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1. Abstract 

Evolution of myelin has enabled rapid impulse propagation and development of complex 

brain circuitry. However, the in vivo mechanisms that trigger and orchestrate proliferation of 

oligodendrocyte precursor cells (OPCs), differentiation of OPCs into oligodendrocytes, and 

myelination in central nervous system (CNS) have remained unclear. Neuregulin-1/ErbB 

signaling, which controls virtually all aspects of peripheral myelination by Schwann cells is 

not essential for myelination in the CNS. Moreover, the identification of several 

promyelination factors made by astrocytes and microglial cells, the responsiveness of 

oligodendrocytes to ubiquitously expressed growth factors and their ability to myelinate 

artificial nanofibers has raised questions about the cellular origin of the key signals that 

control CNS myelination. To particularly address the impact of axonal signals in vivo, we 

studied the cerebellum of mice, in which the axons of granule cell neurons (referred to as 

“parallel fibers”) within the molecular layer are naturally of small caliber and unmyelinated. 

By conditional inactivation of the lipid phosphatase PTEN, we experimentally enhanced 

PI(3,4,5)P3-dependent Akt/mTOR downstream signaling specifically in granule cells, which 

subsequently lead to a significant increase in parallel fiber (Pf) diameters. Most importantly, 

this increase was tightly associated with the proliferation of OPCs, the differentiation of 

oligodendrocytes in the molecular layer, and the de novo myelination of up to 40% of all Pf 

at 1 year of age. While the synaptic input to OPCs was unchanged, gene expression 

profiling of laser captured mutant granule cell layers identified proteins, such as FGF1, 

Pleiotrophin, Timp3, Thymosin beta 4, and Activin A, as novel regulators of OPC 

proliferation, oligodendrocyte differentiation, and/or myelin growth. We conclude that 

activation of neuronal, PI(3,4,5)P3-dependent downstream signaling pathways can be 

sufficient to promote the entire program of OPC recruitment and CNS myelination. 
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2. Introduction 

2.1. The central nervous system 

The nervous system serves as a control center between the inner and the outer world. 

Composed of the central nervous system (CNS) and the peripheral nervous system (PNS), 

it constantly receives information, processes highly complex mechanisms and reacts in 

diverse patterns of behavioral control. The CNS is built by a variety of different cell types 

and is comprised of brain and spinal cord. It can be divided into white and gray matter. 

White matter mainly consists of myelinated fiber tracts and glial cells, while the gray matter 

is formed by neuronal cell bodies, dendrites and primarily unmyelinated axons. 

Glial cells in the mammalian CNS can be subdivided into astrocytes, microglia, 

oligodendrocytes and chondroitin sulfate proteoglycan expressing NG2-Glia (Kettenmann 

and Ransom, 2005; Staugaitis and Trapp, 2009). Astrocytes usually exhibit a star shaped 

morphology and serve distinct functions, for example, the biochemical support of endothelial 

cells (the blood brain barrier forming cells), the support of neurons by transferring nutrients 

(e.g. lactate) and the removal of neurotransmitters from the synaptic cleft (Kettenmann and 

Ransom, 2005). Microglia cells are the resident innate immune cells of the CNS and are 

able to remove cellular debris or even parts of damaged cells (Kettenmann and Verkhratsky, 

2011). Oligodendrocytes wrap long segments of axons with multilayered sheaths of 

extended cell membrane, the so-called “myelin sheaths” (Nave, 2010). By insulating axons 

at the internodes and thereby restricting action potentials to the nodes of Ranvier, they are 

providing the basis for the fast saltatory conduction of action potentials (Baumann and 

Pham-Dinh, 2001; Kettenmann and Ransom, 2005). Myelinated axons accelerate nerve 

conduction 20-100-fold compared to unmyelinated axons of the same diameter (Nave and 

Werner, 2014). Furthermore, reduced transverse capacitance and increased transverse 

resistance of the axonal plasma membrane is demonstrated by axons ensheathed with 

myelin. The restriction of action potentials to nodes of Ranvier reduces the ATP-dependent 

Na+/K+ exchange in preserving the resting potential of axonal membranes. In addition, 

oligodendrocytes maintain long-term axonal integrity and provide trophic axonal support. 

This is especially important for longer axons, where some myelinated segments can be 

even several meters away from the neuronal soma (Funfschilling et al., 2012; Lee et al., 

2012; Nave, 2010; Nave and Werner, 2014).  
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2.2. Myelination 

Myelination is an ongoing process that starts around birth and continues into the third 

decade of life in humans (Miller et al., 2012). During development, oligodendrocytes evolve 

from precursor cells that migrate throughout the spinal cord and brain, before they 

differentiate into postmitotic pre-myelinating oligodendrocytes and finally into myelin 

forming oligodendrocytes (Fig. 1). Oligodendrocyte precursor cells (OPCs) are produced 

from neuroepithelial cells in several distinct spatiotemporal waves in the spinal cord and 

brain (Rowitch and Kriegstein, 2010) and can be identified by the expression of marker 

proteins such as the NG2 proteoglycan and platelet-derived growth factor receptor alpha 

(PDGFRa). They remain to be present and are evenly distributed throughout the gray matter 

and white matter in the adult CNS (Kirby et al., 2006). 

 

 

Fig. 1. Oligodendrocyte lineage cell development. Oligodendrocyte progenitor cells (OPCs) 

differentiate into multipolar premyelinating oligodendrocytes, which finally mature into myelinating 

oligodendrocytes. OPCs compose the majority of mitotic cells in the adult brain. Mature 

oligodendrocytes are the myelin forming glia cells in the CNS and are able to myelinate multiple 

axons simultaneously (adapted image from Fields, 2015). 

 

Mature oligodendrocytes are capable of forming myelin sheaths that cover between 20 and 

60 different axonal segments (Chong et al., 2012; Hildebrand et al., 1993; Matthews and 

Duncan, 1971) (Fig. 2a). In contrast, Schwann cells, the myelin forming glia cells in the 

PNS, are bipolar and enwrap only one axonal segment each. Data from zebrafish 

experiments suggests, that the wrapping of single axonal segments takes only a couple 

hours (Czopka et al., 2013). The half-life of myelin proteins is very long and myelinating 

oligodendrocytes can remain for more than 5 decades in humans (Savas et al., 2012; Yeung 

et al., 2014). Nevertheless, OPCs are also abundant in the mature brain, and account for 

approx. 5% of all brain cells (Bergles and Richardson, 2016). They continue to proliferate 
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and differentiate into mature myelinating oligodendrocytes (Richardson et al., 2011). that 

for example replace dying oligodendrocytes or intercalate among existing myelin sheaths. 

Furthermore, adult-born oligodendrocytes, might be involved in the myelination of 

previously unmyelinated axons and thereby contribute to neuronal plasticity. In humans and 

mice there is evidence, that myelin remodeling contributes to motor learning (McKenzie et 

al., 2014; Yeung et al., 2014; Young et al., 2013). For example, changes in white matter 

structures could be correlated with extensive piano practice and juggling (Hu et al., 2011; 

Scholz et al., 2009). 

Myelin is a highly specialized, fundamental compartment of the oligodendrocyte, which can 

further be subdivided in compact and non-compact myelin (Arroyo and Scherer, 2000; 

Poliak and Peles, 2003). Compact myelin consists of several layers of adhesive plasma 

membrane. Proteolipid protein (PLP) is the most abundant protein of the CNS myelin, with 

a role in the compaction, stabilization and maintenance of myelin sheaths (Boison et al., 

1995; Klugmann et al., 1997). Analysis of mice lacking PLP and its splice isoform DM20 

revealed physically unstable CNS myelin (Boison et al., 1995; Klugmann et al., 1997). In 

patients, mutations in the PLP gene causes Pelizaeus-Merzbacher disease (PMD), an X-

linked dysmyelinating disorder (Inoue et al., 1996). Another essential adhesion protein is 

Myelin basic protein (MBP) (Dupouey et al., 1979), with a potential zipper function for the 

cytoplasmic leaflets (Nawaz et al., 2009). In mutant mice lacking MBP expression (shiverer), 

oligodendrocytes fail to assemble compact myelin and display  hypomyelination in the CNS 

(Rosenbluth, 1980). The non-compact myelin compartment is lacking these adhesion 

proteins and is comprised of adaxonal myelin, abaxonal myelin, paranodal loops and 

additional nanochannels (Fig. 2b). Paranodal loops form septate-like junctions (SpJ) with 

the axonal membrane and directly influence the distribution of sodium channels at the node 

of Ranvier and potassium channels at the juxtaparanode (JXP) (Poliak and Peles, 2003; 

Rasband, 2011). A large proportion of the axon at the juxtaparanodes and the internodes 

is covered by the adaxonal membrane of the oligodendrocyte.  
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2.3 Regulation of myelination 

Suggestively, differentiation of oligodendrocytes and myelination is regulated by a plethora 

of intrinsic and extrinsic cues. These signals include growth factors, protein kinases and 

extracellular matrix molecules, influencing epigenetic modifications, transcriptional and 

translational regulation and the actin cytoskeleton in oligodendrocytes (Bercury and 

Macklin, 2015). In contrast to cultured Schwann cells, which clearly require axonal signals 

for differentiation, oligodendrocyte development, at least in vitro, follows more a “default 

pathway”. Oligodendrocytes can differentiate and even produce myelin components in the 

absence of neurons and axons (Dubois-Dalcq et al., 1986; Mirsky et al., 1980; Temple and 

Raff, 1986). Later it was shown that they can even myelinate artificial carbon nanofibers 

and micropillars (Lee et al., 2012; Mei et al., 2014). These findings may raise the question 

to which extend axonal signals are required at all to regulate oligodendrocyte differentiation 

and myelination. On the other hand, several lines of experiments have indeed suggested 

an instructive role of neuron-derived signals at various stages of oligodendrocyte 

development in vivo (Barres and Raff, 1999; Simons and Trajkovic, 2006; Taveggia et al., 

2010). For example, killing axons significantly reduced the number of oligodendrocytes and 

supplying the transected optic nerve with exogenous ciliary neurotrophic factor (CNTF) 

prevented the reduction of oligodendrocytes (Barres et al., 1993). Transgenic mice, in which 

the number of optic nerve axons was genetically increased also harbored more 

oligodendrocytes (Burne et al., 1996). In other experiments electrical activity of axons has 

increased the number of OPCs and supported myelination, possibly as a response to the 

axonal release of adenosine (Barres and Raff, 1993; Demerens et al., 1996; Gibson et al., 

2014; Stevens et al., 2002). However, in contrast to Schwann cells, which are always in 

close axonal contact during migration CNS oligodendrocyte lineage cells develop largely 

without close axonal contact. Myelination in the CNS begins with OPC recruitment and 

expansion, followed by oligodendrocyte differentiation, all steps without axonal contact. 

Different growth factors and cytokines, including Pdgf, Fgf2, Igf1, Bdnf, Nt3, Cntf and Lif, 

have been identified over the last decades as regulators of the proliferation and 

differentiation of oligodendrocyte lineage cells (Baron et al., 2005; Barres and Raff, 1994; 

Carson et al., 1993; Ishibashi et al., 2006; Miller, 2002). 

Fig. 2. Structure of myelinated axons in the CNS. (a) Oligodendrocytes cover multiple axonal 

segments and provide the basis for saltatory signal propagation. (b) Schematic longitudinal cut 

through a myelinated fiber heminode. The node, paranode, juxtaparanode (JXP) and internode are 

labelled and are structurally specialized axonal segments upon myelination (modified image from 

Poliak and Peles, 2003). 
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Most of these identified factors are produced by astrocytes. However, in vitro experiments 

also revealed the capability of endothelial cells to promote the survival and proliferation of 

OPCs by soluble growth factors (Arai and Lo, 2009). In contrast to the PNS, no neuronally 

expressed “regulator” has been identified so far that would control myelination in the CNS. 

With respect to it's instructive role in PNS myelination, a possible candidate, however, was 

neuronal Neuregulin1 (Nrg1). This axonal growth factor activates ErbB receptor tyrosine 

kinases on glial cells, and is required for Schwann cell survival, differentiation and 

myelination (Jessen and Mirsky, 2005; Michailov et al., 2004; Nave and Salzer, 2006; 

Taveggia et al., 2005). The role of Nrg1 in the CNS is still somewhat controversially 

discussed. Earlier reports suggested a role for Nrg1 and ErbB receptors in OPC 

proliferation, oligodendrocyte survival, and myelination (Taveggia et al., 2008; Vartanian et 

al., 1999). However, intensive genetic analyses of mice lacking Nrg1 from CNS neurons or 

the corresponding ErbB3/4 receptors from oligodendrocytes revealed normal 

oligodendrocyte numbers and intact CNS myelination  (Brinkmann et al., 2008). Neuronally 

expressed proteins that are able to influence oligodendroglial functions can also be found 

in the group of secretases. Disintegrin and metalloprotease (ADAM) proteins have been 

implicated in PNS myelination (Sagane et al., 2005; Wakatsuki et al., 2009). The β-site 

amyloid precursor protein cleaving enzyme 1 (BACE1) demonstrated a role in PNS and 

CNS myelination (Hu et al., 2006; Willem et al., 2006). Oligodendrocyte development in the 

CNS can furthermore be limited by interaction between Jagged-Notch. Jagged is expressed 

by neurons at early developmental stages and by binding to Notch1 (only expressed by 

oligodendrocytes) OPC differentiation and myelination is inhibited (Genoud et al., 2002; 

Givogri et al., 2002; Wang et al., 1998; Zhang et al., 2007). 

 

 

2.4 PTEN 

Phosphatase and tensin homolog (Pten) is a tumor suppressor gene that was first 

discovered by Li et al. 1997 in a variety of different breast, prostate gland and brain tumors 

(Li et al., 1997). The protein encoded by this gene is a phosphatidylinositol-3,4,5-

trisphosphate 3-phosphatase. PTEN antagonizes the PI3K induced activation of Akt/mTor 

downstream signaling, by converting PIP3 (Phosphatidylinositol (3,4,5)-trisphosphate) into 

PIP2 (Phosphatidylinositol-4,5-bisphosphat) (Stiles et al., 2004b; Suzuki et al., 2008). Loss 

of PTEN function leads to over-activation of Akt and in general a hyperactivated PI3K 

downstream signaling as a consequence of accumulation of PIP3 in the plasma membrane 

(Cantley and Neel, 1999) (Fig. 3). In several in vivo studies the deletion of PTEN in neurons 

induced an increase in cell nuclei and cell soma (Backman et al., 2001; Fraser et al., 2004; 
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Groszer et al., 2001; Kwon et al., 2006). Differentiated neurons of the cerebral cortex and 

hippocampus lacking PTEN elicited a macrocephaly in mice and a neuronal hypertrophy 

(Kwon et al., 2001). Transgenic mice expressing Cre-recombinase under a GFAP promotor 

crossed to mice with floxed PTEN, resulted in PTEN deletion primarily in astrocytes, 

cerebellar granule cells and granule cells of the dentate gyrus of the hippocampus. Similar 

to findings in human Lhermitte-Duclos disease (LDD), this genetic modification induced 

enlarged brains, increased neuronal cell size and lead to abnormal neuronal organization 

(Backman et al., 2001; Kwon et al., 2001). LDD is a rare brain tumor, also known as 

dysplastic cerebellar gangliocytoma and is characterized by abnormal development and 

enlargement of the cerebellum. Although the exact cause in patients is unknown, mutations 

in the PTEN gene have been identified (Blumenthal and Dennis, 2008). Astrocytes, next to 

neurons show a similar cell growth when PTEN is deleted specifically in astrocytes in the 

cerebral cortex (Fraser et al., 2004). In mouse mutants selectively lacking PTEN in 

oligodendrocytes enlargement of all white matter tracts and hypermyelination at the single 

cell level was a prominent finding (Goebbels et al., 2010). Similar, the ablation of PTEN in 

from Schwann cells caused a hypermyelination of small-caliber axons and a focal 

hypermyelinating pathology in larger axons (Goebbels et al., 2010; Goebbels et al., 2012).  

