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Abstract

We investigate the dynamics of hard disks with hysteretic and therefore dissipative

interaction. Dissipation drives a system out of equilibrium naturally. In dilute systems

the overall behavior is governed by two-particle interaction so that certain features

of a granular system can already be analyzed for two hard-core particles with two-

dimensional periodic boundary conditions. The description is analogue to a Sinai

billiard. Augmenting this model with a hysteretic interaction makes it an ideal candidate

for the study of simple out-of-equilibrium systems. Adding shear to the billiard allows

us to inject energy to balance dissipation. Surprisingly, the absorbing state of a clustered

system still persists even if the average energy increases. Up to now it was not clear

which of those findings are specific features of the two-dimensional dynamical-system,

and which carry over to many particles—and, if so, how this transfer should be done.

To fill this gap we use Molecular Dynamics simulations for two and more particles to

confirm the relevant findings on the two-particle system. The results are interpreted

by comparison to pertinent dynamical-system results for small systems and to the

predictions of kinetic theory for large systems. While doing this the assumptions of

kinetic theory, in particular molecular chaos, are critically examined.
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Preface

Granulates are nearly-spherical agglomerates of matter that posses a large number of

internal degrees of freedom [Radja and Roux, 2004]. These allow to dissipate energy on

contact and thus are a good candidate for studies of non-equilibrium systems.

The natural length-scale of everyday granulates can be considered large enough to

neglect further microscopic details [Puglisi, 2010]: For example, if we let the average

distance between the grains become large enough the shape of the force-law with

which they interact during impacts becomes unimportant because the duration of

collisions becomes small in comparison to the average time between collisions. From

this point of view grains behave like hard-spheres that reflect instantly on contact.

The main difference to the well studied hard-sphere gas lies in the inelasticity of

collisions [Zippelius, 2006]. Though the exact details behind dissipation are complicated

[Aspelmeier, 2000], the main contributions are a loss of energy proportional to the

relative velocity of the grains and a loss of a constant amount of energy. We will reference

the former case as dry granulates and the latter as wet granulates.

The energy is dissipated into the microscopic degrees of freedom. Which of these

mechanisms dominate depends on the length-scale and the material of the granulates

[Luding, 2009] under consideration.

Even the simple model of only dissipating a fraction of relative velocity on contacts

leads to a great many of phenomena in granular gases and there is extensive research

performed in this area [Brilliantov and Pöschel, 2004; Nakagawa and Luding, 2009;

Zippelius, 2006].

Of recent interest is augmenting the theory of dry granular matter to describe wet

granular matter. Wet granulates are covered with a thin film of liquid. If two wet

grains with a thin film collide, the surface tension of the film will lead to a liquid

bridge between the grains that attracts the particles to one-another [Herminghaus,

2005; Mitarai and Nori, 2006]). Breaking the bridge costs a certain amount of energy.

From the point of view of foundations of statistical physics such models are interesting

because this is one of the simplest hysteretic interactions that dissipates energy on the

microscopic level and thus breaks time reversal symmetry.

Following a larger system of grains interacting under this dynamics one observes that

the system starts to form clusters since the average kinetic energy of the particles

decreases due to the dissipative nature of hysteretic bridge ruptures [Fingerle, 2007;

Röller, 2010]. To retain some sort of steady state, energy must be injected. Striving for a
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model system that is simple, yet not artificial, one can think of shearing the system. This

increases the system’s energy and may lead to a non-equilibrium-steady-state where

dissipation and shearing balance each other.

In order to understand this model system it is natural to follow the same route that

kinetic theory takes [Reichl, 1980]: starting from the knowledge about two particle

interaction one aims for a coarse-grained description of larger system. The route for

achieving this up-scaling is well studied. However, it relies on certain assumptions, e.g.,

that the system is ergodic; and that correlations between disks decay sufficiently rapidly.

