a chaotic behaviour into
an absorbing state, i.e. a stable fixed point. This behaviour is typical for a boundary
crises, where an attractor hits its basin boundary. We will study this type of transition
with the example of the logistic map (2.2.2).

f(z) =rz(l —x) (2.6.6)

For r = 4 =: r., we have a chaotic invariant subset I = [0, 1]. When r is increased above
re, I is no longer invariant under the evolution of f. In every iteration, some mass of I is
mapped outside of it and we get the Cantor set Iy, which has been described in section
2.2. I is no longer invariant and we can calculate the average lifetime of a trajectory
starting in I, i.e. the number of iterations until the trajectory leaves I.

Since we lose a constant fraction of our mass at each iteration, we expect an exponential
distribution

P(t) ~ exp(—t/T) (2.6.7)

for the lifetime, which is also known from radioactive decay processes. 7 is the average
lifetime and P(t) is the probability for a trajectory to have a larger lifetime than ¢. As
in the intermittency example above, one is interesting in the scaling law of the average
lifetime 7 with the control parameter r. The probability to escape I is constant for
each iteration, since the middle part of I is mapped outside I and the remaining part is
mapped to the complete I again (cf. figure 2.1, panel b). Since the invariant measure
at the critical point is smooth on I, the escape probability is proportional to the length
of the hole L

~ cl, 2.6.8
p (

with a constant c. The probability, that a trajectory is still in [ after n timesteps
amounts to

(1—p)"~(1—cL)"=exp(n-In(l —cL)) (2.6.9)

Comparison to equation (2.6.7) yields

1
T=—r—

1
In(1—cL)  cL

ol

r—r.\ 7% 2
( ) ~ S (r—r)T? (2.6.10)
C
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Here, we used (2.2.11) for the length of the hole. Hence, this boundary crisis leads to
an average lifetime 7, that scales with the control parameter like

T~ (r—r.)"", v = % (2.6.11)
This scaling law is quite general and also encountered in many boundary crises setups
(cf. [13]). Even where the invariant measure prior to the crisis is a fractal measure, it
still applies, even though with a different exponent 7. On the other hand, the argument
is restricted to boundary crises, where the basin boundary is smooth. It fails for a
fractal basin boundary. Since, in that case, it is not correct assume a constant escape
probability. The holes in the attractor, which are created in the boundary crisis, are
generally very small for a fractal basin boundary such that their size will not scale
algebraically like (r — r.)?. Since thus holes are very narrow, one rather obtains a
scaling law like

T ~exp [C(r —r.) "] (2.6.12)

with a constant C' and exponent v. One observes in this scaling law, that the average
lifetime depends crucially on r — r.. Due to the very strong divergence of the average
lifetime 7 for r — r,, one calles these transients super-long transients.

As shown by GREBOGI, OTT and YORKE in [12], super-long transients can be created,
for example, by an unstable-unstable pair bifurcation.

The scenario is compiled in figure (2.11). We can see two unstable fixed points. The
one on the basin boundary is unstable in the transversal as well as in the longitudinal
direction, compared to the boundary. The point on the chaotic attractor is a saddle,
which is stable in the transversal direction and unstable in the longitudinal one. At the
boundary crisis, these two points merge and create a very narrow tunnel in phase space,
which can be seen in panel b. Trajectories on the prior attractor can now escape from
the chaotic region and cross the boundary to leave the vicinity and move off to another
region, maybe a stable fixed point.

a
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Chaotic attractor . Chaotic transient =

Figure 2.11: This figure shows the mechanism of an unstable-unstable pair bifurcation.
(a) Before the merging crisis, we have an unstable pair which undergoes a
saddle-node bifurcation in one direction. (b) After the crisis, the unstable
pair has vanished leaving a narrow tunnel in phase space where trajectories
can escape. The chaotic attractor has morphed into a chaotic transient.
Reprint from [45].
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Due to the scaling law (2.6.12,) the transients can have a very long lifetime. As a
consequence, it is nearly impossible to distinguish between the motion on a chaotic
attractor or the motion of a super-long transient. The trajectories look pretty much the
same for an exceedingly large number of iterations. This problem is also encountered
in turbulent pipe flow, where the question, if turbulent flow is permanent or transient
with a super-long lifetime, is not completely answered yet [16].

We have now introduced the most common types of transient behaviour. In the next
chapter, we will investigate a model system, which encounters an unstable-unstable pair
bifurcation. The occurence of a fractal basin boundary, lifetime distributions and the
scaling law (2.6.12) will be verified. Another system with much higher dimension will
be introduced in chapter 4.
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Chapter 3

A Mean-Field Model for Super-Long
Transients

Beside experiments, numerical simulations of the Navier-Stokes equations and analytical
solutions to the Navier-Stokes equations, there is another way to tackle the problem. It
could be possible to build a simple, low-dimensional dynamical model system [47], which
let us investigate some, but not all, aspects of turbulent puffs. With such a simple model
we are able to achieve some analytical results really easily. Another advantage is, that
simulations of such a model could be carried out really fast on present-day computers.

This chapter will introduce such a model system in order to gain some insight into the
nature of super-long transients.

3.1 The Idea

In this warm-up problem, we would like to understand where the super-long lifetime
of chaotic transients comes from. We recall some results from [45] and apply them to
our new model system for pipe flow. Our aim is to work out the analogy between fluid
dynamics and dynamical systems vocabulary. At this point we also clarify the things
we will need in the next chapter.

The laminar state of pipe flow is a steady state, that is stable against small perturbations
at least for Reynolds numbers up to 107. This fact let us model the laminar state as
a stable fixed point of our dynamical model system. The next thing we will consider
is the super-long lifetime of turbulent puffs. It has been shown by OTT, GREBOGI
and YORKE [12]| that super-long transients are expected to emerge from an unstable-
unstable pair bifurcation. In this process, an chaotic attractor collides with its fractal
basin boundary, which leads to a boundary crisis and a hole in phase space is left, where
trajectories can escape. Due to the fractal nature of the boundary, these holes are very
small, and the trajectories needs a long time to find them. This mechanism can be used
to model super-long transients. The third aspect is that the model system should be
simple enough. Simple means easy to evaluate on a computer. This is an important
point if we want to do simulations faster than a complete simulation of the Navier-Stokes
equations. The last point is rather technical. We expect to do measurements of the pipe
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turbulence in discrete time steps. This gives us the possibility to use a discrete time
model, namely a mapping.

These points are now summarized

1. existence of a laminar, stable state for all Re

2. unstable-unstable pair bifurcation gives rise to the transition from turbulence to
the laminar state with super-long transients

3. system as simple as possible to achieve fast simulations

4. time-discrete system

It is obvious, that such a simple model can neither give us the whole variety of turbulent
structures nor can it be applied to real systems without limitations. But we can learn
some basic concepts the nature of super-long transients. The simplicity of the model is
seen as a feature, not as a lack of applicability. If we accept these constrains, we can
learn much about the physics of transients, which occur in several fields of physics and
nature.

This model is introduced and discussed in the next section.

3.2 The Model

This model is supposed to be a mean-field model. There is no spatial extension and the
state of the system is defined by only two dynamical variables x and y. We can think
of x as the energy stored in the turbulence and of y as the configuration of this energy
(i.e. a point on an energy shell, cf. [47]). Since we are dealing with a mean-field model,
we can only tell if the system is turbulent or not. There is no way to see a transition
from convective to absolute instability or the moving of a puff through a pipe.

First, we will discuss the single dynamics for x and y seperatly and then introduce the
coupling between them.

3.2.1 Uncoupled Dynamics

We will first focus on the z-dynamics, which is the coordinate that determines the
turbulence. The simplest non-linear mapping would be a quadratic function z,; = 22,
where n € Nj is the discrete time of the system. In order to influence the x-dynamics,
we introduce a control parameter a, which shifts the map like z,,;, = 22 + a. This gives
us the opportunity to investigate some bifurcations of the system. In addition to that,
we need a stable fixed point to model the laminar state. This laminar state is arbitrarily

chosen to be at x = —2.

Collectively, we get the mapping (cf. figure 3.1)

—x2 4+a ST > Ty
Tnt1 = fla,x,) = { " - (3.2.1)

—2 ST < Ty
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Figure 3.1: The left image shows the z-dynamics for a = —0.21. The bifurcation dia-
gram is shown on the right side. Dots are the simulated points, the dashed
line is the computed position of the unstable fixed point, escaping from the
saddle-node bifurcation.

where x, is the intersection of the two branches of f with the value x, = —v/2+ a (cf.
figure 3.1). This means that for values z < z, the system goes directly to the laminar
fixed point while we have a non-trivial dynamics for = > z,.

We will now have a closer look on the fixed points of f. The fixed point equation (2.2.3)
gives us up to three different fixed points

w==2  af,=-05+v025+a (3.2.2)
Here, the critical value is a, = —0.25. For a < a. we have only one real fixed point,
namly :cg. In this case ajg is a global attractor, since x is bounded by max(f) to the

top and values z < x, are mapped to xg. Two new fixed points occur in a tangent

bifurcation as a crosses a. from below and x(’; is no longer a global attractor. This can
be understood by analyzing the stability of the fixed points. Therefore, we calculate the
first derivative of our map f.

—2T, ,T > T,
(3.2.3)
0 LT < Ty

fla,z,) = {

We already know from section 2, that a fixed point is stable, if |f’| < 1. This gives us
the result, that ;Ug is stable regardless of a. We also get that 27 is unstable for a > a,.

At creation at a = a., the fixed point ;1:5 is stable. It loses its stability at a = 0.75, where
‘ F(xd )‘ crosses 1. The loss of stability of 2 gives rise to a period doubling bifurcation,

as it is well known from the logistic map [9].

Another interesting point is the basin of attraction of these fixed points in the parameter
region a € [a., 0.75]. The basin of attraction for #J is given by I, := [#], —2/]. Note that
x{ < 0. Since there are only two stable fixed points in this parameter range, the basin
of attraction for x(’; is Iy ;= R\ I. For a > 0.75 the fixed point xg undergoes a period
doubling cascade to chaos. At a = 2 we can compute that the condition =, = x{ = -2
is fulfilled. This is the indicator for a non-generic boundary crisis, where the attractor

in [, loses its stability. For a > 2 the dynamics are no longer well defined, since x, < —2
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and —2 is no longer a fixed point, which means that we lose the laminar state and our
model makes no sense any more.

This results can be compiled into a bifurcation diagram. This diagram can be computed
by a little computer algorithm, which is described in the following

1. choose a control parameter a

2. take N random initial condition z;, i € {1,..., N}

3. iterate the x; with the map f for ngy timesteps

4. iterate each trajectory for another n; timesteps and output the values

5. go back to 1) for another a

It is important to note that our algorithm can only determine the stable orbits'. The
bifurcation diagram for f is illustrated in figure 3.1.