 

 

Fig. 3. Schematic diagram depicting the PI3K/Akt pathway. Binding of growth factors to G protein-

coupled receptors and tyrosine kinase receptors (RTKs) triggers the phosphorylation of PIP2 by PI3K 

to generate PIP3. PTEN is the antagonist of PI3K and removes the 3′ phosphate of PIP3. Activated 

PDK1 phosphorylates AKT and promotes survival, migration, cell cycle progression, and cell growth 

(adapted image from Hemmings, 2015).  
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2.5 The architecture of the cerebellum 

The cerebellum is a structure of the CNS and plays an important role in motor control. 

Cerebellar dysfunctions often present with motor abnormalities, such as ataxia. 

Coordination, precision and timing of movements are associated with the cerebellum. The 

vermis, a narrow midline area, divides the cerebellum into two hemispheres. The 

cerebellum consists of the cerebellar cortex and the deep cerebellar nuclei (DCN). Tightly 

folded layers of the cortex, with white matter underneath form the gross anatomy of the 

cerebellum. The cytoarchitecture is highly uniform and characterized by the molecular layer 

(ML), the Purkinje cell layer (PL) and granular cell layer (GL) (Fig. 4a). The ML is the 

outermost layer and contains stellate and basket cell interneurons. Parallel fibers (Pf), the 

granule cell axons, form a large number of excitatory synapses onto the dendrites of 

Purkinje cells and dendrites of basket cells and stellate cells. Pf belong to the thinnest 

known vertebrate axons and are normally unmyelinated, possibly because their size is 

below a critical threshold. From mouse to macaque, the average unmyelinated Pf diameter 

is between 0.2 μm and 0.3 μm and it scales up slightly with brain size (Wyatt et al., 2005) 

(Fig. 4b). The PL contains the large Purkinje cell bodies the Bergmann glia. Purkinje cell 

dendrites harbor a larger number of spine branches spreading up into the ML. Each Purkinje 

cell can be innervated by 100000-200000 parallel fibers (Ito, 2006). Additionally, and in 

contrast to the high number of parallel fiber inputs, Purkinje cells receive input from exactly 

one climbing fiber of the inferior olivary nucleus (Barmack and Yakhnitsa, 2011). The GL 

contains the cell bodies of the small granule cells, unipolar brush cells and the Golgi cells. 

The mossy fibers form excitatory synapses with the granule cells and the cells of the 

cerebellar nuclei (Nicoll and Schmitz, 2005). Granule cells are the most abundant neurons 

in the human brain (Purves, 2012). 
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Fig. 4. The cerebellar cytoarchitecture. (a) The cerebellum can be clustered into the molecular 

layer, the Purkunje cell layer, the granule cell layer and underneath the cerebral cortex, the white 

matter. (b) The diagram elucidates the inputs from parallel fibers onto a Purkinje cell. Parallel fibers 

are the unmyelinated axons from the granule cells (modified image from Purves, 2012). 

 

 

2.6 Cerebellar PTEN mutants 

Throughout the body, the genetic loss of Pten can trigger enhanced mTOR-dependent cell 

growth (Backman et al., 2001; Fraser et al., 2004; Groszer et al., 2001; Kwon et al., 2006). 

Preliminary results were generated by B. Weege and Dr. A. Pieper (in the Department of 

Neurogenetics, subgroup "Developmental Neurobiology") by Intercrossing Pten-floxed mice 

(Lesche et al., 2002) with mice that express Cre recombinase (under control of the GABAA 

receptorα6 subunit promoter) selectively in cerebellar granule cells (Funfschilling and 

Reichardt, 2002). Experimental inactivation of Pten enlarged cerebellar granule cells and 

their axons (Fig. 5a). The diameter of parallel fibers increased over time, as quantified by 

electron microscopy (EM), reaching 0.61±0.009 µm in Tg(m6)-Cre*PtenloxP/loxP mice 

(mutant) over 0.16±0.002 µm in PtenloxP/loxP mice (control) at 1 year of age (Fig 5b). More 

importantly the deletion of Pten in granule cells was sufficient to trigger de novo myelination 
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of the enlarged parallel fibers in the cerebellar molecular layer by wildtype oligodendrocytes, 

as indicated by Gallyas silver impregnation (Gallyas, 1979) (Fig. 5c). 

 

 

Fig. 5. Genetic loss of Pten in cerebellar granule cells triggers de novo myelination by 

progressive enlargement of granule cells and parallel fibers. (a) Immunostaining for GABAA 

receptor 6 subunit (in red), a cerebellar GC marker, at 1 year. Increased cell size in the mutants is 

indicated by dashed lines. (b) Progressive enlargement of Pf calibers in the mutant molecular layer 

(ML) over time as determined by EM (n=3 per genotype and age, 140 Pf quantified per animal). (c) 

De novo myelination of normally unsheathed parallel fibers in the cerebellum. In comparison to 

control brains (left), without myelin in the molecular layer (ML), Gallyas silver impregnation (Gallyas, 

1979) of myelin demonstrates the presence of robust levels of ectopic myelin in the molecular layer 

(ML) of mutant mice. GL, granule cell layer; ML, molecular layer; WM, white matter. 
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2.7 Aim of the study 

In the vertebrate nervous system, myelin decreases the electrical capacity of axonal 

membranes and enables rapid salutatory impulse propagation. The failure of 

oligodendrocytes and Schwann cells to achieve normal myelination causes severe 

neurological diseases, including leukodystrophies and peripheral neuropathies (Boespflug-

Tanguy et al., 2008; Suter and Scherer, 2003). Moreover, in myelin diseases such as 

multiple sclerosis (MS), the remyelination of axons is often inefficient. This leads to axonal 

degeneration and persistent clinical disability (Franklin and Ffrench-Constant, 2008). Thus, 

it is of major importance to develop therapies that stimulate rapid and efficient myelin repair 

by oligodendrocytes. The finding that the number of oligodendrocyte precursor cells (OPCs) 

found in MS plaques is apparently not the limiting problem of remyelination (Bauer et al., 

2012; Franklin and Ffrench-Constant, 2008), accentuates the need for a precise 

identification of signals that might stimulate OPCs differentiation and myelination in vivo. 

Thus the aim of the study is to understand how OPC proliferation, differentiation and 

myelination in the developing and adult brain is controlled and in what way axon-derived 

signals are instrumental to this process. 
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3. Results 

3.1 Pten mutant GC trigger de novo myelination of Pf axons 

Cell size is regulated by the Akt/mTOR pathway, which itself is stimulated by 

phosphatidylinositol-3,4,5-trisphosphate [PI(3,4,5)P3] (Laplante and Sabatini, 2012) (Fig. 

6a). Loss of the lipid phosphatase PTEN can therefore increase cell size (Stiles et al., 

2004a). To specifically enlarge cerebellar granule cells (GC) and their axonal projections 

(Pf), we deleted Pten in a novel line of Tg(m6)-Cre*PtenloxP/loxP mice that express Cre under 

control of the GABAA receptor 6 subunit promoter (Funfschilling and Reichardt, 2002; 

Lesche et al., 2002). As demonstrated by reporter gene expression in Tg(m6)-Cre mice, 

recombination starts at around P9 in predominantly postmitotic and postmigratory GC 

(Funfschilling and Reichardt, 2002). By quantitative RT-PCR and Western blot analyses the 

cerebellum of Tg(m6)-Cre*PtenloxP/loxP mice (hereafter termed Pten cKO or “mutants”) 

revealed a significant loss of Pten mRNA (by 63%) (Fig. 6b) when compared to PtenloxP/loxP 

mice (hereafter termed “controls”). To determine if indeed expression of PTEN was 

disrupted in Pten mutant mice, immunoblot analysis with antibodies specific for PTEN was 

performed using cerebellar lysates of control and mutant mice at the age of 3.5 months. 

The protein abundance of PTEN was reduced by 80% (p=0.0025) in Pten cKo (Fig. 6c). 

Loss of PTEN resulted in enhanced phosphorylation of AKT, GSK3β, mTor and S6 (Fig. 

6a,d), verifying the overall hyperactivation of the PI3K pathway. 
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Pten mutant mice were born in the expected Mendelian ratio and appeared healthy during 

the first months of life (Video 1, can be found on the included CD-ROM or on Nature 

Neuroscience webpage http://www.nature.com/neuro/journal/vaop/ncurrent/fig_tab/nn. 

4425_SV1.html). During postnatal development the cerebellum of Pten mutant mice 

became progressively enlarged (Fig. 7a). Hematoxylin and eosin staining (H&E) of 

parasagittal sections at P14 revealed no detectable difference between control and mutant 

mice, whereas at 2.5 months of age the size increase became obvious and revealed to be 

progressive, when analyzed at 1 year of age. The diameter of parallel fibers in the ML, next 

to bigger granule cells immunostained for GABAA receptor 6 subunit (Fig. 5a) also 

increased over time, as quantified by electron microscopy, reaching 0.61±0.009 µm in 

mutants versus 0.16±0.002 µm in controls at 1 year of age (Fig. 7b).  

 

 

 

Fig. 6. Pten mutant granule cells stimulate the AKT1/mTOR pathway. (a) Schematic 

representation of selected candidates of PI3K/AKT1/mTORC1 signaling. (b) By qRT-PCR Pten 

transcripts containing the floxed exon 5 are decreased in the cerebellum of conditional Pten mutants 

(age 3.5 months). Means ± s.e.m. n=5 mice each genotype (p=0.0231, two-tailed unpaired Student’s 

t-test). (c) On Western blots PTEN levels are decreased in the cerebellum of mutants (age 3.5 

months, cropped blot images). (d) Phosphorylation (p-) of the PI3K downstream effectors AKT1, 

GSK3, mTOR and S6 is enhanced in Pten mutant mice (age 3.5 months, cropped blot images).  

Fig. 7. Progressive enlargement of 

Pten mutant cerebella and 

increase in Pf diameter. (a) 

Conditional ablation of Pten in early 

postnatal GC causes progressive 

cerebellar enlargement as visualized 

by H&E staining (ages are indicated). 

Images are representative of 3 

similar experiments. (b) Pf have 

increased in diameter when 

analyzed by EM (1 year of age). 
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To determine, whether ablation of Pten from cerebellar granule cells and the subsequent 

increase in their axonal diameter was sufficient to induce myelination of parallel fibers in the 

molecular layer, immunohistochemistry with antibodies directed against CNP and 

Parvalbumin was performed using parasagittal sections of control and mutant mice at the 

age of 1 year. Interestingly and in contrast to controls, chromogenic staining for CNP 

Fig. 8. Genetic loss of Pten triggers de novo myelination of parallel fibers. (a) Hematoxylin and 

CNP immunhistochemistry on sagittal cerebellar sections of 3.5 month old animals revealed de novo 

myelination of normally non-myelinated parallel fibers in the cerebellum. In comparison to control 

brains (top), without myelin in the molecular layer (ML), immunohistochemistry specific for CNP 

demonstrates the presence of robust levels of ectopic myelin in the molecular layer (ML) of mutant 

mice (bottom). (b) Myelinated parallel fibers in mutant brains (right) immunostained for CNP (green). 

Both Purkinje cells (PC) and molecular layer interneurons (IN) are Parvalbumin (red) positive (age 1 

year). Note the absence of myelin in the molecular layer (ML) of control brains (left). Arrowhead 

points to an oligodendrocyte (OL) cell body. 
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demonstrated a massive accumulation of myelin in the molecular layer of Pten mutant mice 

(Fig. 8a). By fluorescent double immunohistochemistry for CNP and Parvalbumin, a marker 

of Purkinje cells and ML interneurons, this finding of de novo myelination of parallel fibers 

(Fig. 8b) was validated. Beginning at P40 the number of mutant parallel fibers that became 

myelinated (labeled by immunostaining of CNP) progressively increased over time (Fig. 9). 

 

 

Fig. 9. Progressive de novo myelination of Pten mutant parallel fibers. In comparison to control 

brains, without myelin in the molecular layer (ML), immunostaining of myelin protein CNP (green) 

demonstrates the presence of robust levels of ectopic myelin in the molecular layer of mutant mice. 

Myelination increases significantly over time. PL, Purkinje cell layer; GL, granule cell layer; ML, 

molecular layer.  

 

To illustrate newly formed myelin on a single cell level and to analyze how de novo 

myelination affected Pf morphology, we performed electron microscopic analyses of 1 year 

old Pten mutant mice. Indeed also by EM we could identify de novo myelinated Pf (marked 

by asterisks) that were presumably ensheathed by the depicted oligodendrocyte in close 

proximity (Fig. 10a). Myelination of parallel fibers induced the ectopic formation of node-like 

structures on Pf that were flanked by paranodal myelin loops (Pn). Furthermore EM analysis 

revealed the formation of septate-like junctions of the inner myelin leaflet with the Pf 

membrane (Fig. 10b). EM images of myelinated Pf axons also demonstrated that the newly 

formed myelin restricted the synaptic contact of Pf to Purkinje cell dendritic spines, causing 
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these synapses to reside in the newly established nodal regions. These "en passant" 

synapses harbored presynaptic vesicles (arrowhead) (Fig. 11). 

 

Fig. 10. De novo myelination of parallel fibers and formation of node-like structures. (a) By 

electron microscopy (EM) normally unmyelinated parallel fibers (Pf) become de novo myelinated in 

mutant mice. Asterisks mark myelinated Pf (age, 1 year). Note the formation of a node of Ranvier 

(N), flanked by paranodal (Pn) loops (in b, black arrows).  

 

By EM analysis the amount of newly formed myelin in Pten mutants was measured by 

dividing the inner myelin diameter by the outer myelin diameter (g-ratio, Fig. 12a). The g-

ratio was plotted against the axonal caliber. Note that a g-ratio of 1 denotes an unmyelinated 

axon. An electron micrograph in Fig. 12b shows one of the smallest detected myelinated 

parallel fiber and by subsequent analyses we determined a size threshold for myelination 

in the mutants of approx. 0.25 µm (Fig. 12c). By morphometry and g-ratio analysis of 

controls and mutants, up to 403% of Pf in the ML were myelinated at 1 year of age. At that 

age, mutant Pf exhibited an average g-ratio of 0.84. The first myelinated parallel fibers 

appeared at the age of P40 (2.30.6%). Further analysis at 3.5 months revealed up to 

9.51% myelinated parallel fibers (Fig. 12c). At all analyzed ages, axons larger than 0.45 

µm in diameter were preferentially myelinated. 
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Fig. 11. Parallel fiber synapses onto Purkinje cell dendritic spines in the presence of myelin. 

EM images of de novo myelinated Pf in mutants at 1 year of age. The “en passant” synapses of Pf 

on Purkinje cells spines appeared restricted to the newly established nodal regions. Arrowheads 

point to presynaptic vesicles. M, myelin; Pf, parallel fiber axon; Pn, paranodal loop; s, dendritic spine. 
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Fig. 12. G-ratio analysis. (a) The amount of myelin was measured by dividing the inner myelin 

diameter by the outer myelin diameter. (b) By EM, de novo myelination of mutant Pf requires a 

minimum axonal caliber of 0.25 µm. We never observed thinner myelinated axons than the one 

shown (age 1 year). (c) Progressive myelination as quantified by g-ratio analysis of myelin thickness 

at the indicated ages. Note that a g-ratio of 1 denotes for unmyelinated axons. There is continuous 

increase in the number of myelinated fibers in mutants (red dots). In controls (blue dots) myelin 

profiles are virtually absent (n=3 per genotype and age, 140 Pf quantified per animal). 

 

Taken together, activation of the PI3K/AKT/mTOR pathway in cerebellar granule cell 

neurons of conditional Pten mutant mice was sufficient to induce a granule cell hypertrophy, 

a thickening of their associated axons and a progressive de novo myelination of the normally 

unmyelinated Pf by genetically wildtype oligodendrocytes. 
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3.2 Pten mutant GC trigger OPC proliferation and differentiation 

The ML harbors normally hardly any oligodendrocytes and only scattered NG2 positive 

cells, as demonstrated in Plp1-DsRed*Ng2-EYFP double-transgenic mice (Hirrlinger et al., 

2005; Karram et al., 2008) (Fig. 13a). Immunohistochemistry with an antibody directed 

against carbonic anhydrase (CAII), a marker of mature oligodendrocytes, revealed 

significantly more oligodendrocytes in the GL (+33%) and ML (+750%) of Pten mutants. 