Here we discuss how well these assumptions are fulfilled for small granular systems

and how we can bridge the gap between two particle interaction to few-body systems.

Outline

In Chapter 2 we will provide an introduction into wet and dry granular matter and the

connection to statistical physics. It turns out that dry granular matter provides a simple

model with naturally hysteretic and therefore dissipative interaction. This in turn lends

itself to study wet granulates in a non-equilibrium context. We also review the methods

from kinetic theory of how to obtain a coarse grained description of a system whose

fundamental pair interactions are known.

In Chapter 3 we discuss the statistical physics of small systems without dissipation. We

estimate the collision frequency of a hard-sphere gas in the limit of few particles in a

system with periodic boundary conditions. The periodic boundary conditions impose

the conservation of the center of mass momentum which reduces the degrees of freedom

of the gas. Hence we adjust, e.g., the Maxwellian energy distribution. In the limit of

large number of particles we show that the classical limit is retained.

In Chapter 4 we study a wet system without energy injection in free cooling. We do this

by using time driven Molecular Dynamics simulations that are compared to simulations

of a Sinai billiard. For two disks both match nicely. We augment this by discussing the

free cooling of three to ten disks. The main difference for more than two disks lies in

that the one particle energy distribution has to be taken into account. Additionally,

we confirm that the natural distribution is a uniform distribution conditioned by the

system’s energy. We also discuss the energy distribution in the limit of small energies,

i.e., energies close to the bridge rupture energy.

In Chapter 5 shearing is introduced with Lees Edwards boundary conditions. This

serves as an energy injection mechanism. We study the time dependence of the average

energy and the ensemble energy distribution. It turns out that—although the average

energy increases—the system still shows clustering. The reason can be found in the

ensemble energy distribution.



Chapter 6 concludes the thesis and offers a perspective for future research.
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Nomenclature

ε Coefficient of restitution, relating initial - relative normal

- velocity vni to final velocity vnf via ε = vnf /v
n
i , see equa-

tion (2.1), page 6

η Grain viscosity, see equation (2.7), page 8

γ Surface tension grain/liquid, see equation (2.10), page 9

V̂ Liquid volume normalize with the volume of the grain it is

wetting, see equation (2.12), page 10

{H, ·} Canonical Poisson bracket, see equation (1.4), page 5

H Hamiltonian, see equation (1.3), page 5

B Bridge rupture operator, see equation (2.45), page 21

C Collision operator, see equation (2.42), page 20

L Lees Edwards boundary crossing operator, see equation (5.4),

page 47

P Periodic boundary crossing operator, see equation (2.48),

page 21

ν Poisson ratio, see equation (2.5), page 8

xi Disk positions x ∈R, see equation (2.3), page 7

θ Direction of relative motion on the energy scale in the Sinai

billiard, see equation (2.30), page 18

θc Critical wetting angle, see equation (2.10), page 9

ξ Overlap between two disks, see equation (2.3), page 7

A Material constant for viscoelastic interaction, defined in [Bril-

liantov and Pöschel, 2001], see equation (2.6), page 8

Ci Velocity auto correlation function, see equation (4.52),

page 43

D Diffusion constant in Shearing Chapter, see equation (5.11),

page 48

D Dimension, see equation (3.8), page 28

dΓ Phase space volume, see equation (3.2), page 28

E Kinetic Energy of Disks, see equation (2.2), page 6
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Ecrit Critical center of mass energy, see equation (4.11), page 33

