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Essentially, all models are wrong, but some are useful.George E. P. Box [48℄
The internal motion of water assumes one or other of two broadly dis-tinguishable forms - either the elements of the �uid follow one another alonglines of motion whi
h lead in the most dire
t manner to their destination, orthey eddy about in sinuous paths the most indire
t possible.Osborne Reynolds [39℄





Prefa
eTurbulen
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e is typi
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s, while non-linear dynami
alsystems are a domain of mathemati
ians, on the other hand. The last two de
adeshave shown, that it is very useful to study both topi
s. Turbulent behaviour 
an berespresented as a problem of non-linear dynami
al systems. A huge amount of tools 
antherefore be used to analyse turbulent behaviour. Additionally, experiments on turbulentpipes 
an be used to visualise new aspe
ts of dynami
al systems. These results 
an beused by theoreti
ians to develop new theories in the dynami
al systems framework.This thesis will deal with the intera
tions between �uid dynami
s and non-linear dynam-i
al systems. Notions from �uid dynami
s will be explained from a dynami
al systemspoint of view. We will see, that very interesting results 
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Chapter 1Introdu
tionTurbulen
e is en
ountered everywhere in every day life. Examples rea
h from vorti
esbehind a starting air
raft, over the aerodynami
s of 
ars to water pouring into a bathtub.A �owing �uid is des
ribed by the Navier-Stokes equations (1.1.6). In 
ontrast tosmooth and time-independent solutions of these equations, whi
h are 
alled laminar�ow, turbulent �ow refers to a time-dependent, non-ordered �ow. Turbulent �uid isin a highly dissipative state. A redu
tion of turbulen
e in pipelines 
an therefore savemu
h energy during oil or gas transport. For this reason, the investigation of turbulen
ephenomena is not only a 
hallenge to fundamental resear
h but also very important inmany appli
ations.This thesis deals with the spe
ial 
ase of turbulent pipe �ow. For moderate �ow speed itexhibits lo
alised turbulent regions, i.e. 'pu�s', that travel down the pipe with 
onstantvelo
ity and are believed to de
ay eventually. For higher �ow rates, there is a transitionto 'slugs', where the front of the turbulent region propagates faster than the ba
k side,su
h that the size of the turbulent region is growing linearly in time.We will fo
us on some key questions:� Whi
h me
hanisms 
an lead to �nite-size turbulent pu�s ?� What determines their lifetime?� What 
an 
ause a transition from pu�s to slugs?
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2 CHAPTER 1. INTRODUCTION1.1 Histori
al ReviewAlthough there still is a sizable and very a
tive resear
h 
ommunity working on thetransition to turbulen
e in pipe �ow, the problem how a pipe be
omes turbulent is overa hundred years old. The �rst study goes ba
k to Osborne Reynolds in 1883 (
f.�gure 1.1 and [39℄).

Figure 1.1: Reynolds' experiment in 1883. Reprinted from [1℄.Reynolds inje
ted a 
oloured thread into a pipe. The ink travels along a straight linefor small �ow velo
ities (
f. �gure 1.2, a))The thread be
omes unsteady for higher velo
ities (
f. �gure 1.2, b)) and eventuallysplits 
ompletely into eddies for even higher velo
ities (
f. �gure 1.2, 
) and d) ). Butthis is not the most striking dis
overy. It is the result, that the �ow only depends onone dimensionless parameter. This parameter depends on the average �ow velo
ity U ,the diameter of the pipe D and the kinemati
 vis
osity ν of the �uid. The number isnow 
alled the Reynolds number Re to honor its dis
overer. It is de�ned as
Re =

U · D
ν

(1.1.1)Reynolds studied the question, if there is a 
riti
al value Rec, above whi
h the laminarstate is unstable. This behaviour is well-known fromRayleigh-Bénard 
onve
tion [38℄or Taylor-Couette �ow [43, 44℄, where the steady state be
omes unstable above a
riti
al Rayleigh R or Taylor number T , respe
tively.Reynolds observed, that �ow of a 'normal' pipe be
omes unstable above Re ≈ 2000 .Turbulen
e is the only observable state then. But he also used mu
h smoother pipesand less-perturbed initial 
onditions. In those experiments, the laminar �ow 
ould bepreserved for Re ≈ 13000. Therefore, it is widely a

epted now [30, 34℄, that laminar�ow is linearly stable for all Re. There is no 
riti
al Reynolds number.This has been observed for the �rst time by Reynolds. The transition me
hanism toturbulen
e in pipe �ow is still an open question, be
ause linear stability theory fails todes
ribe the transition. The importan
e of the Reynolds number is also obvious in theequations of motion.
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Figure 1.2: Top to Bottom: A laminar �ow is stable for small Reynolds numbers. Itbegins to wiggle, if the Reynolds number is in
reased. For higher Reynoldsnumbers above a 
riti
al threshold, the �ow be
omes turbulent. Reprodu
edfrom [46℄.Although, the �ow �elds 
an be very 
ompli
ated for di�erent geometries, the des
ribingequations are well-known sin
e the investigation of Navier and Stokes. By applyingthe momentum 
onservation for �uids, one �nds the Navier-Stokes equations [1℄
ρ(∂t~u + (~u · ∇) ~u) = −∇p + ρν∇2~u + ~f (1.1.2)Here, ρ and ν are the density and kinemati
 vis
osity of the �uid, respe
tively. ~u(~r, t)is the �ow �eld at ea
h spa
e ~r and time t, p is the pressure and ~f is an external bodyfor
e. This equation is a partial di�erential equation of se
ond order. Additionally, itis non-linear, be
ause of the 
onve
tive term (~u · ∇) ~u. This makes the solution of theequation extremely 
ompli
ated. A 
loser look reveals, that these equations are threedi�erential equations for the four unknowns ~u and p. In order to 
omplete the system,a fourth equation, the 
ontinuity equation for the mass density, is needed,

∂tρ + ∇ (ρ~u) = 0 (1.1.3)Assuming in
ompressibility, the density ρ does not depend on time or spa
e. As a
onsequen
e, the 
ontinuity equation redu
es to
∇ · ~u = 0 (1.1.4)The Navier-Stokes equations 
an be formulated in a dimensionless way by applying thetransformations

~r′ =
~r

L
, t′ =

L

U
t, ~u′ =

~u

U
, p′ =

L

U2

p

ρ
(1.1.5)



4 CHAPTER 1. INTRODUCTIONwhere L and U are a 
hara
teristi
 length s
ale and velo
ity of the system, respe
tively.This leads to the dimensionless Navier-Stokes equations
∂t~u + ~u · ∇~u = −∇p + Re−1∇2~u (1.1.6a)

∇ · ~u = 0 (1.1.6b)The external for
e and the additional primes have been dropped for simpli
ity. The onlyfree parameter of the dimensionless Navier-Stokes equatuion1 is the Reynolds number
Re.We used the no-slip boundary 
ondition

~u(r = R, t) = 0 (1.1.7)This states, that the �uid sti
ks to the pipe walls.For pipe �ow, the stationary solution 
an be 
al
ulated analyti
ally. By using 
ylindri
al
oordinates (r, φ, z) with the z axis along the pipe, one obtains
~u(r, φ, z) = −∂zp

4
Re(1 − r2)~ez (1.1.8)where ∂zp is the pressure gradient along the pipe, whi
h is assumed to be 
onstant.1.2 Re
ent ProgressThe motivation of our 
onsiderations are experimental studies on turbulent pu�s in pipe�ow by Hof et al. [16, 17℄The stru
tures are 
alled 
onve
tive instabilities, sin
e they are taken away from theirpoint of origin by the �ow without growing. The transition to turbulen
e 
an not bedes
ribed by linear stability theory, sin
e the laminar state is linearly stable for all Re.Therefore, one needs a �nite perturbation to the laminar state to trigger a turbulentpu�.Hof et al. triggered a pu� by inje
ting water into the laminar �ow at some point of thepipe. Resulting pu�s travel through the pipe and rea
h its end after some time, unlessthey de
ay on the way. The survival probabilities are shown in �gure (1.3).As expe
ted, the survival probality is zero for very low Reynolds numbers (laminarlimit, where the lifetime of pu�s is small) and tends to one in the turbulent limit.Measurements has been done for several pipe lengths L. Longer pipes show a smallersurvival probability: due to the 
onstant velo
ity of a pu� for �xed Re, it has had moretime to de
ay in longer pipes and less pu�s rea
h the end.The next step is to determine the lifetime distribution of turbulent pu�s. The Reynoldsnumber is kept �xed and the survival probability of a pu� is measured for several pipelengths. The survival probability for a �xed length 
an then be related by the pu�1A general solution for the Navier-Stokes equations is not known up to now.Therefore, it is oneof the most 
ompli
ated problems in 
lassi
al me
hani
s. The proof of existen
e and smoothness ofsolutions is a Clay Millenium prize problem [20℄.
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Figure 1.3: Experimental survival probabilities for di�erent pipes and Reynolds num-bers. L is the distan
e to the end of the pipe, measured in multiples of itsdiameter D. Reprinted from [16℄.velo
ity to a survival probability for a �xed time. Measurements have been done fora range of Re and the average lifetime τ(Re) has been 
omputed. Early work [50℄ for
1550 ≤ Re ≤ 1850 suggested a linear de
rease of τ−1 with a transition to in�nite lifetimesat Re ≈ 1870 (dashed line in �gure 1.4, a)) In 
ontrast, numeri
al and experimentalstudies [18℄ for a range 1750 ≤ Re ≤ 1950 obtained

τ ∼ exp(c1Re), c1 ∈ R (1.2.1)whi
h is the solid bla
k line in 1.4, a). This data suggested, that τ remains �nite for all
Re. The most re
ent high pre
ision data [16℄ for 1550 ≤ Re ≤ 2050 resolve the di�eren
eof the previous studies and further underpin the view, that τ remains �nite.

Figure 1.4: a) τ−1 as a fun
tion of Reynolds number. b) A log-log normal plot shows asuperexponential s
aling law. Reprint from [16℄.



6 CHAPTER 1. INTRODUCTIONHowever, they suggest a super-exponential in
rease of τ like
τ ∼ exp(exp(c2Re)), c2 ∈ R (1.2.2)This expe
ted s
aling law is supported by �gure 1.4, b)The data shown in �gure 1.4 has setteled the dispute on qualitative features of τ . Butthe exa
t form is not quite 
lear. An alternative �t
τ ∼ exp(c3Ren), c3, n ∈ R (1.2.3)
an des
ribe the data, too (
f. [16℄). These s
aling laws are 
alled super-exponential. Atransient whi
h has su
h a lifetime s
aling law is therefore 
alled super-long transient,in 
ontrast to long transients, whi
h obey a power-law s
aling.However, there is no hope for more data. It is hard to improve the experimental results,be
ause many problems have to be solved. The very rapid lifetime in
rease of a turbulentpu� for Re > 2000 is one problem. Therefore, one needs very long pipes to determinethe lifetime distribution 
orre
tly. This is very hard to do, sin
e the pipes would easilyex
eed the dimensions of the lab. Another problem is the experimental setup. The pipeshas to be very smooth. Otherwise one would get wrong lifetimes due to the roughnessof the pipe, whi
h a
ts as an additional perturbation [11, 28℄. In addition, there areseveral problems whi
h has a minor e�e
t, but are still essential, e.g. keeping a 
onstanttemperature along the whole pipe or a laminar inje
tion at the beginning of the pipe.A di�erent method is a 
omputer simulation. This has the advantage, that one 
anspe
ify the state of the system very well. Without the ina

ura
y of perturbations inreal experiment, i.e. rough pipe walls, theoreti
al assumptions 
an be 
he
ked. Almostall simulations on pipe turbulen
e are based on the Navier-Stokes equations. This isa 
ommon point to start, sin
e the Navier-Stokes equations are the equations of mo-tion for �uid dynami
s. The time-dependent Navier-Stokes equations 
an not be solvedanalyti
ally, be
ause they are non-linear partial di�erential equations(pde). Computersimulations are also very hard to 
arry out. One problem is to �nd a reasonable dis-
retization of spa
e and time. The simulation results are getting better for a �nerdis
retization grid, but at the 
ost of a long simulation time. Several methods havebeen introdu
ed to ta
kle this problem. One way is to do a mode expansion of the solu-tions [29,31℄. For appropriate modes (Fourier and Chebyshev polynomials), one is ableto 
arry out simulations rather fast and get noti
able results, whi
h 
an be 
omparedto experimental data.Another transition 
an be observed for even higher Reynolds numbers. Due to thesuper-long lifetime s
aling law, the average lifetime in
reases very fast with Re. Forquite high Re ≈ 2500, a new state, known as a turbulent slug, is observed. A slug isan absolute instability. In 
ontrast to a pu�, its front velo
ity is mu
h larger than itsba
k. Therefore, a slug grows while travelling through the pipe and eventually �lls it
ompletely. The lifetime of turbulent slugs is expe
ted to be in�nite. This assumptionhas not been 
he
ked. A dire
t measurement in experiments is not a

esible, sin
e thelifetime is quite too long, due to the super-exponential s
aling law. Sin
e the lifetime ofslugs is expe
ted to be in�nite, the growth speed is a better quantity to determine a pu�-to-slug transition. A 
riti
alRecr for the pu�-slug transition 
an be found experimentally



1.3. SCOPE OF THIS WORK 7and is 
urrently under investigation. The 
orre
t value Recr for the slug transition is anopen question. Therefore, further studies on the growth speed dependen
e on Re areneeded.Although, there has been many experiments and numeri
al simulations, the underlyingme
hanism for the transitions is not known. Therefore, a good theory is needed to guideexperiments and simulations.1.3 S
ope of this workOur aim is to understand the transition from laminar to turbulent �ow in a generalsetting. We will use pipe �ow as a stereotype for transition s
enarios. But we will notuse the Navier-Stokes equations to simulate pipe �ow. Rather we go a di�erent wayand study low-dimensional models that share some aspe
ts of pipe �ow. Therefore,our results 
an not dire
tly be applied to real systems. Instead, we 
an fo
us on theunderlying prin
iples leading to a transition from laminar to turbulent motion. This isuseful, sin
e even possible me
hanisms are un
lear. We provide 
andidates for s
enariosto 
he
k.The next 
hapter will brie�y review the basi
 notions from dynami
al systems theoryneeded for our investigations. Chapter 3 will deal with a 2d model system, whi
h isused to des
ribe the behaviour of super-long transients. We will espe
ially emphasizethe importan
e of the lifetime s
aling law and 
ompare it to theoreti
al predi
tions.The main part of this thesis is presented in 
hapter 4. A spatially extended modelis investigated that mimi
s turbulent pu� and slug behaviour. Therefore, we study aunidire
tional 
oupled map latti
e. In parti
ular, we will deal with the distributionand s
aling laws for the lifetime and velo
ity of pu�s. The laminr-pu� and pu�-slugtransition will be determined in the model framework. Additionally, the growth speedwill be studied for the slug regime. The 
on
lusion in 
hapter 5 will 
ompare our resultsto real pipe �ow and give an outlook for future work.
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Chapter 2Dynami
al Systems Revisited
In order to get an overview about the tools we need for our further work, we will 
ompilesome 
on
epts of dynami
al systems in this se
tion.De�nition 1. A dynami
al system is de�ned by an evolution equation

d

dt
~x = ~F (~x) , (2.0.1)where ~x ∈ R

m is the state of the system and ~F is the evolution operator (i.e. 'velo
ity'),whi
h uniquely determines the 
hange of the state with time [33℄.Dynami
al systems are everywhere around us. The word 'dynami
al' lets us think ofsystems that show some motion. The 
ause of the motion is given by a for
e, a

ording toNewton. Examples are very numerous and rea
h from the movement of a pendulumto shooting a 
annon ball. But we 
an also des
ribe things with dynami
al systems,whi
h are not me
hani
al, like the voltage 
hara
teristi
 while 
harging a 
apa
itor orthe indu
tion voltage of a 
oil. But the dynami
al systems approa
h is not limited tosu
h simple systems. Even more 
omplex systems and tasks, like weather fore
asting,population dynami
s of bees, the spreading of epidemi
s or share pri
es in sto
k markets,
an be des
ribed by dynami
al systems. The most important dynami
al system we areinterested in, is the �ow of water through a pipe, whi
h 
an be des
ribed by the Navier-Stokes equations.Mathemati
ally, a dynami
al system 
an be des
ribed by a set of �rst-order di�erentialequations. The exa
t de�nitions will be given in the next se
tion.2.1 De�nitionsDe�nition 1 looks quite restri
ted, be
ause not all systems are of �rst order. The mostprominent and probably most important example is Newton's law (here in one dimensionfor simpli
ity)
ẍ = F (x, ẋ) (2.1.1)9



10 CHAPTER 2. DYNAMICAL SYSTEMS REVISITEDThis is a di�erential equation of se
ond-order and therefore does not obey the de�nitionof a dynami
al system. But we 
an transform this equation into a system of �rst-orderdi�erential equation by de�ning the velo
ity v := ẋ. This gives us the following system:
ẋ = v (2.1.2a)
v̇ = F (x, v) (2.1.2b)whi
h 
an be written in 
ompa
t form as

d

dt
~u = ~F (~u) where ~u = (x, v)T (2.1.3)We have now obtained an equation of the form (2.0.1). This pro
edure 
an be generalizedto higher dimensions and to di�erential equations of n-th order. So, our de�nition of adynami
al system is quite general.A very simple 
lass of dynami
al systems are those with a dis
rete time. This 
an beseen in populations, where we 
an measure the population of our beehive every year atthe same date and time.A possibility to obtain a time-dis
rete system is the te
hnique of a Poin
aré se
tion[27℄. This te
hnique is very useful to study properties of time-
ontinuous systems. Weare only investigating models, whi
h are already time-dis
rete, so we skip an introdu
tionon the Poin
aré se
tion te
hnique.1In time-dis
rete systems, a state at time n uniquely determines the state at time n + 1,generally. In this 
ase, the evolution operator is also 
alled the mapping ~M of thedynami
al system, and we de�ne

~xn+1 = ~M(~xn) (2.1.4)where the dis
rete time is denoted as n ∈ N0. An expli
it time dependen
e of ~M isnot taken into a

ount in this thesis. Those systems are 
alled autonomous. On
e ~Mis determined, the future of the system 
an be 
omputed very easily. To get the stateafter m timesteps, we just need to apply ~M m times.
~xn+m = ~M( ~M(· · · ~M

︸ ︷︷ ︸

m times (~xn))) (2.1.5)For one-dimensional systems, this iteration 
an be done by hand, even with very old
al
ulators. To abbreviate this long expression, we de�ne a short version of (2.1.5).
~xn+m := ~Mm(~xn) (2.1.6)We have already mentioned above, that a state ~xn uniquely determines the state ~xn+1.All these possible points build the phase spa
e or state spa
e of the system. A point inphase spa
e uniquely determines the state of the system and therefore de�nes its future.1Time-dis
rete systems are also very fast to simulate on a 
omputer. Computers 
an only deal witha dis
rete time. Therefore, the time for a dis
retisation step is saved. This step introdu
es errors,be
ause we 
an not let the length of the timestep to zero. Following timesteps on a 
omputer di�er atleast in one bit.