Unaltered numbers of CAII positive cells were detected in the WM of Pten mutants as 

compared to controls, when quantified at P45 (Fig. 13b). 

 

 

Fig. 13. Local differentiation of OPCs induced by de novo myelination. (a) The normal cerebellar 

ML is devoid of oligodendrocytes (red), but contains scattered NG2+ OPCs (green), as revealed by 

DsRed and EYFP fluorescence, respectively, in double-transgenic Plp1-DsRed*Ng2-EYFP mice. 

The depicted picture was kindly provided by Dr. Khalad Karram from the Institute for Molecular 

Medicine, Mainz, Germany. GL, granule cell layer; ML, molecular layer. (b) Mature oligodendrocytes 

(carbonic anhydrase/CAII-positive) are more numerous in the mutant granule cell layer (p=0.0498) 

and molecular layer (p=0.0103), but not in cerebellar white matter (WM; p=0.8581). All analyses at 

age P45 (n=3 per genotype). Data are means ± s.e.m. *p<0.05, student’s t test. GL, granular cell 

layer; ML, molecular layer; WM, white matter. 

 

To determine whether Pten deficient axons induce OPC proliferation within the ML or 

whether OPCs are recruited from the GL below, we used 5'-bromo-2'-deoxyuridine (BrdU) 

labeling detection, in combination with antibodies directed against specific oligodendroglial 

marker antigens (Fig. 14a). BrdU is a thymidine analog that incorporates into dividing cells 

during DNA synthesis (Wojtowicz and Kee, 2006). Once it is incorporated into the new DNA, 

BrdU will remain in place and will be passed down to daughter cells following division 

(Wojtowicz and Kee, 2006). 
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Fig. 14. Local proliferation of OPCs in the molecular layer. (a) In the cerebellar ML of Pten mutant 

mice, many OPCs (Olig2+, red) nuclei can be co-labeled for BrdU (green, arrowheads), following 

daily BrdU administration between P25-P45. (b) At age P45, the density of proliferating OPC 

(BrdU+;Olig2+) is only increased in the ML (n=3 per genotype; p=0.0004), but proliferation remains 

elevated at age P201 (n=3 per genotype; p=0.0016). Thus, by P201 the total number of Olig2+ 

oligodendrocyte lineage cells in the ML is 10-fold higher than in controls (n=3 per genotype; 

p=0.0031). (c) After daily BrdU injections (between P25 and P45) newly generated OPC of the ML 

also turn into mature oligodendrocytes, as revealed by quantifying cells that are co-labelled for BrdU 

(green) and CAII (red). N=3 per genotype (p=0.0006). (d) By chromogenic in situ hybridization, Myrf 

mRNA can be detected in single differentiating oligodendrocytes of the mutant ML (arrowheads in 

middle panel), suggesting ongoing differentiation. Myrf+ differentiating OL were never detected in 

the control ML. Right: section from a developmental stage (P20) as a positive control for Myrf 

expression. Data are means ± s.e.m, **P < 0.01; ***P < 0.001, student’s t test. 
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We injected BrdU intraperitoneally (i.p.) from P25-P45, if not mentioned otherwise. When 

the number of BrdU+;Olig2+ cells was analyzed at P45 (i.e. after 20 days of daily BrdU 

injection) and compared between mutants and controls, OPC proliferation was not 

significantly different in the GL and the WM of mutant mice (Fig. 14b). However, in the ML 

BrdU+;Olig2+ cells were 4.4-fold increased (Fig. 14b). Even at 6-7 months, the 20-day BrdU 

treatment protocol (i.p. injection of BrdU from P181-P201) revealed a 4.7-fold increase of 

BrdU+;Olig2+ cells in the mutant ML (Fig. 14b). At that age the total number of 

oligodendrocyte lineage cells had reached a 10-fold increase compared to controls (Fig. 

14b). Importantly, double-labeling of BrdU and CAII confirmed that newly generated OPCs 

that had incorporated BrdU during the 20 day period of BrdU injection, differentiated into 

CaII expressing mature oligodendrocytes (Fig. 14c). In a collaboration with Kuo Yan at the 

Institute of Cell Biology and Neurobiology, Berlin (Germany), we performed a chromogenic 

in situ hybridization for Myrf mRNA on parasagittal sections of the cerebellum. Myrf (Myelin 

Regulatory Factor) is a membrane-associated transcription factor and is required for the 

generation of CNS myelin during development (Bujalka et al., 2013). Myrf is required for the 

final stages of oligodendrocyte differentiations and is expressed exclusively by maturating 

oligodendrocytes. In fully mature oligodendrocytes Myrf is almost undetectable (personal 

communication with Ben Emery, Jungers Center for Neurosciences Research, Department 

of Neurology, Oregon USA). With this in situ hybridization we could confirm that even at 7 

months of age the ML in mutant brains still contained some maturating oligodendrocytes 

(Fig. 14d). As a positive control for Myrf expression we used parasagittal cerebellar sections 

of a P20 wild type mouse.  

To better define the timing of OPC proliferation in Pten deficient mice, we injected BrdU 

from P15-P20 and quantified BrdU+,Olig2+ cells in the ML of control and mutant mice. At 

P20 there was no detectable difference in the number of double positive cells (Fig. 15a). 

Using a slightly later BrdU injection protocol (P20-P30) we identified a time window at which 

proliferation of OPCs was already increased but the number of mature (CNP+) 

oligodendrocytes was not (Fig. 15b). This indicates that OPC proliferation is independently 

activated by the genetically modified granule cells and not just a mere homeostatic 

mechanism to replace OPCs that have matured to the myelinating state. This result was 

validated by immunohistochemical analysis at P45 (and after BrdU administration between 

P25-P45) with antibodies directed against MBP and BrdU. Here, we found that BrdU labeled 

OPCs were uniformly distributed over the mutant ML and not in close proximity to mature 

oligodendrocytes and their associated myelin sheaths (Fig. 15c). 
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Fig. 15. Early onset of proliferation (a) The number of proliferating OPCs (BrdU+Olig2+) in the ML 

following daily BrdU administration from P15 to P20 is similar in mutants and controls (p=0.3161). 

(b) In contrast, after daily BrdU administration between P20 and P30 (analyzed at P30) the number 

of proliferating OPCs (BrdU+,Olig2+) in the ML is increased in the mutants (p=0.0120). However, at 

that age, the number of mature oligodendrocytes expressing CNP is unchanged between control and 

mutants (p=0,8025), indicating that proliferation of OPCs proceeds the differentiation of OPCs to 

oligodendrocytes. (c) OPCs labeled for BrdU (asterisks) distribute evenly in the ML of Pten mutants 

and are not preferentially close to newly generated oligodendrocytes and their myelin sheaths 

(arrowheads). N=3 per genotype, Data are means ± s.e.m. *p<0.05, student’s t test. 

 

Taken together, the inactivation of Pten in cerebellar granule cells increased Pf caliber 

above a "threshold" of 0.25 µm and was sufficient to induce OPC proliferation, OPC 

differentiation, and oligodendrocyte maturation and myelination. 
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3.3 Is ectopic myelination triggered by neuronal activity? 

Proliferation of OPCs and myelination in the CNS can be triggered by neuronal activity 

(Gibson et al., 2014; Li et al., 2010). OPCs receive synaptic input from Pf in the cerebellar 

ML (Lin and Bergles, 2004) and altered synaptic input modulates OPC proliferation (Mangin 

et al., 2012) and myelination (Wake et al., 2011). To test the hypothesis if the de novo 

myelination upon Pten deficiency in granular cells is triggered by neuronal activity, we 

started a collaboration with Sonia Spitzer and Ragnhildur Thóra Káradóttir from the 

University of Cambridge, UK. Here, Pten mutants were tested for altered Pf electric activity 

picked up by OPCs in the ML. Using acute slices from mutant and control mice that 

additionally expressed the Ng2-EYFP transgene (Karram et al., 2008), our colleagues 

whole-cell patch clamped both Purkinje cells, that receive input dominantly from Pf, and 

fluorescent OPCs in the ML. This allowed them to determine GC activity and the 

spontaneous synaptic inputs from the Pf to the OPCs. However, no differences were found 

between mutants and controls in the spontaneous postsynaptic inward currents recorded 

from NG2-EYFP expressing OPCs (Fig. 16a,b) nor in the frequency of the spontaneous 

synaptic input to the OPCs (Fig. 16c). Similar the frequency of spontaneous inputs to 

Purkinje cells showed no significant difference (Fig. 16d). Taken together, the data of our 

collaborators suggest that de novo myelination of parallel fibers in young Pten mutants is 

not triggered by neuronal activity. 

 

Fig. 16. Ectopic 

myelination is not 

triggered by neuronal 

activity. (a) Spontaneous 

postsynaptic inward 

currents recorded from 

NG2-EYFP expressing 

OPCs clamped at -74mV in 

the ML of control and Pten 

mutant mice. (b) Inward 

currents appeared at an 

expanded time scale. (c) 

The average frequency of 

detectable spontaneous 

events in OPCs is 

comparable between 

controls (n=5; 0.027x10-3 

Hz) and mutants (n=6; 

0.024x10-3 Hz) (p=0.94). (d) Similarly, there is no significant difference in the frequency of 

spontaneous inputs in Purkinje cells (PC), which are predominantly from Pf (control, n=5, 0.87x10-

2 Hz; mutant, 0.62x10-2 Hz n=4) (p=0.32). Analysis of covariance in c, chi-squared test in d. 
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3.4 Is ectopic myelination triggered by down regulation of inhibitory cues? 

Some reports in the literature suggest that axon–bound signaling proteins are not essential 

for regulation of CNS myelination. For example, it has been reported that oligodendrocytes 

can ensheath synthetic nanofibers in vitro (Lee et al., 2012). Hence, we hypothesized that 

(i) axons have to meet a 0.25 µm “size threshold” to become myelinated (Lee et al., 2012), 

and that (ii) oligodendrocytes respond with myelination to instructive diffusible factors or to 

the down regulation of inhibitory cues that could be axon-bound or diffusible.  

To test for possible inhibitory axonal cues, we intercrossed floxed Pten mutants (Lesche et 

al., 2002) to a Nex-CreERT2 driver line (Agarwal et al., 2012). In contrast to Tg(m6)-Cre 

mice (which recombine more than 90% of cerebellar granule cells) the Nex gene promoter 

targets Cre only in a minor fraction of all granule cells (Agarwal et al., 2012). Indeed, after 

5 consecutive days of tamoxifen treatment (P10-P15), reporter gene expression was 

detectable in less than 4% of all cerebellar granule cells (Fig. 17a). However, when 

analyzed 28 weeks later (Fig. 17b), loss of PTEN in this small fraction of granule cells was 

sufficient to significantly increase the number of mature oligodendrocytes, expressing CNP 

(Fig. 17c,d). Importantly, these mature oligodendrocytes, similar to our previous findings in 

Tg(m6)-Cre*PtenloxP/loxP mice, participated in de novo myelination of parallel fibers. 

Accordingly, a significantly larger MBP positive area could be quantified in Nex-

CreERT2*PtenloxP/loxP mutants compered to age matched controls (Fig. 17e,f).  

Since 96% of the Pf were non-recombined in Nex-CreERT2*PtenloxP/loxP mice and thus 

wildtype with regard to the expression of potential inhibitory, diffusible cues, our data 

strongly suggests that the induction of de novo myelination of parallel fibers is unlikely 

triggered by the down regulation of diffusible inhibitory cues from the axons. 
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Fig.17. Cell type specific ablation of Pten in a small subset of cerebellar granule cells. (a) 

Tamoxifen treatment of Nex-CreERT2*Rosa26-lacZ mutant mice induces Cre-mediated activation of 

a lacZ reporter gene in a small subset of GC. (b) Tamoxifen treatment scheme for Nex-

CreERT2*PtenloxP/loxP mutant mice. (c,d) Nex-CreERT2*PtenloxP/loxP mutants harbor significantly more 

CNP positive oligodendrocytes (arrowheads) in the ML, when compared to controls. (e,f) Targeted 

ablation of Pten by Nex-CreERT2 induced a significantly larger MBP positive area in the ML when 

compared to controls (quantitated in parasagittal sections of the cerebellar vermis; n=3 per genotype 

and indicated age). Data are means ± s.e.m. **p<0.01; ***p<0.001, student’s t test (d,f). GL, granule 

cell layer; ML, molecular layer; WM, White matter. 
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3.5 Functional validation of selected candidate factors 

3.5.1 Experimental design and hypothesis 

Pten deficient mice and their controls were further used as a tool, helping to find 

promyelinating factors in the CNS. We used laser captured microdissection and obtained 

stripes of the GL from cerebellar cryosections of 3.5 month-old mutants and age-matched 

controls (Fig. 18a). We isolated RNA for global transcriptome analyses using microarrays 

(Affymetrix Mouse Genome 430A 2.0 Array). Transcriptome analysis resulted in a first list 

of candidate factors upregulated in Pten cKO (Fig. 18b). Candidate transcripts were 

selected by several criteria, including magnitude of upregulation in the transcriptome of Pten 

mutant GL vs. control GL (>1.4 fold, n=3 per genotype), level of significance (p<0.05) and 

annotation. The resulting candidate list included e.g. neurotensin (Nts; 32.8-fold), inhibin 

beta-A (Inhba, forming the biologically active dimer Activin A; 4.4-fold), thymosin beta 4 

(Tmsb4x, 2.4-fold), tissue inhibitor of metalloproteinase 3 (Timp3, 2.1-fold), secreted 

protein, acidic and rich in cysteins-like 1 (Sparcl1, 1.9-fold), vascular endothelial growth 

factor c (Vegfc, 1.9-fold), fibroblast growth factor 1 (Fgf1, 1.6-fold), pleiotrophin (Ptn or 

heparin-binding growth factor 8/Hbfg-8, 1.5-fold) and brain-derived neurotrophic factor 

(Bdnf, 1.4-fold). The database from http://web.stanford.edu/group/barres_lab/ 

brain_rnaseq.html (Zhang et al., 2014) was used to indicate which cell type showed the 

highest expression of the corresponding gene. For example, Nts is mainly expressed by 

neurons and endothelia cell; Inhba, by OPCs, neurons and astrocytes; Tmsb4x, by 

endothelia cells and microglia; Timp3, Sparcl1, FGF1 and Ptn, by astrocytes; Vegfc, by 

endothelia cells and Bdnf, by neurons and astrocytes (Zhang et al., 2014). To further 

validate the obtained transcriptome data, some differentially expressed candidate genes 

were further analyzed by qRT-PCR. Nts, FGF1, Ptn, Timp3 and Inhba showed a 

significantly higher mRNA abundance in cerebellar lysates from Pten cko compared to 

controls (Fig. 18c). 
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Fig.18. Experimental design to test candidate factors which were identified in conditional GC-

specific Pten mutant mice and may have an impact on oligodendrocyte development. (a) Laser 

capture microdissection (LCM) was used to obtain the granular cell layer from serial cerebellar 

sections at the age 3.5 months (representative section shown). (b) Candidate transcripts were 

selected by several criteria, including magnitude of upregulation in the transcriptome of Pten mutant 

GL vs. control GL (>1.4-fold, n=3 per genotype), level of significance (p<0.05) and annotation. The 

third column indicates the cell type with the highest expression of the corresponding gene, according 

to the database: http://web.stanford.edu/group/barres_lab/brain _rnaseq.html (Zhang et al., 2014). 