f (N ) Reduced phase space density, see equation (1.5), page 5

F12 Force between two disks, see equation (1.6), page 5

fcoll Collision frequency, see equation (4.36), page 37

G Center of mass position, see equation (3.10), page 29

I Angular momentum of Sinai billiard, see equation (2.30),

page 18

J Jacobian, see equation (2.44), page 21

k Boltzmann constant, see equation (3.8), page 28

M Drift velocity, see equation (5.11), page 48

meff Effective mass, see equation (3.15), page 30

N Number of disks, see equation (3.8), page 28

p Squared Energy of the Sinai billiard, see equation (2.30),

page 18

pL Laplace pressure in toroidal liquid bridge, see equation (2.9),

page 9

Q Relative velocity projected on relative momentum. Normal-

ized with the total momentum. Billiard coordinate., see equa-

tion (2.30), page 18

q Relative billiard coordinates,qi = x2 − x1 = −ξi ., see equa-

tion (2.26), page 18

QNVE Microcanonical Ensemble, see equation (3.1), page 27

R1,R2 Curvature of liquid film covering two grain with toroidal

shape, see equation (2.9), page 9

ri Disk radius, see equation (2.3), page 7

Reff Effective radius of two disks, see equation (2.4), page 7

sc Bridge rupture distance, see equation (2.12), page 10

T Granular temperature, T � 2
D

1
N

∑N
i=1

1
2miv

2
i ., see equa-

tion (4.34), page 37

T Temperature, see equation (3.8), page 28

Y Young’s modulus, see equation (2.5), page 8



Conventions

We use the following notational conventions:

• Vectors are written in boldface, e.g., x, p

• Operators are set in fractal, e.g., B,P

• Energy is measured in units of bridge rupture energy ∆E

• Distances are measured in units of grain diameter 2r

• Definitions are written like a � b

• With [statement] we denote the Heaviside bracket; it is 1 if the contained state-

ment is true and 0 otherwise. With this the Delta Distribution can be written as

δ(x − a) = [x = a] and the Heaviside Distribution as Θ(x) = [x > 0]

• If not stated otherwise explicitly, the standard parameters in the simulations are:

103 runs—isoenergetically initialized with initial energy of 1000, bridge rupture

distance sc = 0.1, bridge rupture energy ∆E = 1 and disk size 0.5
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Chapter 1

Introduction and Fundamentals

We discuss the importance and differences between wet and dry
granular matter and provide a scope for this thesis. We also elicit
its connections to non-equilibrium physics and explain why sim-
ple models provide a valuable tool in studying non-equilibrium
systems. Additionally, the connection taking us from microscopic
laws of motion to a coarser description with the help of kinetic
theory is discussed.

1.1 Overview

Understanding granular matter is important since it is ubiquitous in daily life and on

a great many length-scales. These range from the microscopic scale wit grains sizes

of a few microns up to a few mm1. On the largest scale, dry granular gases can be

found in planetary rings [Spahn et al., 1995; Wallis, 1986] of Saturn or generally in the

interstellar medium since distances are large compared to rock or dust diameters. Our

understanding of this scale is important for, e.g., the formation of planets [Lissauer,

1993]. Dry granulates of different radius demix in gravity, famously shown by the brazil

nut effect in breakfast cereals [Lissauer, 1993; Pöschel and Herrmann, 1995].

A lot of natural resources are used in powder form and the understanding of how

powders behave in, e.g., silos [Luding, 1998] or drums is of interest for the industry.

Additionally to static or gas phenomena, dry granulates can flow or jam. An important

aspect in understanding this phenomena is that granulates posses internal structure, i.e.,

they consist of a large number of molecules and therefore internal degrees of freedom

that we do not account for individually in our models. That means granulates posses

bulk quantities like elasticity and surface roughness that can not be derived by model

1There are numerous definitions of what notions apply to which scale - especially among the geology
community. In this work the assumption that granulates are large enough so that internal degrees
of freedom do not have to be taken into account and that capillary forces are the most important
attractive interaction.
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Chapter 1 Introduction and Fundamentals

equations but are considered inherent.

Also, the internal degrees of freedom are out of equilibrium with their surroundings,

making it for them to absorb. Since grains loose energy by dissipation, granular matter

is naturally a non-equilibrium system. This can be seen in the inelastic collapse of gases:

without energy injection a granular gas is unstable with respect to the formation of

clusters.