We would like to trigger an unstable-unstable pair bifurcation according to the mech-
anism in [45]. Therefore, we are only interested in parameter values near a.. We have
analyzed the most important aspects of the x-dynamics and can now turn our focus on
the second direction.

The y-dynamics is responsible for the chaotic dynamics, which we need for the boundary
crisis in the unstable-unstable pair bifurcation. It is advantageous to take a periodic
map. This keeps the interesting phase space bounded and one can therefore do faster
simulations. So we propose a map g(y) = g(y +Y') with some period Y. The obvious
choice would be a simple sine g(y) = sin(y). But there is a problem with this mapping,
because it is impossible to solve the fixed point equation z = sin(z) analytically. In
order to avoid this technical problem, we use a ’linear version’ of the sine function,
which is defined as (cf. figure 3.2,left)

g(b,yn) =< b(1 —y,) ,05<y, <15 (3.2.4)
etc.

Another advantage is the symmetry of this function, which further simplifies the task
to compute fixed points, their stability and bifurcation diagrams. We have chosen the
slope b to be the control parameter for this dynamics. The period of the function is set
toY = 2.

From the fixed point equation, we see that g has also up to three fixed points,

b

/ +——
b+ 1

w =0, Y= (3.2.5)

For this special choice of g it is quite easy to compute the stability of the fixed points,
because we have |g’'| = b, irrespective of the point we are interested in. For b < 1, we

1Unstable fixed points can be computed by applying backward iteration, since they are stable of
inversed time flow.
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Figure 3.2: The left image shows the y-dynamics for b = 2.1. There are three fixed
points of the map. The bifurcation diagram is shown on the right side. A
merging of the two bands is happening at b = 2, where we expect chaotic
behaviour.

have only one fixed point at yéc . This fixed point is stable and a global attractor, since
g is bounded. A non-generic bifurcation is encountered at b = 1. At this parameter,
we have infinitely many fixed point, which are all marginally stable. But at b =1 + ¢
for an arbitrary small € > 0, we get the three fixed points given in (3.2.5), which are
clearly all unstable. For values 1 < b < 2 there is a decoupling of the two branches.
Initial conditions starting with y; > 0 stay in the positive region, while trajectories with
y; < 0 stay in the negative region. We are effectively dealing with two independent
tent maps, which have the same dynamics with inversed sign. Since the tent map is
topologically conjugated to the logistic map, we get the same bifurcation behaviour like
the logistic map. g is exhibiting a period doubling route to chaos. The two independent
bands are becoming chaotic and merge at b = 2. The two independent branches start
to communicate again and we have a chaotic dynamics on the whole domain. This
fact is supported by the investigation of the bifurcation diagram displayed in the right
panel of figure 3.2. Our aim was to trigger an unstable-unstable pair bifurcation. The
y-dynamics has the job to contribute with a chaotic dynamics. For this case, we choose
the system parameter to be b = 2.1 for the rest of this section.

We have now a good understanding of the x and y-dynamics seperately. But super-
long transients need at least two dimensions (cf. [45]), since we need a fractal basin
boundary for the small holes in phase space. This rises the question for a sufficient
coupling between this two directions. That problem is tackled in the next section.

3.2.2 Coupling

As already mentioned, the unstable-unstable pair bifurcation should be triggered by the
coupling. The lifetime of the transients is then depending on the coupling strength e.
This coupling strength is meant to be the only parameter of the system and is related
to the Reynolds number. In order to take € as the only system parameter, we need to
fix a and b to sensible values. As mentioned above, the y dynamics should be chaotic on
the whole domain. Therefore, we set b = 2.1 as a value slightly above the band merging
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point b = 2. In x direction, we choose a parameter a = a, := —0.21 as a starting point.
Since a, > a., we are above the bifurcation point, where a chaotic attractor is coexisting
with the fixed point at x(’; . The idea for the coupling is, that we can introduce it in a
way, that the y dynamics can trigger the bifurcation. This means that a strong coupling
strength e can destroy the chaotic attractor in I5. Therefore, we introduce the coupling
in a way to shift the control parameter a through the bifurcation point.

a=a, — €|y e>0 (3.2.6)

The absolute value of y prevents the coupling to shift a in the wrong direction. The
strength of the coupling can be adjusted by €. The maximum shift is given by

b
max(e|y|) = % = 1.05¢ (3.2.7)

The definition (3.2.6) leads to a critical coupling strength, which is defined as the cou-
pling strength, where we encounter the unstable-unstable pair bifurcation, namely at
a = a.. After rearranging (3.2.6), we get

Ay — Qg
b

2

~ 0.047 (3.2.8)

€ —

for a, = —0.21,a. = —0.25 and b = 2.1.

With this coupling definition, we have a global attractor at x = —2 for ¢ > ¢.. We
will mention that the word attractor only refers to the = direction. The dynamics in
y-direction is always chaotic and we are always using the x dynamics to classify the
behaviour of the system. Is is worth noting that the y dynamics is not influenced by .
Therefore, it can be iterated independently. In the case where € < €. there exists two

fixed points in z, namely :c{/2. This leads to an attractor in the interval [4 := [a:{, —a:{]

Here we have to keep in mind, that ;1:{ depends on a and eventually depens on y. We
will denote I4 as the attractor region.

There is another point to make on the definition of . When we compare it to the control
parameter of turbulent pipe flow, we can try the obvious relation € ~ Re™'. The value
of € decides, which lifetime the transient will have. The larger € is, the shorter is the
average lifetime.

The evolution equations can now be summarized as

Tnr1 = flaw—€elyn|,zn) (3.2.9a)
Ynt1 = g(b,yn) (3.2.9b)

This system can be simulated in order to check, if it shows the expected behaviour. The
first step is to analyze the lifetime for different initial conditions. We mark a trajectory
as 'dead’ if it is at the stable fixed point x = —2. The algorithm we will now introduce
is called the phase space algorithm from now on and is defined by some simple steps

1. create a grid with mesh size « in the interesting phase space region

2. take the nodes of the grid as the initial conditions for the simulation
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3. iterate each initial condition with the equations (3.2.9)
4. associate to each node the number of iteration needed to reach the dead state

5. plot the lifetime as a color-coded plot in phase space

The computational effort of this algorithm scales quadratically with the mesh size «,
such that it is very hard to reach very high resolutions.

The phase space plots for two values of € are shown in figure (3.3). The attractor appears
as a green region. For € < €., the white region is the basin of attraction for the attractor
in 14 and the coulored region is the basin of attraction of xé , where these two regions are
separated by the basin boundary. For € > €., the attractor is destroyed in an unstable-
unstable pair bifurcation. Beyond this bifurcation, the white region denotes the region
where a trajectory first stays in the region of the prior attractor before moving off to the
laminar fixed point. The coulored region then stand for those initial condition, which
immediatly move to xé whithout spending time in /4. The boundary is now called the
edge of chaos, which is sperating trajectories with this different behaviour.

In addition to the color-coded lifetime, we have plotted a single trajectory of the system
starting in T4 for 109 iterations. The spiky basin boundary attracts the attention while
looking at the phase space plots. This suggests a fractal basin boundary, which is a
condition for the unstable-unstable pair bifurcation and the super-long transients. This
fractal behaviour stems from the chaotic y dynamics. Another striking aspect is the
symmetry in the plots. This comes from the symmetry of g and the coupling via the
absolute value |y|.

a=-0.21,e=0.06, b=2.1 a=-0.21, e= 0.065, b=2.1
20 : 3 20
15 g 15
> 10 > 1 10
5 1 5
0 = 0

-0.8 -07 -06 -05 -04 -03 -0.2

Figure 3.3: We see a phase space plot of the system. The color codes the number of
iteration needed to reach the laminar point at x = —2. Green dots indicate
a single trajectory starting at a random initial point in the region around
xg The left panel shows a plot for e = 0.06, where we do not see an escaping
trajectory. The right panel is for a slightly larger coupling ¢ = 0.065, where
an escaping trajectory is encountered close to (z,y) = (—0.5,0.7). The
last dots of the trajectory have been plotted in larger size to improve their
visibility.
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We do not see any points at the edge of chaos for e = 0.06. It seems that all iterations
of the trajectory stay in the region 1,4, although 0.06 > €.. This fact is investigated
further in section 3.4. For € = 0.065 we can see that after about 1.3 - 10 iterations the
trajectory approaches the edge of chaos, crosses it and moves off to the laminar point.

In the next two subsections, we will determine the shape of the edge of chaos with a
very high accuracy then analyse and the distribution of the average lifetimes of the
transients.

3.3 Computing the Edge of Chaos

The edge of chaos seperates states of fundamentally different behaviour [47]. States on
the laminar side move directly to the laminar fixed point, while states on the chaotic
side move to the chaotic region first and seem to follow the trajcetory of the prior
chaotic attractor before they eventually find a hole in the boundary and escape to the
laminar point. Since the holes are very small for a fractal basin boundary near the
critical value, the trajectories nearly never notice escape channels and therefore evolve
like trajectories on an attractor. In practice, it is often very hard to decide whether an
observed trajectory moves on an attractor or if it is just a transient to another region
in phase space.

The phase space algorithm described above is quite good for scanning the phase space
for the lifetime at several points, but its high requirements on computer time, severely
hinders a high resultion of the edge, i.e. a small mesh size. Therefore, we implemented
another algorithm which is specialized to find the edge with high accuracy. It will be
denoted as the ’edge tracking algorithm’.

We first need to point out, that a fixed point, which is stable, is unstable if we inverse
the time flow. In forward direction, points very close to the edge at the laminar side
move to the laminar fixed point. The idea is to take an initial point near the laminar
fixed point and compute the preimages of that point, which rapidly generates a highly
accurate approximation to the edge of chaos.

Each backward iteration yields several preimages. Since the y dynamics is decoupled
from z, it is useful to start the backward iteration process with y. As seen in figure 3.2,
Yns1 has up to three preimages y,, depending on its value. Therefore, we need to find
the value g(b,b/2), which gives us the lower bond for where y,,; has three preimages.
This can be easily calculated to be

g(b,b/2) = —b(b/2 — 1) = —0.105,  for b=2.1 (3.3.1)

Due to the symmetry of g, we found, that for y,;; € [—0.105,0.105], we have three
preimages. Otherwise we get only two. Once we found the preimages of y,,1, we are
able to calculate those for x,, ;. The quadratic part of f gives us two preimages. The
coupling depends on y and therefore we get four to six preimages for a given state
(Tpa1, Yns1). But these preimages do not all lie on the boundary. We can see from the
plots, that only negative x values build the boundary. Therefore, we do not need to take
the positive x values into account. We also do not need them in the further application
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of the algorithm, because positive x values have no preimages, since max(f) < 0 for the
values of a and € we are interested in.