A, astrocyte; N, neuron; OPC, oligodendrocyte precursor cell; NFO, newly formed oligodendrocyte; 

MO, myelinating oligodendrocyte; M, microglia; E, endothelial cells; FC, fold change. (c) qRT-PCR 

analysis of mRNAs encoding for some differentially expressed candidate genes. Analyzing 

cerebellum lysates from Pten cko and control mice, revealed a significantly higher mRNA abundance 

of Nts, FGF1, Ptn, Timp3 and Inhba (age 3.5 months). Data are means ± s.e.m. *p<0.05; ***p<0.001, 

student’s t test, n=3-5 per genotype. 
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Some mRNAs encoded secreted proteins that had been associated with oligodendrocyte 

development before, at least in vitro, such as Bdnf (Xiao et al., 2010), Vegfc (Le Bras et al., 

2006), Ctgf (Stritt et al., 2009) and Tmsb4x (Santra et al., 2012). Other factors, including 

Fstl1, IGFBP-4, Dkk-3, Apcdd1, and Sfrp4, are new but known as antagonists of Wnt and 

Bmp signaling (Cruciat and Niehrs, 2013; Sylva et al., 2013), i.e. negative regulatory 

pathways of oligodendrocyte differentiation (He and Lu, 2013). Also modulators of insulin-

like growth factor (IGF) signaling (IGFBPs 2, 3, and 7), which is thought to play a role in 

oligodendrocyte development (Taveggia et al., 2010), were upregulated. Finally, the 

metallopeptidases MMP17 and Adamts1 showed enhanced expression. The latter is 

relevant for myelination, as these proteases serve functions in remodeling the extracellular 

matrix and in the degradation of those proteins (such as chondroitin sulfate proteoglycans) 

that inhibit remyelination (Lau et al., 2013). 

We hypothesized that de novo myelination of the cerebellar molecular layer in Pten mutant 

mice is initiated by a neuronal developmental program. The increase of axon size is 

PI3K/Akt/mTOR-dependent and associated with the upregulated expression of numerous 

genes, identified by transcriptional profiling of laser captured GC layers.  

 

3.5.2 In vivo uncoupling of brain derived neurotrophic factor (Bdnf) 

To address the significance of our candidate list, we selected Brain derived neurotrophic 

factor (Bdnf) for an in vivo analysis. Bdnf is a member of the nerve growth factor family 

(Levimontalcini and Angeletti, 1968) that supports existing neurons and influences growth 

and differentiation of new neurons and synapses (Acheson et al., 1995; Huang and 

Reichardt, 2001). The role of Bdnf and its receptor TrkB for oligodendroglia survival, 

differentiation, and myelination has been previously studied in vitro and in vivo. Till now no 

full picture about its functions has emerged yet, but Bdnf is thought to have a promyelinating 

effect (Xiao et al., 2010). 

Floxed Bdnf mice (Rauskolb et al., 2010) were kindly provided by Michael Sendtner 

(Institute for Clinical Neurobiology, University of Würzburg). We generated triple-mutant 

mice by Tg(m6)-Cre mediated targeting of Pten (for ectopic myelination) in combination 

with the floxed Bdnf gene. We hypothesized that if Bdnf is essential for myelination, its 

conditional inactivation in double mutant granule cells should result in reduced de novo 

myelination. 

Surprisingly, at both analyzed ages (7 and 10 weeks) Tg(m6)-Cre*PtenloxP/loxP*BdnfloxP/loxP 

mice (hereafter termed Pten cKO, Bdnf cKO or Pten*Bdnf double mutants) exhibited a 
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significantly higher (not lower) number of mature (CNP+) oligodendrocytes in the ML than 

Pten single mutants (Pten cKO) (Fig. 19a,b). Also the (MBP+) myelinated area of the ML 

was significantly larger (not smaller), when quantified by immunostaining at the age of 7 

and 10 weeks (Fig. 19c,d). Interestingly, even Pten het*Bdnf cKO showed significantly 

more CNP+ oligodendrocytes at 7 weeks of age than control mice. This difference is 

undetectable at 10 weeks of age. 

 

 

Fig.19. Histological in vivo validation of Bdnf uncoupling. (a) CNP was labeled on cerebellum 

slices of 10 weeks old control Pten cKO and Pten*Bdnf double mutant mice. (b) Double mutants 

lacking both Pten and Bdnf in cerebellar granule cells harbour significantly more CNP positive 

oligodendrocytes, at both time points (7 weeks: p=0.0132, 10 weeks: p=0.0012). (c,d) 

Immunohistochemistry for MBP exhibited a larger MBP positive area (7 weeks: p=0.0024, 10 weeks: 

p=0.0476) in the ML of double mutants, when compared to single Pten mutants (quantitated in 

parasagittal sections of the cerebellar vermis; n=3-4 per genotype and indicated age). Data are 

means ± s.e.m. *p<0.05; **p<0.01; ***p<0.001, one-way analysis of variance (ANOVA) followed by 

Bonferroni test (b,d). GL, granule cell layer; ML, molecular layer. 

 

By electron microscopy we confirmed that the Pf calibers, independent from whether 

myelinated or unmyelinated, were as enlarged as in Pten single mutants (Fig. 20a). 

However, by g-ratio analysis at the age of 10 weeks the thickness of myelin was slightly but 

significantly reduced (indicated by a bigger g-ratio, p=0.0259) in Pten*Bdnf double mutants 

(Fig. 20b,c) when compared to single Pten mutants. 
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Fig. 20. Electron microscopy of Pten cKO and double mutants lacking Pten and Bdnf. (a) 

Caliber measurements of myelinated (p=0.4339) and unmyelinated (p=0.5558) Pf diameters 

demonstrated no detectable difference between single Pten mutants and double mutants lacking 

both Pten and Bdnf. (b,c) G-ratio analysis of ML myelin in Pten single mutants and Pten*Bdnf double 

mutants revealed a slightly reduced myelin sheath sickness (indicated by a bigger g-ratio, p=0.0259). 

Data are means ± s.e.m, *p<0.05, student’s t test, n=3 per genotype. 

 

Taken together, in the absence of Bdnf expression from Pten mutant granule cells, radial 

axonal growth was not altered, mature oligodendrocytes became more numerous and the 

observed ectopic myelin was thinner. Our data suggests that neuronally expressed Bdnf is 

as a coregulator of CNS myelination, which demonstrates the relevance of our experimental 

approach. Nevertheless, the double mutant phenotype was puzzling and had to be defined 

in more detail.  

 

As a working hypothesis we took into account that OPCs in Pten mutants receive both, "pro-

proliferation" and "pro-differentiation" signals and that the simultaneous reaction of an OPC 

to both conflicting stimuli is impossible. Assuming that Bdnf is one of the "pro-differentiation" 

signals for OPCs in the mutants, its loss in double mutants would increase the weight of the 

"pro-proliferative" signals and thereby increase the number of OPCs generated in the ML. 

However, at a later stage the remaining "pro-differentiation" factors would still suffice to 

trigger OPC differentiation and myelin sheath formation, possibly with some temporal delay. 

This would explain our seemingly paradoxic result of more ectopic myelin in the conditional 

Pten*Bdnf double mutant mouse. 
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To test this hypothesis, we determined OPC proliferation at the age of 7 weeks in conditional 

double mutants and in Pten single mutants that had received daily BrdU injections between 

P25 and P45 (Fig. 21a). Indeed, double mutants showed 34% more BrdU labeled Olig2+ 

OPCs in the ML than Pten single mutants (p=0.0426, n=4 per genotype) (Fig. 21b). We 

noted that a lack of Bdnf also induced a higher proliferation of OPCs in heterozygous Pten 

mutants when compared to controls. This suggested a role of Bdnf to control the number of 

cerebellar OPCs, which are likely to turnover in the absence of other myelination promoting 

factors. 

 

 

Fig. 21. Increased local proliferation of OPCs in double mutants lacking Pten and Bdnf. (a) 

BrdU was administered by intraperitoneal (i.p.) injection from P25-P45 and histology was performed 

4 days later. Double positive cells are labelled with an arrowhead. (b) Quantitation of BrdU positive 

Olig2 expressing cells in the ML of parasagittal sections of the cerebellar vermis revealed significantly 

more double positive cell in Pten cKO*Bdnf cKO mice compared to single Pten mutants (n=3-4 per 

genotype, p=0.0426). Data are means ± s.e.m. *p<0.05; ***p<0.001, one-way analysis of variance 

(ANOVA) followed by Bonferroni test. ML, molecular layer; GL, granule cell layer; WM, white matter. 

 

3.5.3 In vivo uncoupling of Neuregulin 1 (Nrg1) 

Nrg1 is another interesting axonal grow factor, since it is essential for myelination by 

Schwann cells in the PNS. As detailed in the introduction, its role in CNS myelination is still 

under debate. As a second in vivo uncoupling experiment we generated Tg(m6)-

Cre*PtenloxP/loxP*Nrg1loxP/loxP double mutant mice (hereafter termed Pten cKO*Nrg1 cKO). 

When compared to Pten single mutants at 10 weeks of age we found no difference in the 

number of (CNP+) oligodendrocyte (Fig. 22a). Analysis of MBP+ area also revealed no 

significant differences between single Pten mutants and Pten cKO*Nrg1 cKO (Fig. 22b). 

Additionally, g-ratio analysis and quantification of Pf calibers (myelinated and unmyelinated 

fibers) on electron microscopic sections at the age of 10 weeks showed no detectable 

differences (Fig. 22c-e). 
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Fig. 22. Neuregulin 1 is not required for Pf myelination in Pten mutant mice. (a) Double mutants 

lacking both Pten and Nrg1 in cerebellar granule cells (Pten cKO*Nrg1 cKO) do not differ from single 

Pten mutants (Pten cKO), when comparing oligodendrocyte numbers in the ML (CNP positive cells, 

p=0.1068). (b) Quantification of MBP+ area revealed no difference between single Pten mutants and 

double mutants lacking Pten and Nrg1 (p=0.0982). Quantified were parasagittal sections of the 

cerebellar vermis (n=3-4 per genotype; 10 weeks of age). (c,d) G-ratio analysis derived from 

electronmicrographs of Pten cKO and Pten cKO*Nrg1 cKO mutants showed no significant difference 

(n=3 mice each genotype; 10 weeks of age; p=0.0581). (e) Caliber measurements of myelinated and 

unmyelinated Pf revealed no significant difference (n=3 per genotype; 10 weeks of age). Data are 

means ± s.e.m. ***p<0.001, student’s t test (d,e) or one-way analysis of variance (ANOVA) followed 

by Bonferroni test (a,b). 
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3.5.4 In vitro validation of selected candidate factors 

Because of the complexity of myelination control in vivo, we turned to simpler assay systems 

for proof-of-principle and to assess if our selected candidates indeed affect the fate of OPCs 

and oligodendrocytes. We used either mixed primary oligodendrocyte cultures (devoid of 

axons) from spinal cord of 4 day-old mouse pups or neuron-glia cocultures (that myelinate 

in vitro) prepared from E13 mouse spinal cord. Recombinant candidate proteins (chosen by 

diffusibility of the encoded protein, extent of upregulation, annotation, and overall 

plausibility) were added to the media at either 10 ng/ml (Sparcl1, Ptn) or 100 ng/ml (all other 

factors). After 3 and 5 days OPCs and oligodendrocytes in mixed cultures were quantified 

with antibodies against Olig2 (a pan-OL lineage marker) and the Adenomatosis polyposis 

coli (Apc) gene product (clone APC-CC1), a marker of postmitotic oligodendrocytes. 

Numbers and proliferation of oligodendrocyte lineage cells as well as in vitro myelination in 

neuron-glia cocultures were scored after 25 days by using antibodies against Olig2, Ki67 (a 

proliferation marker), MBP, and phosphorylated neurofilament as an axonal marker antigen 

(SMI31). In these experiments, our selected factors triggered different responses in 

oligodendrocyte lineage cells. 

 

3.5.4.1 Proliferation assay 

OPC proliferation was induced by adding recombinant acidic Fgf1 to myelinating cocultures. 

(Fig. 23a,b). The numerical increase in OPCs correlated with a 1.5-fold higher number of 

Ki67 positive Olig2+ cells (Fig. 23c,d). Other factors tested (including Sparcl1, Vegfc, 

Pleiotrophin, Tmsb4x, Timp3 and Activin A) showed no pro-proliferative effect. The OPC-

mitogen Pdgf served as a positive control and significantly increased the relative percentage 

of Olig2+ cells in the culture (Fig. 23b). 
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3.5.4.2 Differentiation assay 

When determining the fraction of OPCs in primary mixed cultures (Fig. 24a) that had turned 

into mature postmitotic (APC/CC1+) oligodendrocytes after 3 (or 5) days of treatment, this 

number was significantly increased when Activin A was added (Fig. 24b). However, none 

of the other factors tested including Klotho (400ng/ml), which enhanced OPC maturation of 

rat OPCs in vitro (Chen et al., 2013) and was therefore used as a control, had any such 

effect. 

 

 

Fig. 24. Differentiation assay. (a) Representative images of a mixed primary oligodendrocyte cultures, 

co-immunostained for GFAP and MBP (left) or Olig2 and Apc-CC1 (right) after 3 days in culture. (b) 

Quantitation of the percentage of CC1 expressing cells in relation to Olig2 positive cells after 3 and 

5 days treatment with either vehicle or one of the indicated recombinant proteins (n=3-5 for both time 

points). Klotho was included as a positive control (Chen et al., 2013), although the addition showed 

no significant effect (3 days: Vehicle vs. Klotho, p=0.5403; 5 days: Vehicle vs. Klotho, p=0.6483). 

Adding the recombinant form of Activin A to the mixed primary oligodendrocyte cultures increased 

(both time points) significantly the percentage of CC1 expressing cells in relation to Olig2 positive 

cells (3 days: Vehicle vs. Activin A, p=0.0003; 5 days: Vehicle vs. Activin A, p=0.0026). Pleiotrophin 

and Timp3 showed no such effect (3 days: Vehicle vs. Pleiotrophn, p=0.2397, Vehicle vs. Timp3, 

p=0.5629; 5 days: Vehicle vs. Pleiotrophin, p=0.8878, Vehicle vs. Timp3, p=0.7308). Data are means 

± s.e.m. **p<0.01; ***p<0.001, Wilcoxon matched pairs test. 

 

 

Fig. 23. Proliferation assay. (a) Representative images of cocultures treated with recombinant 

proteins and immunostained for Olig2 (pseudocolored in green) 13 days later. Cell nuclei are 

counterstained with DAPI (pseudocolored in red). (b) Quantitation of Olig2 positive cells after 

treatment of cocultures with the indicated selected factors between 12 and 25 days in vitro (DVI). 

The relative percentage of Olig2 positive cells was calculated by dividing the number of Olig2+ cells 

by the total cell number (determined by DAPI) and by normalization to vehicle treated cultures that 

were set to 100% (dashed line). The OPC-mitogen Pdgf served as positive control (n=3-4 

independent experiments, Pdgf: p=0.0113; Sparcl1: p=0.9947; Vegfc: p=0.3451; Fgf1: p=0.0179; 

Pleiotrophin: p=0.4774; Tmsb4x: p=0.3125; Timp3: p=0.1766; Activin A: p=0.0869). Treating 

cocultures with the recombinant form of Fgf1 increased the number of Olig2+ cells. (c) 

Representative images of cocultures treated with vehicle (top) or Fgf1 (bottom) and costained for 

Olig2 (pseudocolored in red) and Ki67 (pseudocolored in green). (d) Addition of Fgf1 to the coculture 

increased the percentage of Ki67 positive Olig2+ cells (n=4 independent experiments, p=0.0153). 

Data are means ± s.e.m. *p<0.05. Wilcoxon matched pairs test (in b and d). 
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3.5.4.3 Myelination assay 

Finally, in neuron-oligodendrocyte cocultures (Fig. 25a) we studied whether any of the 

recombinant proteins promoted terminal oligodendrocyte differentiation and myelin sheath 

formation by quantifying (for each culture) the myelin-representing (MBP+) territory relative 

to the size of the underlying axonal (SMI31+) network. Using this system, several of our 

candidates, including Pleiotrophin, Tmsb4x, Timp3 and Activin A significantly increased the 

myelinated area, and emerged as novel pro-myelinating factors (Fig. 25b). We note that 

Fgf1 increased both Olig2 cell numbers and myelinated area (Fig. 23b, Fig. 25b). However, 

and in contrast to the other factors tested, we scored many more MBP+ flat membrane 

sheaths instead of compacted myelin wraps (Fig. 26). Both enhanced cell number and flat 

membrane sheaths distorted the true “pro-myelinating” effect, when analyzed by an 

automated ImageJ plug in. 