Wet granular matter adds an attractive and dissipative interaction that leads to new

effects and, in itself, an interesting field of research. Consider the sandcastle: trying to

make one from dry granulates results in piles. If, however, water is added the sandcastle

is stable. Also its stability is largely independent on the amount of water. Alas, if one

adds too much water the sand will start flowing which—on the larger scale—amounts

to landslides and avalanches [Iverson, 1997]. Agglomeration of wet granulates happens,

e.g., for hail stones where single ice grains coagulate [Talu et al., 2000].

From a statistical mechanics viewpoint, Fingerle and Herminghaus [2007] studied the

equation of state for a wet granular gas; Fingerle et al. [2008] focused on phase tran-

sitions and Zaburdaev et al. [2006] studied free cooling of a wet granular gas in one

dimension.

Additionally, the wet interaction is a good approximation to the low-energy regime

of dry gases. For collisions with higher energy the granulates behave viscoelastic or

vibrational modes are important. For a detailed account see, e.g., Brilliantov et al. [1996]

or Aspelmeier [2000]; Schäfer et al. [1996]. We will stay at moderate energies and can

neglect this regime.

Moreover, the exact shape of the attractive force-law between pairs of particles is of no

consequence for some aspects. This means that a simple model of wet granulates is also

able to model “sticky” gases or, in general, gases with limited, attractive interaction

and dissipation to some degree [Carnevale et al., 1990; Coppex et al., 2004; Liang and

Kadanoff, 1985; Trizac and Hansen, 1995; Trizac and Krapivsky, 2003]. Next to its

abundance in the natural world granular matter also poses interesting problems for the-

oreticians: In the dilute limit of dry granulates it is a hard-sphere gas with dissipation.

Therefore it is interesting to see if it can be modeled with well-known theories like the

Boltzmann-equation that successfully describes gases with simple interaction. However,

most of these theories have certain assumptions, e.g., molecular chaos or ergodicity

[Reichl, 1980]. That such assumptions do hold has only been shown for a small set of

systems ( see, e.g., Simányi [2003] for some hard-sphere systems ).

This puts the granular gas into the context of dynamical systems. It is easily possible

to write down a Hamiltonian for model equations which in turn induces a flow. Es-

pecially the wet granular gas is interesting because it is not clear if the system can be

compared to the well known hard-sphere system since, e.g., the phase space volume

is not conserved by dissipative interaction. This makes it an interesting problem for

the more fundamental aspects of statistical physics, like the ergodicity that is needed
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1.1 Overview

by the usual means with which the Boltzmann equation is solved. Studying gases in

this context is not new: during the 19th century spatial disorder of gases was first

characterized by then empirical measures like entropy per unit volume. The rise of

modern dynamical system ideas of dynamical chaos extended throughout the whole of

the 20th century and allowed to predict transport properties (e.g. diffusivity, viscosity)

in terms of microscopic dynamics. This was discovered by such famous physicists as

Maxwell, Gibbs and Boltzmann (for a detailed account read e.g. Gaspard [2005] or

Penrose [2003]).

However, only recently an advance in mathematical technique allowed for the study

of the fundamentals of, e.g., the kinetic Boltzmann equation: Enskog extended kinetic

theory too the study of dense gases in 1921 and Yvon, Bogoliubov, Born, Green and Kirk-

wood derived kinetic equations as an approximation from the n-particle distribution

function with the BBKGY hierachy [Gaspard, 2005; Reichl, 1980].

This approach hit a few problems: expansions of this kind have problems in the non-

analyticity of the particle density. Furthermore the Boltzmann equation relies on the

assumption of molecular chaos and therefore on the fast decay of collision induced cor-

relations between molecules. The time correlation functions of typical fluids show that

this is not the case: they posses long-time tails as shown by Alder and Wainwright [1970].

Beijeren and Ernst [1973] proposed a modified Enskog equation that provides good

results even for dense systems. For dry granular systems under shearing Montanero

et al. [1999] should be mentioned: they solved the BBGKY model.