Now we can think of a little estimate for the resolution quality of the edge tracking
algorithm. As mentioned above, we get two to three interesting preimages. We apply
the preimage computation to a depth of 20 levels, by applying the algorithm to each
preimage, we got in the first step, again and again. This gives us at least 220 interesting
preimages of a point near the laminar fixed point. We suppose that these points are
all lying on the edge of chaos, since the phase space algorithm suggests, that 20 steps
are enough to reach the laminar point, if we have crossed the boundary. The length
of interest in y direction is Ay = 2.1 as can be seen from the phase space plots. That
yields a resolution of 2.1/2?° ~ 2. 107° for the edge tracking algorithm. This can be
compared to the mesh size of the phase space algorithm, which is o = 0.001. So we see,
that the edge tracking algorithm is much more efficient for determining the boundary
than the more general phase space algorithm.

A comparison of the two algorithm shows, that the boundary is the same in both cases,
but with higher resolution in the edge tracking algorithm. The high resolution results
support the assumption of a fractal boundary. Although this is not a mathematical
proof, we can check if the lifetime scales like we expect it from the mechanism proposed
in [12] for fractal basin boundaries. Rather, a fractal basin boundary is also expected,
since A\, > A, for the Lyapunov exponents in z- and y-direction, respectively (cf. [47]).

3.4 Lifetime Plots

We will now come to the question of how the average lifetime of the transients behaves
with varying coupling strength. In order to calculate the lifetime, we randomly selected
Ny = 2000 initial condition for each coupling strength in the chaotic region and let them
evolve until the trajectory is dead. The number of iterations is taken to be the lifetime
7; for this initial condition. Then we take the average lifetime as

1 X
T=— T 3.4.1
%> (3.41)

where 7; is the lifetime of the i-th random initial condition.

Another possibility we have tried is the following. Since we are dealing with a decay
process, we expect that the number of initial conditions that are still alive after a time
t scales like

N(t) = Noexp(—t/7) (3.4.2)

With a log-normal plot we can compute 7 via a linear fit to the data. Both methods of
computing 7 yields the same results within the numerical accuracy.

After having defined the computational methods, the task is now to determine the
dependence of the lifetime 7 on the distance to the critical point (¢ — €.). The first
thing we notice in the phase space plots is, that even at values quite above €., i.e. at
e = 0.06, we do not encounter any escaping trajectories from the chaotic region. In order
to analyze this issue, we compute the average lifetime for different values of € > €., larger
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than € = 0.06. This gives us simulation data for 7(e — ¢.). We fitted this data with the
scaling law suggested by [12,45].

7 ~ exp(C(e — €.)X) (3.4.3)

The plot is shown in figure 3.4. As we can see from the fit, the expected scaling law is
found in the simulation data. We are now convinced, that we are dealing with super-
long transients. The meaning of ’super-long’ is well demonstrated by calculating 7 for
different coupling strength with our fitted function.

For € = 0.65 we get 7 = 1.3 - 107 out of the fit, which is in very good agreement with
the data. 107 iterations can easily be done on our computers?, even with quite some
computing time. We can now calculate the average lifetime for a slightly lower value,
where we have not seen any escaping trajectories, namely for ¢ = 0.06. The fit tells us,
that we should expect a value like 7 ~ 10%%. This is the explanation why we were not
able to resolve any transients in this case. The computing time for 10%® iterations is far
out of reach of computers.

This results shows, that we are dealing with super-long transients escaping from an
unstable-unstable pair bifurcation. The edge of chaos is fractal and supports a superex-
ponential scaling law for the average lifetime. We see that the average lifetime is very
strongly diverging, which is due to the fact that y = —4.49. This scaling law assumption
is only valid for € > €. and the average lifetime goes to infinity for ¢ — €.. This can be
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Figure 3.4: The average lifetime for different values of e. The fitted data is given by
the scaling law 7 = 19 exp(C(€ — €.)X), where 75 = 79.04, C' = 2.1e — 7 and
X = —4.49. The inset shows a double log-log plot in order to verify (3.4.3).
The straight line supports the expected scaling.

2We used a computer with an Intel Core 2 Duo 3GHz CPU and 3GB RAM
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compared to our introductory question of the average lifetime of turbulent puffs. For
Re < Re., we have an exponential scaling of the average lifetime of turbulent pulffs,
where for Re > Re,. the lifetime is infinity, which means that a turbulent puff is never
decaying.

3.5 Summary

After motivating the idea for the model, we presented our implementation of the dy-
namics. The z-dynamics is responsible for the tangent bifurcation while the y-dynamics
give rise to the unstable-unstable pair via the chaotic dynamics. The coupling has been
introduced in a way that it triggers the interesting bifurcation by only one parameter,
which is the coupling strength e. Lifetime plots were given for different e in which
we could see, that the computationally resolvable lifetime is encountered for coupling
strengths far beyond the critical value €.. This is verified a posteriori with the fitted
curve of average lifetime to the simulation data, which assures the exponential scaling
law of super-long transients and gives us the possibility to calculate the lifetimes for
values of the coupling strength really near to ..

We also investigated the basin boundary between the laminar and the chaotic region
with a very high accuracy. This supports the suggestion that we are dealing with a
fractal basin boundary. This fact is also supported by the average lifetime scaling law,
since the lifetime is expected to be super-long only for a fractal basin boundary. Our
edge tracking algorithm is presented in a short paragraph to show how good the accuracy
is compared to the phase space algorithm.

Summing up, we have found a model system, which shows super-long transient be-
haviour. The model shows, that super-long transients are not exotic objects with no
physical meaning. The quite simple mechanism of an unstable-unstable pair bifurca-
tion is used as a stereotype of a bifurcation, which creates super-long transients. These
transients do not show a power-law scaling like at a crisis in a syste with one unsta-
ble direction and a smooth basin boundary. Hence, this analysis demonstrates, that
super-long transients can be modelled by simple models.

The underlying dynamics has been tested and they build the basis for further analysis of
a slightly more complicated model, namely a unidirectional coupled map lattice, which
is investigated in the next chapter.
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Chapter 4

An Unidirectional Coupled Map
Lattice (uCML) for Pipe Turbulence

Hof et al. [16,17] have shown, that turbulent puffs have a super-exponential scaling law
with the Reynolds number
7 ~ exp(CRe") (4.0.1)

and may hence be viewed as an instance of a dynamical system with super-long tran-
sients. Additionally, very accurate measurements [34] and computer simulations [30] on
the Navier-Stokes equations have shown linear stability of the laminar pipe flow profile
up to Reynolds numbers of 107. This leads to the well accepted fact, that the laminar
state is a stable fixed point and a turbulent puff a trajectory on a high-dimensional
chaotic saddle with several unstable directions [4,7,8,23,24]. Since turbulent puffs have
a finite length, while travelling through the pipe, they are identified to be a convective
instability. They flow downstream without any significant change of width.

At a larger Reynolds number Reg; the convective instability turns into an absoulte
instability. The turbulence spreads throughout the pipe and finally fills it completely.
This state is known as a turbulent slug [32,51]. A slug can not be characterised by its
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Figure 4.1: Top: simulation of a turbulent puff for Re = 2250. The size of the turbulent
structure stays finite and therefore is identified as a convective instability.
Bottom: turbulent slug for Re = 2800. The perturbation increases in size
and eventually fills the whole pipe. This is known as an absolute instability.
Reprint from [32].

lifetime, since this is infinite per definition. The important quantity to look at is the
average growth, which can be measured in dependence on Reynolds number.

In order to gain qualitative insight into the scaling of lifetime of convective instabilities
in quasi one-dimensional systems, i.e. for puffs, and the transition to absolute insta-
bility flows, i.e. from puffs to slugs, we construct and analyse a spatially extended,

41
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one-dimensional system. In this chapter, which shows these transitions. Because of
the simplicity of the system one can do very fast computer simulations and study the
transition mechanisms analytically. This gives us the opportunity to gain insight into
the fundamental aspects of these transitions from a dynamical systems point of view
and helps to improve the understanding of turbulent structures in pipe flow.

Thus, this model shall give us insight into the behaviour of turbulent puffs and slugs, just
like the model from chapter 3 gave us some knowledge about the nature of super-long
transients.

Since we are not using the Navier-Stokes equations in our simulations, no statements on
real values like critical Reynolds numbers, can be made. But there are useful analogies
between real parameters and our system parameters. Rather than the Navier-Stokes
equations, a coupled map lattice will be studied, as discussed in the following section.

4.1 Why CML?

A spatially extended system is needed in order to provide travelling structures, like puffs
in a pipe. After all, turbulent puffs are observed in very long pipes.

In experimental setups, the length L of a pipe is typically three orders of magnitude
larger than its diameter D. Studies on coherent structures in pipe flow have shown
that those structures can be described by the analysis of several cross-sections along the
axis [42].

All these assumptions can be interpreted as a lattice in one dimension, i.e. a chain,
which has a dynamics that is updated at fixed time steps (cf. figure 4.2).

oo oo

Figure 4.2: Visualisation of a one-dimensional lattice. The state variables are updated
at discrete time steps. f is the on-site dynamics and ¢ the coupling function.

Each site of the chain describes a slice of the pipe. In addition to that, a quantity to
describe the level of turbulence is needed. This quantity can be taken to be the average
energy or vorticity of a slice of the pipe. This is a value ! € R, which can be determined
for each time ¢ and each space i. The quantity x! is influenced by a local dynamics, i.e.
it is strongly affected by the Reynolds number. Its on-site dynamics will be described
by the one-dimensional mapping

FIR-R afy, = f(a) (11.1)

In order to get an interaction between sites, a coupling g is neccesary. It is generally
defined as

g:R™ >R, glzy, ..., a]") =4 (4.1.2)
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Since we want to model turbulent puffs, which travel downstream, we choose a undirec-
tional forward coupling. This means, the coupling only depends on the next upstream
neighbour.

All these conditions define a system, which is referred to as a coupled map lattice in
textbooks [3].

Definition 12. A Coupled Map Lattice (CML) is a discrete-space, discrete-time lattice
with on-site dynamics f : R — R and coupling g : R™ — R, which obeys the evolution
equation

Ty = ag(z, ..., a) + fzh) Vie{l,...,m} (4.1.3)
2 is the state variable at time t and site i. « is denoted as the coupling strength.