2.2. INVARIANT SUBSETS 11The phase spa
e 
an have a low dimension, like in the example of a mathemati
alpendulum, where we only need two 
oordinates, i.e. spa
e and momentum, to de�nethe state of the system. This leads to a two-dimensional phase spa
e. But the phasespa
e dimension 
an even be rather high, e.g. when dealing with thermodynami
alsystems with N parti
les, where the phase spa
e dimension is 6N .We will now 
ome to another important de�nition, whi
h is used all the time, whenworking with dynami
al system.De�nition 2. The evolution of the dynami
al system for a given initial 
ondition isknown as its traje
tory or forward orbit T . For a dis
rete time evolution it is de�nedas2
T := {~xi | ~xi = ~M i(~x0), i ∈ N0} (2.1.7)A traje
tory determines the time evolution of an initial value, respe
ting the dynami
sof the system. A traje
tory 
an be a series of measurments in a time dis
rete 
ase, e.g.the temperature on day i in Göttingen.Traje
tories 
an be measured even without the knowledge of ~M . Therefore, the analysisof sets of traje
tories is the basi
 step when studying dynami
al systems. An interestingaspe
t is, that traje
tories 
an not interse
t in phase spa
e. This is understood bykeeping in mind, that a point in phase spa
e uniquely determines the future of thesystem. If two traje
tories have one point in 
ommon, their future evolution has to beidenti
al. This fa
t is very useful, if one is interested in the stru
ture of the phase spa
e.Another part of the phase spa
e stru
ture 
an be analyzed by the determination ofinvariant subsets. This is pi
ked up in the next se
tion.2.2 Invariant SubsetsBeside the analysis of typi
al traje
tories, one 
an investigate, if there are subsets of thephase spa
e, whi
h are not 
hanging during the evolution of the system.De�nition 3. A subset A of the phase spa
e is 
alled invariant, if the image of A underthe mapping ~M is the same subset A:

A = ~M(A) (2.2.1)An example for an invariant subset is easily found. The logisti
 map is a frequently usedexample for several aspe
ts of dynami
al systems (
f. [6, 33℄). It is de�ned by
f(x) = rx(1 − x) r ∈ R (2.2.2)A plot of the logisti
 map for r = 4 is given in �gure 2.1. For r = 4, the interval I = [0, 1]is an invariant subset for the dynami
s, sin
e we have f(I) = I.There are a bun
h of spe
ial invariant subsets. The most simple ones are the �xedpoints.2If ~M is invertible, the 
omplete orbit is also de�ned for the past, i.e. i ∈ Z [6℄.
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Figure 2.1: a) The logisti
 map for r = 4. I = [0, 1] is an invariant set. b) I is no longerinvariant for r > 4, sin
e f(x) > 1 for x ∈
[

1

2
− δ, 1

2
δ
] with δ =

√
r−4

4r
. 
)Algorithm to 
onstru
t the middle third Cantor set.De�nition 4. A point ~xf of the phase spa
e, whi
h is invariant under the time evolutionof the system, is 
alled a �xed point. It obeys the equation

~xf = ~M(~xf ) (2.2.3)Equation (2.2.3) is therefore 
alled the �xed point equation [33℄. Fixed points play animportant role in ea
h dynami
al system. They are the most simple invariant subsetsone 
an think of and are easily 
al
ulated in most 
ases. Often, it is possible to makeinteresting statements of the dynami
s only by the knowledge of the �xed points.The next higher level invariant subset is a periodi
 orbit [33℄.De�nition 5. A point ~x∗ in phase spa
e lies on a periodi
 orbit of period p ∈ N, if
~x∗ = ~Mp(~x∗) (2.2.4)The traje
tory

T = {~x∗, ~M(~x∗), . . . , ~Mp(~x∗)} (2.2.5)is 
alled a periodi
 orbit of period p.The mapping ~Mp is also known as the p-times iterated map. After p iterations, theperiodi
 orbit has rea
hed the starting point again. Therefore, a periodi
 orbit is a
losed traje
tory. The 
ondition (2.2.4) applies to ea
h point on the periodi
 orbit, su
hthat periodi
ity is a property of the 
omplete periodi
 orbit. One 
an �nd periodi
orbits by sear
hing for �xed points of the p-times iterated map ~Mp.Both �xed points and periodi
 orbits are invariant subsets of dimension zero, sin
e bothsets 
ontain only isolated points. This is di�erent for sets like I in the example of thelogisti
 map above. The interval is an invariant subset of dimension one.There are more types of invariant subsets. Some of them may even have fra
tal, i.e.non-integer, dimension. In order to 
hara
terise these sets, we �rst need to introdu
e ade�nition for the dimension of a set.This ex
ursion will introdu
e the box-
ounting dimension, also known as the 
apa
ity.We will �rst think of obje
ts, whose dimension we already know. From that point, we
an generalize the notion of a dimension.



2.2. INVARIANT SUBSETS 13Let ǫ be a referen
e length s
ale. We form boxes of side length ǫ out of it. For a linewith length L, we need
NL(ǫ) =

L

ǫ
(2.2.6)boxes (i.e. line segments) to 
over the line. The number of boxes N(ǫ) we need to 
overthe set is obviously depending on the referen
e length ǫ. For smaller ǫ we need moreboxes. In analogy to that, we need

NA(ǫ) =
A

ǫ2
(2.2.7)boxes to 
over an area of size A with boxes of size ǫ2. The s
aling of N with ǫ isdetermined by the dimension of the set. Equations (2.2.6) and (2.2.7) 
an also bewritten as

ln NL = ln L + 1 · ln
(

1

ǫ

) (2.2.8a)
ln NA = ln A + 2 · ln

(
1

ǫ

) (2.2.8b)For su�
iently small ǫ, the 
onstant o�set in those relations may be negle
ted su
h thatthe following de�nition is useful.De�nition 6. The box-
ounting dimension is de�ned as (
f. [33℄)
D := lim

ǫ→0

ln N(ǫ)

ln (1/ǫ)
(2.2.9)By 
onstru
tion, this de�nition yields the 
orre
t results for the dimension of obje
tswe already know.On the other hand, a remarkable dimension is found for the Cantor set. We will des
ribethe 
onstru
tion of the Cantor set in brief. A visualisation of this algorithm is givenin �gure 2.1, panel 
. Imagine an interval of length one, i.e. the interval I from ourprevious example. Delete the middle third from this interval in order to get two stripesof length 1/3. From these stripes, delete the middle third again to get four stripes oflength 1/9 and so on. If we do this pro
edure ad in�nitum, we get the Cantor set. Wenow want to know the dimension if this set. In order to obtain it, we will use the box-
ounting algorithm. We 
hoose a length s
ale ǫ =

(
1

3

)n, where n de�nes the iterationstep in the Cantor pro
edure. In order to 
over the set, we need N(ǫ) = 2n boxes. Wenow apply the dimension de�nition to 
al
ulate the dimension of the Cantor set.
D = lim

ǫ→0

ln N(ǫ)

ln 1/ǫ
= lim

n→∞

ln(2n)

ln(3n)
=

ln(2)

ln(3)
≈ 0.631 (2.2.10)Sin
e the Cantor set has a non-integer dimension it is 
alled fra
tal (
f. [6℄). Fra
talstru
tures typi
ally arise in obje
ts with a self-similar stru
ture. Prominent examplesare the Mandelbrot set [25℄ and the Ko
h snow�ake [26℄.We 
an now 
ome ba
k to our investigation of invariant subsets. Imagine again thelogisti
 map (2.2.2). But now 
hoose r > 4, so that I is no longer an invariant subset
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f. �gure 2.1, panel b). In ea
h iteration, there is taken away some mass from I. Theamount is related to the width of the hole
2δ =

√

r − 4

r
(2.2.11)The points that stay forever in I form a Cantor set If . It is noti
able, that If is not anempty set! Like in the 
ase of the middle third Cantor set, If has a fra
tal dimensionbetween zero and one, depending on the value of r. Sin
e If is not empty and points in

If never leave If , it is an invariant subset of the dynami
s. Those invariant subsets withfra
tal dimension are 
alled strange in the terminology of dynami
al systems, be
auseof there fra
tal dimension.We have now 
lassi�ed all important invariant subsets. But the relevan
e of an invari-ant subset depends on another property, too. This is the stabilty against in�nitesimalperturbations whi
h will be investigated in the next se
tion.2.3 Stable/Unstable Dire
tions in Phase Spa
eThe stability of an invariant subset is a very important property. The stability de
ides,whether a traje
tory stays in the vi
inity of the invariant subset or if it leaves it. Inexperiments one typi
ally observes stable invariant subsets, be
ause in�nitesimal pertur-bations drive the traje
tory away from the unstable subset 3. Errors in the experimentalsetup or the �nite length of numbers in a 
omputer simulation are enough to let thetraje
tory move away from the unstable subset. The exa
t de�ntion for one-dimensionalsystems will be given in the next se
tion. After that, we will generalize the notion tohigher dimensions.2.3.1 One DimensionFirst, we will investigate the stability of a �xed point, sin
e �xed points are the mostsimple invariant subsets. Further we will limit our 
onsiderations to one dimensionalmappings
xn+1 = f(xn) xi ∈ R ∀ i ∈ N (2.3.1)This pro
edure is useful to get an intuitive understanding of the notion of stability. Thede�nitions 
an be generalized to higher dimension very easily in the following se
tion.We 
an think of f as a simple mapping, e.g. the logisti
 map in (2.2.2). Note, that thestability 
an be de�ned in a general way for arbitrary traje
tories. But we will restrainour 
onsiderations to the analysis of the stability of invariant subsets, sin
e this is the
ase we will use most of the time.De�nition 7. A �xed point xf is stable, if for every neighbourhood U of xf there is aneighbourhood V ⊂ U of xf su
h that every traje
tory starting in V remains in U forall times. This is also 
alled Lyapunov stability [19℄.3Ex
eptions are �ows with self-reprodu
ing agents like in 
atalyti
 rea
tions or algae.



2.3. STABLE/UNSTABLE DIRECTIONS IN PHASE SPACE 15This rather mathemati
al de�nition is very intuitive, but hard to apply to model systems.Therefore, we also introdu
e the notion of linear stability, whi
h 
an be applied easily.We assume, that the �xed point xf is perturbed by an in�nitesimal amount δn

xs
n = xf + δn δn ≪ 1 (2.3.2)where δn is the perturbation at time n4. Now we assume that the time evolution of xs

n
an be 
al
ulated for small δn with a Taylor expansion of order one around xf

xs
n+1 = f(xs

n) = f(xf) + f ′(xf )δn + O(δ2

n) (2.3.3)
= xf + f ′(xf)δn + O(δ2

n) (2.3.4)By applying the de�nition of the perturbation, we get the linear evolution of the per-turbation as
δn+1 = f ′(xf)δn (2.3.5)The result 
an now be used to de�ne the linear stability.De�nition 8. A �xed point xf is linearly stable, if in�nitesimal perturbations de
ay intheir absolute value with time.

|δn+1|
|δn|

=
∣
∣f ′(xf )

∣
∣ < 1 (2.3.6)If ∣

∣f ′(xf )
∣
∣ = 1, then xf is metastable. For ∣

∣f ′(xf )
∣
∣ > 1, the perturbations grow and the�xed point is 
alled unstable [33℄.Linear stability as
ertains, that small perturbations of stable (unstable)�xed pointsde
ay (grow) exponentially. Consequently, for an unstable �xed point the traje
toriesmove away from xf . On the other hand, in the marginal 
ase f ′(xf ) = 0 one has to fallba
k to a more re�ned notion of stability, like Lyapunov stability, to make mathemati
alstatements.The same idea 
an be applied to the analysis of the stability for periodi
 orbits. Wejust use the p-times iterated map f p instead of f and we evaluate it at a periodi
 point

xp of the periodi
 orbit instead of at xf . All other de�nitions are the same. It is more
ompli
ated to analyse the stability for invariant subsets, that 
ontain fra
tal sets orwhole intervals. One needs de�nitions from the theory of topology, whi
h we will notdis
uss in this work 5.Generally, stable invariant subsets are 
alled attra
tors or sinks. On the other side,unstable sets are 
alled repellers or sour
es. The most popular attra
tor is the Lorenzattra
tor, whi
h rises in the investigation of Rayleigh-Bénard 
onve
tion. It is 
lassi�edto be a 
haoti
 attra
tor. We will brie�y dis
uss the notion of '
haoti
' now.De�nition 9. An invariant set is 
alled 
haoti
, if traje
tories on the invariant set areaperiodi
 and have sensitive dependen
e on initial 
onditions (
f. [33℄). If the set is alsoa attra
tor, it is 
alled a 
haoti
 attra
tor.4 We always assume, that the typi
al size of the attra
tor is of order 1. Therefore, δn ≪ 1 refers toan in�nitesimal perturbation.5One way to determine the stability is to use bonds of the Lyapunov spe
trum.



16 CHAPTER 2. DYNAMICAL SYSTEMS REVISITEDThe sensitive dependen
e on initial 
onditions is determined by the behaviour of neig-boured traje
tories.De�nition 10. Let x0 and y0 = x0 + δ0 be two initial 
onditions on the attra
tor, where
δ0 ≪ 1 and let δn := yn − xn. If for almost all initial 
onditions x0, y0 the perturbation
δ0 grows exponentially with time

|δn|
|δ0|

∼ exp(λn) λ > 0 (2.3.7)we say that the attra
tor has sensitive dependen
e on initial 
onditions (
f. �gure 2.2,[33℄).Note, that the di�eren
e δn has to be smaller than the typi
al diameter of the attra
torfor all n.This property leads to the unpredi
tability of traje
tories on 
haoti
 attra
tors. Both inexperiments and in simulations6, we 
an not de�ne the initial 
ondition with arbitrarypre
ision. These small ina

ura
ies grow exponentially with time. This fa
t is knownfrom every days life. Weather fore
asts are very pre
ise for the next day. But thefore
ast turns to guessing, when we would like to know the weather a few weeks inadvan
e. This is due to the fa
t, that the weather system has sensitive dependen
e oninitial 
onditions.We will now dis
uss the stability of higher dimensional systems. Those systems are morerealisti
, but we have to do some more analysis.

b

b

b

b

~x(0)

~y(0)

~x(t)

~y(t)

~δ(0)

~δ(t)

Figure 2.2: For the de�nition of sensitive dependen
e on initial 
onditions.6For some 
ases, the initial 
onditions in 
omputer simulations 
an be determined to an arbitrarypre
ision by using symple
ti
 integrators.



2.3. STABLE/UNSTABLE DIRECTIONS IN PHASE SPACE 172.3.2 Higher DimensionThe idea behind the linear stability analysis is the same as in the 
ase of one dimensionalsystems. But we have to interpret the results from a di�erent perspe
tive.Again, we will do the analysis for �xed points only. The generalisation is the same asin the one dimensional 
ase and will not be dis
ussed.We will now investigate the stability of a �xed point ~xf under the system
~xn+1 = ~M(~xn) (2.3.8)Again, we 
an express a perturbated traje
tory by7

~xs
n = ~xf + ~δn with ∣

∣
∣~δn

∣
∣
∣ ≪ 1 (2.3.9)It is worth mentioning, that in this high-dimensional 
ase, the perturbation has a di-re
tion. As mentioned below, this is a 
ru
ial property of the perturbation with a greatimpa
t on the dynami
s of the system. The perturbation 
an be expanded in a Taylorseries

~xs
n+1 = ~M(~xf + ~δn) = ~M(~xf ) + D ~M(~xf ) · ~δn + O(~δ2

n) (2.3.10)
= ~xf + D ~M(~xf ) · ~δn + O(~δ2

n) (2.3.11)where D ~M(~xf ) is the Ja
obian of ~M , evaluated at the �xed point ~xf . For an N-dimensional system it takes the form
D ~M :=






∂M1

∂x1
· · · ∂M1

∂xN... . . . ...
∂MN

∂x1
· · · ∂MN

∂xN




 (2.3.12)With this expansion, we 
an determine the evolution of the perturbation ~δn to be

~δn+1 = D ~M(~xf ) · ~δn (2.3.13)The stability of the �xed point is now determined by the eigenvalues λi and eigenve
torsof D ~M(~xf) (
f. [19℄).De�nition 11.� if all λi have a negative real part, then ~xf is stable, sin
e every perturbation de
ays(∣
∣
∣~δn

∣
∣
∣ → 0

).� if there is at least one eigenvalue λj with positive real part, then ~xf is unstable,sin
e there is at least one dire
tion ~ej, where a perturbation grows.� if all λi have a vanishing real part and it exists a 
omplex-
onjugated pair withnon-vanishing imaginary part, then the solution os
illates and we have a periodi
perturbation, whi
h is not growing8.7
f. footnote 48It is also possible to have only one pair of 
omplex-
onjugated λ. If all other eigenvalies havenegative real part, then th solution is only os
ilating in a plane, while all other dire
tions are stable.



18 CHAPTER 2. DYNAMICAL SYSTEMS REVISITEDIt is 
lear, that the variety of possible perturbation is mu
h larger than in the onedimensional 
ase.In higher dimensions, we have a dire
tion, related to the perturbation. It is possible,that a �xed point has only stable dire
tions but one, whi
h is unstable. These pointsare therefore 
alled saddle, sin
e they have the form of a saddle in the high dimensionalphase spa
e. An invariant subset, whi
h has stable as well as unstable dire
tions andshows sensitive dependen
e on initial 
onditions is 
alled a 
haoti
 saddle.The de�nition of stability leads straight to the 
on
ept of Lyapunov exponents.2.4 Lyapunov ExponentsThis se
tion will introdu
e the 
on
ept of Lyapunov exponents and ve
tors, whi
hare named after the Russian mathemati
ian and physi
ist Aleksandr Lyapunov.Lyapunov exponents are a widespread te
hnique to 
hara
terize stability and 
haos.The Lyapunov exponents are the exponents of the exponential growth of perturbations(
f. [33℄).In equation (2.3.6), we have introdu
ed the de�nition of the stability of a �xed pointvia the growth of in�nitesimal perturbations.
|δn+1|
|δn|

=
∣
∣f ′(xf )

∣
∣ < 1 (2.4.1)This gives us the growth in one iteration step. It 
an be generalized to the growth for

m iterations
|δn+m|
|δn|

=
∣
∣f ′(xf )

∣
∣
m

= exp(λm) where λ := ln
(∣
∣f ′(xf )

∣
∣
) (2.4.2)The exponent λ is 
alled the Lyapunov exponent and 
an be de�ned by

λ := lim
m→∞

lim
|δn|→0

1

m
ln

( |δn+m|
|δn|

) (2.4.3)
∣
∣f ′(xf )

∣
∣ = exp(λ) is often referred to as the Lyapunov number. The Lyapunov exponents
an now be used to determine the linear stability of a �xed point� λ > 0: unstable� λ = 0: marginally stable� λ < 0: stableThe advantage of using Lyapunov exponents is given by the fa
t, that they 
an be
omputed very easily. The knowledge of the underlying map f is not ne

esary to
al
ulate λ, sin
e it is de�ned via the growth of perturbations. Another advantagebe
omes obvious in systems of higher dimension. Here, the Lyapunov exponents arethe eigenvalues of the Ja
obian, evaluated at the �xed point position. This makes theLyapunov exponents to an essential tool in the analysis of the stability of invariantsubsets.In the next se
tion we turn to bifur
ation theory.