To investigate further when simple systems posses chaotic properties Sinai [1963],

proved the ergodicity of a two-dimensional two-disk system.

The Sinai billiard with periodic boundary condition resembles the Lorentz gas (see

e.g. Vollmer [2002]). This can be used to describe a granular gas in the limiting case

of two disks. This has been done by Glassmeier [2010]. She found that this system is

transiently chaotic, i.e., even if it is heated the variation of velocities is increased and

the system will eventually enter a clustered, stable state with minimal energy.

For the limit of many particles in the context of dry granular gases there has been

some advance in obtaining a kinetic theory: Ben-Naim et al. [2005] shows that spatially

homogeneous systems show power law tails in the velocity distribution and that driven

steady states with the same power law can be obtained via injecting energy at high

velocities. Due to the dissipation a gas cannot be in a classical equilibrium and if no

energy is injected by some means (shearing, heating, shaking) the granulates will cluster

Ulrich et al. [2009a]. Nie et al. [2002] looks at the dynamics of freely cooling granular

gases and analyzes the bounds of Haff’s law. From the kinetic point Zippelius [2006]

looked at the evolution of granular gases based on a time evolution operator for many

particles and discusses the freely cooling state, as well as the correlations and energy
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Chapter 1 Introduction and Fundamentals

exchange between rotational and translation degrees of freedom. It turns out that

there are correlation between the relative orientation of angular and linear velocities as

shown by Brilliantov et al. [2007]. In general, the kinetic theory of dry granular gases

has reached some text book level Brilliantov et al. [2003], and Pöschel and Schwager

[2005], Brilliantov and Pöschel [2004]. For a seminal review the interested reader is also

referred to Lun et al. [1984]

There has been some recent work on the many particle theory of wet granulates, es-

pecially by Fingerle and Herminghaus [2007] who proposes a equation of state of wet

granular matter (albeit under the assumption that its dynamics is locally symplectic),

Zaburdaev et al. [2006] who studied the free cooling of wet granulates and Roeller

and Herminghaus [2011] who performed large scale event driven simulations of wet

granulates and investigated the phase space in relation to phase transitions.

Ausloos et al. [2005] even study patterns in clusters of granulates in the context of

self-organized criticality.

As a side note, for hard-sphere systems Alder and Wainwright [1970] discovered that

the velocity auto correlation function decays algebraically. This can also be found in

granular systems and is important for the comparison with the Lorentz gas. For this,

Chernov and Markarian [2003] showed that in the finite horizon case the decay should

be exponential. However, Fiege et al. [2009] confirmed the algebraic decay for sheared

granular gases.

1.2 Kinetic Theory

In statistical physics we describe the dynamics of asystem with the probability density

f [N ] that assigns to each subset of the phase space R
DN a probability in R

+, the proba-

bility to find the system in the subset2 of finding an ensemble with particles that are in

the state (xi ,pi). Since the probability density depends only on the canonical variables

xi and pi its time evolution is determined by Hamilton’s equation.

For a Hamiltonian H
H �

∑
i

pi
2mi

+
∑
i<j

V (xi − xj) (1.1)

2Note that we also normalize f [N ] according to
∫
f [N ]dΓN = 1 where dΓN is the measure of the ND

dimensional phase space. This measure depends on the ensemble, e.g. in the microcanonical ensemble
dΓN = dxdp[H = E]
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1.2 Kinetic Theory

the equations of motions are

∂pi
∂t

= −∂H
∂xi

(1.2)

∂xi
∂t

=
∂H
∂pi

. (1.3)

The time evolution of the phase space density is given by a Liouville equation

∂f [N ]

∂t
=

{
H, f [N ]

}
, (1.4)

where {H, ·} is the Poisson bracket. The N -Particle distribution function however is

difficult to use in computation. If we want to trace out some information we can reduce

the phase space to n < N particles by introducing the reduced phase-space distribution

function

f (n) =
N !