For a nearest-neighbour forward coupling i, = ag(x}™ ")+ f(xi), such a system is called
a unidirectional CML (uCML).

This completes the basic definitions of the model system.

This section should have made clear, why a unidirectional CML is a good model to
study, when dealing with turbulent puffs. This model will give us the opportunity to
simulate structures similar to turbulent puffs and slugs. The great advantage is, that
the simplicity of the uCML enables us to analyse some features analytically. The choice
of mappings is also very good, when it comes to computer simulations. Simulations
are very fast, because we only have to compute the evolution of the state variables for
discrete time and space.

In order to study the space-time behaviour of the uCML, the on-site dynamics f and the
coupling function g have to be defined first. Then we can investigate, how the system
parameters change the space-time behaviour and have a look at some space-time plots.
This will be done in the next section.

4.2 Model and Space Time Behaviour

The definition of the general model of a uCML will be completed by the concrete on-site
dynamics and coupling. In doing so we try to keep the system as simple as possible. We
will first introduce the on-site dynamics.

A turbulent puff can be seen as a trajectory on a chaotic saddle. Therefore, we need a
leaky chaotic region in our local dynamics, where trajectories can escape. The simplest
map with those properties is the tent map. It has the advantage to be piecewise linear.
This makes analytical calculations very easy to handle. Additionally, it is topologically
conjugate to the logistic map. Therefore, we already know the fixed points and bifurca-
tion behaviour from our model in chapter 3. An additional benefit is that no windows
with stable periodic orbits exist. The height h of the tent is chosen to be the control
parameter for the local dynamics. The second fact is, that the laminar state should
be stable for all Reynolds numbers of interest. Therefore, the local dynamics should
have a stable fixed point for every value of h. This setup allows a transition from the
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chaotic saddle to the stable fixed point, which mimics the relaminarisation scenario for
turbulent puffs. These conditions can be used to define the on-site dynamics as

h(x —9) d<r <1496
fle)=Q—h(zr—2-0) 1+d6<=x (4.2.1)
0 x <0

J is a free parameter of the system, seen as a shift in the dynamics (cf. figure 4.3). The
distance o > 0 seperates the stable fixed point from the chaotic region. We will keep
0 = 0.1 fixed throughout the whole work. The parameter dependence of the uCML on ¢
will not be investigated. This leaves the height h as the only control parameter, which
also determines the slope

h 0<x<1l+9
flle)=4q—-h 1+6<x (4.2.2)
0 r <9

and therefore, defines the stability of fixed points. f has up to three fixed points

hd ;_ h(2+9)

f —
h—1' T T1yn

=0, o] = (4.2.3)

xg is always stable and mimics the laminar state of the pipe. The stability of x{ and xg

is controlled by h.

In order to obtain an escaping, chaotic dynamics, we use values h > 2. For h. := 2,
the system exhibits a boundary crisis in which trajectories can escape from the chaotic
region. This can be seen from the bifurcation diagram in figure 4.3, but can also be
computed analytically.

The chaotic region is defined as the region between 27 and p := (2 +6) — (2 — 6) (cf.
figure 4.4).

on site Bifurcation diagram for the on-site dynamic
2.0
h L
15+
E h2t x 1.0
0.5
. ] 0 :
0= : : 0.5 1 15 he
1 1+6 2+6 h

Figure 4.3: Left: plot of the on-site dynamics f. We have a stable fixed point at x(’; =0
and two more fixed points in the adjacent region. Right: bifurcation diagram
for the tent map. For h = h,, there is a boundary crisis.
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Escape region Coupling

h — ~

h/2

f(x)
g(x)

>

le L 1+6 p
X

4] 1+% 2+

Figure 4.4: Left: values near x ~ 1 + § are mapped to larger values than p for A > h,.
This denotes a non-vanishing escape probability. Right: the coupling of the
uCML. g has a fixed point at z = 0.

This can be understand, by taking values of x into account, that are mapped beyond p.
These values will eventually move to the laminar fixed point :L’g , since they are mapped
to the left of 2!, which is unstable for & > 1. The marginal condition for an escape from
that region is therefore given as

FA+6)=p (4.2.4)

since 1+ 0 is the point, where f has its maximum, namely f(14J) = h. Using equation
(4.2.3), we can express p in term of 4 and h
hé
=2420+—— 4.2.5
P=2+204 (4.2.5)
The condition (4.2.4) can now be written as an equation that defines the critical height
h. in terms of §

h.0
he=2+26 = 4.2.6
+ '+1—hc ( )

This equation has two solutions, h, = 1+ ¢ and

he =2 (4.2.7)

The solution h, = 1 4+ é marks the point, where the tent hits the diagonal line for the
first time. This determines the beginning of the bifurcation scenario, where x{ = p.
This is an uninteresting point for the simulations of turbulent puffs. Therefore, we
concentrate on h, = 2. This is the point of the boundary crisis (cf. bifurcation diagram
4.3, right panel). Since, we are interested in turbulent puffs, we will only investigate

the dynamical behaviour for values h > h.. This implies, that the fixed points x{ and

2] are always unstable, the Lyapunov number is larger than 1 (cf. (4.2.2)). The only
stable fixed point is xg . We can see in the bifurcation diagram, that f follows the same
route to chaos as a branch of the piecewise linear sine map from chapter 3. For h = h,,

we have a boundary crisis, which gives us the opportunity to see transient behaviour.

After having defined the local dynamics f and identified important parameter values we
will now come to investigate the coupling g. The coupling should have a special form
to support travelling structures, like turbulent puffs. This will be done by a forward
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coupling. If a site is in the laminar state, it can not spread turbulence to its downstream
neighbour. This fixes g at the fixed point SL’g =0 to

9(0) =0 (4.2.8)

In addition to that, we only want to trigger turbulence, if the upstream neighbour is in
the turbulent region. This yields

g(x)=0 <6 (4.2.9)

We now choose the coupling in a way, that

1+0<xz<2+6 (4.2.10a)

> 0
< 0 d<z<1+9 (4.2.10b)
This leads to the behaviour, that a turbulent site in 1 + 6§ < x < 2 + § can kick
the downstream laminar neighbour into the chaotic state via a positive coupling. The
negative part of g can reduce the turbulence at the downstream site or can even pull it
back to the laminar state. This can be interpreted, that a puff can take energy from a
turbulent downstream region. In conclusion, the coupling is defined as

4.2.11
0 else ( )

—15(x =0 (z—-1-0(z—-2—-0) 0<zxz<2+9
o(a) = { (z — 8)( ) )
Note, that ¢ has no free parameters, since 9 is fixed. A dependence on « will be explained
seperately section (cf. section 4.6).

Further, g(z) has only one fixed point at 0. This fixed point is stable (cf. figure 4.4, right
panel) and a linear perturbation does not apply a positive coupling, so that the laminar
state is still stable. After having defined th local dynamics as well as the coupling
function g, we address the question of the correct boundary and intial conditions.

A general problem in pipe experiments is the finite length of the pipes. This problem can
be overcome in simulations, where the number of sites can be increased, within the limits
of computational power. A better possibility is to use period boundary conditions. This
keeps the phase space small and one needs less memory than storing large lattices, in
which most cells are in the uninteresting, laminar state. Since the coupling reaches only
one site downstream, one can therefore implement very efficient algorithms to simulate
the model. But one has to keep an eye on the length of the structures. If the structure
extends through the whole pipe, one would get feedback effects due to periodic boundary
conditions. Those trajectories would have no relevance to real systems and therefore
have to be avoided.

Since we want to study turbulent puffs, we start with a system that is in a laminar state.
That means, that each site is initially at the laminar fixed point xg , corresponding to
laminar pipe flow. A puff is experimentally created by blowing a small amount of water
into the laminar pipe. This perturbation then travels through the pipe. We will perturb
the first site of our uUCML and investigate the space-time behaviour of the system. For
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initial perturbation < ¢, it is immediately decaying and the systems remains laminar.
This is due to the fact, that the laminar state is linearly stable. For perturbations in
[0, 2+ 0], the on-site dynamics as well as the coupling is non-vanishing. This can produce
travelling structures along the lattice, just like puffs in a pipe. Therefore, we take a value
in [0, 2 + 0] as initial condition for the first site.

We have now everything we need in order to simulate the system. The space-time
behaviour is shown in figure 4.5 for several parameter values.

A great variety in the evolution of the states can be seen in the plots. The abscissa
describes the time of the system, while the ordinate denotes the site number of our
lattice. The colour is coding the state variable x at each site. The range is chosen to
run from [0,2 + ¢]. Therefore, black sites are in the laminar state, while coulored sites
have a different degree of turbulence.

In panel a), we can see that for h = 2.1 and non-vanishing ov = 0.2 no structures travel
through the lattice. For larger values, at a = 0.5, there are structures that run through
the lattice (panel b) and the lifetime of these structure is significantly larger for coupling
strengths, e.g. @ = 0.8 in panel ¢). For a = 2.8 the front is travelling much faster than
the back. This behaviour will be interpreted as a turbulent slug. Slugs disappear again
in our model for larger coupling strengths o > 4.0 (panel e). Panel f) shows, that
even for a small coupling strength of a = 0.5, the lifetime is very long, if we decrease
the height h to values closer to h.. These space-time plots give a first hint about the
different behaviour of the system for varying control parameters a and h. To arive at
a more comprehensive description, we consider now lifetimes and velocity distributions,
obtained by averaging over many trajectories.

We will study the dynamics of the uCML for different parameters combinations in the
next sections. The physical analogies with pipe flow will explicitly be investigated. The
limits of the model will also be discussed. In doing so, we will highlight solutions, that
can also be determined analytically, since they are the best points to learn fundamental
things. In those cases, we make some predictions from theoretical considerations and
check our assumptions with the simulations of the system. The lifetime of turbulent
puffs, as the most prominent quantity, will be discussed first.
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a) Timeline CML: 6=0.1, 0=0.2 , h=2.1, xIni=0.6 b) Timeline CML: 6=0.1, a=0.5, h=2.1 , xIni=0.6
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Figure 4.5: Space time behaviour of the uCML for different o and h. Panel a) shows
the system behaviour for small coupling a.. Since, the coupling is too weak,
the perturbation never spreads to distant sites. For a = 0.5, there are some
structures starting to travel through the pipe (cf. panel b). These structures
have an increased lifetime for stronger coupling o = 0.8 (cf. panel ¢). This
is what we call a turbulent puff. Another transition can be determined
around o = 2.8, where the lifetime goes to infinity. This is the turbulent
slug regime. Here, the growth is highly increased. For even larger coupling
in e), the system goes back to finite-size structures. This is a special feature
of our system, which is discussed in chapter 5.1. Panel f) shows, that for
smaller h, long lifetimes can be expected for very small «.
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4.3 Lifetime Distributions

The finite pipe length is always a limiting factor, when one is interested in lifetime
scaling laws for high Reynolds numbers. We will now measure the lifetime of turbulent
puffs in the system described in section 4.2.