2.5. BIFURCATIONS 192.5 Bifur
ationsA qualitative 
hange of the dynami
s of a system while varying a 
ontrol parameter isknown as a bifur
ation. Bifur
ations are analyzed in the mathemati
al �eld of bifur-
ation theory. We will inspe
t here only some basi
 bifur
ation s
enarios, whi
h areimportant for the analysis of our model systems.We will deal with bifur
ations of one-dimensional, smooth fun
tions f , whi
h dependsmoothly on a 
ontrol parameter r. There are three generi
 bifur
ation types for this
lass of fun
tions [6,27,33℄, whi
h 
an be found in nearly every one-dimensional dynam-i
al system. They regard the generation of �xed points and the 
hange of stability of�xed points.2.5.1 Tangent Bifur
ationThe �rst bifur
ation type will be introdu
ed by an example. We note, that the �xedpoints of a one-dimensional map are determined by the interse
tion points of the map fwith the diagonal line f(x) = x. We will now study the dynami
s of f(x) = r exp(x) [6℄.This map is visualized in �gure 2.3. For 
ontrol parameters r > 1

e
= rc (panel a), thereis no interse
tion. Therefore, the map has no �xed points. If we de
rease r to the value

rc, we 
an 
he
k easily that we get one interse
tion at x = 1. For the spe
ial 
ontrolparameter r = rc, the map f is tangent to the diagonal line. A further de
rease of r tovalues r < rc 
reates two �xed points, as 
an be seen in panel 
). One is stable and theother one is unstable. After all, the slope of the left �xed point has to be smaller andthe one to the right larger one in order to have f(x) 
ross from above the diagonal tolower values and vi
e versa. The value rc, where the bifur
ation takes pla
e is 
alled the
riti
al parameter or bifur
ation parameter.During a 
hange of r through the 
riti
al value rc, we 
reate two �xed points from void,while f is tangent to the diagonal for r = rc. This bifur
ation type is therefore 
alleda tangent bifur
ation or saddle-node bifur
ation, when dealing with systems of higherdimension.
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ation s
enario for f(x) = r exp(x), whi
h has a 
riti
al point at rc = 1

e
.(a) The 
ontrol parameter is larger than the bifur
ation parameter. f(x) hasno interse
tions with the diagonal. (b) at the 
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al value r = rc, f(x) istangent to the diagonal. For r < rc, we get two �xed points, as 
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Figure 2.4: Tangent bifur
ation s
heme. Panel a) is before the bifur
ation. We do nothave any �xed points. b) After the bifur
ation, two �xed points emerge.One is stable, the other one is unstable. 
) The s
heme of the bifur
ation.Straight lines are stable �xed points, dotted lines are unstable.The s
heme of the tangent bifur
ation is very general. The best way to remember it isto use �gure 2.4 as the basi
 s
heme.2.5.2 Period Doubling Bifur
ationWe will now 
ome the the se
ond bifur
ation type. For this s
enario, we will have a lookat the well-known logisti
 map [33℄
f(x) = rx(1 − x) r > 0 (2.5.1)This map has a stable �xed point at

xf = 1 − 1

r
for 1 < r < 3 (2.5.2)This �xed point is getting unstable at r = 3 =: rc, be
ause the magnitude of the sloperea
hes one in absolute value (
f. de�nition 8)

∣
∣f ′(xf)

∣
∣ =

∣
∣r(1 − 2xf )

∣
∣ = |2 − r| = 1 for r = 3 (2.5.3)
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 map for r = 2.8.There is one stable �xed point. b) shows the two-times iterated map. Wehave only one �xed point, whi
h is the same as the �xed point in the normalmap. For r = 3 =: rc, the �xed point be
omes unstable. Panel 
) shows,that for r > rc the two-times iterated fun
tion has two more �xed points.These new �xed points are stable and form a period two orbit.



2.5. BIFURCATIONS 21
x n

+
2

xn

beforea)

S

x n
+

2

xn

afterb)

U

S

S

r

period doubling bifurcation schemec)

Figure 2.6: S
hemati
 overview of a period doubling bifur
ation. Panels a) and b) showthe two-times iterated map before and after the bifur
ation. The stable �xedpoint loses its stability in the bifur
ation and gives rise to a stable periodtwo orbit. 
) shows the motif for su
h a bifur
ation.The �xed point is therefore unstable for r > rc. But this is not the end of the story. We�rst note, that there is no additional �xed point 
reated in this bifur
ation, whi
h 
anbe veri�ed from �gure 2.5, panel a). But we 
an have a look at the two-times iteratedmap. For r < rc, it has only one �xed point, namely the �xed point xf . If we in
rease rthrough rc, we see, that there are two new �xed points 
reated in the two-times iteratedmap. These are stable and form a period two orbit.The basi
 properties of this kind of bifur
ation are 
ompiled in �gure 2.6.A bifur
ation, where a stable �xed point loses its stability and gives rise to a stableperiod two orbit is 
alled a period doubling or pit
h fork bifur
ation. The name pit
hfork bifur
ation 
omes from the visualisation in panel 
) of �gure 2.6.2.5.3 Inverse Period Doubling Bifur
ationThe last bifur
ation is very similar to the period doubling bifur
ation and will be men-tioned only brie�y. It o

urs when an unstable �xed point be
omes stable and thereby
reates an unstable period two orbit. This pro
ess is 
alled an inverse period doublingbifur
ation. We will only give the basi
 s
heme of this bifur
ation type in �gure 2.7.
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Figure 2.7: S
hemati
 overview of an inverse period doubling bifur
ation. For r < rc,we have one unstable �xed point. This �xed point gains stability in thebifur
ation and gives rise to an unstable period two orbit (panel b). Panel
) is the s
hemati
 motif.



22 CHAPTER 2. DYNAMICAL SYSTEMS REVISITEDAll the generi
 bifur
ations we 
an en
ounter in one dimension have now been de�ned.All these bifur
ations 
an happen in the other dire
tion as well. This depends on theexpli
it de�nition of the 
ontrol parameter. The s
hemati
 des
ription is obtained byfolowing the s
hemes in the 
) panels of �gure 2.4, 2.6 and 2.7 from the right to the left.2.5.4 Bifur
ation DiagramsAnother useful tool to visualize bifur
ation s
enarios is to use bifur
ation diagrams.In bifur
ation diagrams, we plot the stable orbits of the system against the 
ontrolparameter. Sometimes, additional unstable �xed points are in
luded in those diagrams.But in order to have a 
learly arranged plot, one skips this unstable �xed points mostof the time.
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Figure 2.8: Bifur
ation diagram for the logisti
 map. We 
an see the period doublingroute to 
haos and the boundary 
risis at r = 4.One 
an inspe
t in bifur
ation diagrams, how the dynami
s of a system evolves from astable �xed point to a 
haoti
 behaviour. The most famous me
hanism for that is theperiod doubling 
as
ade, known from the logisti
 map. This route to 
haos is happeningvia su

essive period doubling bifur
ations. After n bifur
ations, we en
ounter a periodi
orbit of period 2n. n → ∞ for r → r∞ and we have a fully developed 
haoti
 dynami
sfor r ≈ 3.57 = r∞. The exa
t point r∞ after in�te period doublings has been determinedby Feigenbaum [9℄. The s
enario is known as the period doubling route to 
haos [33℄.There are mu
h more types of bifur
ations for higher dimensional systems. The analysisand 
lassi�
ation is mu
h more involved, so that only a rough sket
h 
an be given. Anexposition on this topi
 has been given by Arnol'd [2℄.2.6 Transient BehaviourThis se
tion will give a short introdu
tion to the �eld of transients, whi
h are related tobifur
ation theory. Transient behaviour 
an be interepreted as the opposite of permanentbehaviour. A dynami
al system on an invariant subset will never leave this subset.This 
an be des
ribed as permanent behaviour. When talking of transient motion, we



2.6. TRANSIENT BEHAVIOUR 23are dealing with a dynami
al systems, that has not approa
hed an invariant subsetand therefore 
an make a transition between several regions of the phase spa
e. Oneexample is the transition from a 
haoti
 saddle to a stable �xed point, whi
h is observedin turbulent pipe �ow. A traje
tory, whi
h is making su
h a transition is 
alled atransient. There are many kinds of transients, des
ribing di�erent kinds of dynami
albehaviour. Some of them, whi
h are important for our analysis, will be explained inthis se
tion.The �rst phenomenon we will dis
uss is intermitten
y. We take as granted, that thereis a 
riti
al parameter ac in the system. For a < ac, there exists a stable periodi
 orbit,whi
h will be destroyed or get unstable for a > ac. An example is studied by Pomeauand Manneville in [36℄ for the Lorenz system. For a < ac, we 
an see a periodi
 signal in�gure 2.9, panel a. As a is slightly above ac, the signal looks very similar to the signalfor a < ac, but is sometimes intermitted with bursts, that are not periodi
 and show a
haoti
 motion. If we in
rease a further, su
h that it be
omes signi�
antly larger than
ac, the periodi
 pat
hes in the signal get less and then dissappear. The system is nowin a true 
haoti
 state. It is not possible to investigate the behaviour of every singletraje
tory. But we 
an 
al
ulate some statisti
al features, that give us some insight intothe me
hanism of this behaviour.One possibility is to measure the average time T between two subsequent 
haoti
 bursts.This quantity tends to in�nity, when approa
hing ac from above.

lim
a→a+

c

T (a) → ∞ (2.6.1)This means, that the periodi
 behaviour is restored for parameters values a near the
riti
al value ac.

Figure 2.9: A signal of the Lorenz system. In a), we see a periodi
 signal. Due tointermitten
y, we get bursts in b1), whi
h are be
oming more frequent forb2). In b3), there is no more periodi
ity and the system has rea
hed a
haoti
 state. Reprinted from [33℄.



24 CHAPTER 2. DYNAMICAL SYSTEMS REVISITEDWe have taken T (a) as an interesting measure to 
hara
terize the behaviour. This is atypi
al quantity to look at, when dealing with transients.One is often interested in the s
aling law of a 
hara
teristi
 time in dependen
e on thesystem parameter, or on the distan
e to a 
riti
al value. For the 
ommon 
ase of asaddle-node bifur
ation (
f. �gure 2.4) at ac, one observes a s
aling law (
f. [33℄)
T (a) ∼ (a − ac)

−1/2 (2.6.2)After all, for a value a < ac, we have one stable and one unstable �xed point of our map
f . These two �xed points merge and dissappear in the saddle-node bifur
ation.This leaves a very narrow tunnel behind, whi
h 
an be seen in �gure 2.10. The methodof graphi
al iteration is used in �gure 2.10. The next state 
an always be determined bysubsequently going from the a
tual point to the diagonal and then to the fun
tion f(x)again. A traje
tory, whi
h is inje
ted into the tunnel needs a very long time to 
ross it.This time 
an be 
al
ulated, if we approximate the fun
tion to quadrati
 order,

f(xn) = xn+1 = x2

n + xn + ǫ where ǫ ∼ (a − ac) (2.6.3)If we are near the 
riti
al parameter, we obtain ǫ ≪ 1. This means, that a step in thetunnel is very small. Therefore, we 
an approximate x as a 
ontinuous fun
tion of nand rewrite equation (2.6.3) as
dx

dn
= x2 + ǫ (2.6.4)
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ontrol parameters near the 
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tory needs manyiterations to 
ross the tunnel. Shown here is the example of the exponentialmap f(x) = r exp(x) near the tangent bifur
ation at r = 1/e.



2.6. TRANSIENT BEHAVIOUR 25If we inje
t the traje
tory at x0, the time to 
ross the tunnel is given by
∫ T

0

dn =

∫ ∞

x0

dx

x2 + ǫ
∼ ǫ−1/2 (2.6.5)Even with this 
oarse approximation, we see that this me
hanism reveals the 
orre
tresults.After 
rossing the tunnel, the traje
tory obeys a 
haoti
 dynami
s and will be reinje
tedinto the tunnel. This leads to the 
hara
teristi
 time s
ale for periodi
 behaviour inbetween the 
haoti
 bursts. We note, that the average time s
ales with the distan
e tothe 
riti
al parameter ac of the saddle-node bifur
ation. This behaviour is known asintermitten
y and is a quite 
ommon s
heme for transient behaviour.The next part of this se
tion will dis
uss the transition from a 
haoti
 behaviour intoan absorbing state, i.e. a stable �xed point. This behaviour is typi
al for a boundary
rises, where an attra
tor hits its basin boundary. We will study this type of transitionwith the example of the logisti
 map (2.2.2).

f(x) = rx(1 − x) (2.6.6)For r = 4 =: rc, we have a 
haoti
 invariant subset I = [0, 1]. When r is in
reased above
rc, I is no longer invariant under the evolution of f . In every iteration, some mass of I ismapped outside of it and we get the Cantor set If , whi
h has been des
ribed in se
tion2.2. I is no longer invariant and we 
an 
al
ulate the average lifetime of a traje
torystarting in I, i.e. the number of iterations until the traje
tory leaves I.Sin
e we lose a 
onstant fra
tion of our mass at ea
h iteration, we expe
t an exponentialdistribution

P (t) ∼ exp(−t/τ) (2.6.7)for the lifetime, whi
h is also known from radioa
tive de
ay pro
esses. τ is the averagelifetime and P (t) is the probability for a traje
tory to have a larger lifetime than t. Asin the intermitten
y example above, one is interesting in the s
aling law of the averagelifetime τ with the 
ontrol parameter r. The probability to es
ape I is 
onstant forea
h iteration, sin
e the middle part of I is mapped outside I and the remaining part ismapped to the 
omplete I again (
f. �gure 2.1, panel b). Sin
e the invariant measureat the 
riti
al point is smooth on I, the es
ape probability is proportional to the lengthof the hole L

ρ ≃ cL (2.6.8)with a 
onstant c. The probability, that a traje
tory is still in I after n timestepsamounts to
(1 − ρ)n ≃ (1 − cL)n = exp(n · ln(1 − cL)) (2.6.9)Comparison to equation (2.6.7) yields

τ = − 1

ln(1 − cL)
≃ 1

cL
=

1

c

(
r − rc

r

)−1/2

≈ 2

c
· (r − rc)

−1/2 (2.6.10)



26 CHAPTER 2. DYNAMICAL SYSTEMS REVISITEDHere, we used (2.2.11) for the length of the hole. Hen
e, this boundary 
risis leads toan average lifetime τ , that s
ales with the 
ontrol parameter like
τ ∼ (r − rc)

−γ, γ =
1

2
(2.6.11)This s
aling law is quite general and also en
ountered in many boundary 
rises setups(
f. [13℄). Even where the invariant measure prior to the 
risis is a fra
tal measure, itstill applies, even though with a di�erent exponent γ. On the other hand, the argumentis restri
ted to boundary 
rises, where the basin boundary is smooth. It fails for afra
tal basin boundary. Sin
e, in that 
ase, it is not 
orre
t assume a 
onstant es
apeprobability. The holes in the attra
tor, whi
h are 
reated in the boundary 
risis, aregenerally very small for a fra
tal basin boundary su
h that their size will not s
alealgebrai
ally like (r − rc)

γ. Sin
e thus holes are very narrow, one rather obtains as
aling law like
τ ∼ exp

[
C(r − rc)

−γ
] (2.6.12)with a 
onstant C and exponent γ. One observes in this s
aling law, that the averagelifetime depends 
ru
ially on r − rc. Due to the very strong divergen
e of the averagelifetime τ for r → rc, one 
alles these transients super-long transients.As shown by Grebogi, Ott and Yorke in [12℄, super-long transients 
an be 
reated,for example, by an unstable-unstable pair bifur
ation.The s
enario is 
ompiled in �gure (2.11). We 
an see two unstable �xed points. Theone on the basin boundary is unstable in the transversal as well as in the longitudinaldire
tion, 
ompared to the boundary. The point on the 
haoti
 attra
tor is a saddle,whi
h is stable in the transversal dire
tion and unstable in the longitudinal one. At theboundary 
risis, these two points merge and 
reate a very narrow tunnel in phase spa
e,whi
h 
an be seen in panel b. Traje
tories on the prior attra
tor 
an now es
ape fromthe 
haoti
 region and 
ross the boundary to leave the vi
inity and move o� to anotherregion, maybe a stable �xed point.

Figure 2.11: This �gure shows the me
hanism of an unstable-unstable pair bifur
ation.(a) Before the merging 
risis, we have an unstable pair whi
h undergoes asaddle-node bifur
ation in one dire
tion. (b) After the 
risis, the unstablepair has vanished leaving a narrow tunnel in phase spa
e where traje
tories
an es
ape. The 
haoti
 attra
tor has morphed into a 
haoti
 transient.Reprint from [45℄.



2.6. TRANSIENT BEHAVIOUR 27Due to the s
aling law (2.6.12,) the transients 
an have a very long lifetime. As a
onsequen
e, it is nearly impossible to distinguish between the motion on a 
haoti
attra
tor or the motion of a super-long transient. The traje
tories look pretty mu
h thesame for an ex
eedingly large number of iterations. This problem is also en
ounteredin turbulent pipe �ow, where the question, if turbulent �ow is permanent or transientwith a super-long lifetime, is not 
ompletely answered yet [16℄.We have now introdu
ed the most 
ommon types of transient behaviour. In the next
hapter, we will investigate a model system, whi
h en
ounters an unstable-unstable pairbifur
ation. The o

uren
e of a fra
tal basin boundary, lifetime distributions and thes
aling law (2.6.12) will be veri�ed. Another system with mu
h higher dimension willbe introdu
ed in 
hapter 4.
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Chapter 3A Mean-Field Model for Super-LongTransientsBeside experiments, numeri
al simulations of the Navier-Stokes equations and analyti
alsolutions to the Navier-Stokes equations, there is another way to ta
kle the problem. It
ould be possible to build a simple, low-dimensional dynami
al model system [47℄, whi
hlet us investigate some, but not all, aspe
ts of turbulent pu�s. With su
h a simple modelwe are able to a
hieve some analyti
al results really easily. Another advantage is, thatsimulations of su
h a model 
ould be 
arried out really fast on present-day 
omputers.This 
hapter will introdu
e su
h a model system in order to gain some insight into thenature of super-long transients.3.1 The IdeaIn this warm-up problem, we would like to understand where the super-long lifetimeof 
haoti
 transients 
omes from. We re
all some results from [45℄ and apply them toour new model system for pipe �ow. Our aim is to work out the analogy between �uiddynami
s and dynami
al systems vo
abulary. At this point we also 
larify the thingswe will need in the next 
hapter.The laminar state of pipe �ow is a steady state, that is stable against small perturbationsat least for Reynolds numbers up to 107. This fa
t let us model the laminar state asa stable �xed point of our dynami
al model system. The next thing we will 
onsideris the super-long lifetime of turbulent pu�s. It has been shown by Ott, Grebogiand Yorke [12℄ that super-long transients are expe
ted to emerge from an unstable-unstable pair bifur
ation. In this pro
ess, an 
haoti
 attra
tor 
ollides with its fra
talbasin boundary, whi
h leads to a boundary 
risis and a hole in phase spa
e is left, wheretraje
tories 
an es
ape. Due to the fra
tal nature of the boundary, these holes are verysmall, and the traje
tories needs a long time to �nd them. This me
hanism 
an be usedto model super-long transients. The third aspe
t is that the model system should besimple enough. Simple means easy to evaluate on a 
omputer. This is an importantpoint if we want to do simulations faster than a 
omplete simulation of the Navier-Stokesequations. The last point is rather te
hni
al. We expe
t to do measurements of the pipe29



30 CHAPTER 3. A MEAN-FIELD MODEL FOR SUPER-LONG TRANSIENTSturbulen
e in dis
rete time steps. This gives us the possibility to use a dis
rete timemodel, namely a mapping.These points are now summarized1. existen
e of a laminar, stable state for all Re2. unstable-unstable pair bifur
ation gives rise to the transition from turbulen
e tothe laminar state with super-long transients3. system as simple as possible to a
hieve fast simulations4. time-dis
rete systemIt is obvious, that su
h a simple model 
an neither give us the whole variety of turbulentstru
tures nor 
an it be applied to real systems without limitations. But we 
an learnsome basi
 
on
epts the nature of super-long transients. The simpli
ity of the model isseen as a feature, not as a la
k of appli
ability. If we a

ept these 
onstrains, we 
anlearn mu
h about the physi
s of transients, whi
h o

ur in several �elds of physi
s andnature.This model is introdu
ed and dis
ussed in the next se
tion.3.2 The ModelThis model is supposed to be a mean-�eld model. There is no spatial extension and thestate of the system is de�ned by only two dynami
al variables x and y. We 
an thinkof x as the energy stored in the turbulen
e and of y as the 
on�guration of this energy(i.e. a point on an energy shell, 
f. [47℄). Sin
e we are dealing with a mean-�eld model,we 
an only tell if the system is turbulent or not. There is no way to see a transitionfrom 
onve
tive to absolute instability or the moving of a pu� through a pipe.First, we will dis
uss the single dynami
s for x and y seperatly and then introdu
e the
oupling between them.3.2.1 Un
oupled Dynami
sWe will �rst fo
us on the x-dynami
s, whi
h is the 
oordinate that determines theturbulen
e. The simplest non-linear mapping would be a quadrati
 fun
tion xn+1 = x2
n,where n ∈ N0 is the dis
rete time of the system. In order to in�uen
e the x-dynami
s,we introdu
e a 
ontrol parameter a, whi
h shifts the map like xn+1 = x2

n + a. This givesus the opportunity to investigate some bifur
ations of the system. In addition to that,we need a stable �xed point to model the laminar state. This laminar state is arbitrarily
hosen to be at x = −2.Colle
tively, we get the mapping (
f. �gure 3.1)
xn+1 = f(a, xn) =

{

−x2
n + a , x ≥ x∗

−2 , x < x∗

(3.2.1)
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aFigure 3.1: The left image shows the x-dynami
s for a = −0.21. The bifur
ation dia-gram is shown on the right side. Dots are the simulated points, the dashedline is the 
omputed position of the unstable �xed point, es
aping from thesaddle-node bifur
ation.where x∗ is the interse
tion of the two bran
hes of f with the value x∗ = −
√