(N −n)!

∫
f [N ]dΓN−n. (1.5)

It describes the probability of finding a subset of n particles in the (N −n)-dimensional

reduced phase-space. This probability does not depend on the traced-out particles. The

factor N !
(N−n)! arises from the freedom of choosing an arbitrary subset.

Using the reduced phase space density it becomes possible to relate the f (n) to the

f (n−1) distribution. Repeating this hierarchy for all possible n is known as the BBGKY

hierarchy. Most often the version for n = 1 is used(
∂
∂t

+
p1

m1

∂
∂x1

)
f (1)(x1,p1; t) = −

∫
F12

∂
∂pi

f (2)(x1,p1,x2,p2)dx2dp2 (1.6)

with the inter-particle force F12.

Solving Equation (1.6) is problematic because it contains both the 2 and 1 particle

distribution function. In the simplest approximation one assumes molecular chaos

f (2)(r1,p1,r2,p2) = f (1)(x1,p1)f (1)(x2,p2) (1.7)

For a hard-sphere gas this means that the particles behave independently from each-

other.

The question to what extent the approximation is valid and to which systems it applies

lies in the core of statistical mechanics. If the step in Equation (1.7) is allowed Equa-

tion (1.6) becomes a differentiable equation only in terms of the one particle distribution

function. This opens the door to use a vast amount of tools from statistical physics.

As an additional remark: if only Equation (1.6) where used, we essentially neglect all 3

or more particle interactions. This approximation can only be made if the density is

sufficiently low and thus pair interaction is dominant [Hansen and McDonald, 2006].
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Chapter 2

Fundamentals

We discuss the force laws of dry and wet granulates and discuss
which models can be used to describe these systems. Additionally,
the equations of motions resulting from the model are derived
which allows us to compare the granular system to the Sinai
billiard. Furthermore, we introduce Lees Edwards boundary con-
ditions as a mean to inject energy in a granular system which
mimics shearing. Eventually we discuss the different methods of
simulations and why we use time-driven simulations to compare
small systems to Sinai billiard.

2.1 Dry and Wet Granular Interaction

In the simplest case dissipation can be described by a coefficient of restitution1 ε. It

quantifies the relative change in a collision between two particles with, initially, relative

normal velocity vni and, after the collision occurred, final velocity vf

ε =
vnf
vni
. (2.1)

This relates pre- and postcollision energy (Ef ,Ei respectively) by

Ef = ε2Ei . (2.2)

In general ε can be a more complicated function of velocity [Brilliantov and Pöschel,

2004]. Also, we ignore dissipation into the rotational degrees of freedom as this would,

for now, just increase the complexity of our model2. In the following we discuss the

1Note,that our definition deviates from Glassmeier [2010] and rather instead [Brilliantov and Pöschel,
2004]. Glassmeier [2010] defines the square of ε as coefficient of restitution α � ε2

2For a review of dissipation in angular motion refer to Brilliantov and Pöschel [1998].
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ξ

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fo
rc

e

Overlap

Hertz
Maxwell

Lennard Jones

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Fo
rc

e

Overlap

Hertz
Maxwell

Lennard Jones

Figure 2.1 – Left: The repelling force between two granulates depends on the area-overlap
and this in turn on the overlap-distance ξ defined in Equation (2.3). Right: The natural
model for granulates is a Hertzian force that scales with ξ3/2. Other suitable models include,
e.g., a steep Lennard-Jones potential or that for Maxwell particles in two-dimensions. For
comparisons to the hard-sphere model the shape of the interaction is not important. We
choose the potential as steep as the Molecular Dynamics allows us. We select the Hertzian
force law in accord with models commonly used for modeling dry granular matter.

main mechanisms behind granular interactions (plastic deformation, dry viscoelastic

interaction, cohesive/van der Waals, wet viscous interaction, wet interaction).