 

 

Fig. 25. Myelination assay. (a) Representative image of a myelinating coculture 

(neuron/oligodendrocyte, 25 days in vitro) immunostained for MBP and Smi31. (b) The “myelination 

index” was calculated by dividing the MBP positive area by the Smi31 positive area and defining this 

ratio as 1 in vehicle treated controls (dashed line) (n=3 for Vegfc, n=6 for Sparcl1 and Fgf1, n=11 for 

Pdgf, Ptn, Timp3 and Activin A). 5 added factors in this assay showed a singnificantly increased pro-

myelinatin activity (Fgf1: p=0.0498, Pleiotrohin: p=0.0005, Tmsb4x: p=0.025, Timp3: p=0.0264 and 

Activin A: p=0.0132). Adding the recombinant form of Pdgf, as a known “pro-proliferative" signal 

significantly reduced the calculated myelination index (Pdgf: p=0.0049). Sparcl1 and Vegfc showed 

no effect (Vegfc: p=0.8806, Sparcl1: p=0.5781). (c) Mixed primary oligodendrocyte cultures treated 

for 3 days with Activin A in combination with either 2.5 µM SIS3 (SI), 0.5 µM LY294002 (LY) or 10 

µM UO126 (UO) were co-immunostained for Olig2 and Apc-CC1. Quantification (n=3) of the 

percentage of CC1 expressing cells in relation to Olig2 positive cells after 3 days of treatment, 

revealed a significant abolishment of the Activin A effect by the specific inhibitor UO (Activin A vs. 

Activin A+UO: p=0.0005). SI and LY showed no significant reduction (Activin A vs. Activin A+SI: 

p=0.3050; Activin A vs. Activin A+LY: p=0.9959). Data are means ± s.e.m. *p<0.05; **p<0.01; 

***p<0.001, Wilcoxon matched pairs test (b), or one-way analysis of variance (ANOVA) followed by 

Bonferroni test (c). 
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Fig. 26. Fgf1 treatment of myelinating cocultures favors “myelin-like” flat sheaths over 

compacted myelin wraps. Representative images of a myelinating coculture treated with Fgf1 

between DIV 12 and DIV 25 in culture and immunostained for MBP and Smi31. Compare to Fig. 

25a. 

 

 All in vitro studies described, were not optimized for any factor nor designed to characterize 

their function, but they provide “proof-of-principle” for the validity of a genetic approach that 

used ectopic myelination in vivo as its readout. However, for Activin A we used mixed 

primary oligodendrocyte cultures, to gain additional mechanistic insight (Fig. 24a). The 

TGF-like glycoprotein signals via type I and type II receptor serine/threonine kinases and 

the downstream transcription factors Smad2 and Smad3 (Tsuchida et al., 2009). 

Additionally, Smad-independent Activin A signaling involving p38 MAPK, ERK1/2, and AKT 

has been reported (Do et al., 2008; Tsuchida et al., 2009), i.e. pathways independently 

implicated in myelination control (Flores et al., 2008; Goebbels et al., 2010; Ishibashi et al., 

2006). To determine which downstream mechanism is most critical, we treated mixed 

primary OL cultures with recombinant Activin A in the presence or absence of different 

inhibitors. Inhibition of MEK1/2 with UO126 (UO) completely abolished the pro-

differentiation effect of Activin A, whereas inhibition of PI3K with LY294002 (LY) or inhibition 

of SMAD3 with SIS3 had no effect (Fig. 25c). 
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3.5.5 The cell type specific origin of selected candidate factors 

Based on our experimental approach, we have no formal proof, that the cellular origin of the 

newly identified “differentiation/myelination factors" is neuronal. Indeed, by our 

transcriptome analysis of Pten cKO mutants and controls we identified several upregulated 

immune modulatory factors, e.g. Nts (neurotensin) and Ninj1 (Fig. 18b) with a role in 

immune cell migration (Ifergan et al., 2011; Katsanos et al., 2008). However, general 

microglia and macrophage marker antigens, including Aif1/Iba1 (allograft inflammatory 

factor 1/ionized calcium-binding adapter molecule 1), Cd68 (cluster of differentiation 68), or 

Itgam/CD11B (Integrin alpha M/cluster of differentiation 11B) were not differentially 

regulated (Fig. 27a). This is in line with immunohistochemical analysis of microglial marker 

antigens (Iba1, Mac-3) in the GL of Pten cKO (Fig. 27b). Similar, the quantification revealed 

no difference in cell numbers, between mutants and controls at the age of 2.5 month (Fig. 

27b,c). Nevertheless, Cd163 (Cluster of differentiation 163), which is considered a marker 

of anti-inflammatory or immunoregulatory M2 (alternatively activated) 

microglia/macrophages was 7-fold upregulated at the RNA level in the mutant GL (Fig. 

27a). Interestingly, M2 microglia and macrophage derived Activin A has recently been 

reported to drive oligodendrocyte differentiation (Miron et al., 2013). Additionally, moderate 

changes of Iba1 and Mac-3 positive cells could be identified in the ML of Pten cKO (Fig. 

27b,c). Quantification of GFAP+ area revealed the similar results (Fig. 27d). Furthermore, 

by immunohistochemistry for CD31 (cluster of differentiation 31/ PECAM-1, platelet 

endothelial cell adhesion molecule) we found significantly enhanced angiogenesis in the 

mutant GL at the age of 2.5 months (Fig. 27e). 
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Fig. 27. Reactive gliosis and angiogenesis in Pten mutant mice. (a) Transcriptome analysis of 

Pten cKO and controls revealed no general upregulation of microglia and macrophage antigens, 

such Aif1 (Iba1, p=0.1083), Cd68 (p=0.9555), Itgam (CD11B, p=0.4901). Cd163 a marker of anti-

inflammatory or immunoregulatory M2 microglia/macrophages demonstrated a 7-fold upregulated at 

the RNA level in the mutant GL (p=0.0004) (b) Immunohistochemistry and quantification of Iba1 

revealed a significant difference in the ML of Pten cKO mutants, compared to controls (p=0.0413), 

whereas the numbers in the GL are unchanged (p=0.5484). (c,d) Likewise, the number of Mac-3 

positive microglia cells and the GFAP+ positive are is increased in the mutant ML (Mac-3: p=0.0295; 

GFAP+ area: p=0.0406) but not in the GL (Mac-3: p=0.9888; GFAP+ area: p=0.141). (e) Percentual 

area covered by microvessels is increased in the Pten mutant GL when compared to controls 

(quantitated on lobe 5 of cerebellar parasagittal paraffin sections immunostained for the endothel cell 

marker CD31). N=3 per genotype; age: 2.5 months. Data are means ± s.e.m. *p<0.05; ***P < 0.001, 

student’s t test. 
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3.5.5.1 No signs of gliosis in NEX-CreERT2*PtenloxP/loxP mice 

Since we found minor changes of Iba1, Mac-3 and GFAP in the Pten cKO ML (Fig. 27b,c,d) 

we analyzed Nex-CreERT2*PtenloxP/loxP mutants with only 4% GC recombination (Fig. 17a), 

but significant myelination (Fig. 17c-f). Quantification for “gliosis” markers revealed no 

detectable differences in the ML and GL of Nex-CreERT2*PtenloxP/loxP mutants compared to 

controls (Fig. 28a-c), even 28 weeks after recombination (Fig. 17b). This suggests, that the 

upregulation of Iba1+, Mac-3+ and GFAP+ cell numbers in the ML of Pten cKO are not a 

necessary primary trigger for de novo myelination. 

 

 

Fig. 28. No activation of microglia and astrocytes in the NEX-CreERT2*PtenloxP/loxP cerebellum. 

(a) Nex-CreERT2*PtenloxP/loxP mutants do not exhibit more Iba1+ microglia in the ML (p=0.8886) nor 

in the GL (p=0.516). (b) Quantification of Mac-3+ cell revealed no significant difference (ML: 

p=0,1494; GL: p=0,7067). (c) Similarly, GFAP+ area is similar in Nex-CreERT2*PtenloxP/loxP mutant 

and control GL (p=0.9487) and ML (p=0.4998). Quantifications were performed on parasagittal 

sections of the cerebellar vermis; n=3 per genotype; age, 30 weeks. Data are means ± s.e.m.; 

student’s t test; GL, GC layer; ML, molecular layer. 
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3.5 Inactivation of Pten in CA3 neurons 

Are all CNS axons subject to de novo myelination when the Akt/mTOR pathway is artificially 

hyperactivated in the corresponding neuron? To target this question, we inactivated Pten in 

the forebrain, using the Nex-CreERT2 driver line intercrossed with floxed Pten mutants 

(Lesche et al., 2002). In contrast to the sparse recombination of cerebellar granule cells 

(see Fig. 17a) almost all hippocampal pyramidal neurons recombine after 5 consecutive 

days of tamoxifen treatment (P10-P15) (Agarwal et al., 2012) (Fig. 29a,b). However, when 

analyzed 28 weeks after tamoxifen induced inactivation of Pten, no ectopic OPC 

proliferation and no de novo myelination of CA3 Schaffer collaterals (Fig. 29c) could be 

observed. Furthermore, quantification of the total number of CNP positive cells and MBP+ 

area in the hippocampus of controls and Nex-CreERT2*PtenloxP/loxP mutants revealed no 

significant difference (Fig. 29d,e).  

 

 

Fig. 29. Pten inactivation in principal neurons of the hippocampus. (a) Tamoxifen treatment 

schemes of Nex-CreERT2*PtenloxP/loxP mutant mice. Cre-mediated activation of a lacZ reporter gene 

in CA3 neurons (CA3) revealed almost a 100% recombination efficiency upon tamoxifen treatment 

from P10-P15 (b). For further analysis, Nex-CreERT2*PtenloxP/loxP mutant mice and controls were 

injected with tamoxifen from P10-P15 and analysed 28 weeks later. (c) Nex-CreERT2*PtenloxP/loxP 

mutant mice exhibited the identical distribution of CNP+ oligodendrocytes in the hippocampus. (d) 

Quantification of CNP+ oligodendrocytes revealed no significant difference (p=0.8451). (e) Similar, 

the MBP+ area is unchanged in Nex-CreERT2*PtenloxP/loxP mutant mice compared to controls 

(p=0.7849). Quantified on coronal sections of the forebrain; n=3 mice each genotype and age. Data 

are means ± s.e.m., student’s t-test. CC, corpus callosum; DG, dentate gyrus. 
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Since somata of Nex-CreERT2*PtenloxP/loxP mutant CA3 neurons were enlarged when 

quantified on H&E stained paraffin sections and on electron micrographs (Fig. 30a,b) we 

argue that hyperactivation of PI3K/Akt/mTOR pathway is not always sufficient to trigger 

CNS myelination. Inhibitory signals may “protect” forebrain neurons, as myelination can 

interfere with axonal sprouting and neuronal plasticity in the adult brain (Schwab and 

Strittmatter, 2014). However, we have no formal proof that the Schaffer collaterals were 

sufficiently enlarged. Electron micrographs and serial block-face scanning electron 

microscopy did not allow us to unequivocally identify Schaffer collaterals. 

 

 

Fig. 30. Enlargement of CA3 neurons upon Pten inactivation. (a) Nex-CreERT2*PtenloxP/loxP 

mutant mice exhibited significantly enlarged hippocampal CA3 neurons, when quantified in H&E 

stained paraffin sections. Pten was inactivated by injecting tamoxifen from P10-P15. Quantification 

was done 28 weeks later (n=3 per genotype; 40 cells per animal, p=0.0005). (b) Similar enlarged cell 

diameters were obtained by electron microscopy (n=2 per genotype; 10-15 cells per animal). 
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3.6 Hamartoma formation in aged Pten mutants 

We note that later in life, many mice older than 11 months developed ataxia and hindlimb 

paralysis (Video 2, can be found on the included CD-ROM or on Nature Neuroscience 

webpage http://www.nature.com/neuro/journal/vaop/ncurrent/fig_tab/nn.4425_SV2.html), 

possibly due to cerebellar hamartomas at that older age, which preferentially affected the 

inferior and posterior lobes (Fig. 31a). Granular cells, preferentially located in the inferior 

and posterior lobes of the cerebellum, developed a secondary and focal hyperplasia that 

was clearly more pronounced than the hypertrophy underlying the myelination phenotype 

(Fig. 31b). Calbindin immunohistochemistry revealed a Purkinje cell loss (Fig. 31c), next to 

reduced central white matter (immunostained for CNP, oligodendrocyte and myelin specific 

marker) (Fig. 31d) and signs of inflammation (activated microglia cells, immunostained for 

Mac-3). Furthermore, vascularization was enhanced (Fig. 31e). These features collectively 

model features of human Lhermitte Duclos disease (LDD), a dysplastic gangliocytoma of 

the cerebellum associated with PTEN gene mutations. 
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Fig. 31. Pten mutant mice as a model of Lhermitte-Duclos disease. (a) Gallyas silver impregnation 

of cerebellar parasagittal sections reveals a focal pathology (asterisks) in aged Pten mutants that is 

preferentially localized to the inferior lobe (IL) and the posterior lobe (PL). Pathology is characterized 

by secondary focal hypergrowth of GC immunostained for NeuN (arrowheads in b; age 1 year; boxed 

area magnified on the right), loss of Purkinje cells immunostained for Calbindin (arrowheads in c; 

age, 1 year; boxed area magnified on the right), loss of central white matter immunostained for CNP 

(arrowheads in d; age, 1 year; boxed area magnified on the right), and presence of activated 

microglia cells immunostained for Mac-3 (in e; age, 1.5 years; boxed area magnified on the right) 

and enhanced vascularization (boxed area in e magnified on the right and further magnified in inset). 

Cerebellar lobes I-X are marked in c. 
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4. Discussion 

4.1 Axon caliber and PI3K dependent induction of myelination 

During myelination but also in remyelination, a plethora of cell intrinsic and extrinsic 

signaling molecules have been suggested as modulators and coordinators of the complex 

process of axonal ensheathment by oligodendrocytes (Hsieh et al., 2004; Mcmorris et al., 

1986; Miron et al., 2013; Van't Veer et al., 2009; Vanderpal et al., 1988; Xiao et al., 2010; 

Xiao et al., 2012). However, recent data challenged the idea that axonal signals are at all 

required to initiate and coordinate this process. Here, in experiments by Lee, 2012, even 

artificial nanofibers with threshold caliber diameters above 0.4 µm became myelinated by 

oligodendrocytes in the absence of any axonally derived guidance signals in vitro. This 

study effectively uncoupled the role of molecular cues from biophysical properties of the 

axon and demonstrated a dependency of myelination on axon caliber in the CNS (Lee et 

al., 2013; Lee et al., 2012). Thus, one obvious possibility would be that an axonal caliber 

above a certain key-threshold, is sufficient to instruct myelination in vivo.  

Several approaches in PNS analyses have addressed the correlation between myelination 

and axon caliber (Duncan and Hoffman, 1997; Matthews, 1968). Indeed, axons larger than 

1 μm are preferentially myelinated (Duncan and Hoffman, 1997; Matthews, 1968; Salzer, 

2003). Back in 1989, Voyvodic increased the caliber of normally unmyelinated sympathetic 

postganglionic axons in the PNS, by increasing the size of the peripheral target tissue they 

innervate (Voyvodic, 1989). Subsequently, this axonal caliber increase induced de novo 

myelination by Schwann cells. Based on this observation, it was concluded, that i) axon 

caliber in the PNS is in fact the crucial determinant of whether or not an axon becomes 

myelinated and that ii) the production of myelin is likely determined by a signal from the 

axon that increases along with axon caliber (Aguayo et al., 1976; Voyvodic, 1989; Weinberg 

and Spencer, 1976). Meanwhile, the instructive signal on the axon has been identified as 

Neuregulin 1 that activates ErbB downstream signaling in Schwann cells and is the key 

trigger for myelination in the PNS (Michailov et al., 2004; Taveggia et al., 2010). Neuronal 

overexpression of Nrg1 induces hypermyelination and the reduction of Nrg1 expression 

causes a hypomyelination (Michailov et al., 2004). However, this axonal growth factor is 

dispensable for CNS myelination (Brinkmann et al., 2008), which leaves the neuronal 

factors that control OPC development and myelination in vivo poorly understood. 