Turbulent puffs in experiments relaminarise without a known cause. This decay seems
to be independent of the age of a turbulent puff, i.e. how far it has travelled from its
origin. This leads to a lifetime distribution

P(t) ~ exp(—t/T) (4.3.1)

with a characteristic or average lifetime 7. This lifetime distribution is also expected
in our simulations. If we first limit our considerations to the uncoupled case a = 0,
then the decay is determined by the on-site dynamics f only. f, on the other hand, is
controlled by the height h. Here, like in the example in chapter 3, we always delete a
certain fraction of our invariant subset in each timestep. This leads to a distribution
(4.3.1), (cf. derivation in chapter 2). For the coupled case, the local decay rate is still
governed by the on-site dynamics f, but is influenced by the coupling g. This leads to
a distribution (4.3.1), but with significantly larger 7.

To determine 7 we consider Ny = 30.000 initial conditions, i.e. perturbations to the
first site of our laminar system. These initial condition are chosen with a constant step
size of A = 107* starting from 2 = 0. Then, we iterate the system for each inital
condition until it relaminarises. This time is taken as the lifetime for this particular
inital condition.

After sorting the data according to the lifetime and numbering each row, we get the
quantity N(t), which describes, how many trajectories have still survived until time ¢.
This quantity is proportional to the lifetime distribution, when scaled with the number
of initial condition Ny. Therefore, we expect a law like

N(t) ~exp(—t/T) (4.3.2)

One would expect a straight line for N(¢) on a logarithmic scale, if the assumption of a
decay, independent on age, is correct. The plots are given in figures 4.6 and 4.7.

In the large part of the plot, we see that the data for &« = 0 and h = 2.1 resemble a
straight line. This is exactly, what we have expected from (4.3.1). The abrupt decrease
for t = 0 comes from initial conditions, that are < § or > 2 + 4, respectively. These
initial conditions decay immediatly, as can be seen from the definition of f and g.
Therefore, we get a steep decrease for t = 0. Although we effectively lose some of
the initial conditions, we can determine a linear decrease in the logarithmic plot about
three orders of magnitude. Another interesting aspect is shown in figure 4.7. It shows
the lifetime distribution for non-zero coupling v = 0.8. In that case, there still is an
exponential distribution, but with a significantly larger 7 (beware the different = axis
scales). We have therefore verified the assumption, that the lifetime of the chaotic
structures have an exponential distribution

P(t) ~ exp(—t/T) (4.3.3)
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Cumulative Lifetime Distribution: 6=0.1, h=2.1
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Lifetime distribution. The number of surviving trajectories at time ¢ have
been plotted against t. The large panel shows the cumulative distribution of
lifetimes for zero coupling. This resembles the single site lifetime determined
by (2.6.7). The inset shows a magnification at small t. A fast approach to
the asymptotic scaling is observed. The fit parameters for the asymptotic
scaling is given as 7(a = 0.0, h = 2.1) = 19.54.

Cumulative Lifetime Distribution: 3=0.1, h=2.1
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Lifetime distribution for a = 0.8. We can see, that the lifetime distribution
is also given by (4.3.1). The inset shows, that much more time is needed to
reach the asymptotic. This is due to the creation of travelling structures for
the coupled case. The fit parameters is 7(ov = 0.8, h = 2.1) = 2415.5.
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We will explore in the rest of this section, how the average lifetime 7 scales with the
system parameters, i.e. the coupling strength « and the height h.

As mentioned above, we can compute the average lifetime 7 from the slope of the
logrithmic plot of the distribution. This gives us 7 in dependence on « and h, i.e.
7(cv, h). First, we check the dependence of 7 on h for a fixed a. This analysis will be
done for the uncoupled case a = 0 first and then for arbitrary o. For @ = 0, 7(h) can
be derived from the on-site dynamics f only. In order to analyse it, we have a look at
the survival probability for one time step.

We denote the length from ;1:{ to p as L. The length from x{ to the intersection of f
with p will be denoted as A (cf. figure 4.4 for definitions). The probability to stay in
the chaotic region for one time step is then given as

2o

PL=
L p—af

(4.3.4)

This be expressed via the slope of the tent map and is therefore determined by h,

p—ai
fl(x)=h="—% L Vazelr,1+96) (4.3.5)
This yields
2

Since the rest of the interval is strechted to the whole length again, and since the
invariant density is constant on the interval for a linear map, the survival probability

after ¢ timesteps is
2 t
b= = 4.3.7
= (3) (4.87)

A comparison with the distribution (4.3.1) then gives

| =ex ! = = lnﬁ B (4.3.8)
pr=exp | —— T = 5 3.

This expectation can now be compared to the data. Figure 4.8 shows the simulation
data. We will first restrict our considerations to the uncoupled data for « = 0. The
data points are the green points, which form the lower curve. The solid red curve is the
scaling law (4.3.8), which has been fitted to the simulation data. The expected scaling
law fits the simulation data perfectly. But there is another specialty that need to be
highlighted. On top of the data points for the uncoupled case lie the points for a small
coupling @ = 0.1. These points are more or less the same as for no coupling. We will
study this quite astonishing behaviour extensively in the next section.

If we now have a look at the data for larger coupling, we see that these curves are very
different than those for zero coupling. The mechanism, that gives us the correct scaling
law, is not as trivial as in the uncoupled case. Obviously, the divergence for h — h, is
much stronger than for &« = 0. One can think of a scenario of an unstable-unstable pair
bifurcation as an explanation. The chaotic saddle is determined by the local dynamics
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Scaling of Average Lifetime with h
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Figure 4.8: The scaling of the average lifetime with the height A of the on-site dynamics.
We have plotted simulation data for zero coupling and o« = 0.1. These data
points are perfectly described by the analytical solution in (4.3.8). For larger
couplings a > 0.3. we have a different scaling law. The data points can be
fitted by the super-long transients scaling law (2.6.12).

f for h > 2. The second unstable direction can be related to the coupling of g to the
next neighbour. If this mechanism would be a good description, then we would expect
a scaling law like (2.6.12). Indeed, in figure 4.8 we show data for larger couplings of
a =0.6,0.8,1.0 and 1.2, which are fruitfully fitted by lines of the form

7=Bexp (C(h—h.) ") (4.3.9)

according to the scaling law (2.6.12). One can see, that the fits describe the data points
within a good accuracy. The interesting fit parameter C'(«) is shown in figure 4.9.

The wiggling of the data points around the fit can be described by the way, the data
point were obtained. In order to get one data point, one has to fit the distribution with
a linear fit. The main interest lies in quite large lifetimes. Therefore, that fit has to be
good for lifetime larger than a threshold. This threshold has to be changed for each «
and h, since for a = 0 lifetime of 100 are large, while for & = 0.8 a threshold of about
1000 is needed to obtain good results from the fit. This is the problem with determining
the asymptotics of lifetime distributions spanning several orders of magnitude. Due to
this fact, the data points are not as accuracte as the data for & = 0. Another thing to
mention is the behaviour of the prefactors B and C' with varying «. The curves B(«)
and C(a) do not show a simple dependence on «. This can also be seen in the fact,
that curves are not properly arranged according to their « values (cf. figure 4.8). Since,
we have verified the scaling law (2.6.12) for quite large couplings, it is clear that we are
indeed dealing with super-long transients. This is a great step forward in the simulation
of turbulent puffs, which are expected to have a super-long lifetime scaling law.
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Figure 4.9: Fit parameter C'(«) for lines in figure 4.8 and (4.3.9)

Since, the scaling law 7(h) is understood, we will now have a look at the dependence of
7 on «. Therefore we fix h = 2.1. The scaling law is given in figure 4.10.

The first thing, that attracts the attention, is the heavily fluctuating lifetime around
a = 0.7. Tt decreases again for o = 0.8 and rises again for a = 1.2, but this time, the
increase is very steep.

The inset shows a magnification for small . In agreement with the findings of figure
4.8, there is no increase in average lifetime until a critical parameter ., is reached. The
whole structure of 7(«) is really complex and will not be investagited in detail. Rather
we focus on the origin and the positions of the sharp increase in the lifetime close to
Qer, 0 = 0.6 and a =~ 0.8.

To clearly trace the transitions, we show the complete parameter dependence in a two-
dimensional parameter plot (figure 4.11), where the average lifetime is shown as colour,
enconding the average lifetime on a logarithmic scale, normalised to the single site
lifetime 7(a = 0)!. The complex structure of the parameter space becomes visible in
this plot. Particularly, the large peak shown in figure 4.10 for h = 2.1 and varying «
can be clearly seen in the plot. For larger h, the peak at o = 0.8 seems to vanish faster
than that at a = 1.3. Moreover, there seems to be a clear line for the lifetime increase
at a = 0.25, i.e. the value a., = 0.25 appears to depend at best very weakly on h. in
the next section, we will focus on the sharp increase of the average lifetimes near «..,,
which marks the onset of turbulence.

! The logarithmic scale is useful, since the average lifetime ranges about many orders of magnitude
(cf. figure 4.10). Therefore, yellow points have a 10 times larger lifetime than red points.
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Average Lifetime Scaling Law: 6=0.1, h=2.1
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Figure 4.10: Scaling of the average lifetime with coupling strength « for fixed height h.

The scaling law is not as smooth as 7(h) for fixed a. We see several spiky
regions, that are intermitted with quite smooth behaviour. The lifetime
is very high for a =~ 0.7, falls again one order of magnitude and increases
for « > 1.0. Due to the coupling, the lifetime can increase by 3 orders of
magnitude beyon the value 7 = 20 for the single cell dynamics.

Lifetime plot: 8 = 0.1
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Figure 4.11: The complete parameter space of the system. The colour is coding the aver-

age lifetime of the system, normalised by the zero coupling lifetime defined
in (4.3.8). We can see, that the structure is quite complex. The bound-
ary between very long and short lifetime is not smooth but rather spiky.
Additionally, we can see a sharp boundary between longer lifetimes and no
incrase at all for values o = 0.25. This boundary seems to independent on
h. See section 4.3 for details.
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4.4 Onset of Turbulence

A non-vanishing coupling does not necessarily have to lead to an increased lifetime, as
seen in the last section. Additionally, the critical value ., seems to be vastly indepen-
dent of h, as can be seen in the parameter plot 4.11. Simulations for different, fixed h
and varying « near «., will now be presented in order to inspect more closely the onset
behaviour.