2 + a (
f.�gure 3.1). This means that for values x < x∗ the system goes dire
tly to the laminar�xed point while we have a non-trivial dynami
s for x > x∗.We will now have a 
loser look on the �xed points of f . The �xed point equation (2.2.3)gives us up to three di�erent �xed points
xf

0 = −2, xf
1/2

= −0.5 ±
√

0.25 + a (3.2.2)Here, the 
riti
al value is ac = −0.25. For a < ac we have only one real �xed point,namly xf
0 . In this 
ase xf

0 is a global attra
tor, sin
e x is bounded by max(f) to thetop and values x < x∗ are mapped to xf
0 . Two new �xed points o

ur in a tangentbifur
ation as a 
rosses ac from below and xf

0 is no longer a global attra
tor. This 
anbe understood by analyzing the stability of the �xed points. Therefore, we 
al
ulate the�rst derivative of our map f .
f ′(a, xn) =

{

−2xn , x ≥ x∗

0 , x < x∗

(3.2.3)We already know from se
tion 2, that a �xed point is stable, if |f ′| ≤ 1. This gives usthe result, that xf
0 is stable regardless of a. We also get that xf

1 is unstable for a > ac.At 
reation at a = ac, the �xed point xf
2 is stable. It loses its stability at a = 0.75, where∣

∣
∣f ′(xf

2)
∣
∣
∣ 
rosses 1. The loss of stability of xf

2 gives rise to a period doubling bifur
ation,as it is well known from the logisti
 map [9℄.Another interesting point is the basin of attra
tion of these �xed points in the parameterregion a ∈ [ac, 0.75]. The basin of attra
tion for xf
2 is given by I2 := [xf

1 ,−xf
1 ]. Note that

xf
1 < 0. Sin
e there are only two stable �xed points in this parameter range, the basinof attra
tion for xf

0 is I0 := R \ I2. For a > 0.75 the �xed point xf
2 undergoes a perioddoubling 
as
ade to 
haos. At a = 2 we 
an 
ompute that the 
ondition x∗ = xf

1 = −2is ful�lled. This is the indi
ator for a non-generi
 boundary 
risis, where the attra
torin I2 loses its stability. For a > 2 the dynami
s are no longer well de�ned, sin
e x∗ < −2



32 CHAPTER 3. A MEAN-FIELD MODEL FOR SUPER-LONG TRANSIENTSand −2 is no longer a �xed point, whi
h means that we lose the laminar state and ourmodel makes no sense any more.This results 
an be 
ompiled into a bifur
ation diagram. This diagram 
an be 
omputedby a little 
omputer algorithm, whi
h is des
ribed in the following1. 
hoose a 
ontrol parameter a2. take N random initial 
ondition xi, i ∈ {1, . . . , N}3. iterate the xi with the map f for n0 timesteps4. iterate ea
h traje
tory for another n1 timesteps and output the values5. go ba
k to 1) for another aIt is important to note that our algorithm 
an only determine the stable orbits1. Thebifur
ation diagram for f is illustrated in �gure 3.1.We would like to trigger an unstable-unstable pair bifur
ation a

ording to the me
h-anism in [45℄. Therefore, we are only interested in parameter values near ac. We haveanalyzed the most important aspe
ts of the x-dynami
s and 
an now turn our fo
us onthe se
ond dire
tion.The y-dynami
s is responsible for the 
haoti
 dynami
s, whi
h we need for the boundary
risis in the unstable-unstable pair bifur
ation. It is advantageous to take a periodi
map. This keeps the interesting phase spa
e bounded and one 
an therefore do fastersimulations. So we propose a map g(y) = g(y + Y ) with some period Y . The obvious
hoi
e would be a simple sine g(y) = sin(y). But there is a problem with this mapping,be
ause it is impossible to solve the �xed point equation x = sin(x) analyti
ally. Inorder to avoid this te
hni
al problem, we use a 'linear version' of the sine fun
tion,whi
h is de�ned as (
f. �gure 3.2,left)
g(b, yn) =







byn ,−0.5 < yn ≤ 0.5

b(1 − yn) , 0.5 < yn ≤ 1.5et
. (3.2.4)Another advantage is the symmetry of this fun
tion, whi
h further simpli�es the taskto 
ompute �xed points, their stability and bifur
ation diagrams. We have 
hosen theslope b to be the 
ontrol parameter for this dynami
s. The period of the fun
tion is setto Y = 2.From the �xed point equation, we see that g has also up to three �xed points,
yf

0 = 0, yf
1/2

= ± b

b + 1
(3.2.5)For this spe
ial 
hoi
e of g it is quite easy to 
ompute the stability of the �xed points,be
ause we have |g′| = b, irrespe
tive of the point we are interested in. For b < 1, we1Unstable �xed points 
an be 
omputed by applying ba
kward iteration, sin
e they are stable ofinversed time �ow.
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bFigure 3.2: The left image shows the y-dynami
s for b = 2.1. There are three �xedpoints of the map. The bifur
ation diagram is shown on the right side. Amerging of the two bands is happening at b = 2, where we expe
t 
haoti
behaviour.have only one �xed point at yf
0 . This �xed point is stable and a global attra
tor, sin
e

g is bounded. A non-generi
 bifur
ation is en
ountered at b = 1. At this parameter,we have in�nitely many �xed point, whi
h are all marginally stable. But at b = 1 + ǫfor an arbitrary small ǫ > 0, we get the three �xed points given in (3.2.5), whi
h are
learly all unstable. For values 1 < b < 2 there is a de
oupling of the two bran
hes.Initial 
onditions starting with yi > 0 stay in the positive region, while traje
tories with
yi < 0 stay in the negative region. We are e�e
tively dealing with two independenttent maps, whi
h have the same dynami
s with inversed sign. Sin
e the tent map istopologi
ally 
onjugated to the logisti
 map, we get the same bifur
ation behaviour likethe logisti
 map. g is exhibiting a period doubling route to 
haos. The two independentbands are be
oming 
haoti
 and merge at b = 2. The two independent bran
hes startto 
ommuni
ate again and we have a 
haoti
 dynami
s on the whole domain. Thisfa
t is supported by the investigation of the bifur
ation diagram displayed in the rightpanel of �gure 3.2. Our aim was to trigger an unstable-unstable pair bifur
ation. The
y-dynami
s has the job to 
ontribute with a 
haoti
 dynami
s. For this 
ase, we 
hoosethe system parameter to be b = 2.1 for the rest of this se
tion.We have now a good understanding of the x and y-dynami
s seperately. But super-long transients need at least two dimensions (
f. [45℄), sin
e we need a fra
tal basinboundary for the small holes in phase spa
e. This rises the question for a su�
ient
oupling between this two dire
tions. That problem is ta
kled in the next se
tion.3.2.2 CouplingAs already mentioned, the unstable-unstable pair bifur
ation should be triggered by the
oupling. The lifetime of the transients is then depending on the 
oupling strength ǫ.This 
oupling strength is meant to be the only parameter of the system and is relatedto the Reynolds number. In order to take ǫ as the only system parameter, we need to�x a and b to sensible values. As mentioned above, the y dynami
s should be 
haoti
 onthe whole domain. Therefore, we set b = 2.1 as a value slightly above the band merging
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tion, we 
hoose a parameter a = a∗ := −0.21 as a starting point.Sin
e a∗ > ac, we are above the bifur
ation point, where a 
haoti
 attra
tor is 
oexistingwith the �xed point at xf
0 . The idea for the 
oupling is, that we 
an introdu
e it in away, that the y dynami
s 
an trigger the bifur
ation. This means that a strong 
ouplingstrength ǫ 
an destroy the 
haoti
 attra
tor in I2. Therefore, we introdu
e the 
ouplingin a way to shift the 
ontrol parameter a through the bifur
ation point.

a = a∗ − ǫ |yn| ǫ > 0 (3.2.6)The absolute value of y prevents the 
oupling to shift a in the wrong dire
tion. Thestrength of the 
oupling 
an be adjusted by ǫ. The maximum shift is given by
max(ǫ |y|) =

ǫb

2
= 1.05ǫ (3.2.7)The de�nition (3.2.6) leads to a 
riti
al 
oupling strength, whi
h is de�ned as the 
ou-pling strength, where we en
ounter the unstable-unstable pair bifur
ation, namely at

a = ac. After rearranging (3.2.6), we get
ǫc =

a∗ − ac

b
2

≈ 0.047 (3.2.8)for a∗ = −0.21, ac = −0.25 and b = 2.1.With this 
oupling de�nition, we have a global attra
tor at x = −2 for ǫ > ǫc. Wewill mention that the word attra
tor only refers to the x dire
tion. The dynami
s in
y-dire
tion is always 
haoti
 and we are always using the x dynami
s to 
lassify thebehaviour of the system. Is is worth noting that the y dynami
s is not in�uen
ed by x.Therefore, it 
an be iterated independently. In the 
ase where ǫ < ǫc there exists two�xed points in x, namely xf

1/2
. This leads to an attra
tor in the interval IA := [xf

1 ,−xf
1 ].Here we have to keep in mind, that xf

1 depends on a and eventually depens on y. Wewill denote IA as the attra
tor region.There is another point to make on the de�nition of ǫ. When we 
ompare it to the 
ontrolparameter of turbulent pipe �ow, we 
an try the obvious relation ǫ ∼ Re−1. The valueof ǫ de
ides, whi
h lifetime the transient will have. The larger ǫ is, the shorter is theaverage lifetime.The evolution equations 
an now be summarized as
xn+1 = f(a∗ − ǫ |yn| , xn) (3.2.9a)
yn+1 = g(b, yn) (3.2.9b)This system 
an be simulated in order to 
he
k, if it shows the expe
ted behaviour. The�rst step is to analyze the lifetime for di�erent initial 
onditions. We mark a traje
toryas 'dead' if it is at the stable �xed point x = −2. The algorithm we will now introdu
eis 
alled the phase spa
e algorithm from now on and is de�ned by some simple steps1. 
reate a grid with mesh size α in the interesting phase spa
e region2. take the nodes of the grid as the initial 
onditions for the simulation



3.2. THE MODEL 353. iterate ea
h initial 
ondition with the equations (3.2.9)4. asso
iate to ea
h node the number of iteration needed to rea
h the dead state5. plot the lifetime as a 
olor-
oded plot in phase spa
eThe 
omputational e�ort of this algorithm s
ales quadrati
ally with the mesh size α,su
h that it is very hard to rea
h very high resolutions.The phase spa
e plots for two values of ǫ are shown in �gure (3.3). The attra
tor appearsas a green region. For ǫ < ǫc, the white region is the basin of attra
tion for the attra
torin IA and the 
oulored region is the basin of attra
tion of xf
0 , where these two regions areseparated by the basin boundary. For ǫ > ǫc, the attra
tor is destroyed in an unstable-unstable pair bifur
ation. Beyond this bifur
ation, the white region denotes the regionwhere a traje
tory �rst stays in the region of the prior attra
tor before moving o� to thelaminar �xed point. The 
oulored region then stand for those initial 
ondition, whi
himmediatly move to xf

0 whithout spending time in IA. The boundary is now 
alled theedge of 
haos, whi
h is sperating traje
tories with this di�erent behaviour.In addition to the 
olor-
oded lifetime, we have plotted a single traje
tory of the systemstarting in IA for 1010 iterations. The spiky basin boundary attra
ts the attention whilelooking at the phase spa
e plots. This suggests a fra
tal basin boundary, whi
h is a
ondition for the unstable-unstable pair bifur
ation and the super-long transients. Thisfra
tal behaviour stems from the 
haoti
 y dynami
s. Another striking aspe
t is thesymmetry in the plots. This 
omes from the symmetry of g and the 
oupling via theabsolute value |y|.

Figure 3.3: We see a phase spa
e plot of the system. The 
olor 
odes the number ofiteration needed to rea
h the laminar point at x = −2. Green dots indi
atea single traje
tory starting at a random initial point in the region around
xf

2 . The left panel shows a plot for ǫ = 0.06, where we do not see an es
apingtraje
tory. The right panel is for a slightly larger 
oupling ǫ = 0.065, wherean es
aping traje
tory is en
ountered 
lose to (x, y) = (−0.5, 0.7). Thelast dots of the traje
tory have been plotted in larger size to improve theirvisibility.



36 CHAPTER 3. A MEAN-FIELD MODEL FOR SUPER-LONG TRANSIENTSWe do not see any points at the edge of 
haos for ǫ = 0.06. It seems that all iterationsof the traje
tory stay in the region IA, although 0.06 > ǫc. This fa
t is investigatedfurther in se
tion 3.4. For ǫ = 0.065 we 
an see that after about 1.3 · 1010 iterations thetraje
tory approa
hes the edge of 
haos, 
rosses it and moves o� to the laminar point.In the next two subse
tions, we will determine the shape of the edge of 
haos with avery high a

ura
y then analyse and the distribution of the average lifetimes of thetransients.3.3 Computing the Edge of ChaosThe edge of 
haos seperates states of fundamentally di�erent behaviour [47℄. States onthe laminar side move dire
tly to the laminar �xed point, while states on the 
haoti
side move to the 
haoti
 region �rst and seem to follow the traj
etory of the prior
haoti
 attra
tor before they eventually �nd a hole in the boundary and es
ape to thelaminar point. Sin
e the holes are very small for a fra
tal basin boundary near the
riti
al value, the traje
tories nearly never noti
e es
ape 
hannels and therefore evolvelike traje
tories on an attra
tor. In pra
ti
e, it is often very hard to de
ide whether anobserved traje
tory moves on an attra
tor or if it is just a transient to another regionin phase spa
e.The phase spa
e algorithm des
ribed above is quite good for s
anning the phase spa
efor the lifetime at several points, but its high requirements on 
omputer time, severelyhinders a high resultion of the edge, i.e. a small mesh size. Therefore, we implementedanother algorithm whi
h is spe
ialized to �nd the edge with high a

ura
y. It will bedenoted as the 'edge tra
king algorithm'.We �rst need to point out, that a �xed point, whi
h is stable, is unstable if we inversethe time �ow. In forward dire
tion, points very 
lose to the edge at the laminar sidemove to the laminar �xed point. The idea is to take an initial point near the laminar�xed point and 
ompute the preimages of that point, whi
h rapidly generates a highlya

urate approximation to the edge of 
haos.Ea
h ba
kward iteration yields several preimages. Sin
e the y dynami
s is de
oupledfrom x, it is useful to start the ba
kward iteration pro
ess with y. As seen in �gure 3.2,
yn+1 has up to three preimages yn, depending on its value. Therefore, we need to �ndthe value g(b, b/2), whi
h gives us the lower bond for where yn+1 has three preimages.This 
an be easily 
al
ulated to be

g(b, b/2) = −b(b/2 − 1) = −0.105, for b = 2.1 (3.3.1)Due to the symmetry of g, we found, that for yn+1 ∈ [−0.105, 0.105], we have threepreimages. Otherwise we get only two. On
e we found the preimages of yn+1, we areable to 
al
ulate those for xn+1. The quadrati
 part of f gives us two preimages. The
oupling depends on y and therefore we get four to six preimages for a given state
(xn+1, yn+1). But these preimages do not all lie on the boundary. We 
an see from theplots, that only negative x values build the boundary. Therefore, we do not need to takethe positive x values into a

ount. We also do not need them in the further appli
ation
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ause positive x values have no preimages, sin
e max(f) < 0 for thevalues of a and ǫ we are interested in.Now we 
an think of a little estimate for the resolution quality of the edge tra
kingalgorithm. As mentioned above, we get two to three interesting preimages. We applythe preimage 
omputation to a depth of 20 levels, by applying the algorithm to ea
hpreimage, we got in the �rst step, again and again. This gives us at least 220 interestingpreimages of a point near the laminar �xed point. We suppose that these points areall lying on the edge of 
haos, sin
e the phase spa
e algorithm suggests, that 20 stepsare enough to rea
h the laminar point, if we have 
rossed the boundary. The lengthof interest in y dire
tion is ∆y = 2.1 as 
an be seen from the phase spa
e plots. Thatyields a resolution of 2.1/220 ≈ 2 · 10−6 for the edge tra
king algorithm. This 
an be
ompared to the mesh size of the phase spa
e algorithm, whi
h is α = 0.001. So we see,that the edge tra
king algorithm is mu
h more e�
ient for determining the boundarythan the more general phase spa
e algorithm.A 
omparison of the two algorithm shows, that the boundary is the same in both 
ases,but with higher resolution in the edge tra
king algorithm. The high resolution resultssupport the assumption of a fra
tal boundary. Although this is not a mathemati
alproof, we 
an 
he
k if the lifetime s
ales like we expe
t it from the me
hanism proposedin [12℄ for fra
tal basin boundaries. Rather, a fra
tal basin boundary is also expe
ted,sin
e λy > λx for the Lyapunov exponents in x- and y-dire
tion, respe
tively (
f. [47℄).3.4 Lifetime PlotsWe will now 
ome to the question of how the average lifetime of the transients behaveswith varying 
oupling strength. In order to 
al
ulate the lifetime, we randomly sele
ted
N0 = 2000 initial 
ondition for ea
h 
oupling strength in the 
haoti
 region and let themevolve until the traje
tory is dead. The number of iterations is taken to be the lifetime
τi for this initial 
ondition. Then we take the average lifetime as

τ =
1

N0

N0∑

i=1

τi (3.4.1)where τi is the lifetime of the i-th random initial 
ondition.Another possibility we have tried is the following. Sin
e we are dealing with a de
aypro
ess, we expe
t that the number of initial 
onditions that are still alive after a time
t s
ales like

N(t) = N0 exp(−t/τ) (3.4.2)With a log-normal plot we 
an 
ompute τ via a linear �t to the data. Both methods of
omputing τ yields the same results within the numeri
al a

ura
y.After having de�ned the 
omputational methods, the task is now to determine thedependen
e of the lifetime τ on the distan
e to the 
riti
al point (ǫ − ǫc). The �rstthing we noti
e in the phase spa
e plots is, that even at values quite above ǫc, i.e. at
ǫ = 0.06, we do not en
ounter any es
aping traje
tories from the 
haoti
 region. In orderto analyze this issue, we 
ompute the average lifetime for di�erent values of ǫ > ǫc, larger



38 CHAPTER 3. A MEAN-FIELD MODEL FOR SUPER-LONG TRANSIENTSthan ǫ = 0.06. This gives us simulation data for τ(ǫ − ǫc). We �tted this data with thes
aling law suggested by [12, 45℄.
τ ∼ exp(C(ǫ − ǫc)

χ) (3.4.3)The plot is shown in �gure 3.4. As we 
an see from the �t, the expe
ted s
aling law isfound in the simulation data. We are now 
onvin
ed, that we are dealing with super-long transients. The meaning of 'super-long' is well demonstrated by 
al
ulating τ fordi�erent 
oupling strength with our �tted fun
tion.For ǫ = 0.65 we get τ = 1.3 · 107 out of the �t, whi
h is in very good agreement withthe data. 107 iterations 
an easily be done on our 
omputers2, even with quite some
omputing time. We 
an now 
al
ulate the average lifetime for a slightly lower value,where we have not seen any es
aping traje
tories, namely for ǫ = 0.06. The �t tells us,that we should expe
t a value like τ ≈ 1028. This is the explanation why we were notable to resolve any transients in this 
ase. The 
omputing time for 1028 iterations is farout of rea
h of 
omputers.This results shows, that we are dealing with super-long transients es
aping from anunstable-unstable pair bifur
ation. The edge of 
haos is fra
tal and supports a superex-ponential s
aling law for the average lifetime. We see that the average lifetime is verystrongly diverging, whi
h is due to the fa
t that χ = −4.49. This s
aling law assumptionis only valid for ǫ > ǫc and the average lifetime goes to in�nity for ǫ → ǫc. This 
an be
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Figure 3.4: The average lifetime for di�erent values of ǫ. The �tted data is given bythe s
aling law τ = τ0 exp(C(ǫ − ǫc)
χ), where τ0 = 79.04, C = 2.1e − 7 and