Nevertheless, and in contrast to Schwann cells, oligodendrocytes are able to follow a more 

“default” pathway and even myelinate artificial carbon nanofibers (Lee et al., 2013; Lee et 

al., 2012). However, in this artificial model, oligodendrocytes engage with the nanofibers, 

start membrane ensheatment, but they fail to generate multiple wraps and compact myelin 

(Karadottir and Stockley, 2012; Lee et al., 2013). Over the last two decades, different growth 
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factors and cytokines, including Pdgf, Fgf2, Igf1, Bdnf, Nt3, Cntf and Lif, have been identified 

as regulators of the proliferation and differentiation of oligodendrocyte lineage cells. A role 

for IGF1 (insulin-like growth factor 1) was for example demonstrated by the analysis of 

mouse mutants. Homozygous Igf1-/- mice, exhibited decreased numbers of 

oligodendrocytes and a reduction of white matter structures (Beck et al., 1995), while 

transgenic mice overexpressing Igf1 developed an upregulation of oligodendroglial myelin 

synthesis (Carson et al., 1993). This strengthens the hypothesis, that beside the axon 

caliber an big orchestra of many different positive and negative signals from various cells 

and the extracellular environment is needed to modulate and control for proper and timely 

myelination. As mentioned in the introduction, most of the already known signals and growth 

factors, with putative effects on oligodendrocyte lineage cells, are produced and secreted 

by astrocytes and endothelia cells or are of unknown origin. Signal cues directly from axons 

are largely unknown and need to be discovered. To resolve this lack of knowledge, we 

genetically induced, in analogy to the classical work from Voyvodic (1989), an axonal caliber 

increase (by hyperactivating Akt/mTOR-dependent downstream signaling in normally 

unmyelinated neurons), which was followed by the proliferation of wt OPCs in the molecular 

layer, their maturation to oligodendrocytes, and the de novo myelination of parallel fibers 

starting at around postnatal day 40 (P40) and progressing with age. Interestingly, once the 

caliber threshold (0.25 μm) for being myelinated was achieved, oligodendrocytes showed 

no general preference for especially larger caliber axons. This is consistent with previous 

electron microscopy findings in spinal cords from rats, where single oligodendrocytes 

myelinated axons with different calibers (Waxman and Sims, 1984). The average diameter 

of a wildtype parallel fiber is around 0.2 μm and it is normally unmyelinated. Nevertheless, 

some parallel fibers in larger mammals, such as cats and macaques surpass the critical 

size limit and become myelinated (Lange, 1976). This may suggest that parallel fibers are 

in principle quite susceptible to myelination but they are simply not preferentially because 

of their small caliber. Furthermore, since the ML is anyway not populated by 

oligodendrocytes there may also be no need for the Pf to express an additional battery of 

molecules that would actively hinder myelination. This uniqueness of Pf might explain, why 

we were not able to induce de novo myelination of other normally unmyelinated CNS axons, 

the Schaffer collaterals of the hippocampus, with the very same genetic mutation of the 

Pten gene. We hypothesize that Schaffer collaterals likely have a higher need to express 

more inhibitory signals than Pf, in order to exclude their axons from myelination, since their 

surrounding is filled with oligodendrocytes and other myelinated axons. 
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4.2 Regulation of OPC proliferation, differentiation and CNS myelination 

Understanding the signaling mechanisms that trigger oligodendrocyte precursor cell (OPC) 

proliferation and myelination in the central nervous system (CNS) in vivo is of key 

importance for the therapy of diseases, such as multiple sclerosis, in which endogenous 

repair mechanisms fail. Numerous signaling cues must be considered, including 

myelination-promoting and inhibiting factors that could act on OPCs and oligodendrocytes, 

as well the size and electrical activity of putative target axons (Piaton et al., 2010; Taveggia 

et al., 2010).  

Neurons release growth factors in an activity dependent manner and neuronal activity is 

known to promote myelination and proliferation of OPCs (Karadottir and Attwell, 2007). 

Moreover, OPCs receive synaptic input from Pf in the cerebellar ML (Lin and Bergles, 2004) 

and synaptic input from unmyelinated axons to OPCs modulates their proliferation (Mangin 

et al., 2012) and myelination (Wake et al., 2011). Thus we asked in our mutant mouse 

model, if increased OPC proliferation and myelination was induced by changes resulting 

from alterations in granular cell activity. However, we found no differences between mutants 

and controls in the frequency of the spontaneous synaptic input that OPCs receive from 

parallel fibers or in the frequency of spontaneous inputs in Purkinje cells at the age of P7-

P100, i.e. at times of ongoing OPC proliferation and myelination in the Pten mutant ML. 

These results suggest, that none of the observed oligodendroglial phenotypes was induced 

by changes in granular cell electric activity. 

Hypothetically, de novo parallel fiber myelination in the mutants could have been caused by 

down-regulating axon-bound inhibitory neuronal ligands that bind to known inhibitory 

pathways of oligodendrocyte development, such as the Notch1 pathway (Taveggia et al., 

2010). It is well established, that at early developmental stages, OPC differentiation and 

myelination can be inhibited by the interaction of axonally expressed Jagged to 

oligodendroglially expressed Notch (Genoud et al., 2002; Givogri et al., 2002; Wang et al., 

1998; Zhang et al., 2007). One specific Notch1 ligand that appeared 2.5 fold downregulated 

in our transcriptome analysis of laser captured GC layer of Pten mutants was Dner, a protein 

strongly expressed in several types of post-mitotic neurons (Eiraku et al., 2002). Whether 

this down regulation of the neuronal transmembrane protein Dner plays a role in the process 

of ectopic myelination of Pf has to be addressed in more detail in the future. 

We concentrated instead more on the idea that also the down regulation of soluble/released 

inhibitory signals might have been instructive for de novo myelination of Pf. To test for this 

possibility, we intercrossed flox Pten mutants to a Nex-CreERT2 driver line (Agarwal et al., 

2012) that inactivates target genes only in a small subset of cerebellar granule cells 
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(Agarwal et al., 2012). However, when analyzed 28 weeks after tamoxifen injections, loss 

of Pten in this small fraction of granule cells was still sufficient to significantly increase the 

numbers of mature oligodendrocytes and the MBP positive area in the cerebellar molecular 

layer. This makes it unlikely that soluble inhibitory factors (still expressed by the vast 

majority of non-recombined granule cells) regulate Pf myelination. Hence, we focused next 

on genes for soluble growth factors and signaling molecules, for which the corresponding 

mRNAs were upregulated in the hypertrophic GL and which are ligands of established 

pathways in oligodendrocytes that instruct myelination (Goebbels et al., 2010; Ishii et al., 

2013; Santra et al., 2012). 

Transcriptome analysis resulted in a first list of candidate factors upregulated in Pten cKO 

and selected by annotation. mRNAs with higher expression in the mutants included for 

example Bdnf, which we selected for a proof-of-principle in vivo analysis, to address the 

significance of this list of candidates. Bdnf is already believed to be involved in 

oligodendroglia lineage cell development and myelination, although no clear picture has 

emerged yet. On the one hand, conditional inactivation of Bdnf in neurons did not induce a 

difference in the density of Olig2+ cells in the striatum and no effect on myelination in the 

optic nerve (Rauskolb et al., 2010). On the other hand it has been shown in Bdnf 

heterozygous mice that NG2+ cells as well as the protein amount of MBP, MAG and PLP 

were reduced in the basal forebrain (Vondran et al., 2010). When we analyzed double 

mutant mice, which lacked both Pten and Bdnf in cerebellar granule cells we obtained the 

unexpected result, that the mutants had more (not less) proliferating OPCs, 

oligodendrocytes and myelin sheaths in the ML, however the myelin sheath thickness of 

single sheaths was reduced. 

We reasoned that Bdnf is a "pro-differentiation" signal with limited efficacy for OPCs in our 

mutants. Accordingly, it's loss in double mutants initially increased the weight of the "pro-

proliferative" signals and thereby also the number of OPCs generated in the mutant ML. 

However, at a later stage the remaining "pro-differentiation" factors were still sufficient to 

trigger OPC differentiation and myelination, possibly with some temporal delay. This finding 

suggested that not one key factor but many factors (each with a measurable but limited 

range of efficacy) play a role in orchestrating oligodendrocyte lineage cell progression in 

our mutants. Inactivating one player, such as Bdnf has a moderate effect on imbalancing 

the whole system. In line with this finding, until now, not a single neuronal mutation has 

been reported in the literature that completely prevents CNS myelination, even in large 

screens (Deshmukh et al., 2013; Mei et al., 2014; Najm et al., 2015). 
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Because of the suggested complexity of the cocktail of orchestrating factors, we turned to 

in vitro assays to further validate some of our candidate factors. In these experiments 

recombinant forms of our upregulated candidate genes triggered different responses in 

oligodendrocyte lineage cells. Pleiotrophin is a member of the neurite growth-promoting 

factor family (Kretschmer et al., 1991). Adding the recombinant form of Pleiotrophin to our 

cocultures revealed an induction of myelination. This is in line with the recent finding that 

Pleiotrophin is expressed and released from demyelinated neurons and binds as an 

inhibitory ligand to PTPRZ (Protein tyrosine phosphatase receptor type z) in OPCs, which 

results in induced OPC differentiation for remyelination (Kuboyama et al., 2015). In our 

experiments, Fgf1, a member of the heparin growth factor family demonstrated a pro-

proliferative role for OPCs, when tested in cocultures. It was the only factor, next to our 

positive control Pdgf that resulted in significantly more OPC proliferation in culture. This is 

in line with several in vitro studies, that showed similar findings for Fgf1 and Fgf2 (Engele 

and Bohn, 1992). Neurons and astrocytes are able to produce and secrete different Fgfs 

(Becker-Catania et al., 2011; Elde et al., 1991; Gomezpinilla et al., 1992; Matsuyama et al., 

1992; Nakamua et al., 1999; Riva and Mocchetti, 1991), whereas oligodendrocyte lineage 

cells express the corresponding Fgf receptors in a developmentally regulated manner 

(Bansal et al., 1996; Fortin et al., 2005). Fgfr1 and Fgfr3 are expressed by OPCs, whereas 

Fgfr2 and additionally Fgfr1 are expressed by differentiated oligodendrocytes (Bansal, 

2002). Mice lacking both Fgfr1 and Fgfr2 in oligodendrocyte lineage cells, revealed 

surprisingly no phenotype in OPC proliferation and differentiation. Although, the growth of 

CNS myelin was strongly inhibited (Furusho et al., 2012). This suggest, that the in vivo 

function of Fgf signaling is more complex and probably not limited on proliferation (Furusho 

et al., 2012). Timp3, one out of four members of the tissue inhibitor metalloproteinases 

family, induced myelination in our cocultures. This function of Timp3 on promoting 

myelination is novel. However it has been shown before that inactivation of Timp1, a 

member of the same family, induced a reduced myelin repair following a demyelinating 

injury in mice (Crocker et al., 2006). Additionally, the formation of compact myelin was 

delayed accompanied by a reduction of NG2+ OPCs (Moore et al., 2011). Tmsb4x is a G-

actin sequestering peptide (Moon et al., 2010) and is known to increase 

oligodendrogenesis, although the molecular mechanisms are unclear (Santra et al., 2012). 

Threating cocultures with the recombinant form of Tmsb4x increased the myelination index 

in our experiments, suggesting (in line with the literature) a positive effect on myelination. 

Activin A (Inhba, forming the biologically active dimer Activin A) belongs to the TGF-β 

protein superfamily (Kingsley, 1994). Myelination in vitro was induced in our cocultures by 

adding recombinant Activin A. More importantly Activin A also emerged as a differentiation 

factor in our primary oligodendrocyte cultures. This finding is in agreement with a recent 
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report, in which Activin A was identified as a microglia (M2) cell-derived oligodendrocyte 

differentiation factor. Blocking Activin A resulted in the inhibition of remyelination in 

cerebellar slice cultures (Miron et al., 2013). Activin A is in principle able to signal through 

a combination of type I and II transmembrane serine/threonine kinase receptors (Harrison 

et al., 2005; Tsuchida et al., 2008), via Smad2/3/4 dependent complexes or Smad-

independent pathways such as MAPK (ERK1 and ERK2), or PI3K pathway (Tsuchida et 

al., 2009). By blocking the specific signaling pathways one by one, we could demonstrate 

that the pro-differentiation activity of Activin A on oligodendrocyte lineage cells required the 

activation of MAPK, but not PI3K or SMAD3, to be effective. 

Our experimental setup and the emerged de novo myelination of the cerebellar molecular 

layer in Pten mutant mice, suggested the instructive role of a primarily neuronal 

(PI3K/Akt/mTOR-dependent) developmental program for myelination. Although, down-

stream of this switch, as noted in the results part and annotated by the database from 

http://web.stanford.edu/group/barres_lab/brain_rnaseq.html (Zhang et al., 2014) not all 

newly identified differentiation/myelination factors are necessarily of neuronal origin. 

Several upregulated immune modulatory factors were revealed by our transcriptome 

analysis (like. Nts and Ninj1) with a role in immune cell migration (Ifergan et al., 2011; 

Katsanos et al., 2008). However, as shown in the results part, general microglia and 

macrophage marker antigens, including Aif1/Iba1, Cd68 and Itgam/CD11B were not 

differentially regulated. This is in line with immunohistochemical analysis of microglial 

marker antigens and respective quantifications, which revealed no difference in cell 

numbers of Iba1+, Mac-3+ and GFAP+ cells in the GL between mutants and controls at the 

age of 2.5 months. However, Cd163 a marker of anti-inflammatory (M2 type) 

microglia/macrophages was 7-fold upregulated at the mRNA level in the mutant GL and the 

ML contained significantly more microglial cells and astrocytes, when quantified by 

immunohistochemistry. This prompted the idea to analyze the potential impact of microglial 

cells more in detail in Nex-CreERT2*PtenloxP/loxP mutants in which less cells were 

recombined (only 4% of GC recombination, but significant de novo myelination). No 

elevation of gliosis markers were visible in the ML nor in the GL in Nex-CreERT2*PtenloxP/loxP 

mutants. Thus, we conclude that the de novo myelination of the ML in Pten cKO is not 

initiated by microgliosis. However, subtle gene regulation changes in existing microglia or 

astrocytes may have had secondary impact but were for sure downstream of the primary 

instructive signal, which is for sure neuronal as defined by the specific genetic intervention 

in GC. Interestingly we also identified several factors (Vegfc, Apcdd1, Igfbp7) in our genetic 

screen that are exclusively expressed in endothelial cells. Accordingly, 

immunohistochemistry for CD31 (cluster of differentiation 31/ PECAM-1, platelet endothelial 

cell adhesion molecule), a marker for early and mature endothelial cells (Thomas et al., 
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2009) demonstrated a significantly higher angiogenesis in the mutant GL at the age of 2.5 

months. This finding seems interesting, since recent studies suggested an instructive role 

of endothelia cells in the regulation of oligodendrocyte lineage cells. For example, the 

proliferation of OPCs was induced by the presence of endothelia cells in a trans-well culture 

system. Since the different cell types were cultured with no direct cell-cell contact, the 

finding indicated a secretion of putative oligo-supportive factors by endothelia cells (Arai 

and Lo, 2009). In summary the role specifically of microglial cells and vasculature as 

bystanders of myelination awaits to be further explored. 

 

4.3 Utilization of acquired knowledge from PI3K dependent de novo 

myelination 

We identified a neuronal, PIP3-dependent switch, that instructed the entire cascade of 

oligodendrocyte lineage cell development and de novo myelination, at least in part by direct 

or indirect upregulation of newly identified factors, such as Fgf1, Pleiotrophin, Timp3, 

Thymosin beta 4, and Activin A. One major dispute in demyelinating diseases like multiple 

sclerosis is about the failure to repair lesioned areas. Although OPCs are present, they often 

fail to differentiate into mature oligodendrocytes and to remyelinate axons that lost their 

myelin sheaths. Remyelination is a regenerative mechanism, protecting demyelinated 

axons by restoring myelin sheaths (Irvine and Blakemore, 2008). Genetic lineage tracing in 

transgenic mice identified oligodendrocyte lineage cells as an endogenous source of mature 

and myelinating oligodendrocytes in the healthy adult CNS (Rivers et al., 2008). It would be 

important to unveil the signals that promote oligodendrocyte differentiation during 

development and to use this knowledge to promote remyelination. With the help of our 

transcriptomic approach, we identified several known and also novel signaling cues with a 

putative effect on the oligodendrocyte lineage cell development. The application of these 

factors in demyelinating disorders, such as mouse models of multiple sclerosis would be a 

promising strategy in preclinical studies to protect degenerating axons by promoting 

remyelination. Nevertheless, a major problem is to administer factors like Bdnf, Fgf1, Timp3, 

Pleiotrophin, Tmsb4x or Activin A. Bdnf, for example cannot be transcytosed through the 

blood-brain barrier (BBB) in vivo (Pardridge et al., 1994). For the other identified factors, not 

much is known about their ability to pass the blood brain barrier. Some studies in rats/mice 

implanted miniosmotic pumps or used intraventricular infusion of growth factors like VEGF 

(Proescholdt et al., 1999) or BMP4 (bone morphogenic protein) (Sabo et al., 2011). 

