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ScienceDirect
Since the introduction of next generation sequencing, plant

genome assembly projects do not need to rely on dedicated

research facilities or community-wide consortia anymore, even

individual research groups can sequence and assemble the

genomes they are interested in. However, such assemblies are

typically not based on the entire breadth of genomic

technologies including genetic and physical maps and their

contiguities tend to be low compared to the full-length gold

standard reference sequences. Recently emerging third

generation genomic technologies like long-read sequencing or

optical mapping promise to bridge this quality gap and enable

simple and cost-effective solutions for chromosomal-level

assemblies.
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Introduction
As a result of the drastic cost reduction for genome

sequencing during the last decade, at least 183 plant

reference sequences have been published so far (as of

September 2016; www.plabipd.de) and first projects with

de novo assemblies of multiple individuals of the same

species appeared [1–5]. However, only the minority of the

plant genome assemblies are on chromosome-level (e.g.,
[6–8]). Most of them and this even includes some of the

major crop species, are based on short-read sequencing

and consist of hundreds or even thousands of fragmented

contigs and scaffolds, which are usually not mapped to

their chromosomal locations.

Obviously, the assembly of plant genomes is a challeng-

ing problem and presumably even more challenging than
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the assembly of vertebrate genomes (Figure 1). High

repetitiveness due to transposable elements, extreme

genome sizes, like the ones of the 22 Gb loblolly pine

and 20 Gb Norway spruce genomes [9,10] and the poly-

ploid nature of some plants and in particular of many of

the crop species [11] display unique challenges [12].

Recently, long-read sequencing [13–15] and long-range

scaffolding methods such as optical mapping [16], chro-

mosome conformation capture [17], and DNA dilution-

based technologies [18,19] were introduced to overcome

the weaknesses of short-read assemblies and ultimately to

enable the assembly of entire chromosomes [20��]. In this

review, we focus on current and emerging third genera-

tion genomic technologies and their application for plant

genome assembly particularly focusing on those, which

are broadly available.

Long-read sequencing technologies
The most-widely used long-read sequencing technology

is Pacific Biosciences’ Single Molecule Real-Time

(SMRT) sequencing (www.pacb.com). SMRT sequenc-

ing is performed on cells, which are patterned with tiny

wells called zero-mode waveguides or ZMWs. Within

each of these ZMWs a DNA polymerase/template com-

plex gets immobilized and synthesizes a new DNA strand

by incorporating phosophlinked nucleotides. Each incor-

poration leads to a light pulse that can be distinguished for

differently labeled nucleotides [13]. Current PacBio sys-

tems generate reads with an average size of nearly 20 kb

and a maximum length of over 60 kb [21,22�]. Although

raw reads can have sequencing error rates of up to 15%,

correction with short sequencing reads [23,24] or self-

correction with sufficient sequencing data [25] enables

genome assemblies with a sequence accuracy of over

99.999% simply by running freely available software, like

FALCON or PBcR(MHAP) [26��,27�].

Still the costs of PacBio sequencing are quite substantial

and reference sequences for large and repetitive genomes

like the hexaploid wheat genome are assembled from

short-reads only. However sophisticated assembly ser-

vices like the one offered by NRGene (www.nrgene.

com) promise convincing results even without new third

generation technology, but come at certain costs. As

alternative lower amounts of long reads could be used

to improve short-read assemblies by gap closure or scaf-

folding [1,28,29��]. The computational strategies for such

data integration are less straightforward as compared to de
novo assemblies, which are typically based on single

software tools [24,30]. Latest assembly tools even come
www.sciencedirect.com
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Figure 1

Comparison of size and repetitiveness of plant and vertebrate genomes. The figure shows 44 plant and 68 vertebrate genome assemblies

analyzed for genome-wide repeat levels and genome size. Repetitiveness of plant genomes is generally higher and more correlated to genome

size as in vertebrates. The challenges of plant genome assembly are therefore not only determined by genome size alone, but also by their

increased levels of repetitiveness (Genome assemblies taken from the Ensembl Genomes release 32 [68]; low coverage genomes were excluded;

repetitiveness was estimated by the percentage of non-unique 31-mers of all 31-mers in each assembly; genome sizes estimated by genome

assembly size without considering ambiguous bases; dashed lines follow polynomial regression fitted to the data).
as handy push-button methods, which do not require prior

adjustment of algorithmic parameters like k-mer sizes and

therefore promise to simplify the practical assembly

procedure [31��].