χ = −4.49. The inset shows a double log-log plot in order to verify (3.4.3).The straight line supports the expe
ted s
aling.2We used a 
omputer with an Intel Core 2 Duo 3GHz CPU and 3GB RAM
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ompared to our introdu
tory question of the average lifetime of turbulent pu�s. For
Re < Rec, we have an exponential s
aling of the average lifetime of turbulent pu�s,where for Re > Rec the lifetime is in�nity, whi
h means that a turbulent pu� is neverde
aying.3.5 SummaryAfter motivating the idea for the model, we presented our implementation of the dy-nami
s. The x-dynami
s is responsible for the tangent bifur
ation while the y-dynami
sgive rise to the unstable-unstable pair via the 
haoti
 dynami
s. The 
oupling has beenintrodu
ed in a way that it triggers the interesting bifur
ation by only one parameter,whi
h is the 
oupling strength ǫ. Lifetime plots were given for di�erent ǫ in whi
hwe 
ould see, that the 
omputationally resolvable lifetime is en
ountered for 
ouplingstrengths far beyond the 
riti
al value ǫc. This is veri�ed a posteriori with the �tted
urve of average lifetime to the simulation data, whi
h assures the exponential s
alinglaw of super-long transients and gives us the possibility to 
al
ulate the lifetimes forvalues of the 
oupling strength really near to ǫc.We also investigated the basin boundary between the laminar and the 
haoti
 regionwith a very high a

ura
y. This supports the suggestion that we are dealing with afra
tal basin boundary. This fa
t is also supported by the average lifetime s
aling law,sin
e the lifetime is expe
ted to be super-long only for a fra
tal basin boundary. Ouredge tra
king algorithm is presented in a short paragraph to show how good the a

ura
yis 
ompared to the phase spa
e algorithm.Summing up, we have found a model system, whi
h shows super-long transient be-haviour. The model shows, that super-long transients are not exoti
 obje
ts with nophysi
al meaning. The quite simple me
hanism of an unstable-unstable pair bifur
a-tion is used as a stereotype of a bifur
ation, whi
h 
reates super-long transients. Thesetransients do not show a power-law s
aling like at a 
risis in a syste with one unsta-ble dire
tion and a smooth basin boundary. Hen
e, this analysis demonstrates, thatsuper-long transients 
an be modelled by simple models.The underlying dynami
s has been tested and they build the basis for further analysis ofa slightly more 
ompli
ated model, namely a unidire
tional 
oupled map latti
e, whi
his investigated in the next 
hapter.
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Chapter 4An Unidire
tional Coupled MapLatti
e (uCML) for Pipe Turbulen
e
Hof et al. [16,17℄ have shown, that turbulent pu�s have a super-exponential s
aling lawwith the Reynolds number

τ ∼ exp(CReγ) (4.0.1)and may hen
e be viewed as an instan
e of a dynami
al system with super-long tran-sients. Additionally, very a

urate measurements [34℄ and 
omputer simulations [30℄ onthe Navier-Stokes equations have shown linear stability of the laminar pipe �ow pro�leup to Reynolds numbers of 107. This leads to the well a

epted fa
t, that the laminarstate is a stable �xed point and a turbulent pu� a traje
tory on a high-dimensional
haoti
 saddle with several unstable dire
tions [4,7,8,23,24℄. Sin
e turbulent pu�s havea �nite length, while travelling through the pipe, they are identi�ed to be a 
onve
tiveinstability. They �ow downstream without any signi�
ant 
hange of width.At a larger Reynolds number ReSl the 
onve
tive instability turns into an absoulteinstability. The turbulen
e spreads throughout the pipe and �nally �lls it 
ompletely.This state is known as a turbulent slug [32, 51℄. A slug 
an not be 
hara
terised by its
Figure 4.1: Top: simulation of a turbulent pu� for Re = 2250. The size of the turbulentstru
ture stays �nite and therefore is identi�ed as a 
onve
tive instability.Bottom: turbulent slug for Re = 2800. The perturbation in
reases in sizeand eventually �lls the whole pipe. This is known as an absolute instability.Reprint from [32℄.lifetime, sin
e this is in�nite per de�nition. The important quantity to look at is theaverage growth, whi
h 
an be measured in dependen
e on Reynolds number.In order to gain qualitative insight into the s
aling of lifetime of 
onve
tive instabilitiesin quasi one-dimensional systems, i.e. for pu�s, and the transition to absolute insta-bility �ows, i.e. from pu�s to slugs, we 
onstru
t and analyse a spatially extended,41



42 CHAPTER 4. AN UCML FOR PIPE TURBULENCEone-dimensional system. In this 
hapter, whi
h shows these transitions. Be
ause ofthe simpli
ity of the system one 
an do very fast 
omputer simulations and study thetransition me
hanisms analyti
ally. This gives us the opportunity to gain insight intothe fundamental aspe
ts of these transitions from a dynami
al systems point of viewand helps to improve the understanding of turbulent stru
tures in pipe �ow.Thus, this model shall give us insight into the behaviour of turbulent pu�s and slugs, justlike the model from 
hapter 3 gave us some knowledge about the nature of super-longtransients.Sin
e we are not using the Navier-Stokes equations in our simulations, no statements onreal values like 
riti
al Reynolds numbers, 
an be made. But there are useful analogiesbetween real parameters and our system parameters. Rather than the Navier-Stokesequations, a 
oupled map latti
e will be studied, as dis
ussed in the following se
tion.4.1 Why CML?A spatially extended system is needed in order to provide travelling stru
tures, like pu�sin a pipe. After all, turbulent pu�s are observed in very long pipes.In experimental setups, the length L of a pipe is typi
ally three orders of magnitudelarger than its diameter D. Studies on 
oherent stru
tures in pipe �ow have shownthat those stru
tures 
an be des
ribed by the analysis of several 
ross-se
tions along theaxis [42℄.All these assumptions 
an be interpreted as a latti
e in one dimension, i.e. a 
hain,whi
h has a dynami
s that is updated at �xed time steps (
f. �gure 4.2).
Figure 4.2: Visualisation of a one-dimensional latti
e. The state variables are updatedat dis
rete time steps. f is the on-site dynami
s and g the 
oupling fun
tion.Ea
h site of the 
hain des
ribes a sli
e of the pipe. In addition to that, a quantity todes
ribe the level of turbulen
e is needed. This quantity 
an be taken to be the averageenergy or vorti
ity of a sli
e of the pipe. This is a value xi

t ∈ R, whi
h 
an be determinedfor ea
h time t and ea
h spa
e i. The quantity xi
t is in�uen
ed by a lo
al dynami
s, i.e.it is strongly a�e
ted by the Reynolds number. Its on-site dynami
s will be des
ribedby the one-dimensional mapping

f : R → R, xi
t+1 = f(xi

t) (4.1.1)In order to get an intera
tion between sites, a 
oupling g is ne

esary. It is generallyde�ned as
g : R

m → R, g(x1

t , . . . , x
m
t ) = xi

t+1 (4.1.2)



4.2. MODEL AND SPACE TIME BEHAVIOUR 43Sin
e we want to model turbulent pu�s, whi
h travel downstream, we 
hoose a undire
-tional forward 
oupling. This means, the 
oupling only depends on the next upstreamneighbour.All these 
onditions de�ne a system, whi
h is referred to as a 
oupled map latti
e intextbooks [3℄.De�nition 12. A Coupled Map Latti
e (CML) is a dis
rete-spa
e, dis
rete-time latti
ewith on-site dynami
s f : R → R and 
oupling g : R
m → R, whi
h obeys the evolutionequation

xi
t+1 = αg(x1

t , . . . , x
m
t ) + f(xi

t) ∀i ∈ {1, . . . , m} (4.1.3)
xi

t is the state variable at time t and site i. α is denoted as the 
oupling strength.For a nearest-neighbour forward 
oupling xi
t+1 = αg(xi−1

t )+f(xi
t), su
h a system is 
alleda unidire
tional CML (uCML).This 
ompletes the basi
 de�nitions of the model system.This se
tion should have made 
lear, why a unidire
tional CML is a good model tostudy, when dealing with turbulent pu�s. This model will give us the opportunity tosimulate stru
tures similar to turbulent pu�s and slugs. The great advantage is, thatthe simpli
ity of the uCML enables us to analyse some features analyti
ally. The 
hoi
eof mappings is also very good, when it 
omes to 
omputer simulations. Simulationsare very fast, be
ause we only have to 
ompute the evolution of the state variables fordis
rete time and spa
e.In order to study the spa
e-time behaviour of the uCML, the on-site dynami
s f and the
oupling fun
tion g have to be de�ned �rst. Then we 
an investigate, how the systemparameters 
hange the spa
e-time behaviour and have a look at some spa
e-time plots.This will be done in the next se
tion.4.2 Model and Spa
e Time BehaviourThe de�nition of the general model of a uCML will be 
ompleted by the 
on
rete on-sitedynami
s and 
oupling. In doing so we try to keep the system as simple as possible. Wewill �rst introdu
e the on-site dynami
s.A turbulent pu� 
an be seen as a traje
tory on a 
haoti
 saddle. Therefore, we need aleaky 
haoti
 region in our lo
al dynami
s, where traje
tories 
an es
ape. The simplestmap with those properties is the tent map. It has the advantage to be pie
ewise linear.This makes analyti
al 
al
ulations very easy to handle. Additionally, it is topologi
ally
onjugate to the logisti
 map. Therefore, we already know the �xed points and bifur
a-tion behaviour from our model in 
hapter 3. An additional bene�t is that no windowswith stable periodi
 orbits exist. The height h of the tent is 
hosen to be the 
ontrolparameter for the lo
al dynami
s. The se
ond fa
t is, that the laminar state shouldbe stable for all Reynolds numbers of interest. Therefore, the lo
al dynami
s shouldhave a stable �xed point for every value of h. This setup allows a transition from the
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haoti
 saddle to the stable �xed point, whi
h mimi
s the relaminarisation s
enario forturbulent pu�s. These 
onditions 
an be used to de�ne the on-site dynami
s as
f(x) =







h(x − δ) δ ≤ x < 1 + δ

−h(x − 2 − δ) 1 + δ ≤ x

0 x < δ

(4.2.1)
δ is a free parameter of the system, seen as a shift in the dynami
s (
f. �gure 4.3). Thedistan
e δ > 0 seperates the stable �xed point from the 
haoti
 region. We will keep
δ = 0.1 �xed throughout the whole work. The parameter dependen
e of the uCML on δwill not be investigated. This leaves the height h as the only 
ontrol parameter, whi
halso determines the slope

f ′(x) =







h δ ≤ x < 1 + δ

−h 1 + δ ≤ x

0 x < δ

(4.2.2)and therefore, de�nes the stability of �xed points. f has up to three �xed points
xf

0 = 0 , xf
1 =

hδ

h − 1
, xf

2 =
h(2 + δ)

1 + h
(4.2.3)

xf
0 is always stable and mimi
s the laminar state of the pipe. The stability of xf

1 and xf
2is 
ontrolled by h.In order to obtain an es
aping, 
haoti
 dynami
s, we use values h ≥ 2. For hc := 2,the system exhibits a boundary 
risis in whi
h traje
tories 
an es
ape from the 
haoti
region. This 
an be seen from the bifur
ation diagram in �gure 4.3, but 
an also be
omputed analyti
ally.The 
haoti
 region is de�ned as the region between xf

1 and p := (2 + δ) − (xf
1 − δ) (
f.�gure 4.4).
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Figure 4.3: Left: plot of the on-site dynami
s f . We have a stable �xed point at xf
0 = 0and two more �xed points in the adja
ent region. Right: bifur
ation diagramfor the tent map. For h = hc, there is a boundary 
risis.
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Figure 4.4: Left: values near x ≈ 1 + δ are mapped to larger values than p for h > hc.This denotes a non-vanishing es
ape probability. Right: the 
oupling of theuCML. g has a �xed point at x = 0.This 
an be understand, by taking values of x into a

ount, that are mapped beyond p.These values will eventually move to the laminar �xed point xf
0 , sin
e they are mappedto the left of xf

1 , whi
h is unstable for h > 1. The marginal 
ondition for an es
ape fromthat region is therefore given as
f(1 + δ) = p (4.2.4)sin
e 1+ δ is the point, where f has its maximum, namely f(1+ δ) = h. Using equation(4.2.3), we 
an express p in term of δ and h

p = 2 + 2δ +
hδ

1 − h
(4.2.5)The 
ondition (4.2.4) 
an now be written as an equation that de�nes the 
riti
al height

hc in terms of δ

hc = 2 + 2δ +
hcδ

1 − hc

(4.2.6)This equation has two solutions, hc = 1 + δ and
hc = 2 (4.2.7)The solution hc = 1 + δ marks the point, where the tent hits the diagonal line for the�rst time. This determines the beginning of the bifur
ation s
enario, where xf

1 = p.This is an uninteresting point for the simulations of turbulent pu�s. Therefore, we
on
entrate on hc = 2. This is the point of the boundary 
risis (
f. bifur
ation diagram4.3, right panel). Sin
e, we are interested in turbulent pu�s, we will only investigatethe dynami
al behaviour for values h > hc. This implies, that the �xed points xf
1 and

xf
2 are always unstable, the Lyapunov number is larger than 1 (
f. (4.2.2)). The onlystable �xed point is xf

0 . We 
an see in the bifur
ation diagram, that f follows the sameroute to 
haos as a bran
h of the pie
ewise linear sine map from 
hapter 3. For h = hc,we have a boundary 
risis, whi
h gives us the opportunity to see transient behaviour.After having de�ned the lo
al dynami
s f and identi�ed important parameter values wewill now 
ome to investigate the 
oupling g. The 
oupling should have a spe
ial formto support travelling stru
tures, like turbulent pu�s. This will be done by a forward
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oupling. If a site is in the laminar state, it 
an not spread turbulen
e to its downstreamneighbour. This �xes g at the �xed point xf
0 = 0 to

g(0) = 0 (4.2.8)In addition to that, we only want to trigger turbulen
e, if the upstream neighbour is inthe turbulent region. This yields
g(x) = 0 x < δ (4.2.9)We now 
hoose the 
oupling in a way, that

g(x) > 0 1 + δ ≤ x < 2 + δ (4.2.10a)
g(x) < 0 δ ≤ x < 1 + δ (4.2.10b)This leads to the behaviour, that a turbulent site in 1 + δ ≤ x < 2 + δ 
an ki
kthe downstream laminar neighbour into the 
haoti
 state via a positive 
oupling. Thenegative part of g 
an redu
e the turbulen
e at the downstream site or 
an even pull itba
k to the laminar state. This 
an be interpreted, that a pu� 
an take energy from aturbulent downstream region. In 
on
lusion, the 
oupling is de�ned as

g(x) =

{

−1.5(x − δ)(x − 1 − δ)(x − 2 − δ) δ ≤ x < 2 + δ

0 else (4.2.11)Note, that g has no free parameters, sin
e δ is �xed. A dependen
e on α will be explainedseperately se
tion (
f. se
tion 4.6).Further, g(x) has only one �xed point at 0. This �xed point is stable (
f. �gure 4.4, rightpanel) and a linear perturbation does not apply a positive 
oupling, so that the laminarstate is still stable. After having de�ned th lo
al dynami
s as well as the 
ouplingfun
tion g, we address the question of the 
orre
t boundary and intial 
onditions.A general problem in pipe experiments is the �nite length of the pipes. This problem 
anbe over
ome in simulations, where the number of sites 
an be in
reased, within the limitsof 
omputational power. A better possibility is to use period boundary 
onditions. Thiskeeps the phase spa
e small and one needs less memory than storing large latti
es, inwhi
h most 
ells are in the uninteresting, laminar state. Sin
e the 
oupling rea
hes onlyone site downstream, one 
an therefore implement very e�
ient algorithms to simulatethe model. But one has to keep an eye on the length of the stru
tures. If the stru
tureextends through the whole pipe, one would get feedba
k e�e
ts due to periodi
 boundary
onditions. Those traje
tories would have no relevan
e to real systems and thereforehave to be avoided.Sin
e we want to study turbulent pu�s, we start with a system that is in a laminar state.That means, that ea
h site is initially at the laminar �xed point xf
0 , 
orresponding tolaminar pipe �ow. A pu� is experimentally 
reated by blowing a small amount of waterinto the laminar pipe. This perturbation then travels through the pipe. We will perturbthe �rst site of our uCML and investigate the spa
e-time behaviour of the system. For
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aying and the systems remains laminar.This is due to the fa
t, that the laminar state is linearly stable. For perturbations in
[δ, 2+δ], the on-site dynami
s as well as the 
oupling is non-vanishing. This 
an produ
etravelling stru
tures along the latti
e, just like pu�s in a pipe. Therefore, we take a valuein [δ, 2 + δ] as initial 
ondition for the �rst site.We have now everything we need in order to simulate the system. The spa
e-timebehaviour is shown in �gure 4.5 for several parameter values.A great variety in the evolution of the states 
an be seen in the plots. The abs
issades
ribes the time of the system, while the ordinate denotes the site number of ourlatti
e. The 
olour is 
oding the state variable x at ea
h site. The range is 
hosen torun from [0, 2 + δ]. Therefore, bla
k sites are in the laminar state, while 
oulored siteshave a di�erent degree of turbulen
e.In panel a), we 
an see that for h = 2.1 and non-vanishing α = 0.2 no stru
tures travelthrough the latti
e. For larger values, at α = 0.5, there are stru
tures that run throughthe latti
e (panel b) and the lifetime of these stru
ture is signi�
antly larger for 
ouplingstrengths, e.g. α = 0.8 in panel 
). For α = 2.8 the front is travelling mu
h faster thanthe ba
k. This behaviour will be interpreted as a turbulent slug. Slugs disappear againin our model for larger 
oupling strengths α > 4.0 (panel e). Panel f) shows, thateven for a small 
oupling strength of α = 0.5, the lifetime is very long, if we de
reasethe height h to values 
loser to hc. These spa
e-time plots give a �rst hint about thedi�erent behaviour of the system for varying 
ontrol parameters α and h. To arive ata more 
omprehensive des
ription, we 
onsider now lifetimes and velo
ity distributions,obtained by averaging over many traje
tories.We will study the dynami
s of the uCML for di�erent parameters 
ombinations in thenext se
tions. The physi
al analogies with pipe �ow will expli
itly be investigated. Thelimits of the model will also be dis
ussed. In doing so, we will highlight solutions, that
an also be determined analyti
ally, sin
e they are the best points to learn fundamentalthings. In those 
ases, we make some predi
tions from theoreti
al 
onsiderations and
he
k our assumptions with the simulations of the system. The lifetime of turbulentpu�s, as the most prominent quantity, will be dis
ussed �rst.



48 CHAPTER 4. AN UCML FOR PIPE TURBULENCE
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Figure 4.5: Spa
e time behaviour of the uCML for di�erent α and h. Panel a) showsthe system behaviour for small 
oupling α. Sin
e, the 
oupling is too weak,the perturbation never spreads to distant sites. For α = 0.5, there are somestru
tures starting to travel through the pipe (
f. panel b). These stru
tureshave an in
reased lifetime for stronger 
oupling α = 0.8 (
f. panel 
).Thisis what we 
all a turbulent pu�. Another transition 
an be determinedaround α = 2.8, where the lifetime goes to in�nity. This is the turbulentslug regime. Here, the growth is highly in
reased. For even larger 
ouplingin e), the system goes ba
k to �nite-size stru
tures. This is a spe
ial featureof our system, whi
h is dis
ussed in 
hapter 5.1. Panel f) shows, that forsmaller h, long lifetimes 
an be expe
ted for very small α.