Intraventricular infusion of BMP4 during demyelination increased the proliferation of OPCs 

(Sabo et al., 2011). In a very recent study, Bdnf was injected intravenously in rats after white 

matter injury in subcortical stroke. Induction of ischemia enabled Bdnf to cross the blood 
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brain barrier (Schabitz et al., 2007). Bdnf treated animals showed less functional deficits 

and depicted an increased proliferation of OPCs (Ramos-Cejudo et al., 2015). These data 

support the concept of growth factor mediated oligodendrogenesis and treatment of 

demyelination in mouse models and patients.  

 

4.4 Pten deficiency in granular cells: A new mouse model for Lhermitte-Duclos 

disease 

Especially upon aging, our conditional Pten mutant mice are a novel and suitable model for 

Lhermitte Duclos disease (LDD), which is superior to the existing ones (Backman et al., 

2001; Kwon et al., 2001). LDD is characterized by diffuse hypertrophy of the granular layer, 

loss of white matter and slowly growing tumors (hamartoma) of the cerebellum (Eng, 2000). 

Patients develop a macrocephaly accompanied by ataxia and seizures, usually affecting 

patients aged 30-50 years (Giorgianni et al., 2013). The normal architecture of the 

cerebellar cortex is abrogated and a secondary Purkinje cell loss can be observed 

(Backman et al., 2001). Although the exact cause in patients is unknown, mutations in the 

PTEN gene have been identified (Blumenthal and Dennis, 2008). By inactivating a loxP 

flanked Pten gene by using a GFAP-Cre driver line, two mouse models were created that 

mimic some of the characteristic symptoms of the disease, such as ataxia, seizures, 

Purkinje cell loss and hypertrophy of granule cells (Backman et al., 2001; Kwon et al., 2006). 

However, none of the animals developed hamartomas, possibly due to the short life span 

of this mutants, that was owed to the fact that rather general Cre driver lines targeting 

primarily astroglial cells were used. Most of the mutants died around 29 weeks (Backman 

et al., 2001) or between 9 and 48 weeks (Kwon et al., 2001) in consequence of seizures 

and ataxia. In contrast, our model closely resembles the pathology of human patients, 

including hamartoma formation, white matter reduction and massive Purkinje cell loss and 

may contribute in further experiments to a better understanding of this disease. Also a 

further assessment of the transcriptomic profiles of the mutants including the upregulated 

soluble factors might be interesting, since they may qualify as specific tumor markers with 

diagnostic value for LDD. 
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5. Material and Methods 

5.1 Mouse mutants 

All experiments were conducted according to the Lower Saxony State regulations for the 

use of experimental animals in Germany as approved by the Niedersächsisches Landesamt 

für Verbraucherschutz und Lebensmittelsicherheit (LAVES) and according to UK 

government animal use regulations. Mice were housed in groups in individually ventilated 

cages under a 12:12h light/dark cycle with access to food and water ad libitum. If not stated 

otherwise, for molecular, histological, electrophysiological, electron microscopical and 

biochemical experiments, female and male mice were included in the experiments and were 

randomly allocated to experimental groups according to age and genotype. All animal 

experiments were conducted in a single blinded fashion towards the investigator. 

Inclusion/exclusion criteria were pre-established. Animals were excluded from the 

experiment when showing impaired health conditions not attributable to genotype or 

experiment or when the weight difference to the average group weight was larger than 10%. 

With respect to the outcome assessment, exclusion criteria were determined with Grubbs' 

test (ESD method), using the statistical software GraphPad (Prism). No animals or samples 

had to be excluded with these criteria in any of the experiments. 

 

Mice mutant for PtenloxP/loxP, Tg(m6-Cre)B1LFR, Nex-CreERT2, Nrg1loxP/loxP, BdnfloxP/loxP, 

Plp1-DsRed, Rosa26-lacZ and Ng2-EYFP were genotyped as described (Agarwal et al., 

2012; Funfschilling and Reichardt, 2002; Hirrlinger et al., 2005; Karram et al., 2008; Lesche 

et al., 2002; Li et al., 2002; Rauskolb et al., 2010; Soriano, 1999). Tg(m6-Cre)B1LFR, Nex-

CreERT2, Nrg1loxP/loxP, BdnfloxP/loxP, Plp1-DsRed, Rosa26-lacZ and Ng2-EYFP mutants were 

on C57BL/6N background, whereas PtenloxP/loxP mutants and thus all compound mutants 

harboring PtenloxP alleles were on mixed C57BL/6N-SV129 background. For genotyping, 

genomic DNA was isolated from tail biopsies (InvisorbSpin Tissue Mini kit, Invitek) 

according to the manufacturer’s directions and subjected to routine PCR methods. 

 

5.1.1 Genotyping primer for various mouse lines 

Pten  

sense 5'-ACTCAAGGCAGGGATGAGC-3' 

antisense 5'-CAGAGTTAAGTTTTTGAAGGCAAG-3' 

Tg(m6-Cre)B1LFR  
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sense 5'-TAGAGCATTAGGGTGGGAG-3' 

antisense 5'-TGCCGCCTTTGCAGGTGTGTCTTAC-3' 

 

Nrg1 

sense 5'-GCACCAAGTGGTTGCGATTGTTGCT-3' 

antisense 5'-TCCTTTTGTGTGTGTTCAGCACCGG-3' 

 

Bdnf 

sense 5'-GTTGCGTAAGCTGTCTGTGCACTGTGC-3' 

antisense 5'-CAGACTCAGAGGGCACTTTGATGGCTTG-3' 

 

Plp1-DsRed  

sense 5'-CGCCGACATCCCCGACTACAA-3' 

antisense 5'-GCGGCCGCTACAGGAACAGGT-3' 

 

Rosa26-lacZ 

sense 5'-AAAGTCGCTCTGAGTTGTTAT-3' 

antisense 5'-GCGAAGAGTTTGTCCTCAACC-3' 

 

Ng2-EYFP  

sense 5'-TGACCTTGGATTCTGAGC-3' 

antisense 5'-CGCTGAACTTGTGGCCGTTTA-3' 

 

5.2 BrdU labeling 

Mice received 5’-bromo-deoxyuridine (BrdU, Sigma Aldrich) by daily intraperitoneal 

injections (50 µg/g of body weight) for 20 consecutive days. Mice were sacrificed 4 hours 

post final injection. 
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5.3 Histology and immunohistochemistry 

Mice were anaesthetized with avertin (Sigma–Aldrich) and perfused with 15 ml of Hanks 

balanced salt solution (HBSS, PAA laboratories, Pasching, Austria) followed by fixative (4% 

PFA, 0.1M Phosphate buffer, 0.5% NaCl). Paraffin sections of the brain (5 µm) were 

deparaffinized using xylene and isopropanol and rehydrated in a descending ethanol series. 

Antigen unmasking was performed by boiling for 10–40 min in citric buffer, pH 6, or Tris 

EDTA, pH 9. Sections were blocked in 20% goat serum in PBS/BSA for 1 h and incubated 

with primary antibodies in 5% goat serum in PBS/BSA for 2 h at 37°C or overnight at 4°C. 

Detection was performed by using Alexa Fluor 488-, 555- and 633-conjugated secondary 

antibodies (1:1000, Thermo Fisher Scientific, #A-28175, #A-11034, #A-21212, #A-21422, 

#A-27039 and #A-21094) and by using biotinylated secondary antibodies, followed by 

diaminobenzidine (DAB) (LSAB2 Kit, Dako, #K0675; Vectastain Kit, Vector Laboratories, 

#BA-9400, #PK-6100). Primary antibodies were directed against BrdU (1:200, Chemicon, 

#MAB3424), CAII (1:200, kindly provided by S. Ghandour, Strasbourg, PMID: 118210), 

Calbindin (1:600, Sigma, #C9848), Caspr (1:100, NeuroMab, #75-001), CD31 (1:100, 

Dianova, #DIA-310), CNPase (1:150, Sigma, #C5922), GABAA receptor 6 subunit (1:500, 

Chemicon, #AB5610), GFAP (1:200, Novocastra, #NCL-GFAP-GA5), Iba1 (1:1000, Wako, 

#019-19741), MBP (1:200, Covance, #SMI-94R); NaV1.6 (1:500, Alomone Labs, #ASC-

009); NeuN (1:200, Chemicon, #MAB377); Olig2 (1:200, kindly provided by J. Alberta, 

PMID: 15198128), and Mac-3 (1:500, BD Pharmingen, #553322). 5 µm microtome sections 

(Microm HM400) were also stained by hematoxylin–eosin (HE) to study cytoarchitecture. 

Myelinated fibers were visualized by Gallyas silver impregnation as described (Lappe-

Siefke et al., 2003). All images showing immunohistochemical analyses and stainings were 

successfully repeated at least three times.  

 

5.4 In situ hybridization  

In situ hybridization was performed as described (Bormuth et al., 2013), by our collaborators 

Kuo Yan and Dr. Ingo Bormuth. A Myrf probe corresponding to 941bp from Myrf 3’ UTR was 

kindly provided by B. Emery (Jungers Center for Neurosciences Research, Department of 

Neurology, Oregon USA). 
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5.5 Electron microscopy 

Mice were anaesthetized with avertin (Sigma–Aldrich) and perfused with 15 ml of Hanks 

balanced salt solution (HBSS, PAA laboratories, Pasching, Austria) followed by fixative (4% 

PFA, 0.1M Phosphate buffer, 0.5% NaCl, 2.5% glutaraldehyde). At parasagittal plane, 

cerebellar lobulus 5 was dissected, contrasted with 1% osmium tetraoxide and embedded 

in epoxy resin. Semi-thin (0.5mm) and ultra-thin (50–60 nm) sections were cut, using a 

microtome (RM 2155, Leica Microsystems, Wetzlar, Germany) with a diamond knife (Histo 

HI 4317, Diatome, Biel, Switzerland). Semi-thin sections were stained with azur-II-

methylenblue for 1 min at 60°C. Ultra-thin sections were stained with 2% uranylacetate (30 

min) and 1% lead citrate solution (12 min) and analysed using a LEO EM912AB electron 

microscope (Carl Zeiss NTS, Oberkochen, Germany). Images were taken with an on-axis 

2048x2048 CCD camera (Proscan, Scheuring, Germany). 

 

5.6 Electrophysiology  

Electrophysiology was performed by our collaborators Sonia Spitzer and Ragnhildur Thóra 

Káradóttir by cuting parasagittal cerebellar slices (225 μm) using a vibrating blade 

microtome (Leica VT1200S) from P7-P100 Ng2-EYFP+/-*Tg(mα6)-Cre*PtenloxP/loxP mice 

(mutants) and Ng2-EYFP+/-*Pten loxP/loxP mice (controls), culled by cervical dislocation in 

accordance with UK government animal use regulations. After dissection, the brain was 

placed in a cooled (∼1ºC) oxygenated (95% O2–5% CO2) Krebs solution containing (mM): 

126 NaCl, 24 NaHCO3, 1 NaH2PO4, 2.5 KCl, 2.5 CaCl2, 2 MgCl2, 10 D-glucose (pH 7.4). 

In addition, kynurenic acid was included in order to block glutamate receptors, which might 

be activated during the dissection procedure and cause cell damage. During experiments 

slices were superfused at 22±1ºC with HEPES- buffered external solution containing (mM): 

144 NaCl, 2.5 KCl, 10 HEPES, 1 NaH2PO4, 2.5 CaCl2, 10 glucose, 0.1 glycine (to co-

activate NMDA receptors), 0.005 strychnine (to block glycine receptors), pH set to 7.4 with 

NaOH, bubbled with 100% O2. OPCs were identified by EYFP expression and whole-cell 

voltage clamped. Recording electrodes had a resistance between 5-9MΩ when filled with 

an internal solution comprising (mM): 130 K-gluconate, 4 NaCl, 0.5 CaCl2, 10 HEPES, 10 

BAPTA, 4 MgATP, 0.5 Na2GTP, 2 K-Lucifer yellow, pH set to 7.3 with KOH and the 

uncompensated series resistance was 40±1MΩ and electrode junction potentials (- 14mV) 

were compensated for. A Multiclamp 700B (Molecular Devices) was used for voltage clamp 

data acquisition. Data were sampled at 50kHz and filtered at 10kHz using pClamp10.3 

(Molecular Devices). 
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5.7 Synaptic current analysis 

A synaptic current was defined to occur if its amplitude was bigger than twice the standard 

deviation of the baseline current noise and its 10-90% decay time was longer than its rise 

time. Events were detected and analysed with pClamp 10.3 (Molecular Devices) and the 

Strathclyde Electrophysiology Software package WinEDR V3.3.7 WinWCP V4.6.2. 

 

5.8 Laser-capture microdissection, RNA isolation and linear amplification, 

and microarray hybridization 

Mice were killed at 3 months of age by cervical dislocation, total brains were dissected and 

frozen on dry ice, protected with parafilm and stored at -80°C. Serial coronal cryosections 

(20 µm) were prepared using a Leica CM3000 Cryostat, mounted on polyethylene 

naphthalate membrane frame slides (Arcturus), stained with thionin, and dried in an 

ascending ethanol/xylene series. For laser-capture microdissection (LCM), a Veritas 

Microdissection System (Arcturus) was used with slides mounted and stained the same 

day. Cerebellar GL were dissected by ultraviolet laser (laser power set to 3.2–4.2) and 

attached to CapSure LCM caps using an infrared laser (power set to 80%). Caps were 

collected in 0.5 ml Eppendorf tubes containing 100 µl of RNeasy Lysis Buffer (Qiagen) and 

stored at -80°C. Total RNA was isolated from LCM tissue using the Micro RNeasy Kit 

(Qiagen) according to the instructions of the manufacturer except that RNA was eluted from 

the column with 10µl of water followed by precipitation with NaAcetate (pH 5.2, f.c. 0.3M) 

and PelletPaint (Novagen) as carrier. Two-round amplification and biotin-labeling, 

hybridization to mouse MOE230A 2.0 genechips (Affymetrix), washing and scanning was 

essentially as described (Rossner et al., 2006) with 3 biological replicates for each 

genotype. Data analysis was performed using Genomics Suite (Partek Inc.). Raw data were 

normalized using the RMA algorithm and differentially expressed genes were identified with 

ANOVA according to the workflow suggested by the manufacturer (Partek Inc.). 

Differentially expressed genes with signal intensities in mutants > control were selected with 

>1.4-fold change and adjusted P-values <0.05. 

 

5.9 RNA isolation, cDNA synthesis, and qRT-PCR.  

Total RNA was isolated from LCM tissue using the Transcriptor High Fidelity Kit (Roche) 

according to the instructions of the manufacturer. cDNA was synthesized using a mixture 

of random nonamer primers and anchored poly-dT primers and SuperScript III RNase H 

reverse transcriptase (Invitrogen) according to the instructions of the manufacturer. qRT-
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PCR was performed using SYBR green master mix (Applied Biosystems) and a 7500 Fast 

Real-Time PCR System (Applied Biosystems). Primers were designed using the Roche 

Universal ProbeLibrary website (http://qpcr.probefinder.com). Relative mRNA 

concentrations were normalized to Actin and Atp5b. Data were analyzed using qBase 

software version 1.3.5 (Center for Medical Genetics, Ghent University, Ghent, Belgium). 