The first plant genomes assembled from PacBio data

alone were from Arabidopsis thaliana [27�] and Oropetium
thomaeum [22�]. The small genome of Arabidopsis was

assembled at chromosome-arm level, while the assembly

of the 245 Mb O. thomaeum genome featured a contig N50

of 2.4 Mb. Such contiguities were never reached by short-

read assemblies, however, scaffolding (i.e., ordering and

orienting of contigs) using long-range read pairs could

generate similar contiguities [32]. In addition to contigu-

ity, PacBio assembly contigs feature less gaps (repre-

sented as Ns in the sequence) and their overall lengths

includes more of the genomic space. For example, the

PacBio-based assembly of Arabis alpina, a relative of

Arabidopsis with an estimated genome size of 375 Mb,

was 337 Mb long and with this nearly 30 Mb longer as

compared to the scaffolds of an earlier short-read assem-

bly, while the percentage of Ns was reduced from 9.2 to

3.3% [33,34��].
www.sciencedirect.com 
Besides PacBio, there are currently two other long-read

sequencing technologies on the market. The first was

introduced by Oxford Nanopore Technologies (nanopor-

etech.com), which provided access to their first sequenc-

ing system via an early-access program in 2014 [14,35]. In

this technology, single DNA molecules are run through

nanopores, where individual nucleotides create charac-

teristic disruptions of the current of the nanopore, which

reveal the sequence of the nucleotides. The system can

process DNA fragments independent of their length, and

thus read length is theoretically only limited by the length

of the DNA molecules. While most of the reads reported

so far are similar in length and accuracy to PacBio reads,

the longest reads are up to 200 kb. First whole-genome

assemblies using Oxford Nanopore data have reached

N50 values of multiple hundred kb for fungal genomes,

and bacterial genomes could be fully assembled with a

nucleotide accuracy of over 99% [36,37]. However, so far

there are no reports on plant genome assemblies using

Oxford Nanopore data.

Another long-read technology was introduced by

Illumina through a library preparation kit for Synthetic
Current Opinion in Plant Biology 2017, 36:64–70
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Long-Reads (SLR) (www.illumina.com), which allows

the assembly of long reads from short-read sequencing

data [15,38]. The protocol starts with shearing DNA

followed by size selection of fragments of �10 kb. The

fragments are diluted and distributed in multiple hun-

dred aliquots such that each aliquot receives only a tiny

fraction of a chromosome making it unlikely that two

overlapping fragments from the same region are within

one aliquot. After PCR amplification, sequencing libraries

with unique barcodes are generated from each aliquot,

pooled and sequenced using conventional Illumina short-

read sequencing. The short reads of each aliquot can be

identified by their barcode and can be assembled into

SLRs. Reported SLR lengths range from 2 to 18 kb and

have a sequence accuracy of more than 99.9%, which is

much higher as compared to the accuracy of ‘real’ long

reads of PacBio or Oxford Nanopore, but it is not clear

how well SLR assembly works if the fragments contain

repeats [15,39]. Generation of SLRs for de novo assembly

requires high amounts of short read coverage (typically

multiple hundred-fold genome coverage). First SLRs

need to be assembled, before they can be used as reads

for de novo assembly, which itself requires high coverage.

So far, SLRs have been used to assemble a few eukaryotic

genomes with genome sizes of some hundred Mb [15,38]

and to improve a short-read assembly of a large maize

genome [5], but despite the high quality of SLRs the

assemblies hardly reached N50 statistics of more than

100 kb. The assembly of C. elegans even included remark-

able amounts of misassemblies, which, however, could be

due to shortcomings of the assembly procedure implying

the need for adjusted algorithms for SLR de novo assem-

bly [39], which are just being developed [40].

Long-range scaffolding technologies
Despite all of the impressive recent progress in long-read

DNA sequencing, it was so far not possible to assemble a

complete plant genome from sequence reads alone. To

improve assembly contiguity, the contigs of an assembly

need to be scaffolded, which typically starts by ordering

the contigs using alignments of paired reads [41]. In

particular read pairs from BAC or fosmid ends are power-

ful to increase contiguity and help bridging repeats, which

are the main reason for breaks in the assembly [42].

Scaffolding can extend the contiguity of an assembly

by orders of magnitude, however, to get a plant genome

assembled on chromosome-level additional genetic or

physical maps are so-far still required. Recently several

novel technologies emerged, which promise to improve

scaffolding and eventually eliminate the need for genetic

or physical mapping.