To thate end, the same lifetime algorithm as in section 4.3 is used, but with a higher
resolution of a. The data are plotted in figure 4.12.
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Figure 4.12: Lifetime scaling law at the onset of turbulence. Different curves belong to
different values of h. With this enhanced resolution one observes that the
critical coupling a,., where a first increase in the average lifetime can be
determined, decreases slightly when h is increased (see text).

These data show, that a,,. is decreasing for increasing h. We will now answer the
question, why a lifetime increase can only be seen for coupling strength substantially
above zero.

The space-time plot for a = 0.2 and h = 2.1 in figure 4.5 reveals, that only the first
site is in a turbulent state for a < .. The coupling is not sufficient to bring the
neighbour into the chaotic region. This gives rise to the fact, that the average lifetime
for 0 < o < a, is the same as the typical lifetime for a single site (a = 0).

A necessary condition for a turbulent puff is hence a sufficiently strong positive coupling
to bring the downstream neighbour into the chaotic state. To that end, a value z €
[1+4 0,24 ] is needed at the upstream neighbour site. Since the downstream neighbour
is in the laminar state at the beginning, its dynamics is only determined by the coupling
ag(z) from the first site.
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Figure 4.13: On-site dynamics f and coupling function g. See the text for the definition
of interesting values.

For a < av, the coupling is still not strong enough to kick the neighbour into the chaotic
state. The lower bound on « for a transition in one step is determined by

g(Tmag) = T (4.4.1)

where %4, is the maximum of g (cf. figure 4.13). This yields a coupling strength of

2!

1
a=———=0.33 4.4.2
g(l‘max) ( )

Comparing with the data in figure 4.12, these values are to large to determine o,
correctly.

Therefore, a multi-step transition is needed in order to trigger a turbulent puff for small
«. Since the laminar fixed point is stable, a finite kick is needed to get a memory into the
system. Therefore, a kick has to be at least larger than ¢, otherwise the local dynamics
maps the perturbation to zero. This gives the condition

ag(z) >0 (4.4.3)

But the multi-step mechanism depends crucially on the chosen z. If we choose x €
[1+4 9,2+ 4], it is likely to be mapped to values 2 < 1+ d, where a negative coupling
destroys the kick memory. The most efficient coupling is obtained for z = xg . Although
this fixed point is unstable, a trajectory starting near ;1:5 will remain in the region of

positiv coupling for quite some time.

These considerations can be expressed in a conjecture for the behaviour of a.,
erg(xd) =6 (4.4.4)

Note, that g depends on h via xg . The results from the simulation are given in figure
4.14. Errorbars express the accuracy in the « grid. The theoretical expectation from
(4.4.4) is given as the green curve. That the curve is not a fit. It is the complete
analytical result without free parameters.
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Figure 4.14: Simulation data for the onset of turbulence. The critical coupling strength
Q. 1s determined from data as shown in figure 4.12. The theory curve is
the analytical prediction (4.4.4), without adjustable parameters!

The simulation data is seen to be in perfect agreement with the theoretical predicted
curve. The transition to turbulence is therefore understood in our model system?.

We further notice, that a spreading process can not be achieved by a memory-less system.
Much larger coupling strength are needed in order to obtain travelling structures without
memory.

This is one very fundamental result. It gives us much insight into the dynamics of our
system. Since the threshold at «.,. is now understand, we will come to the range and
velocity distributions of puffs in the next section.

4.5 Velocity Distributions and Travelled Distance

We will now turn to the investigation of the range of a turbulent puff, i.e. the overall
distance travelled from nucleation to decay. Therefore, the range is zero for an im-
mediately decaying structure. This is a first step in order to analyse velocities of the
turbulent puffs. The same algorithm is used for the range computations as for the life-
time simulations. Instead of the lifetime of a puff, the covered distance until its decay
is measured.

2The presented mechanism is not limited to our model. It seems to be a general mechanism for
unidirectinal coupled systems with a super-stable fixed point. The shift § can be denoted as a threshold
for memory in the system. It is a common scheme in excitable system. This behaviour can be seen in
nerve pulses, which show the same threshold behaviour before a neuron is firing and the impulse travels
along the axon. In particular, the mechanism does not depend on the concrete definitions of f and g.
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The same considerations as in the computation of the lifetime suggest an exponential
range distribution
P(s) ~exp(—s/o) (4.5.1)

where o is the average range for a given o and h. Again, a logarithmic plot can be used
in order to determine o (cf. figure 4.15). Simulations for fixed h = 2.1 and varying «
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Figure 4.15: Range distribution of the uCML for coupling strength o = 0.8.

can be used to study the scaling law o(«). The a-dependence of 7 and o is plotted in
figure 4.16.

o(a) has the same complex structure as 7(a). A remarkable aspect is the similarity
between the two curves. Both scaling laws basically show the same behaviour. The
onset of increased range is suitable to determine the onset of turbulence, like in the case
of the average lifetime. Although, both curves look essentially the same, the two scaling
laws are not simply proportional to each other. We have to take into account, that the
plot is given on a log-scale. In order to show this, we plotted the ratio o /7 in figure 4.17.
The increase in the ratio supports the fact, that the scaling laws are not propotional,
otherwise it should stay constant. Instead, it is increasing over the whole domain, with
an intermittent regime around « = 0.7. This can be explained by the spiky part of the
distributions for that coupling strength.

A more interesting quantity than the range is the velocity of a puff. It can be defined
by the lifetime ¢ and range s of a turbulent puff as

v = ; (4.5.2)

As usually, we are not interested in velocities of single trajectories, but in the average
velocity for given parameter values. It is worth mentioning, that the average lifetime 7
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Average Lifetime/Range: 6=0.1, h=2.1
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Figure 4.16: The average lifetime 7(«) and range o(«) for h = 2.1. For 7, the number of
iteration until the decay is plotted. For o, the values refer to the distance,
a puff has travelled until its decay. Note, that the curves are very similar.

and range o can not be used to compute the average velocity (v), since the velocity is
correlated with the lifetime.

Furthermore, it is not possible to compute the average lifetime for large coupling strengths
a > 1.4 and h = 2.1. The lifetime is very long for those o and a simulation of a puff
until its decay would take too much time. Despite this problem, one can determine the
velocity of a trajectory quite easily. This is done by simulating the system for a fixed
time ¢ and measuring the largest site s, which is in a turbulent state. The ratio gives
a measure for the velocity v of this puff. Actually, it measures the front velocity of the
puff. Since a puff is eventually decaying, this front velocity can be used as the mean
puff velocity, if the simulation time is long enough. Note, that the velocities in this
section are computed for coupling strength clearly larger than o = 1.4. In this region,
the lifetime and range are so large, that they can not be computed seperately. This is
already clear from figure 4.11.

In contrast to the distribution of the lifetime and the range, the distribution for the
velocity is not a simple exponential function. The lifetime and range algorithm for a
fixed simulation time is used to determine the velocity of a trajectory. We only took
trajectories into account, which travelled at least two sites. This excludes immediatly
decaying trajectories, which can not be identified as a turbulent puff.

The cumulative distribution functions for h = 2.1 and o = 2.5 and 3.1, respectively,
are shown in figure 4.18. Tt looks similar to a cdf for a Gaussian distribution. A closer
look reveals however, that the cdf reaches the limiting value 1 too late, as compared to



60 CHAPTER 4. AN UCML FOR PIPE TURBULENCE

Velocity comparison: 6=0.1, h=2.1 Comparison of Mean Velocity: delta=0.1
0.16 ‘ ‘ ‘ ‘ 0.4 ‘
h=2.05
0.14 ] 035} h=2.07
h=2.10 —=-
0.12 03 [ h=2.12 =
A 01f A 025 h=2.20
S S *\
V. 008t v 02|
0.06 f 0.15 7. ]
0.04 | 7 0.1 7 \ e e B 5 B

0.02

0.05

Figure 4.17: (v) (o). Left: small coupling near the onset of turbulence. (v) is clearly
larger than the value determined by the ratio o/7. The ratio rather
amounts to the maximum of the velocity distribution. Right: large cou-
pling values o« > 4. (v) is plotted for different h. In all cases, a limiting
value is approached quite fast. See text for more details.

a Gaussian. A cdf for a Gaussian is given by

Goar() = % [1 +erf (f/%)] (4.5.3)

with the mean ;o and the variance o2 (cf. [5]). A possible fit to the simulated cdf is
shown in the figure. It is clearly seen, that a Gaussian approaches 1 for much smaller
values of v. This suggests, that we are dealing with a heavy-tailed function.

In addition to the cdf, we computed a histogram of the velocities.

As compared to a Gaussian, the histogram has a higher probability at large velocities,
when compared to a Gaussian. This states for the notation as a heavy-tailed distribution.

The average velocity can not be computed as in the lifetime and range cases above, since
v has not an exponential distribution. Therefore, we take the mean value

N

(v) = %sz (4.5.4)

i=1

as an estimator for the average. A first step is to analyse the computed (v) by comparing
it with the ratio o /7. The plot is given in figure 4.17

In addition to that, we have plotted the most probable velocity v,,, which is defined as
the maximum of the distribution (cf. figure 4.19).

The average (v) is very different from o /7. This is what we expected from the consid-
eration, that v is correlated with ¢. Another interesting aspect is that the curve for the
most probable v is very similar to the ratio curve.

The great advantage in studying the velocity is, that simulations can be done even for
values of the coupling strength, which are not accessable for lifetime simulations due to
the very long lifetime. Figure 4.20 shows the dependence of the velocity on the coupling
strength. After a slow increase for a < 1, the average velocity stagnates at (v) ~ 0.1
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Figure 4.18: Cumulative distribution functions for the velocity for o = 2.5 and 3.1, re-
spectively. For a = 2.5, the cdf has a heavy-tailed distribution as compared
to a Gaussian. The fit is determined by (4.5.3) with parameters u = 0.104
and ¢ = 0.023. For a = 3.1 the distribution has a steep increase at the
maximal velocity of 1.

for a long range. A sharp rise is examined at a ~ 2.8, where the front velocity nearly
reaches its maximum of (v) = 1.0. For further increased o > 4.0, it falls and eventually
reaches 0.1 again.

We will first check the behaviour of (v) for large a.. Therefore, curves for different h are
plotted in figure 4.17.