4.3. LIFETIME DISTRIBUTIONS 494.3 Lifetime DistributionsThe �nite pipe length is always a limiting fa
tor, when one is interested in lifetimes
aling laws for high Reynolds numbers. We will now measure the lifetime of turbulentpu�s in the system des
ribed in se
tion 4.2.Turbulent pu�s in experiments relaminarise without a known 
ause. This de
ay seemsto be independent of the age of a turbulent pu�, i.e. how far it has travelled from itsorigin. This leads to a lifetime distribution
P (t) ∼ exp(−t/τ) (4.3.1)with a 
hara
teristi
 or average lifetime τ . This lifetime distribution is also expe
tedin our simulations. If we �rst limit our 
onsiderations to the un
oupled 
ase α = 0,then the de
ay is determined by the on-site dynami
s f only. f , on the other hand, is
ontrolled by the height h. Here, like in the example in 
hapter 3, we always delete a
ertain fra
tion of our invariant subset in ea
h timestep. This leads to a distribution(4.3.1), (
f. derivation in 
hapter 2). For the 
oupled 
ase, the lo
al de
ay rate is stillgoverned by the on-site dynami
s f , but is in�uen
ed by the 
oupling g. This leads toa distribution (4.3.1), but with signi�
antly larger τ .To determine τ we 
onsider N0 = 30.000 initial 
onditions, i.e. perturbations to the�rst site of our laminar system. These initial 
ondition are 
hosen with a 
onstant stepsize of ∆ = 10−4 starting from x = 0. Then, we iterate the system for ea
h inital
ondition until it relaminarises. This time is taken as the lifetime for this parti
ularinital 
ondition.After sorting the data a

ording to the lifetime and numbering ea
h row, we get thequantity N(t), whi
h des
ribes, how many traje
tories have still survived until time t.This quantity is proportional to the lifetime distribution, when s
aled with the numberof initial 
ondition N0. Therefore, we expe
t a law like
N(t) ∼ exp(−t/τ) (4.3.2)One would expe
t a straight line for N(t) on a logarithmi
 s
ale, if the assumption of ade
ay, independent on age, is 
orre
t. The plots are given in �gures 4.6 and 4.7.In the large part of the plot, we see that the data for α = 0 and h = 2.1 resemble astraight line. This is exa
tly, what we have expe
ted from (4.3.1). The abrupt de
reasefor t = 0 
omes from initial 
onditions, that are < δ or > 2 + δ, respe
tively. Theseinitial 
onditions de
ay immediatly, as 
an be seen from the de�nition of f and g.Therefore, we get a steep de
rease for t = 0. Although we e�e
tively lose some ofthe initial 
onditions, we 
an determine a linear de
rease in the logarithmi
 plot aboutthree orders of magnitude. Another interesting aspe
t is shown in �gure 4.7. It showsthe lifetime distribution for non-zero 
oupling α = 0.8. In that 
ase, there still is anexponential distribution, but with a signi�
antly larger τ (beware the di�erent x axiss
ales). We have therefore veri�ed the assumption, that the lifetime of the 
haoti
stru
tures have an exponential distribution
P (t) ∼ exp(−t/τ) (4.3.3)
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Figure 4.6: Lifetime distribution. The number of surviving traje
tories at time t havebeen plotted against t. The large panel shows the 
umulative distribution oflifetimes for zero 
oupling. This resembles the single site lifetime determinedby (2.6.7). The inset shows a magni�
ation at small t. A fast approa
h tothe asymptoti
 s
aling is observed. The �t parameters for the asymptoti
s
aling is given as τ(α = 0.0, h = 2.1) = 19.54.
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Figure 4.7: Lifetime distribution for α = 0.8. We 
an see, that the lifetime distributionis also given by (4.3.1). The inset shows, that mu
h more time is needed torea
h the asymptoti
. This is due to the 
reation of travelling stru
tures forthe 
oupled 
ase. The �t parameters is τ(α = 0.8, h = 2.1) = 2415.5.



4.3. LIFETIME DISTRIBUTIONS 51We will explore in the rest of this se
tion, how the average lifetime τ s
ales with thesystem parameters, i.e. the 
oupling strength α and the height h.As mentioned above, we 
an 
ompute the average lifetime τ from the slope of thelogrithmi
 plot of the distribution. This gives us τ in dependen
e on α and h, i.e.
τ(α, h). First, we 
he
k the dependen
e of τ on h for a �xed α. This analysis will bedone for the un
oupled 
ase α = 0 �rst and then for arbitrary α. For α = 0, τ(h) 
anbe derived from the on-site dynami
s f only. In order to analyse it, we have a look atthe survival probability for one time step.We denote the length from xf

1 to p as L. The length from xf
1 to the interse
tion of fwith p will be denoted as ∆ (
f. �gure 4.4 for de�nitions). The probability to stay inthe 
haoti
 region for one time step is then given as

ρ1 =
2∆

L
=

2∆

p − xf
1

(4.3.4)This be expressed via the slope of the tent map and is therefore determined by h,
f ′(x) = h =

p − xf
1

∆
∀ x ∈ [xf

1 , 1 + δ) (4.3.5)This yields
ρ1 =

2

h
(4.3.6)Sin
e the rest of the interval is stre
hted to the whole length again, and sin
e theinvariant density is 
onstant on the interval for a linear map, the survival probabilityafter t timesteps is

ρt
1 =

(
2

h

)t (4.3.7)A 
omparison with the distribution (4.3.1) then gives
ρt

1 = exp

(

− t

τ

)

⇒ τ =

(

ln
h

2

)−1 (4.3.8)This expe
tation 
an now be 
ompared to the data. Figure 4.8 shows the simulationdata. We will �rst restri
t our 
onsiderations to the un
oupled data for α = 0. Thedata points are the green points, whi
h form the lower 
urve. The solid red 
urve is thes
aling law (4.3.8), whi
h has been �tted to the simulation data. The expe
ted s
alinglaw �ts the simulation data perfe
tly. But there is another spe
ialty that need to behighlighted. On top of the data points for the un
oupled 
ase lie the points for a small
oupling α = 0.1. These points are more or less the same as for no 
oupling. We willstudy this quite astonishing behaviour extensively in the next se
tion.If we now have a look at the data for larger 
oupling, we see that these 
urves are verydi�erent than those for zero 
oupling. The me
hanism, that gives us the 
orre
t s
alinglaw, is not as trivial as in the un
oupled 
ase. Obviously, the divergen
e for h → hc ismu
h stronger than for α = 0. One 
an think of a s
enario of an unstable-unstable pairbifur
ation as an explanation. The 
haoti
 saddle is determined by the lo
al dynami
s
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Figure 4.8: The s
aling of the average lifetime with the height h of the on-site dynami
s.We have plotted simulation data for zero 
oupling and α = 0.1. These datapoints are perfe
tly des
ribed by the analyti
al solution in (4.3.8). For larger
ouplings α > 0.3. we have a di�erent s
aling law. The data points 
an be�tted by the super-long transients s
aling law (2.6.12).
f for h > 2. The se
ond unstable dire
tion 
an be related to the 
oupling of g to thenext neighbour. If this me
hanism would be a good des
ription, then we would expe
ta s
aling law like (2.6.12). Indeed, in �gure 4.8 we show data for larger 
ouplings of
α = 0.6, 0.8, 1.0 and 1.2, whi
h are fruitfully �tted by lines of the form

τ = B exp
(
C (h − hc)

−1
) (4.3.9)a

ording to the s
aling law (2.6.12). One 
an see, that the �ts des
ribe the data pointswithin a good a

ura
y. The interesting �t parameter C(α) is shown in �gure 4.9.The wiggling of the data points around the �t 
an be des
ribed by the way, the datapoint were obtained. In order to get one data point, one has to �t the distribution witha linear �t. The main interest lies in quite large lifetimes. Therefore, that �t has to begood for lifetime larger than a threshold. This threshold has to be 
hanged for ea
h αand h, sin
e for α = 0 lifetime of 100 are large, while for α = 0.8 a threshold of about

1000 is needed to obtain good results from the �t. This is the problem with determiningthe asymptoti
s of lifetime distributions spanning several orders of magnitude. Due tothis fa
t, the data points are not as a

ura
te as the data for α = 0. Another thing tomention is the behaviour of the prefa
tors B and C with varying α. The 
urves B(α)and C(α) do not show a simple dependen
e on α. This 
an also be seen in the fa
t,that 
urves are not properly arranged a

ording to their α values (
f. �gure 4.8). Sin
e,we have veri�ed the s
aling law (2.6.12) for quite large 
ouplings, it is 
lear that we areindeed dealing with super-long transients. This is a great step forward in the simulationof turbulent pu�s, whi
h are expe
ted to have a super-long lifetime s
aling law.
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Figure 4.9: Fit parameter C(α) for lines in �gure 4.8 and (4.3.9)Sin
e, the s
aling law τ(h) is understood, we will now have a look at the dependen
e of
τ on α. Therefore we �x h = 2.1. The s
aling law is given in �gure 4.10.The �rst thing, that attra
ts the attention, is the heavily �u
tuating lifetime around
α = 0.7. It de
reases again for α = 0.8 and rises again for α = 1.2, but this time, thein
rease is very steep.The inset shows a magni�
ation for small α. In agreement with the �ndings of �gure4.8, there is no in
rease in average lifetime until a 
riti
al parameter αcr is rea
hed. Thewhole stru
ture of τ(α) is really 
omplex and will not be investagited in detail. Ratherwe fo
us on the origin and the positions of the sharp in
rease in the lifetime 
lose to
αcr, α ≈ 0.6 and α ≈ 0.8.To 
learly tra
e the transitions, we show the 
omplete parameter dependen
e in a two-dimensional parameter plot (�gure 4.11), where the average lifetime is shown as 
olour,en
onding the average lifetime on a logarithmi
 s
ale, normalised to the single sitelifetime τ(α = 0)1. The 
omplex stru
ture of the parameter spa
e be
omes visible inthis plot. Parti
ularly, the large peak shown in �gure 4.10 for h = 2.1 and varying α
an be 
learly seen in the plot. For larger h, the peak at α = 0.8 seems to vanish fasterthan that at α = 1.3. Moreover, there seems to be a 
lear line for the lifetime in
reaseat α = 0.25, i.e. the value αcr = 0.25 appears to depend at best very weakly on h. inthe next se
tion, we will fo
us on the sharp in
rease of the average lifetimes near αcr,whi
h marks the onset of turbulen
e.1The logarithmi
 s
ale is useful, sin
e the average lifetime ranges about many orders of magnitude(
f. �gure 4.10). Therefore, yellow points have a 10 times larger lifetime than red points.
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Figure 4.10: S
aling of the average lifetime with 
oupling strength α for �xed height h.The s
aling law is not as smooth as τ(h) for �xed α. We see several spikyregions, that are intermitted with quite smooth behaviour. The lifetimeis very high for α ≈ 0.7, falls again one order of magnitude and in
reasesfor α > 1.0. Due to the 
oupling, the lifetime 
an in
rease by 3 orders ofmagnitude beyon the value τ ≈ 20 for the single 
ell dynami
s.

Figure 4.11: The 
omplete parameter spa
e of the system. The 
olour is 
oding the aver-age lifetime of the system, normalised by the zero 
oupling lifetime de�nedin (4.3.8). We 
an see, that the stru
ture is quite 
omplex. The bound-ary between very long and short lifetime is not smooth but rather spiky.Additionally, we 
an see a sharp boundary between longer lifetimes and noin
rase at all for values α = 0.25. This boundary seems to independent on
h. See se
tion 4.3 for details.



4.4. ONSET OF TURBULENCE 554.4 Onset of Turbulen
eA non-vanishing 
oupling does not ne
essarily have to lead to an in
reased lifetime, asseen in the last se
tion. Additionally, the 
riti
al value αcr seems to be vastly indepen-dent of h, as 
an be seen in the parameter plot 4.11. Simulations for di�erent, �xed hand varying α near αcr will now be presented in order to inspe
t more 
losely the onsetbehaviour.To thate end, the same lifetime algorithm as in se
tion 4.3 is used, but with a higherresolution of α. The data are plotted in �gure 4.12.
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Figure 4.12: Lifetime s
aling law at the onset of turbulen
e. Di�erent 
urves belong todi�erent values of h. With this enhan
ed resolution one observes that the
riti
al 
oupling αcr, where a �rst in
rease in the average lifetime 
an bedetermined, de
reases slightly when h is in
reased (see text).These data show, that αcr is de
reasing for in
reasing h. We will now answer thequestion, why a lifetime in
rease 
an only be seen for 
oupling strength substantiallyabove zero.The spa
e-time plot for α = 0.2 and h = 2.1 in �gure 4.5 reveals, that only the �rstsite is in a turbulent state for α < αcr. The 
oupling is not su�
ient to bring theneighbour into the 
haoti
 region. This gives rise to the fa
t, that the average lifetimefor 0 < α < αcr is the same as the typi
al lifetime for a single site (α = 0).A ne
essary 
ondition for a turbulent pu� is hen
e a su�
iently strong positive 
ouplingto bring the downstream neighbour into the 
haoti
 state. To that end, a value x ∈
[1 + δ, 2 + δ] is needed at the upstream neighbour site. Sin
e the downstream neighbouris in the laminar state at the beginning, its dynami
s is only determined by the 
oupling
αg(x) from the �rst site.
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Figure 4.13: On-site dynami
s f and 
oupling fun
tion g. See the text for the de�nitionof interesting values.For α < αcr, the 
oupling is still not strong enough to ki
k the neighbour into the 
haoti
state. The lower bound on α for a transition in one step is determined by
αg(xmax) = xf

1 (4.4.1)where xmax is the maximum of g (
f. �gure 4.13). This yields a 
oupling strength of
α =

xf
1

g(xmax)
≈ 0.33 (4.4.2)Comparing with the data in �gure 4.12, these values are to large to determine αcr
orre
tly.Therefore, a multi-step transition is needed in order to trigger a turbulent pu� for small

α. Sin
e the laminar �xed point is stable, a �nite ki
k is needed to get a memory into thesystem. Therefore, a ki
k has to be at least larger than δ, otherwise the lo
al dynami
smaps the perturbation to zero. This gives the 
ondition
αg(x) > δ (4.4.3)But the multi-step me
hanism depends 
ru
ially on the 
hosen x. If we 
hoose x ∈

[1 + δ, 2 + δ], it is likely to be mapped to values x < 1 + δ, where a negative 
ouplingdestroys the ki
k memory. The most e�
ient 
oupling is obtained for x = xf
2 . Althoughthis �xed point is unstable, a traje
tory starting near xf

2 will remain in the region ofpositiv 
oupling for quite some time.These 
onsiderations 
an be expressed in a 
onje
ture for the behaviour of αcr

αcrg(xf
2) = δ (4.4.4)Note, that g depends on h via xf

2 . The results from the simulation are given in �gure4.14. Errorbars express the a

ura
y in the α grid. The theoreti
al expe
tation from(4.4.4) is given as the green 
urve. That the 
urve is not a �t. It is the 
ompleteanalyti
al result without free parameters.
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Figure 4.14: Simulation data for the onset of turbulen
e. The 
riti
al 
oupling strength
αcr is determined from data as shown in �gure 4.12. The theory 
urve isthe analyti
al predi
tion (4.4.4), without adjustable parameters!The simulation data is seen to be in perfe
t agreement with the theoreti
al predi
ted
urve. The transition to turbulen
e is therefore understood in our model system2.We further noti
e, that a spreading pro
ess 
an not be a
hieved by a memory-less system.Mu
h larger 
oupling strength are needed in order to obtain travelling stru
tures withoutmemory.This is one very fundamental result. It gives us mu
h insight into the dynami
s of oursystem. Sin
e the threshold at αcr is now understand, we will 
ome to the range andvelo
ity distributions of pu�s in the next se
tion.4.5 Velo
ity Distributions and Travelled Distan
eWe will now turn to the investigation of the range of a turbulent pu�, i.e. the overalldistan
e travelled from nu
leation to de
ay. Therefore, the range is zero for an im-mediately de
aying stru
ture. This is a �rst step in order to analyse velo
ities of theturbulent pu�s. The same algorithm is used for the range 
omputations as for the life-time simulations. Instead of the lifetime of a pu�, the 
overed distan
e until its de
ayis measured.2The presented me
hanism is not limited to our model. It seems to be a general me
hanism forunidire
tinal 
oupled systems with a super-stable �xed point. The shift δ 
an be denoted as a thresholdfor memory in the system. It is a 
ommon s
heme in ex
itable system. This behaviour 
an be seen innerve pulses, whi
h show the same threshold behaviour before a neuron is �ring and the impulse travelsalong the axon. In parti
ular, the me
hanism does not depend on the 
on
rete de�nitions of f and g.
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onsiderations as in the 
omputation of the lifetime suggest an exponentialrange distribution
P (s) ∼ exp (−s/σ) (4.5.1)where σ is the average range for a given α and h. Again, a logarithmi
 plot 
an be usedin order to determine σ (
f. �gure 4.15). Simulations for �xed h = 2.1 and varying α
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Figure 4.15: Range distribution of the uCML for 
oupling strength α = 0.8.
an be used to study the s
aling law σ(α). The α-dependen
e of τ and σ is plotted in�gure 4.16.
σ(α) has the same 
omplex stru
ture as τ(α). A remarkable aspe
t is the similaritybetween the two 
urves. Both s
aling laws basi
ally show the same behaviour. Theonset of in
reased range is suitable to determine the onset of turbulen
e, like in the 
aseof the average lifetime. Although, both 
urves look essentially the same, the two s
alinglaws are not simply proportional to ea
h other. We have to take into a

ount, that theplot is given on a log-s
ale. In order to show this, we plotted the ratio σ/τ in �gure 4.17.The in
rease in the ratio supports the fa
t, that the s
aling laws are not propotional,otherwise it should stay 
onstant. Instead, it is in
reasing over the whole domain, withan intermittent regime around α ≈ 0.7. This 
an be explained by the spiky part of thedistributions for that 
oupling strength.A more interesting quantity than the range is the velo
ity of a pu�. It 
an be de�nedby the lifetime t and range s of a turbulent pu� as

v =
s

t
(4.5.2)As usually, we are not interested in velo
ities of single traje
tories, but in the averagevelo
ity for given parameter values. It is worth mentioning, that the average lifetime τ
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Figure 4.16: The average lifetime τ(α) and range σ(α) for h = 2.1. For τ , the number ofiteration until the de
ay is plotted. For σ, the values refer to the distan
e,a pu� has travelled until its de
ay. Note, that the 
urves are very similar.and range σ 
an not be used to 
ompute the average velo
ity 〈v〉, sin
e the velo
ity is
orrelated with the lifetime.Furthermore, it is not possible to 
ompute the average lifetime for large 
oupling strengths
α > 1.4 and h = 2.1. The lifetime is very long for those α and a simulation of a pu�until its de
ay would take too mu
h time. Despite this problem, one 
an determine thevelo
ity of a traje
tory quite easily. This is done by simulating the system for a �xedtime t and measuring the largest site s, whi
h is in a turbulent state. The ratio givesa measure for the velo
ity v of this pu�. A
tually, it measures the front velo
ity of thepu�. Sin
e a pu� is eventually de
aying, this front velo
ity 
an be used as the meanpu� velo
ity, if the simulation time is long enough. Note, that the velo
ities in thisse
tion are 
omputed for 
oupling strength 
learly larger than α = 1.4. In this region,the lifetime and range are so large, that they 
an not be 
omputed seperately. This isalready 
lear from �gure 4.11.In 
ontrast to the distribution of the lifetime and the range, the distribution for thevelo
ity is not a simple exponential fun
tion. The lifetime and range algorithm for a�xed simulation time is used to determine the velo
ity of a traje
tory. We only tooktraje
tories into a

ount, whi
h travelled at least two sites. This ex
ludes immediatlyde
aying traje
tories, whi
h 
an not be identi�ed as a turbulent pu�.The 
umulative distribution fun
tions for h = 2.1 and α = 2.5 and 3.1, respe
tively,are shown in �gure 4.18. It looks similar to a 
df for a Gaussian distribution. A 
loserlook reveals however, that the 
df rea
hes the limiting value 1 too late, as 
ompared to
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Figure 4.17: 〈v〉 (α). Left: small 
oupling near the onset of turbulen
e. 〈v〉 is 
learlylarger than the value determined by the ratio σ/τ . The ratio ratheramounts to the maximum of the velo
ity distribution. Right: large 
ou-pling values α > 4. 〈v〉 is plotted for di�erent h. In all 
ases, a limitingvalue is approa
hed quite fast. See text for more details.a Gaussian. A 
df for a Gaussian is given by
G
df(x) =