 

5.9.1 Quantitative real-time PCR primers 

Pten 

Forward: 5'-TGGGGAAGTAAGGACCAG -3' 

Reverse: 5'-TATCTGCACGCTCTATAC -3' 

 

Neurotensin 

Forward: 5'-AGCTGGTGTGCCTGACTCTC -3' 

Reverse: 5'-CCAGGGCTCTCACATCTTCT -3' 

 

Fgf1 

Forward: 5'-CCGAAGGGCTTTTATACGG -3' 

Reverse: 5'-TCTTGGAGGTGTAAGTGTTATAATGG -3'  

 

Pleiotrophin 

Forward: 5'-CCTCAAGCGGAGTCAAAGAA -3'’ 

Reverse: 5'-CTTTTCCTGGTCCACAGACG -3' 

 

Timp3 

Forward: 5'-CACGGAAGCCTCTGAAAGTC -3' 

Reverse: 5'-TCCCACCTCTCCACAAAGTT -3' 

 

Inhba 

Forward: 5'-GGGAGTGATCCCTGGAAAC -3' 

Reverse: 5'-TCCTCTTCATGGTATTGGCACT -3' 

 

5.10 Mixed myelinating cocultures from mouse spinal cord  

Wild-type C57BL/6N mice were time-mated, with the day of plugging denoted as embryonic 

day 0.5 (E0.5), and embryos were collected on embryonic day 13.5 (E13.5). The spinal cord 

was dissected, and dissociated mechanically and enzymatically (0.25% trypsin, Invitrogen). 
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Enzymatic activity was stopped by the addition of plating medium (50% DMEM, 25% horse 

serum, 25% Hanks balanced salt solution without Ca2+ and Mg2+) containing 2.5 µg/ml 

DNAse I. Cells were dissociated into a single cell suspension by triturating through 20- and 

23-gauge needles (4 and 2 times, respectively) and spun at 800 rpm for 5 min. The pellet 

was resuspended in plating medium. Dissociated spinal cord cells were plated initially onto 

poly-L-lysine (PLL, in boric acid buffer, pH8.4) coated coverslips at a density of 150.000 

cells/100 µl, which were then placed into a 35-mm Petri dish. The cells were left to attach 

for 2–3 hours, when 150 µl of plating medium and 500 µl of differentiation medium was 

added. This medium contained DMEM (4,500 mg/L glucose), 10 mg/ml biotin, 0.5% 

hormone mixture (1 mg/mL apotransferrin, 20 mM putrescine, 4 µM progesterone, and 6 

µM selenium), 50 nM hydrocortisone, and 10 g/ml insulin (all reagents were from Sigma). 

Cultures were maintained by replacing half of the medium with fresh medium three times a 

week. After 12 days in culture, cells were fed with differentiation medium with (or without) 

recombinant human Pdgf (100ng/ml), Sparcl1 (10ng/ml), Vegfc (100ng/ml), Fgf1 

(100ng/ml), Ptn (10ng/ml), Timp3 (100ng/ml), Tmsb4x (50ng/ml) or Activin A (100 ng/ml) 

and reduced concentration of Insulin (0.2 g/ml). Cultures were maintained for up to 25 

days in a humidified atmosphere of 5% CO2 at 37°C.  

 

5.11 Mixed primary oligodendrocyte cultures  

Mixed primary oligodendrocyte cultures were prepared from (7 pooled) spinal cords of P4 

mouse pups. Tissue chunks were incubated in 5 ml papain (200U) in papain buffer plus L-

cysteine for 1 hour at ~35°C with constant gassing (95% oxygen and 5% carbon dioxide). 

The papain reaction was stopped with plating medium (30% horse serum in DMEM) 

containing 2.5 µg/ml DNAse I. Cells were dissociated into a single cell suspension by 

triturating through 20 and 23 gauge needles (4 and 2 times, respectively), spun at 800 rpm 

for 5 min, and the pellet was resuspended in plating medium. Cells were plated at a 

concentration of 80,000 cells/100 µl plating medium onto PLL coated 11 mm diameter glass 

coverslips, in 35 mm diameter Petri-dishes (2 coverslips/dish). Two hours later, 

differentiation medium containing DMEM (4,500 mg/L glucose), 10 ng/ml biotin, 0.5% 

hormone mixture (1 mg/mL apotransferrin, 20 mM putrescine, 4 µM progesterone, and 6 

µM selenium), 50 nM hydrocortisone, and 10 g/ml insulin (all reagents from Sigma) was 

added to each 35 mm Petri dish to yield a mix of 50% plating medium: 50% differentiation 

medium. The following day all medium and myelin debris was removed from the coverslips 

by rinsing briefly in medium, and fresh differentiation medium was added to each 35 mm 

Petri dish, with or without human recombinant forms of Klotho (400ng/ml), Ptn (10ng/ml), 
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Timp3 (100ng/ml) or Activin A (100ng/ml). Cells were fed every second day by replacing 

half the medium with fresh differentiation medium including the recombinant proteins. 

Cultures were maintained for 3 and 5 days in a humidified atmosphere of 5% CO2 at 37°C.  

 

5.12 Recombinant proteins 

Human recombinant proteins were Sparcl1, Vegfc, Klotho, Timp3, and Activin A (R&D 

Systems), Pdgf and Ptn (Sigma Aldrich), Tmsb4x (Novus Biologicals) and Fgf1 (Invitrogen). 

Recombinant proteins were dissolved in ddH2O. Individual aliquots were thawed only once 

and diluted in cell culture medium immediately before use. PI3K inhibitor LY294002 and 

MEK1/2 inhibitor UO126 were from Cell Signaling Technology, SMAD3 inhibitor SIS3 was 

from Calbiochem. 

 

5.13 Immunocytochemistry 

Cells were fixed with 4% PFA for 5 min at 37°C. After fixation, cultures were washed in PBS 

three times, permeabilized with ice cold methanol for 5 min, and blocked in blocking buffer 

(2% fish skin gelatin, 2% FCS, 2% BSA in PBS) for 60 min. Primary antibodies (diluted in 

10% blocking buffer) were directed against GFAP (1:200, Novocastra, #NCL-GFAP-GA5), 

KI-67 (1:10, Dako, #M7249), MBP (1:200, Covance, #SMI-94R), Olig2 (1:200, kindly 

provided by J. Alberta, PMID: 15198128) SMI31 (1:1000, Covance, #SMI-31P), and APC-

CC1 (1:100, Calbiochem, #OP80) and incubated overnight at 4°C. Coverslips were washed 

in PBS three times. Corresponding secondary Alexa Fluor 488-, 555- and 633-conjunated 

antibodies (1:1000, Thermo Fisher Scientific, #A-28175, #A-21422, #A-27039 and #A-

21094) were diluted in 10% blocking buffer and added for 1 h. Coverslips were washed in 

ddH2O three times and mounted in Aqua-Poly/Mount (Polysciences). 

 

5.14 Morphometry  

Digitized overlapping light microscopic images (20x) were fused to a continuous image of a 

complete parasagittal cerebellum (Lateral, 0.12 mm) by using Zeiss Zen software and 

analyzed for absolute numbers of CNP+, CAII+, Olig2+, Iba1+, Mac-3+, and BrdU+ cells. 

The number of Iba1+ and Mac-3+ cells was normalized to the area of ML and GL, 

respectively. Endothelial cells positive for CD31 were traced with ImageJ and normalized 

to the area of the ML. To quantify MBP+ and GFAP+ areas, two ImageJ plugins for semi-

automated analysis were implemented (“MBP” and “GFAP” can be found on the included 
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CD-ROM). Average diameter of hippocampal CA3 neuronal cell bodies of Nex-

CreERT2*PtenloxP/loxP mice was determined by using ImageJ software. Two independent 

sections per mouse and staining were quantified. In cell culture experiments, the 

differentiation and proliferation state of oligodendrocyte lineage cells was analyzed within 

the given fields of 11 randomly taken images (20x) per coverslip (mixed myelinating 

cultures: myelination assay, 3-11 independent experiments with 2 coverslips per condition; 

proliferation assay, 3-11 independent experiments with 1 coverslip per condition; mixed 

primary oligodendrocyte cultures: 3-5 independent experiments with 2 coverslips per 

condition). For quantitative assessment of in vitro myelination a “myelination index” was 

calculated by dividing the MBP+ area (as identified by generating a “mask” outlining the 

myelin sheaths; “CoCultureMBP”, can be found on the included CD-ROM). by the axonal 

area (Smi31+ axons; “CoCultureSmi31”, can be found on the included CD-ROM). For the 

proliferation assay the percentage of semi-automatically quantified Olig2+ cells was 

determined in relation to all DAPI+ cells (“CoCultureOlig2 and “CoCultureDAPI”, can be 

found on the included CD-ROM) and the number of Ki67+, Olig2+ cells was set in relation to 

the total number of Olig2+ cells. For the differentiation assay, the percentage of postmitotic 

oligodendrocytes was determined by quantifying and dividing the numbers of CC1+ cells by 

the total number of Olig2+ oligodendrocyte lineage cells. All analyses were performed in a 

single blinded fashion towards the investigator who was unaware of the treatment regimen. 

 

5.15 G-ratio measurement 

Digitized images (magnification 7000x) of ultrathin cerebellum lobe 5 sections were used to 

determine the numbers of myelinated axons, axon calibers and g-ratios (>100 randomly 

chosen myelinated axons in the molecular layer). g-ratios were determined by dividing the 

inner myelin diameter by the diameter of the entire fiber. Quantitations were performed from 

≥3 age-matched male mice per genotype and age.  

 

5.16 Protein analysis 

Cerebellum lysates were homogenized in lysis-buffer (50 mM HEPES, pH 7.5, 150 mM 

NaCl, 1.5 mM MgCl2, 5 mM EGTA, 10% glycerol, 1% triton X-100, 2mM Na3VO4) 

containing phosphatase (PhosSTOP Inhibitor Cocktail, Roche, Basel, Switzerland) and 

protease (Complete tablets, Roche, Basel, Switzerland) inhibitors using an Ultraturrax (T8, 

Ika, Staufen, Germany) at highest settings (30–60 s). After incubation for 15 min on ice 

insoluble material was removed by centrifugation at 16.000 g, 4°C for 15 min. For 
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Westernblot analysis, 10 µg of protein lysate was size-separated on 12% of SDS-

polyacrylamide gels and blotted onto PVDF membranes (HybondTM-P, Amersham 

Biosciences, UK) by Bio-Rad western blotting method. Membranes were blocked in 5% milk 

powder (in PBS) for 1h at room temperature. Primary antibodies were directed against p-

AKT (Cell Signaling, mRb, 1:1000, #4060), AKT (Cell Signaling, mRb, 1:1000, #4691), 

PTEN (Cell Signaling, mRb, 1:1000, #9188), p-PDK1 (Cell Signaling, mRb, 1:1000, #3438), 

p-mTOR (Cell Signaling, mRb, 1:1000, #5536), p-S6 (Cell Signaling, mRb, 1:1000, #4858), 

and Actin (Sigma–Aldrich, mM, 1:1000, #A3853). Antibodies were diluted in blocking buffer 

and incubated overnight at 4°C. Membranes were washed 3 x 10 min in TBS-T buffer (50 

mM Tris-HCl, pH 7.4, 150 mM NaCl and 0.05% Tween-20), followed by an incubation with 

horse-radish peroxidase-conjugated secondary antibodies (1:5000, Dianova, #111-035-

003, #115-035-003). After three more washing steps with TBS-T buffer, immunoreactive 

proteins were detected with an enhanced chemiluminescence kit (Western LightningTM, 

Westernblot Chemiluminescence Reagent Plus, PerkinElmer Life Sciences, Waltham, MA) 

according to the manufacturer’s instructions. 

 

5.17 Statistical analysis 

For Power analysis the software G*Power Version 3.1.7. was used. Power analyses were 

performed before conducting experiments (a priori). Adequate Power (1 – beta-error) was 

defined as ≥ 80% and the alpha error as 5%. The sample size was calculated with the 

following pre-specified effect sizes: 1. mRNA expression analysis: effect size d of 

approximately 2.5 (estimated mean difference of 50% and standard deviation of 15%). 2. 

Analysis of mature oligodendrocyte numbers in GL (effect size d of approximately 3.5, 

estimated mean difference of 30% and standard deviation of 10%) and ML (effect size d of 

approximately 6.5, estimated mean difference of 400% and standard deviation of 30%) and 

myelinated area in the ML of wildtype and Pten mutants (effect size d of approximately 6.0, 

estimated mean difference of 170% and standard deviation of 40%). 3. Proliferation analysis 

of oligodendrocyte lineage cells: effect size d of approximately 9.0 (estimated mean 

difference of 330% and standard deviation of 15%). 4. In vivo analysis of candidate genes. 

Analysis of mature oligodendrocyte numbers: effect size d of approximately 5.5 (estimated 

mean difference of 30% and standard deviation of 15%). Analysis of myelinated area: effect 

size d of approximately 4.0 (estimated mean difference of 30% and standard deviation of 

13%). Proliferation analysis of oligodendrocyte lineage cells: effect size d of approximately 

3.5 (estimated mean difference of 20% and standard deviation of 10%). Analysis of (i) 

myelinated and (ii) unmyelinated pf diameters: (i) effect size d of approximately 2.6 

(estimated mean difference of 20% and standard deviation of 13%). (ii) Effect size d of 
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approximately 1.5 (estimated mean difference of 15% and standard deviation of 13%). G-

ratio analysis: effect size d of approximately 4.5 (estimated mean difference of 6% and 

standard deviation of 2%). 5. Microglia (ML: Effect size d of approximately 4.7, estimated 

mean difference of 100% and standard deviation of 20%; GL: effect size d of approximately 

1.2, estimated mean difference of 10% and standard deviation of 5%), astrocytes (ML: effect 

size d of approximately 4.0, estimated mean difference of 150% and standard deviation of 

15%; GL: effect size d of approximately 1.3, estimated mean difference of 10% and standard 

deviation of 5%) and vascular endothelia cells (effect size d of approximately 3.7, estimated 

mean difference of 40% and standard deviation of 15%) in Pten mutant mice. 6. Microglia 

(ML: effect size d of approximately 1.0, estimated mean difference of 10% and standard 

deviation of 9%; GL: effect size d of approximately 1.3, estimated mean difference of 10% 

and standard deviation of 7%) and astrocytes (ML: effect size d of approximately 1.2, 

estimated mean difference of 20% and standard deviation of 15%; GL: effect size d of 

approximately 1.1, estimated mean difference of 10% and standard deviation of 5%) in 

NEX-CreERT2*PtenloxP/loxP mice. 7. Average diameter of hippocampal CA3 neuronal cell 

bodies from Nex-CreERT2*PtenloxP/loxP mice: effect size d of approximately 12.0 (estimated 

mean difference of 25% and standard deviation of 2%) 8. In vitro analysis of candidate 

factors. Analysis of oligodendrocyte lineage cell numbers: effect size d of approximately 4.0 

(estimated mean difference of 80% and standard deviation of 30%). Proliferation analysis: 

effect size d of approximately 2.3 (estimated mean difference of 60% and standard deviation 

of 36%). Myelination index: effect size d of approximately 2.0 (estimated mean difference 

of 65% and standard deviation of 50%). Analysis of oligodendrocyte differentiation: effect 

size d of approximately 9.0 (estimated mean difference of 40% and standard deviation of 

10%). For electrophysiology experiments we determined the sample size by utilizing 

previous data distributions. 

 

Data are expressed as means +/- s.e.m. In order to select appropriate statistical tests all 

data have been tested for normal distribution with Kolmogorov-Smirnov test or Shapiro-Wilk 

test. For normally distributed data with comparable variances we used two-tailed unpaired 

Student’s t-tests and Chi-square tests to determine the statistical significance between two 

groups. For data not showing normal distribution or in case that no normality test could be 

conducted the nonparametric Wilcoxon matched pairs test was applied. Data sets 

containing more than two groups were tested by applying analysis of variance (ANOVA) 

and Bonferroni post hoc test. Analysis of co-variance (ANCOVA) was used to analyse the 

differences between slopes of regression lines. Applied statistical tests are indicated in the 

respective figure legends. Statistical differences were considered significant when p<0.05 
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(*p<0.05, **p<0.01, ***p<0.001) and tests and fitting of regression lines were performed by 

using GraphPad (Prism) and MS Excel. 
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