It is seen, that the average velocity reaches a finite value, which seems to be dependent
on h. This behaviour is well understood by the following considerations. For large «,
the coupling is so huge, that the neighbouring site is pushed beyond the chaotic region.
Therefore, it decays immediately in the next step and no travelling structures can be
created. The lifetime and velocity, is then determined by the lifetime of the first site.
This leads to the dependence on h. The intuitive image, that for large o the coupling
is more dominant than the on-site dynamics and therefore the limit of (v) would yield
the same value for all h is wrong. The parameter range of a > 4 is an unphysical range.
Such a behaviour is not observed in pipe flow experiments. It is a limit of our model,
that will not be investigated any further.

The most striking region is seen to be around a ~ 2.8, where the average velocity has
a very steep increase to nearly 1. This suggests a fundamental change in the dynamics
of the system. A look at space-time plots reveals, that we can find a transition from a
turbulent puff to a turbulent slug in this region. But for slugs, the interesting quantity
is not the average velocity, but the growth. This transition will be studied in the next
section.
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Figure 4.19: Histogram for the velocities for different coupling strengths. For a = 2.5,

Figure 4.20:
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the histogram has a clear maximum. The distribution has higher probabil-
ity at larger values of v as compared to a Gaussian and is therefore identified
as heavy-tailed. For a = 3.1, the distribution is nearly completely centered
at v = 1, as expected from figure 4.18.
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4.6 Transition from Convective to Absolute Instability

We have already mentioned in the introduction, that a turbulent puff is a convective
instability, while a slug is an absolute one. Since slugs have an infinite lifetime, it
makes no sense to do simulations on average lifetimes and ranges, like we did in the
case of turbulent puffs. The average front velocity is not an interesting quantity for a
slug, either. Rather we concentrate on the average growth of a slug to characterise its
behaviour. We will now study the dependence of the slug growth on « in our uCML
model.

The growth G for a trajectory is defined as the time derivative of the width w of the
turbulent region

G := il b (4.6.1)
It can also be calculated by the difference between front v and back velocity b, since the
width is given as w = r; — 1, where r denotes the front and back site, respectively. Fur-
ther, we assume, that GG is constant after a transient time. A simulation of constant time
can be done. (G is determined by the width at the end of the simulation. The simulation
time has been chosen to be 1000 time steps, while N = 22.000 initial perturbations
where taken into account. The distribution from the simulations are shown in figure
4.21 for different a.. The distribution has a non-trivial form for a < 2.8. Therefore, the
average can only be determined by

1 N
(G)==> G, (4.6.2)
N (3
i=1
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Figure 4.21: Cumulative distribution functions for the growth. For a = 2.5, the distri-
bution is not a simple exponential or Gaussian shape. But for a = 3.4 the
behaviour changes dramatically and the distribution can be described by
a Gaussian with ¢ = 0.319 and o = 0.039.

The cdf changes dramatically in shape for a ~ 2.8. This distribution can be identified
with a Gaussian distribution. The fit in 4.21 is the function (4.5.3) for the cdf of a
Gaussian. This fundamental change in shape has to be related to a special parameter
value, which has to be determined by some change in the dynamics of the system. First,
we will have a look at the scaling law (G) («). It is plotted in figure 4.22.
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Figure 4.22: The average growth of the turbulent region. A strong increase is seen to
be at ay, where the slug regime sets in. A decrease at a &~ 3.3 determines
the end of the slug regime. See the text for further explanations.

Within the error margins the growth is zero as long as o < 2.5. This is quite obvious
from the space-time plots, since we are in the turbulent puff regime. Puffs are eventually
decaying and therefore have a growth of zero. The strong increase in growth for o = 2.8
is what we had expected from the study of the average velocity from the last section.
The qualitative change in shape of the distributions is at this special parameter value,
too. Before analysing the mechanism for the large increase in growth, we will shortly
have a look at the velocity of the back.

Since (G) and (v) are known, the a-dependence for the propagating back (b) can be
computed. According to (4.6.1), it is given by

(b) = (v) — (@) (4.6.3)

The plot is given in figure 4.23. The back is not always propagating with the same
average velocity, as could be expected. Therefore, there seems to be some correlation
between the coupling strength and the lifetime of the back. The back velocity is not a
very interesting quantity in experiments. Since puffs are structures of constant size, the
back and front velocity are the same. Therefore, the growth is zero. This has also been
observed in the simulations (cf. figure 4.22). But it is also seen in the plot, that the
back velocity is not changing very much at the slug transition, while the front velocity
is greatly increased (cf. figure 4.20).

The strong growth at ay; is pointing to a very effective coupling. If a value z, is mapped
by the coupling to the same value z, at the next site, which has been laminar before, a
ballistic spreading is observed. This leads to the condition

agg(z) == (4.6.4)
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Figure 4.23: Average back velocity for h = 2.1. The curve is determined by (4.6.3).

for the slug transition at ay. Equation (4.6.4) can be identified as a fixed point equation
for the coupling. Therefore, we will now analyse the bifurcation diagram for ag (cf.
figure 4.24).

As we can see in this figure, the bifurcation diagram is qualitatively the same as that
of the logistic map in (2.2.2). The first parameter value, where a fixed point occurs,
is determined to be o = 2.845. This is exactly the parameter value, where the growth
reaches its maximum. Another interesting aspect is the boundary crisis at a ~ 3.3 =:
ape. This, again, is exactly the point, where the average growth has a strong decrease.
The range of large growth is therefore completely understood via the bifurcation scenario
of ag.

If our presented mechanism is correct, we would expect, that the strong increase at ay
and the decrease at apc is independent of h. Simulations for different values of h have
been performed (cf. figure 4.25) and they indeed reveal, that those critical values do
not depend on h up to the numerical accuracy.

The transition from the puff to the slug regime is now completely understood from the
point of our model.

This noticable result will finish this chapter. A discussion on some results of our model
system will now be discussed in the next chapter.
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Figure 4.24: Bifurcation diagram for the coupling ag. The coupling strength is used
as the bifurcation parameter. A saddle-node bifurcation is happening at
g ~ 2.845 and zy ~ 1.614.
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Figure 4.25: Comparison of the average growth for different h. As expected from the
theory, the onset ay; is independend of h.



Chapter 5

Conclusion

We will now come to the conclusion of this work. Most aspects of the system have also
been described in the corresponding chapters. Here, we will give a little discussion on
the relevance of the results for real pipe flow and an oulook for future work afterwards.

5.1 Discussion

The results will now be interpreted with regard to real experiments. First, there is one
obvious difference to real pipes. In incompressible pipe flow, the only control parameter
is the Reynolds number. Instead, the presented model has three parameters. These are
the coupling strength «, the height A of the tent map and §, which has been fixed for
this work. This is an advantage of our system, since we have many knobs to tune. The
stability of the laminar fixed point is controlled by . The spatial coupling can be tuned
by « and the local instability is determined by h. Therefore, it is possible to separate
effects that stem from different properties of the system. This is a great advantage
comparing to pipe experiments, where e.g. the stability of the laminar flow can not be
influenced independently of the local stability.

We will now focus on several aspects and highlight them in relation to real pipe flow.

5.1.1 Edge of Chaos

One important results of this work is related to the onset of turbulence. It has been
shown, that the critical value «., can be defined by simple arguments (cf. section 4.4)
as 5
Qo 1= —— (5.1.1)
9(z3)

The verification has been demonstrated in figure 4.14.

No fit parameters are left in this condition, such that the simulation data is exactly
lying on the theoretical predicted curve. The understanding of «., is a crucial point
in the analysis of the system. It determines the boundary between the laminar and
turbulent region. There are no more open questions about that transition point from

67
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the modelling point of view. Here, ¢ is a measure for the stability of the laminar fixed
point, while ;1:5 has been verified as an optimal coupling state.

This observation is called the double-treshold of turbulent flow [31]. A large Reynolds
number is not sufficient in order to trigger turbulence, if the perturbation amplitude is
too small. On the other hand, a large perturbation will also not lead to turbulence, if
the Reynolds number is not high enough. This threshold mechanism is also observed
in our model. For couplings smaller than «.,, no perturbation will lead to turbulence.
Even for a > ay, not every perturbation will lead to a turbulent flow. One needs at
least a perturbation of size ¢ in order to trigger turbulence. This is a nice relation to
the double-treshold, observed in real experiments [14].

In real experiments, the boundary between the laminar and the turbulent region is called
the edge of chaos. It separates states that decay immediately from those which become
turbulent. The idea is to identify states on the edge, which are both entrance and exit
into or from the turbulent region, respectively. This is fundamentally different in the
model. The entrance state is determined to be xg But this special state has nothing
to do with the escape from the turbulent region. Completely different states can occur
at the decaying state of a turbulent puff in the model. This is one difference to real

experiments.

5.1.2 Heavy-Tailed Velocity Distributions

The distributions for the lifetime and the range have been predicted from simple argu-
S

ments. This is not possible for velocitiy distributions. The velocity v = 2 is a ratio of
two non-independent random variables. It is not even simple to determine the average
(v) from a special point of the distributions. It is not clear, if s is independent of 1/t.
Additionally, (1/t) is not existing, if ¢ has an exponential distribution. This can also
be seen in figure 4.17, where (v) is obviously different from o/7. Further, the distri-
butions for the velocities are heavy-tailed, possibly due to a correlation between the
average lifetime and range. There is a higher probability to find faster puffs, relative to
a normal distribution. This fact can also be verified in the histograms of the velocity
in figure 4.19. From those plots, the most probable velocity v,, can be determined as
the maximum of the distribution. Interestingly, these values are fitting the ratio o/
very well. This is clear, since 7 is the expected lifetime and o the expacted range, which
yields a most probable v,. That /7 does not describe (v) is due to the heavy-tailed
nature of the distributions. If v would be a normal distributed random variable, (v)
and v,, would describe the same value. The velocity distributions for turbulent puffs
are very narrow in real experiments. Most of the triggered puffs travel more or less
with the same speed. The arise of heavy-tailed distributions near the transition to slugs
can be a guide to experiments to check this prediction of the model. By understanding
the heavy-tailed nature of the distributions, one could gain more information about the
transition mechanism from puffs to slugs.
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5.2 Summary

As a little reminder, we will shortly sum up the results from our studies.

5.2.1 Mean-Field Model

We have introduced a 2d model system with a fractal basin boundary and a boundary
crisis. The crictical parameter for the boundary crisis has been computed analytically.
Several simulation runs verified the super-exponential scaling law of the average lifetime
of transients. Additionally, an algorithm for tracking the edge of chaos has been pre-
sented, which could track the edge of chaos with a very high spatial accuracy. These
data suggests, that the edge of chaos is a fractal structure.