1

2

[

1 + erf(x − µ√
2σ2

)] (4.5.3)with the mean µ and the varian
e σ2 (
f. [5℄). A possible �t to the simulated 
df isshown in the �gure. It is 
learly seen, that a Gaussian approa
hes 1 for mu
h smallervalues of v. This suggests, that we are dealing with a heavy-tailed fun
tion.In addition to the 
df, we 
omputed a histogram of the velo
ities.As 
ompared to a Gaussian, the histogram has a higher probability at large velo
ities,when 
ompared to a Gaussian. This states for the notation as a heavy-tailed distribution.The average velo
ity 
an not be 
omputed as in the lifetime and range 
ases above, sin
e
v has not an exponential distribution. Therefore, we take the mean value

〈v〉 =
1

N

N∑

i=1

vi (4.5.4)as an estimator for the average. A �rst step is to analyse the 
omputed 〈v〉 by 
omparingit with the ratio σ/τ . The plot is given in �gure 4.17In addition to that, we have plotted the most probable velo
ity vw, whi
h is de�ned asthe maximum of the distribution (
f. �gure 4.19).The average 〈v〉 is very di�erent from σ/τ . This is what we expe
ted from the 
onsid-eration, that v is 
orrelated with t. Another interesting aspe
t is that the 
urve for themost probable v is very similar to the ratio 
urve.The great advantage in studying the velo
ity is, that simulations 
an be done even forvalues of the 
oupling strength, whi
h are not a

essable for lifetime simulations due tothe very long lifetime. Figure 4.20 shows the dependen
e of the velo
ity on the 
ouplingstrength. After a slow in
rease for α < 1, the average velo
ity stagnates at 〈v〉 ≈ 0.1
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Figure 4.18: Cumulative distribution fun
tions for the velo
ity for α = 2.5 and 3.1, re-spe
tively. For α = 2.5, the 
df has a heavy-tailed distribution as 
omparedto a Gaussian. The �t is determined by (4.5.3) with parameters µ = 0.104and σ = 0.023. For α = 3.1 the distribution has a steep in
rease at themaximal velo
ity of 1.for a long range. A sharp rise is examined at α ≈ 2.8, where the front velo
ity nearlyrea
hes its maximum of 〈v〉 = 1.0. For further in
reased α > 4.0, it falls and eventuallyrea
hes 0.1 again.We will �rst 
he
k the behaviour of 〈v〉 for large α. Therefore, 
urves for di�erent h areplotted in �gure 4.17.It is seen, that the average velo
ity rea
hes a �nite value, whi
h seems to be dependenton h. This behaviour is well understood by the following 
onsiderations. For large α,the 
oupling is so huge, that the neighbouring site is pushed beyond the 
haoti
 region.Therefore, it de
ays immediately in the next step and no travelling stru
tures 
an be
reated. The lifetime and velo
ity, is then determined by the lifetime of the �rst site.This leads to the dependen
e on h. The intuitive image, that for large α the 
ouplingis more dominant than the on-site dynami
s and therefore the limit of 〈v〉 would yieldthe same value for all h is wrong. The parameter range of α > 4 is an unphysi
al range.Su
h a behaviour is not observed in pipe �ow experiments. It is a limit of our model,that will not be investigated any further.The most striking region is seen to be around α ≈ 2.8, where the average velo
ity hasa very steep in
rease to nearly 1. This suggests a fundamental 
hange in the dynami
sof the system. A look at spa
e-time plots reveals, that we 
an �nd a transition from aturbulent pu� to a turbulent slug in this region. But for slugs, the interesting quantityis not the average velo
ity, but the growth. This transition will be studied in the nextse
tion.
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Figure 4.19: Histogram for the velo
ities for di�erent 
oupling strengths. For α = 2.5,the histogram has a 
lear maximum. The distribution has higher probabil-ity at larger values of v as 
ompared to a Gaussian and is therefore identi�edas heavy-tailed. For α = 3.1, the distribution is nearly 
ompletely 
enteredat v = 1, as expe
ted from �gure 4.18.
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Figure 4.20: 〈v〉 (α). After a slow in
rease to 〈v〉 ≈ 0.1, the ratio sharply rises to almost
1 for 2.5 ≤ α ≤ 4. For larger α, 〈v〉 tends again to a limiting value
〈v〉 ≈ 0.1.



4.6. TRANSITION FROM CONVECTIVE TO ABSOLUTE INSTABILITY 634.6 Transition from Conve
tive to Absolute InstabilityWe have already mentioned in the introdu
tion, that a turbulent pu� is a 
onve
tiveinstability, while a slug is an absolute one. Sin
e slugs have an in�nite lifetime, itmakes no sense to do simulations on average lifetimes and ranges, like we did in the
ase of turbulent pu�s. The average front velo
ity is not an interesting quantity for aslug, either. Rather we 
on
entrate on the average growth of a slug to 
hara
terise itsbehaviour. We will now study the dependen
e of the slug growth on α in our uCMLmodel.The growth G for a traje
tory is de�ned as the time derivative of the width w of theturbulent region
G :=

dw

dt
= v − b (4.6.1)It 
an also be 
al
ulated by the di�eren
e between front v and ba
k velo
ity b, sin
e thewidth is given as w = rf −rb, where r denotes the front and ba
k site, respe
tively. Fur-ther, we assume, that G is 
onstant after a transient time. A simulation of 
onstant time
an be done. G is determined by the width at the end of the simulation. The simulationtime has been 
hosen to be 1000 time steps, while N = 22.000 initial perturbationswhere taken into a

ount. The distribution from the simulations are shown in �gure4.21 for di�erent α. The distribution has a non-trivial form for α < 2.8. Therefore, theaverage 
an only be determined by

〈G〉 =
1

N

N∑

i=1

Gi (4.6.2)
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GcdfFigure 4.21: Cumulative distribution fun
tions for the growth. For α = 2.5, the distri-bution is not a simple exponential or Gaussian shape. But for α = 3.4 thebehaviour 
hanges dramati
ally and the distribution 
an be des
ribed bya Gaussian with µ = 0.319 and σ = 0.039.The 
df 
hanges dramati
ally in shape for α ≈ 2.8. This distribution 
an be identi�edwith a Gaussian distribution. The �t in 4.21 is the fun
tion (4.5.3) for the 
df of aGaussian. This fundamental 
hange in shape has to be related to a spe
ial parametervalue, whi
h has to be determined by some 
hange in the dynami
s of the system. First,we will have a look at the s
aling law 〈G〉 (α). It is plotted in �gure 4.22.
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Figure 4.22: The average growth of the turbulent region. A strong in
rease is seen tobe at αsl, where the slug regime sets in. A de
rease at α ≈ 3.3 determinesthe end of the slug regime. See the text for further explanations.Within the error margins the growth is zero as long as α . 2.5. This is quite obviousfrom the spa
e-time plots, sin
e we are in the turbulent pu� regime. Pu�s are eventuallyde
aying and therefore have a growth of zero. The strong in
rease in growth for α = 2.8is what we had expe
ted from the study of the average velo
ity from the last se
tion.The qualitative 
hange in shape of the distributions is at this spe
ial parameter value,too. Before analysing the me
hanism for the large in
rease in growth, we will shortlyhave a look at the velo
ity of the ba
k.Sin
e 〈G〉 and 〈v〉 are known, the α-dependen
e for the propagating ba
k 〈b〉 
an be
omputed. A

ording to (4.6.1), it is given by
〈b〉 = 〈v〉 − 〈G〉 (4.6.3)The plot is given in �gure 4.23. The ba
k is not always propagating with the sameaverage velo
ity, as 
ould be expe
ted. Therefore, there seems to be some 
orrelationbetween the 
oupling strength and the lifetime of the ba
k. The ba
k velo
ity is not avery interesting quantity in experiments. Sin
e pu�s are stru
tures of 
onstant size, theba
k and front velo
ity are the same. Therefore, the growth is zero. This has also beenobserved in the simulations (
f. �gure 4.22). But it is also seen in the plot, that theba
k velo
ity is not 
hanging very mu
h at the slug transition, while the front velo
ityis greatly in
reased (
f. �gure 4.20).The strong growth at αsl is pointing to a very e�e
tive 
oupling. If a value x∗ is mappedby the 
oupling to the same value x∗ at the next site, whi
h has been laminar before, aballisti
 spreading is observed. This leads to the 
ondition

αslg(x) = x (4.6.4)
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Figure 4.23: Average ba
k velo
ity for h = 2.1. The 
urve is determined by (4.6.3).for the slug transition at αsl. Equation (4.6.4) 
an be identi�ed as a �xed point equationfor the 
oupling. Therefore, we will now analyse the bifur
ation diagram for αg (
f.�gure 4.24).As we 
an see in this �gure, the bifur
ation diagram is qualitatively the same as thatof the logisti
 map in (2.2.2). The �rst parameter value, where a �xed point o

urs,is determined to be α = 2.845. This is exa
tly the parameter value, where the growthrea
hes its maximum. Another interesting aspe
t is the boundary 
risis at α ≈ 3.3 =:
αBC . This, again, is exa
tly the point, where the average growth has a strong de
rease.The range of large growth is therefore 
ompletely understood via the bifur
ation s
enarioof αg.If our presented me
hanism is 
orre
t, we would expe
t, that the strong in
rease at αsland the de
rease at αBC is independent of h. Simulations for di�erent values of h havebeen performed (
f. �gure 4.25) and they indeed reveal, that those 
riti
al values donot depend on h up to the numeri
al a

ura
y.The transition from the pu� to the slug regime is now 
ompletely understood from thepoint of our model.This noti
able result will �nish this 
hapter. A dis
ussion on some results of our modelsystem will now be dis
ussed in the next 
hapter.
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Figure 4.24: Bifur
ation diagram for the 
oupling αg. The 
oupling strength is usedas the bifur
ation parameter. A saddle-node bifur
ation is happening at
αsl ≃ 2.845 and xsl ≃ 1.614.
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Chapter 5Con
lusionWe will now 
ome to the 
on
lusion of this work. Most aspe
ts of the system have alsobeen des
ribed in the 
orresponding 
hapters. Here, we will give a little dis
ussion onthe relevan
e of the results for real pipe �ow and an oulook for future work afterwards.5.1 Dis
ussionThe results will now be interpreted with regard to real experiments. First, there is oneobvious di�eren
e to real pipes. In in
ompressible pipe �ow, the only 
ontrol parameteris the Reynolds number. Instead, the presented model has three parameters. These arethe 
oupling strength α, the height h of the tent map and δ, whi
h has been �xed forthis work. This is an advantage of our system, sin
e we have many knobs to tune. Thestability of the laminar �xed point is 
ontrolled by δ. The spatial 
oupling 
an be tunedby α and the lo
al instability is determined by h. Therefore, it is possible to separatee�e
ts that stem from di�erent properties of the system. This is a great advantage
omparing to pipe experiments, where e.g. the stability of the laminar �ow 
an not bein�uen
ed independently of the lo
al stability.We will now fo
us on several aspe
ts and highlight them in relation to real pipe �ow.5.1.1 Edge of ChaosOne important results of this work is related to the onset of turbulen
e. It has beenshown, that the 
riti
al value αcr 
an be de�ned by simple arguments (
f. se
tion 4.4)as
αcr :=

δ

g(xf
2)

(5.1.1)The veri�
ation has been demonstrated in �gure 4.14.No �t parameters are left in this 
ondition, su
h that the simulation data is exa
tlylying on the theoreti
al predi
ted 
urve. The understanding of αcr is a 
ru
ial pointin the analysis of the system. It determines the boundary between the laminar andturbulent region. There are no more open questions about that transition point from67



68 CHAPTER 5. CONCLUSIONthe modelling point of view. Here, δ is a measure for the stability of the laminar �xedpoint, while xf
2 has been veri�ed as an optimal 
oupling state.This observation is 
alled the double-treshold of turbulent �ow [31℄. A large Reynoldsnumber is not su�
ient in order to trigger turbulen
e, if the perturbation amplitude istoo small. On the other hand, a large perturbation will also not lead to turbulen
e, ifthe Reynolds number is not high enough. This threshold me
hanism is also observedin our model. For 
ouplings smaller than αcr, no perturbation will lead to turbulen
e.Even for α > αcr not every perturbation will lead to a turbulent �ow. One needs atleast a perturbation of size δ in order to trigger turbulen
e. This is a ni
e relation tothe double-treshold, observed in real experiments [14℄.In real experiments, the boundary between the laminar and the turbulent region is 
alledthe edge of 
haos. It separates states that de
ay immediately from those whi
h be
ometurbulent. The idea is to identify states on the edge, whi
h are both entran
e and exitinto or from the turbulent region, respe
tively. This is fundamentally di�erent in themodel. The entran
e state is determined to be xf

2 . But this spe
ial state has nothingto do with the es
ape from the turbulent region. Completely di�erent states 
an o

urat the de
aying state of a turbulent pu� in the model. This is one di�eren
e to realexperiments.
5.1.2 Heavy-Tailed Velo
ity DistributionsThe distributions for the lifetime and the range have been predi
ted from simple argu-ments. This is not possible for velo
itiy distributions. The velo
ity v = s

t
is a ratio oftwo non-independent random variables. It is not even simple to determine the average

〈v〉 from a spe
ial point of the distributions. It is not 
lear, if s is independent of 1/t.Additionally, 〈1/t〉 is not existing, if t has an exponential distribution. This 
an alsobe seen in �gure 4.17, where 〈v〉 is obviously di�erent from σ/τ . Further, the distri-butions for the velo
ities are heavy-tailed, possibly due to a 
orrelation between theaverage lifetime and range. There is a higher probability to �nd faster pu�s, relative toa normal distribution. This fa
t 
an also be veri�ed in the histograms of the velo
ityin �gure 4.19. From those plots, the most probable velo
ity vw 
an be determined asthe maximum of the distribution. Interestingly, these values are �tting the ratio σ/τvery well. This is 
lear, sin
e τ is the expe
ted lifetime and σ the expa
ted range, whi
hyields a most probable vw. That σ/τ does not des
ribe 〈v〉 is due to the heavy-tailednature of the distributions. If v would be a normal distributed random variable, 〈v〉and vw would des
ribe the same value. The velo
ity distributions for turbulent pu�sare very narrow in real experiments. Most of the triggered pu�s travel more or lesswith the same speed. The arise of heavy-tailed distributions near the transition to slugs
an be a guide to experiments to 
he
k this predi
tion of the model. By understandingthe heavy-tailed nature of the distributions, one 
ould gain more information about thetransition me
hanism from pu�s to slugs.



5.2. SUMMARY 695.2 SummaryAs a little reminder, we will shortly sum up the results from our studies.5.2.1 Mean-Field ModelWe have introdu
ed a 2d model system with a fra
tal basin boundary and a boundary
risis. The 
ri
ti
al parameter for the boundary 
risis has been 
omputed analyti
ally.Several simulation runs veri�ed the super-exponential s
aling law of the average lifetimeof transients. Additionally, an algorithm for tra
king the edge of 
haos has been pre-sented, whi
h 
ould tra
k the edge of 
haos with a very high spatial a

ura
y. Thesedata suggests, that the edge of 
haos is a fra
tal stru
ture.5.2.2 uCMLAfter introdu
ing the model, we have given some spa
e-time plots to get an idea aboutthe traje
tories of the system. A �rst look revealed the existen
e of 
onve
tive andabsolute instabilites. First, the exponential lifetime distributions have been veri�ed andthe average lifetime τ has been 
omputed for several parameter values α and h. Thes
aling law τ(h) for α = 0 has been theoreti
ally predi
ted as a 1/log law, whi
h hasbeen veri�ed by the simulations. Further, the superexponential s
aling for α > αcr hasalso been veri�ed by a �t. The 
omplex stru
ture of τ(α) has been determined as welland a 
omplete parameter spa
e plot has been given as a false-
olor plot. A 
loser lookrevealed a α dependen
e of the onset of turbulen
e. The 
riti
al parameter αcr at theonset has been predi
ted and veri�ed by theory and simulation, respe
tively. The fol-lowing investigation of range and velo
ity dsitributions revealed, that the range has nomore information than the lifetime. Despite, the velo
ity shows a heavy-tailed distri-bution at the slug transition treshold. As a useful quantity for the slug 
hara
teristi
s,the average growth of slugs depending on α has been studied. The 
riti
al point for theslug transition, i.e. αsl, has been predi
ted by theory as a point where a saddle-nodebifur
ation is happening. This has also been veri�ed in the simulations. The investiga-tion of the average ba
k velo
ity showed, that it stays at rather small values for all α.Therefore, the slug transition has been identi�ed to be 
ru
ially dependent on the frontvelo
ity.5.3 OutlookThere are mu
h more interesting questions, that 
an be answered by further studies ofthe model. We will present some of them in this se
tion.5.3.1 S
aling after αcrAn in
rease of the average lifetime is not observed for α < αcr. After studying the onsetregion in a high a

ura
y plot the onset me
hanism has been presented. The threshold
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ted analyti
ally. It obeys the law
αcrg(xf

2) = δ (5.3.1)This 
onje
ture has been veri�ed by the simulation data, whi
h are in perfe
t agreementwith the predi
ted values (
f. �gure 4.14).Although, the 
riti
al point αcr has been understood, the s
aling of τ with α afterthis point needs further investigation. By normalising the lifetime τ(α − αcr) with thesingle site lifetime τ0, the 
orresponding double-logarithmi
 plot near the onset suggesta power law s
aling (
f. �gure 5.1). One possible line is given with a slope of 30. It isworth noti
ing, that the possible �t line is similar for di�erent values of h, whi
h statesa universal s
aling law. A detailed study on this s
aling would help to understandthe me
hanism of lifetime in
rease and is therefore a good starting point for furtherinvestigation.
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Figure 5.1: Log-Log plot of the s
aling law of τ . Lifetime is normalised by the single sitelifetime τ0 and shifted by −1 to obtain a straight line through the origin.5.3.2 Per
olation TheoryA theoreti
al aspe
t, that needs further investigation, is to have a look at the pu�s in a
omoving frame of referen
e. A spa
e-time plot is shown in �gure 5.2.The front velo
ity v has been used in order to de�ne the 
omoving frame
s = s0 − v · t (5.3.2)This plot looks like a stru
ture, that 
ould be related to a problem of dire
ted per
olation(
f. [35℄).
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Figure 5.2: Comoving frame of a turbulent pu�. The average front velo
ity has beenused as the transformation velo
ity. Growth and splitting events 
an easilybe dete
ted in the 
omoving frame.

Figure 5.3: Dire
ted per
olation s
hemes. The left two images are for a single seedperturbation, while the right ones are for many perturbed sites. ξ⊥ and ξ‖are the spa
e and time 
orrelation lengths, respe
tively. Reprint from [15℄.