One of these technologies is optical mapping, which

was already invented at the end of last century [16],

but only some years ago commercial high-throughput

platforms, such as the Irys system by BioNano Genomics

(www.bionanogenomics.com) or OptGen’s Argus system
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(www.opgen.com), became available. Optical mapping

generates fingerprints of DNA fragments of up to multi-

ple hundred kb by imaging the patterns of restriction sites

under light microscopes using fluorescently labeled

enzymes [16,43]. Such individual fingerprints (or maps)

can be assembled into genome-wide (consensus) maps

[44], which can then be used to scaffold the contigs of a

corresponding sequence assembly and identify large

structural variations [22�,29��,45–48]. Genome assembly

scaffolding and other applications of optical map data to

plant genomics have been reviewed in detail in [49].

The combination of sequencing data and optical maps

works particularity well, as the typical breaks in sequence

assemblies are at repeats, while optical map assemblies

have a bias to break at regions with closely-spaced restric-

tion sites [50]. The contiguity improvement gained by

integration of optical maps depends on different factors

including the contiguity of the assembly before the

integration as well as contiguity of the optical consensus

maps themselves, which in the best cases led to the

reconstruction of entire chromosomes [47,51]. In addi-

tion, consensus maps can also be used to identify mis-

assembled contigs [29��,52]. Though breaking of contigs

at misassembled sites shortens the contigs, it can even

lead to longer scaffolds compared to scaffolding without

prior contig correction [34��]. Interestingly, like optical

maps can be used to control for errors in the sequence

assembly, the sequence contigs can be used to control for

errors in the optical maps. In theory this should allow to

aggressively assemble the sequence data and the optical

maps without stringent error control. However, this might

even be unnecessary if optical map information is inte-

grated during sequence assembly already using data

structures that can include both types of data [53].

Another elegant solution to the challenges of chromo-

some-scale assembly is based on chromosome conforma-

tion capture sequencing (Hi-C), a method originally

developed to study the three-dimensional folding of

the genome [54]. Hi-C is based on proximity ligation

of DNA fragments that are physically close in their

natural conformation. They are ligated in situ before they

are cleaved by restriction enzymes and isolated from cells.

The ligated DNA fragments are then amplified and

sequenced. Though not all DNA, which is in close

proximity, is also closely linked, the majority of the read

pairs generated from the two ends of such fragments

comes from closely linked DNA and therefore these

read pairs can be used for scaffolding [17,55]. A modified

Hi-C protocol called Chicago is provided as a service by

Dovetail Genomics since 2014 (www.dovetailgenomics.

com). The Chicago method captures chromatin contacts

after confounding biological signals are removed by re-

constituting in vitro chromatin [56]. Like for optical

mapping, data integration follows a two-step approach,

first assembly errors are identified and resolved, and then
www.sciencedirect.com
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the broken contigs are scaffolded. Integration of Dovetail

Genomics read pairs into the PacBio assembly of A. alpina
improved assembly contiguity similar well as compared to

optical mapping data [34��]. Combined integration of

optical mapping and Dovetail Genomics data could fur-

ther advance the contiguity supporting the idea that

optical mapping and Hi-C data are complementary and

can help bridging different regions in the genome [34��].

The last technology highlighted here was introduced by

10X Genomics in 2015 who integrated their proprietary

GemCode technology in their latest system called Chro-

mium (www.10xgenomics.com). In this technology,

diluted DNA fragments of up to 100 kb are dispersed

into more than 10 000 gel bead partitions, then barcoded

using unique tags and finally pooled together to perform

usual Illumina short-read sequencing [19]. This is similar

to Illumina’s SLRs and also similar to the Long Fragment

Read technology service offered by Complete Genomics

(www.completegenomics.com) (which however is only

available for human genomes and thus not further con-

sidered here). In contrast to Illumina’s SLR protocol,

however, the Chromium system can process many more

and considerably longer fragments and the workflow does

not require the sequencing depth necessary to assemble

the individual fragments [19]. Instead reads with the

same barcode (called linked reads), which are amplified

from the same DNA molecules, can be used for scaffold-

ing [57�]. If used like this, the 10X Genomics data relies

on the presence of a prior sequence assembly (whereas

the Illumina SLRs are the actual basis for a sequence

assembly). However, in an impressive recent effort to de
novo assemble the genomes of seven humans, the 10X

Genomics linked read data were first used for whole-

genome assemblies (without considering that they were

sequenced from individually tagged molecules), while

the barcode information was afterwards used for scaffold-

ing of the contigs [31��]. This two-step method was

implemented in a single, simple-to-use software and

yielded contig N50 values of over 100 kb, which were

an order of magnitude lower as compared to long-read

assemblies of human genomes. However, scaffold N50

values of close to 20 Mb outperformed the contiguity of

long-read assembly contigs at a fraction of the costs, while

only 2–3% of the nucleotide sequences remained unre-

solved and despite the fact that only short-read data of a

single sequencing library at modest coverage was used. So

far, there are no published records of plant genomes

assembled with the 10X Genomics technology, however,

there is no reason that these promising results could not

be achieved for a plant genome as well.