5.2.2 uCML

After introducing the model, we have given some space-time plots to get an idea about
the trajectories of the system. A first look revealed the existence of convective and
absolute instabilites. First, the exponential lifetime distributions have been verified and
the average lifetime 7 has been computed for several parameter values o and h. The
scaling law 7(h) for @ = 0 has been theoretically predicted as a 1/log law, which has
been verified by the simulations. Further, the superexponential scaling for o > a,, has
also been verified by a fit. The complex structure of 7(«) has been determined as well
and a complete parameter space plot has been given as a false-color plot. A closer look
revealed a « dependence of the onset of turbulence. The critical parameter «., at the
onset has been predicted and verified by theory and simulation, respectively. The fol-
lowing investigation of range and velocity dsitributions revealed, that the range has no
more information than the lifetime. Despite, the velocity shows a heavy-tailed distri-
bution at the slug transition treshold. As a useful quantity for the slug characteristics,
the average growth of slugs depending on « has been studied. The critical point for the
slug transition, i.e. ay, has been predicted by theory as a point where a saddle-node
bifurcation is happening. This has also been verified in the simulations. The investiga-
tion of the average back velocity showed, that it stays at rather small values for all «.
Therefore, the slug transition has been identified to be crucially dependent on the front
velocity.

5.3 Outlook

There are much more interesting questions, that can be answered by further studies of
the model. We will present some of them in this section.

5.3.1 Scaling after a.,

An increase of the average lifetime is not observed for a@ < a,.. After studying the onset
region in a high accuracy plot the onset mechanism has been presented. The threshold
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has been predicted analytically. It obeys the law
erg(xd) =6 (5.3.1)

This conjecture has been verified by the simulation data, which are in perfect agreement
with the predicted values (cf. figure 4.14).

Although, the critical point «,,. has been understood, the scaling of 7 with « after
this point needs further investigation. By normalising the lifetime 7(«o — «,) with the
single site lifetime 7y, the corresponding double-logarithmic plot near the onset suggest
a power law scaling (cf. figure 5.1). One possible line is given with a slope of 30. It is
worth noticing, that the possible fit line is similar for different values of h, which states
a universal scaling law. A detailed study on this scaling would help to understand
the mechanism of lifetime increase and is therefore a good starting point for further
investigation.

Scaling Law for Lifetime: 6 =0.1
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Figure 5.1: Log-Log plot of the scaling law of 7. Lifetime is normalised by the single site
lifetime 7y and shifted by —1 to obtain a straight line through the origin.

5.3.2 Percolation Theory

A theoretical aspect, that needs further investigation, is to have a look at the puffs in a
comoving frame of reference. A space-time plot is shown in figure 5.2.

The front velocity v has been used in order to define the comoving frame
s=85 —v-t (5.3.2)

This plot looks like a structure, that could be related to a problem of directed percolation
(cf. [35]).
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Timeline CML: 6=0.1 , 0=0.8 , h=2.1 , xIni=1.17

0 1000 2000 3000
Timestep t

Figure 5.2: Comoving frame of a turbulent puff. The average front velocity has been

used as the transformation velocity. Growth and splitting events can easily
be detected in the comoving frame.
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Figure 5.3: Directed percolation schemes. The left two images are for a single seed
perturbation, while the right ones are for many perturbed sites. £, and §|
are the space and time correlation lengths, respectively. Reprint from [15].
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Directed percolation makes a statement about the transition point from finite structures,
i.e. puffs, to infinite, percolating structures, i.e. slugs. By analysing the simulation data
with respect to this percolation threshold, one would be able to understand the puff-slug
transition point from a different perspective.

Additionally, the growth of slugs could be predicted just above the percolation threshold.
According to [15], the slopes of slugs (cf. figure 5.3) would have an algebraical scaling
law near the percolation threshold. This has to be checked in simulations or experiments
in the future.

Further, splitting events can maybe described by directed percolation processes. As seen
in figure 5.2, a puff or slug is not completely turbulent over its whole width. It has some
holes in it, arising, if a front is faster than the rest. The two pieces can then merge
again or decay. This leads to characteristic sizes of the holes, which could have a useful
scaling law, when one is near a transition point. Again, further studies are needed to
check these predictions from percolation theory.

Puff splitting events have been studied by MOXEY and BARKLEY [32|. They simulated
the incompressible Navier-Stokes equations and analysed the results in terms of directed
percolation. They state, that the transition from puffs to slugs happens via spatio-
temporal intermittency. This transition can lead to infinite lifetime, if it is identified
with the percolation threshold. According to [32], the transition from puffs to slugs
can not be solved by lifetime measurements. Since, lifetimes grow exponentially, they
suggest to study the qualitative change in behaviour, like in the arise of spatio-temporal
intermittency.

5.3.3 Intermittency Transition before oy

The growth has ben studied in order to characterise the slug regime. The transition
from puffs to slugs is characterised by the huge increase in growth at agy = 2.845. It
has been shown, that the slug regime can completely be explained by the bifurcation
scenario of the coupling ag. ag can be seen as a critical coupling strength. Turbulence
is always persistent above ag. Even in real experiments, there is a Reynolds number
Reg, above which only slugs can be observed. For a < ay; the growth starts to increase
(cf. figure 4.22). This increase seems to be reminiscent to an intermittency scenario.
Although, there is no fixed point of ag for a < ag, a narrow tunnel in phase space is
existing just before the saddle-node bifurcation. Therefore, the system can stay most of
the time in a region of effective coupling. This leads to time periods, where the front is
propagating ballistically, which are intermittent with periods of slow velocity vy. The
probability to be in the ballistic state is then related to the coupling strength a.

Therefore, it will be possible to determine the increase of growth with o from the model.
This increase can be another theoretical prediction, which is not depending on any fit
parameters. Additionally, the hypothesis of an intermittency transition can be checked
in experiments. The theoretical and experimental understanding can therefore shed new
light on the transition from puffs to slugs.
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5.3.4 Re Quenching

The control of turbulence in pipe flow is very important in engineering problems. By
lowering the Reynolds number in the turbulent regime, it is possible to recover laminar
flow. This state could remain stable, even after increasing Re again. That could be a
possibility to effectively reduce turbulence in pipe flow and is known as Re quenching.
Therefore, another way to study the system is to vary the parameters o and h, while a
simulation is running. This has also been done in [32] and can reveal parameter values,
where a turbulent state goes back to laminar flow. A good point to start is in studying
lifetimes and decay modes for continuously varying parameters. Interesting questions
are for example:

e Is the lifetime of puffs influenced by lowering « for a short period of time ?
e Which decay scenarios arise near the threshold ., 7
e Are there special modes, that are more likely to decay 7

e Are there structures, that, once obtained, keep their long lifetime even for smaller
a due to self-preserving effects 7

As it is obviously seen in this list, there is still a lot of work to do. But some questions
have been answered in this thesis, both theoretically and numerically. Beyond the insight
in turbulent pipe flow, uCMLs also have considerable interest from a dynamical systems
point of view. Coupled map lattices have been studied for quite some time. But most
of the obtained results are limited to the case of diffusively coupled lattices [10,22,37]
or a global coupling [21]. Unidirectioal coupled map lattices have been investigated
in [40,41,49]. But this is the first time, were a unidirectional coupling has been used in
order to study turbulent puffs and the transition from convective to absolute instabilities.
To our knowledge, this is also the first time, where such a model has been studied to
this extent. It is remarkable, that so many theoretical predictions can be made. It is
worth noticing, that most of the results have been determined without containing any
free parameters.

The author is confident, that future studies on these coupled map lattices will reveal
further insight.
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Appendix

This appendix will give more technical questions for readers, who want to work with
this model themselves.

As mentioned above, it is not clear, where the spiky region around o« = 0.7 and h = 2.1
in the lifetime scaling law comes from. This also seems to be related to a special dynamic
in the system, since the ’hump’ is vanishing for larger h (cf. figure 5.5).

Average Lifetime Distribution: 8=0.1 , h=2.3
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Figure 5.4: Scaling law 7(«) for A = 2.3. The hump around « ~ 0.7 has vanished. This
has been expected from the parameter space plot 4.11.

In addition, the parameter plot shows, that the hump at o = 0.7 is vanishing for large
h, while the one at a = 1.3 is still present at least up to h = 2.5. This behaviour is a
good starting point in order to get further insight into the dynamics of the system.

Further, it has not been studied, how the shape of the perturbation influences the
evolution of turbulent puffs. Instead of perturbing one site, one could imagine to trigger
turbulence in many adjacent sites. These investigations could be done with the existing
algorithm without much effort. That point has been skipped, because a great change in
the behaviour is not expected. Turbulent puffs reach several sites very fast. This leads to
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a rapid deletion of the memory of the intial conditions. This assumption demonstrates
in the consideration, that the lifetime of a turbulent puff is independent of its age.

Another interesting point is the distribution of states z{. The analysis can be done
very easily by storing these values and applying the histogram algorithm also used to
determine the velocity histograms.

Histogram: 8=0.1, h=2.1 Histogram: 8=0.1, h=2.1
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Figure 5.5: Histograms for the distribution of state variables. A characteristic value is
observed as a peak in the histogram. It shifts to the right for larger coupling
strength . Even the width is increased, since the coupling ag can add a
larger value to the next site.

This gives us some insight in the occurence of special values z¢, and could be a good
starting point in order to understand the spiky part of the lifetime scaling law and
typical behaviour of the system. A related quantity is the distribution of the values x¢
at the front, where the downstream neighbour is still laminar. These plots could show
how turbulence sets in. If it is triggered over a wide range of values or if it is basically
spread by only several state values z! of the upstream neighbour.

A further possibility to analyse the system is the use of return maps. In return maps,
states x,1 are plotted against x,,. One return map is shown in figure 5.6.

Return Map: 6=0.1,a =0.8,h=2.1 Return Map: 6=0.1, 0 =0.8,h=2.1
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Figure 5.6: Left: Return map for the uCML for a = 0.8 and h = 2.1. Right: Magnifica-
tion of the region near x = 0. Note the dark regions, which must be related
to caustics in the dynamics.

The tent shape of the local dynamic f is clearly visible in the plot. The coupling ag
widens the structure, since more possible next states are available. In addition, a denser
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region at the boundaries of the return maps is observed. This stems from the extremal
values of g. The slope at those points is zero. Therefore, the probability to gain such a
value is much higher than at the steepest parts. A magnification of the region for small
T, reveals an even more complex structure. The origin of these structures is not clear
at this point, but it could be related to the evolution of fixed point or other invariant
subsets. In any case, an understanding of these curves could give further insight in
topological aspects of the model.

A small additional task would be to determine the invariant densities for f and ag for
different parameter values. This quantity is known for the tent map with h = 2 (cf. [33]).
But it would also be of interest to know it for the coupling ag, especially at the slug
transition o = a.
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