72 CHAPTER 5. CONCLUSIONDire
ted per
olation makes a statement about the transition point from �nite stru
tures,i.e. pu�s, to in�nite, per
olating stru
tures, i.e. slugs. By analysing the simulation datawith respe
t to this per
olation threshold, one would be able to understand the pu�-slugtransition point from a di�erent perspe
tive.Additionally, the growth of slugs 
ould be predi
ted just above the per
olation threshold.A

ording to [15℄, the slopes of slugs (
f. �gure 5.3) would have an algebrai
al s
alinglaw near the per
olation threshold. This has to be 
he
ked in simulations or experimentsin the future.Further, splitting events 
an maybe des
ribed by dire
ted per
olation pro
esses. As seenin �gure 5.2, a pu� or slug is not 
ompletely turbulent over its whole width. It has someholes in it, arising, if a front is faster than the rest. The two pie
es 
an then mergeagain or de
ay. This leads to 
hara
teristi
 sizes of the holes, whi
h 
ould have a usefuls
aling law, when one is near a transition point. Again, further studies are needed to
he
k these predi
tions from per
olation theory.Pu� splitting events have been studied by Moxey and Barkley [32℄. They simulatedthe in
ompressible Navier-Stokes equations and analysed the results in terms of dire
tedper
olation. They state, that the transition from pu�s to slugs happens via spatio-temporal intermitten
y. This transition 
an lead to in�nite lifetime, if it is identi�edwith the per
olation threshold. A

ording to [32℄, the transition from pu�s to slugs
an not be solved by lifetime measurements. Sin
e, lifetimes grow exponentially, theysuggest to study the qualitative 
hange in behaviour, like in the arise of spatio-temporalintermitten
y.5.3.3 Intermitten
y Transition before αslThe growth has ben studied in order to 
hara
terise the slug regime. The transitionfrom pu�s to slugs is 
hara
terised by the huge in
rease in growth at αsl = 2.845. Ithas been shown, that the slug regime 
an 
ompletely be explained by the bifur
ations
enario of the 
oupling αg. αsl 
an be seen as a 
riti
al 
oupling strength. Turbulen
eis always persistent above αsl. Even in real experiments, there is a Reynolds number
Resl, above whi
h only slugs 
an be observed. For α . αsl the growth starts to in
rease(
f. �gure 4.22). This in
rease seems to be reminis
ent to an intermitten
y s
enario.Although, there is no �xed point of αg for α < αsl, a narrow tunnel in phase spa
e isexisting just before the saddle-node bifur
ation. Therefore, the system 
an stay most ofthe time in a region of e�e
tive 
oupling. This leads to time periods, where the front ispropagating ballisti
ally, whi
h are intermittent with periods of slow velo
ity v0. Theprobability to be in the ballisti
 state is then related to the 
oupling strength α.Therefore, it will be possible to determine the in
rease of growth with α from the model.This in
rease 
an be another theoreti
al predi
tion, whi
h is not depending on any �tparameters. Additionally, the hypothesis of an intermitten
y transition 
an be 
he
kedin experiments. The theoreti
al and experimental understanding 
an therefore shed newlight on the transition from pu�s to slugs.



5.3. OUTLOOK 735.3.4 Re Quen
hingThe 
ontrol of turbulen
e in pipe �ow is very important in engineering problems. Bylowering the Reynolds number in the turbulent regime, it is possible to re
over laminar�ow. This state 
ould remain stable, even after in
reasing Re again. That 
ould be apossibility to e�e
tively redu
e turbulen
e in pipe �ow and is known as Re quen
hing.Therefore, another way to study the system is to vary the parameters α and h, while asimulation is running. This has also been done in [32℄ and 
an reveal parameter values,where a turbulent state goes ba
k to laminar �ow. A good point to start is in studyinglifetimes and de
ay modes for 
ontinuously varying parameters. Interesting questionsare for example:� Is the lifetime of pu�s in�uen
ed by lowering α for a short period of time ?� Whi
h de
ay s
enarios arise near the threshold αcr ?� Are there spe
ial modes, that are more likely to de
ay ?� Are there stru
tures, that, on
e obtained, keep their long lifetime even for smaller
α due to self-preserving e�e
ts ?As it is obviously seen in this list, there is still a lot of work to do. But some questionshave been answered in this thesis, both theoreti
ally and numeri
ally. Beyond the insightin turbulent pipe �ow, uCMLs also have 
onsiderable interest from a dynami
al systemspoint of view. Coupled map latti
es have been studied for quite some time. But mostof the obtained results are limited to the 
ase of di�usively 
oupled latti
es [10, 22, 37℄or a global 
oupling [21℄. Unidire
tioal 
oupled map latti
es have been investigatedin [40,41,49℄. But this is the �rst time, were a unidire
tional 
oupling has been used inorder to study turbulent pu�s and the transition from 
onve
tive to absolute instabilities.To our knowledge, this is also the �rst time, where su
h a model has been studied tothis extent. It is remarkable, that so many theoreti
al predi
tions 
an be made. It isworth noti
ing, that most of the results have been determined without 
ontaining anyfree parameters.The author is 
on�dent, that future studies on these 
oupled map latti
es will revealfurther insight.
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Appendix
This appendix will give more te
hni
al questions for readers, who want to work withthis model themselves.As mentioned above, it is not 
lear, where the spiky region around α = 0.7 and h = 2.1in the lifetime s
aling law 
omes from. This also seems to be related to a spe
ial dynami
in the system, sin
e the 'hump' is vanishing for larger h (
f. �gure 5.5).
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Figure 5.4: S
aling law τ(α) for h = 2.3. The hump around α ≈ 0.7 has vanished. Thishas been expe
ted from the parameter spa
e plot 4.11.In addition, the parameter plot shows, that the hump at α = 0.7 is vanishing for large
h, while the one at α = 1.3 is still present at least up to h = 2.5. This behaviour is agood starting point in order to get further insight into the dynami
s of the system.Further, it has not been studied, how the shape of the perturbation in�uen
es theevolution of turbulent pu�s. Instead of perturbing one site, one 
ould imagine to triggerturbulen
e in many adja
ent sites. These investigations 
ould be done with the existingalgorithm without mu
h e�ort. That point has been skipped, be
ause a great 
hange inthe behaviour is not expe
ted. Turbulent pu�s rea
h several sites very fast. This leads to75



76 APPENDIXa rapid deletion of the memory of the intial 
onditions. This assumption demonstratesin the 
onsideration, that the lifetime of a turbulent pu� is independent of its age.Another interesting point is the distribution of states xi
n. The analysis 
an be donevery easily by storing these values and applying the histogram algorithm also used todetermine the velo
ity histograms.
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Figure 5.5: Histograms for the distribution of state variables. A 
hara
teristi
 value isobserved as a peak in the histogram. It shifts to the right for larger 
ouplingstrength α. Even the width is in
reased, sin
e the 
oupling αg 
an add alarger value to the next site.This gives us some insight in the o

uren
e of spe
ial values xi
n and 
ould be a goodstarting point in order to understand the spiky part of the lifetime s
aling law andtypi
al behaviour of the system. A related quantity is the distribution of the values xi

nat the front, where the downstream neighbour is still laminar. These plots 
ould showhow turbulen
e sets in. If it is triggered over a wide range of values or if it is basi
allyspread by only several state values xi
n of the upstream neighbour.A further possibility to analyse the system is the use of return maps. In return maps,states xn+1 are plotted against xn. One return map is shown in �gure 5.6.
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Figure 5.6: Left: Return map for the uCML for α = 0.8 and h = 2.1. Right: Magni�
a-tion of the region near x = 0. Note the dark regions, whi
h must be relatedto 
austi
s in the dynami
s.The tent shape of the lo
al dynami
 f is 
learly visible in the plot. The 
oupling αgwidens the stru
ture, sin
e more possible next states are available. In addition, a denser



77region at the boundaries of the return maps is observed. This stems from the extremalvalues of g. The slope at those points is zero. Therefore, the probability to gain su
h avalue is mu
h higher than at the steepest parts. A magni�
ation of the region for small
xn reveals an even more 
omplex stru
ture. The origin of these stru
tures is not 
learat this point, but it 
ould be related to the evolution of �xed point or other invariantsubsets. In any 
ase, an understanding of these 
urves 
ould give further insight intopologi
al aspe
ts of the model.A small additional task would be to determine the invariant densities for f and αg fordi�erent parameter values. This quantity is known for the tent map with h = 2 (
f. [33℄).But it would also be of interest to know it for the 
oupling αg, espe
ially at the slugtransition α = αsl.



78 APPENDIX



Bibliography[1℄ D. J. A
heson. Elementary Fluid Dynami
s. Oxford University Press, 1990.[2℄ V.I. Arnold. Catastrophe Theory. Springer, 1992.[3℄ J.-R. Chazottes and B. Fernandez. Dynami
s of 
oupled map latti
es and of relatedspatially extended systems. Springer, 2004.[4℄ J. P. Crut
h�eld and K. Kaneko. Are attra
tors relevant to turbulen
e? Phys. Rev.Lett., 60(26):2715�2718, 1988.[5℄ H. Dehling and B. Haupt. Einführung in die Wahrs
heinli
hkeitstheorie und Statis-tik. Springer, 2004.[6℄ R. L. Devaney. An Introdu
tion to Chaoti
 Dynami
al Systems. Westview Press,2003.[7℄ B. E
khardt and A. Mersmann. Transition to turbulen
e in a shear �ow. Phys.Rev. E, 60(1):509�517, 1999.[8℄ H. Faisst and B. E
khardt. Sensitive dependen
e on initial 
onditions in transitionto turbulen
e in pipe �ow. Journal of Fluid Me
hani
s, 504:343�352, 2004.[9℄ M. J. Feigenbaum. Universal behaviour in nonlinear systems. Los Alamos S
ien
e,1:4, 1984.[10℄ F. Ginelli, P. Poggi, A. Tur
hi, H. Chaté, R. Livi, and A. Politi. Chara
terizingdynami
s with 
ovariant lyapunov ve
tors. Phys. Rev. Lett., 99(13):130601, Sep2007.[11℄ N. Goldenfeld. Roughness-indu
ed 
riti
al phenomena in a turbulent �ow. Phys.Rev. Lett., 96(4):044503, 2006.[12℄ C. Grebogi, E. Ott, and J.A. Yorke. Fra
tal basin boundaries, long-lived 
haoti
transients and unstable-unstable pair bifur
ation. Phys. Rev. Lett., 50(13):935,1983.[13℄ C. Grebogi, E. Ott, and J.A. Yorke. Criti
al exponent of 
haoti
 transients innonlinear dynami
al systems. Phys. Rev. Lett., 57(11):1284, 1986.[14℄ S. Grossmann. The onset of shear �ow turbulen
e. Rev. Mod. Phys., 72(2):603�618,2000. 79



80 BIBLIOGRAPHY[15℄ H. Hinri
hsen. Non-equilibrium 
riti
al phenomena and phase transitions into ab-sorbing states. Advan
es in Physi
s, 49:815�958, 2000.[16℄ B. Hof, A. de Lozar, D. J. Kuik, and J. Westerweel. Repeller or attra
tor? sele
tingthe dynami
al model for the onset of turbulen
e in pipe �ow. Phys. Rev. Lett.,101(21):214501, 2008.[17℄ B. Hof, A. Juel, and T. Mullin. S
aling of the turbulen
e transition threshold in apipe. Phys. Rev. Lett., 91(24):244502, 2003.[18℄ B. Hof, J. Westerweel, T. M. S
hneider, and B. E
khardt. Finite lifetime of turbu-len
e in shear �ows. Nature, 443, 2006.[19℄ P. Holmes and E. T. Shea-Brown. Stability. S
holarpedia, 1(10):1838, 2006.[20℄ Clay Mathemati
s Institute. http://www.
laymath.org/millennium/. Website.[21℄ W. Just. Bifur
ations in globally 
oupled map latti
es. Journal of Statisti
alPhysi
s, 79(1-2):429�449, April 1995.[22℄ E. Katzav and L. F. Cugliandolo. Coupled logisti
 maps and non-linear di�erentialequations. ArXiv Condensed Matter e-prints, De
ember 2005.[23℄ R. R. Kerswell. Re
ent progress in understanding the transition to turbulen
e in apipe. Nonlinearity, 18(6):R17, 2005.[24℄ Y.-C. Lai and R. L. Winslow. Geometri
 properties of the 
haoti
 saddle re-sponsible for supertransients in spatiotemporal 
haoti
 systems. Phys. Rev. Lett.,74(26):5208�5211, Jun 1995.[25℄ B. B. Mandelbrot. Fra
tal aspe
ts of the iteration of z → λ(1 − z) for 
omplex λand z. Annals of the New York A
ademy of S
ien
es, 357:249�59, 1980.[26℄ B. B. Mandelbrot. The fra
tal geometry of nature. 1983.[27℄ P. Manneville. Dissipative Stru
tures and Weak Turbulen
e. Perspe
tives in Physi
s,1990.[28℄ Mohammad Mehrafarin and Nima Pourtolami. Intermitten
y and rough-pipe tur-bulen
e. Phys. Rev. E, 77(5):055304, 2008.[29℄ A. Meseguer and F. Mellibovsky. On a solenoidal fourier-
hebyshev spe
tral methodfor stability analysis of the hagen-poiseuille �ow. Applied Numeri
al Mathemati
s,57(8):920 � 938, 2007.[30℄ A. Meseguer and L. N. Trefethen. Linearized pipe �ow to reynolds number 107.Journal of Computational Physi
s, 186(1):178 � 197, 2003.[31℄ J. Moehlis, H. Faisst, and B. E
khardt. A low-dimensional model for turbulentshear �ows. New Journal of Physi
s, 6(1):56, 2004.



BIBLIOGRAPHY 81[32℄ D. Moxey and D. Barkley. Distin
t large-s
ale turbulent-laminar states in transi-tional pipe �ow. Pro
eedings of the National A
ademy of S
ien
es, 107(18):8091�8096, 2010.[33℄ E. Ott. Chaos in Dynami
al Systems. Cambridge University Press, 2002.[34℄ W. Pfenniger. Transition in the inlet length of tubes at high Reynolds numbers. InBoundary layer and �ow 
ontrol. NY Pergamon, 1961.[35℄ Y. Pomeau. Front motion, metastability and sub
riti
al bifur
ations in hydrody-nami
s. Physi
a D: Nonlinear Phenomena, 23(1-3):3 � 11, 1986.[36℄ Y. Pomeau and P. Manneville. Intermittent transition to turbulen
e in dissipativedynami
al systems. Commun. Math. Phys., 74:189, 1980.[37℄ C. Primo, M.A. Rodriguez, J.M. Lopez, and I. Szendro. Dynami
 S
aling of BredVe
tors in Chaoti
 Extended Systems. ArXiv Nonlinear S
ien
es e-prints, Novem-ber 2003.[38℄ Lord Rayleigh. On 
onve
tion 
urrents in a horizontal layer of �uid, when thehigher temperature is on the under side. Phil. Mag., 32:529�46, 1916.[39℄ O. Reynolds. An experimental investigation of the 
ir
umstan
es whi
h determinewhether the motion of water shall be dire
t or sinuous, and of the law of resistan
ein parallel 
hannels. Phil. Trans. R. So
. Lond., 174:935, 1883.[40℄ O. Rudzi
k and A. Pikovsky. Unidire
tionally 
oupled map latti
e as a model foropen �ow systems. Phys. Rev. E, 54(5):5107�5115, Nov 1996.[41℄ O. Rudzi
k, A. Pikovsky, C. S
he�
zyk, and J. Kurths. Dynami
s of 
haos-orderinterfa
e in 
oupled map latti
es. Physi
a D: Nonlinear Phenomena, 103(1-4):330� 347, 1997. Latti
e Dynami
s.[42℄ T. M. S
hneider, B. E
khardt, and J. Vollmer. Statisti
al analysis of 
oherentstru
tures in transitional pipe �ow. Phys. Rev. E, 75(6):066313, 2007.[43℄ J. T. Stuart. Taylor-vortex �ow: A dynami
al system. SIAM Review, 28(3):315�342, 1986.[44℄ G. I. Taylor. Stability of a vis
ous liquid 
ontained between two rotating 
ylinders.Phil. Trans. R. So
. Lond. A, 223:289�343, 1923.[45℄ T. Tél and Y.-C. Lai. Chaoti
 transients in spatially extended systems. Physi
sReports, 460(6):245 � 275, 2008.[46℄ M. van Dyke. An Album of Fluid Motion. The Paraboli
 Press, 1982.[47℄ J. Vollmer, T. M. S
hneider, and B. E
khardt. Basin boundary, edge of 
haos andedge state in a two-dimensional model. New Journal of Physi
s, 11(1):013040, 2009.[48℄ Wikiquote. http://en.wikiquote.org/wiki/Box,_George_E._P. Website.



[49℄ F. H. Willeboordse and K. Kaneko. Pattern dynami
s of a 
oupled map latti
e foropen �ow. Physi
a D: Nonlinear Phenomena, 86(3):428 � 455, 1995.[50℄ A. P. Willis and R. R. Kerswell. Criti
al behavior in the relaminarization of lo
alizedturbulen
e in pipe �ow. Phys. Rev. Lett., 98(1):014501, 2007.[51℄ A. P. Willis and R. R. Kerswell. Turbulent dynami
s of pipe �ow 
aptured in aredu
ed model: pu� relaminarization and lo
alized edge states. Journal of FluidMe
hani
s, 619:213�233, 2009.

82



DanksagungTraditionell ist der Abs
hluss einer groÿen Arbeit ein guter Zeitpunkt, einigen Leuten zudanken. Mit dieser Tradition will au
h i
h ni
ht bre
hen. Na
hdem i
h im Vorwort s
honden Leuten gedankt habe, die mi
h wissens
haftli
h bei meiner Arbeit unterstützt haben,mö
hte i
h diese Danksagung an die Personen ri
hten, die mir privat viel bedeuten.Zu aller erst mö
hte i
h hier meinen Eltern, Brigitte und Andreas, danken. Ihr habtmi
h auf meinem bisherigen Weg immer unterstützt und mir euer Vertrauen gegeben.Danke, dass ihr mir die Werte vermittelt habe, na
h denen i
h jetzt lebe.Ebenso danke i
h meinem Bruder David. Du bist wahrs
heinli
h die Person, mit der i
ham meisten Zeit verbra
ht habe. Deine Begeisterung für Musik steht meiner für Physikin ni
hts na
h. Somit zeigst du mir immer wieder aufs Neue, dass es au
h andere Seitenim Leben gibt. Danke für die Zeit, die wir bis jetzt zusammen hatten.Der nä
hste Dank geht an meine alten S
hulfreunde. Ohne eu
h wäre i
h mit Si
herheitni
ht so geworden, wie i
h jetzt bin. Zu nennen sind hier Benedikt und ChristianEngelke, Fabian Garbs, Welf Gehrke, Arne Grimsel, Tobias Otto, Urs Vorlop, AnneWagener und David Westfal. Danke für die s
höne Zeit, die jetzt s
hon se
hs Jahre her,aber längst no
h ni
ht vergessen ist.Auÿerdem mö
hte i
h mi
h bei Fabian Garbs, Arne Grimsel, Ruth Hübner, Jana Kasse-baum, Robert S
hiewe
k und Constantin Spille für die Begleitung dur
hs Studium seitder ersten Stunde bedanken. Die Diskussionen über Physik, Mathematik und Philoso-phie waren immer sehr anregend. Aber am Wi
htigsten war für mi
h, dass der Spaÿ imVordergrund stand. Und das hat bei uns immer geklappt!Ni
ht weniger wi
htig sind natürli
h die Leute, die i
h erst im Laufe meines Studiumsintensiver kennen gelernt habe. Vor allem Julia Buÿe, Kathrin Deppe, Ste�en S
hubertund Constanze Thees. Eu
h allen wüns
he i
h au
h viel Erfolg für eure Abs
hlussarbeitoder euren weiteren Berufsweg.Für die gelungene Ablenkung amMittwo
h Na
hmittag mö
hte i
h mi
h bei meiner Uni-Liga Manns
haft 'TuS Abs
huss' bedanken. Das Ki
ken war immer ein guter Kontrastzur Labor- oder Büroarbeit und hat meinen Kopf frei für neue Erkenntnisse gehalten.Die Zeit mit meinem Lieblingsverein werde i
h nie vergessen.Ein ganz spezieller Dank gilt meinem Physiklehrer Markus Dippel. Ohne seinen inter-essanten Unterri
ht und die vielen privaten Gesprä
he über physikalis
he Fragen hättei
h wohl nie mit dem Physikstudium begonnen. I
h ho�e, du kannst no
h viele weitereS
hüler für das spannende Fa
h Physik begeistern.Zu guter Letzt mö
hte i
h den wi
htigsten Dank an meine Freundin Kathrin Beier83



ri
hten. Du trägst den Hauptanteil daran, dass diese Arbeit überhaupt in dieser Formmögli
h war. Wenn immer i
h gestresst oder s
hle
ht gelaunt war, hast du mi
h wiederaufgebaut und mi
h ermutigt weiter zu ma
hen. So konnte i
h au
h die Phasen derDiplomarbeit überstehen, die ergebnislos oder sehr stressig waren. Danke für deineLiebe und dass du mi
h au
h während der anstregenden Phasen ertragen hast.

84





Eidesstattli
he Erklärung
I
h,Christian Mars
hlerversi
here hiermit, dass i
h die vorliegende Diplomarbeit mit dem Titel

A Coupled Map Latti
eMimi
king Turbulent Pu�s and Slugs
selbstständig verfasst und keine anderen als die angegebenen Quellen undHilfsmittel benutzt habe.
Göttingen, den