Assembly of heterozygous and polyploid
genomes
Assembly of plant genomes is typically performed on

inbred, homozygous individuals. While homozygous gen-

omes can be assembled like haploids, the assembly of
www.sciencedirect.com 
heterozygous individuals requires correct handling and

ideally also reconstruction of the different chromosome

sets. An elegant solution for this is provided by a recent

algorithm, FALCON-Unzip, which uses PacBio sequenc-

ing data to phase the variation between individual chro-

mosomes already during the assembly of the reads [26��].
The assemblies consist of haplotigs, which are contigs

that represent individual chromosomes, and reached N50

values of 6.9 and 0.8 Mb when used for the de novo
assembly of an Arabidopsis F1 hybrid and a heterozygous

grapevine accession [26��]. Similar to inferring the hap-

lotypes from long reads they can also be assembled from

long-range scaffolding methods like proximity ligation-

based methods [17,55,56] or long DNA fragments derived

from dilution methods [18,58–60]. For example, the

seven human genome sequences assembled with short

reads from libraries generated with the 10X Genomics

system were also assembled to haplotigs and achieved

N50 values of up to 9 Mb for the assembly of individual

sets of chromosomes [31��].

It seems obvious how third generation technologies com-

bined with similar algorithms could help during the

assembly of polyploid genomes as well, as local similarity

between homeologous chromosomes can introduce simi-

lar challenges as heterozygosity. However, despite the

increased repetitiveness of polyploid genomes, the

assembly of allopolyploids (polyploids which evolved

by the merger of two or more distinct species) works

surprisingly well even without dedicated assembly meth-

ods [29��,61–63]. For example, the recent assembly of

Brassica juncea, which evolved by the merge of B. rapa and

B. nigra to a 922 Mb tetraploid genome, featured a scaf-

fold N50 of 1.5 Mb. This assembly was generated with

short and long-read sequencing data combined with opti-

cal maps, however, none of the algorithms used was

particularly developed for polyploid genome assembly

suggesting that the level of divergence between the

homeologous chromosomes was sufficiently high to be

assembled separately. Even the assembly of the gene

space of the gigantic 17 Gb hexaploid genome of wheat

including three homeologs of most of the genes was

first attempted with simple whole-genome shot-gun

approaches [64].

To our knowledge, there is so far no de novo assembly of

an autoploid plant, which reconstructs each of the home-

ologous chromosomes separately. Instead diploid or even

haploid individuals have been used for assembly of

autoploid species [65]. Dependent on the level of diver-

gence between the homeologous chromosomes, autop-

loid genomes could be assembled into a ‘pseudo-haploid’

sequence, where polymorphic sites could be annotated in

subsequent steps. Alternatively, third generation tech-

nologies might allow to bridge between neighbored poly-

morphisms and thereby distinguish the homeologous

chromosomes. Obviously, longer reads or molecules
Current Opinion in Plant Biology 2017, 36:64–70
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will help improving the reconstruction of individual

homeologs.

Conclusions
New third generation genomic technologies reach out to

bridge the quality gap between high-quality reference

sequences and low-cost short-read assemblies. Long-read

assemblies on their own already outperform short-read

assemblies and combination with optical mapping or

other long-range data emerges as a strategy to assemble

genomes at unprecedented completeness and quality.

The availability of many good assemblies will question

the role of species-representing reference sequences,

and in particular research on non-standard lines might

not need to rely on common reference sequences any-

more. While first study-specific references are currently

generated, there are also first algorithms that can handle

multiple reference sequences (e.g., [66,67]) to support

simultaneous alignments against multiple references or

to facilitate identification of polymorphisms within

assembly graphs build from sequencing data of multiple

individuals.

In practice, however, projects that involve population-

scale sequencing are still commonly using Illumina’s

short-read technology and not long-read sequencing

and thus they have to deal with all the short-comings

of reference-biased resequencing even if study-specific

reference sequences are generated. Interestingly though,

the advent of the 10X Genomics platform has the poten-

tial to revolutionize such population-scale sequencing

projects. Instead of ‘assembling’ short-read data using

alignments against a reference sequence, the linked short

read data enable de novo assemblies for each individual of

a population with only a minor increase in costs. So far,

there are hardly any methods to analyze such sets of

assemblies, but this might change soon and open the

door for analyses of entire genomes of large panels of

plants including hybrids and polyploids in the near future.

Eventually this will end the era of re-sequencing and

enable new whole-genome comparisons that reveal and

utilize essentially all of the differences between genomes

independent of their size or complexity.
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