Dry Interaction Viscoelastic interaction is characterized by the stress being a sum of

the elastic stresses and dissipative stresses when the dissipative stress depends on the

deformation rate [Landau and Lifshitz, 1975]. If deformation is slow enough this can be

approximated linearly.

The force between two grains of radii r1, r2 at position x1,x2 ∈ R
D depends on the

overlap ξ of particles (cf. Figure 2.1)

ξ � r1 + r2 − |x1 − x2| (2.3)

The disks repel each-other with a Hertzian force [Hertz, 1882] that is proportional to

the overlap ξ. The proportionality between force and overlap—called the Derjaguin

approximation—involves the effective radius

Reff �
r1r2
r1 + r2

. (2.4)

For ξ > 0

Fel =
2Y
√
Reff

3(1− ν2)
ξ

3
2 (2.5)

7



Chapter 2 Fundamentals

where the Young’s modulus Y and the Poisson ratio ν are material constants. Typical

values for aluminium beads of size 1mm with velocities of 30cm/s lead to contact times

in the order of µs with ξ in the order of µm [Nakagawa and Luding, 2009]. This is

often used as justification for neglecting the collision dynamics and using a reflection

of hard-cores in simulations.

To include viscoelastic interaction Equation (2.5) can be extended. Brilliantov et al.

[1996] found

Fdiss =
3
2
Aρ

√
ξξ̇ (2.6)

where A is a material constant that depends on the grains Young’s modulus Y , the

Poisson ratio ν and the viscous material constants η1,η2 of the two particles in contact

Brilliantov and Pöschel [2001].The material constant A is known for the assumption of

perfectly spherical grains (also assuming that the material constants are the same for

both disks which leads to η1 = η2), according to Brilliantov and Pöschel [2004]:

A =
1
3

4η2

5η

[
(1− ν2)(1− 2ν)

Yν2

]
(2.7)

This interaction leads, since it depends on velocity and thus on time, to dissipation.

From this force law alone a coefficient of restitution can be calculated (see Ramirez et al.

[1999], Schwager and Pöschel [1996] ) which removes a fraction of relative velocity at

each collision.

Combining the two effects from Equations (2.5) and (2.6) gives

ξ̈ +
ρ

meff

(
ξ3/2 +

3
2
A
√
ξξ̇

)
= 0 (2.8)

However, on the scale of wet granulates the dissipation due to Equation (2.8) can be

neglected if the energy is sufficiently similar to the bridge rupture energy ∆E in wet

granulates: see Figure 2.2.

Wet interaction If a liquid, e.g, water is added to granular matter the liquid will aim to

minimize its surface area. This can be achieved by spreading out among the granulates

and covering them with a liquid film. Near the contacts of grains the shape of the liquid

film becomes more complicated. Considering only liquid contents that are large enough

to form toroidal liquid bridges, the surface roughness can be neglected. The force

resulting from the minimization of surface area is balanced by the Laplace pressure.

The Laplace pressure is a hydrostatic pressure determined by the curvature of the liquid

film. This balancing leads to the formation of a liquid bridge (see Figure 2.3). This

liquid bridges mediates an attractive force between the grains.

The mechanical properties of this bridges have been studied extensively by Fournier

et al. [2005]; Liao and Hsiau [2010]; Mitarai and Nori [2006]; Willett et al. [2000] and in

8
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Figure 2.2 – The coefficient of restitution for dry (dotted) granulates does not introduce
an energy scale. However, in the wet case (solid and dashed), there is a minimal scale at
Ei = ∆E. This is unchanged even if the finite formation time for capillary bridges is taken
into account (dashed curve). (Figure reprinted from Ulrich et al. [2009b]).

popular form for the stability of sandcastles by Hornbaker et al. [1997]. The reasoning

about the different force regimes here follow mostly the review article by Herminghaus

[2005].

The exact pressure difference can be calculated for two wet granulates with radius of

curvature R1,R2 (see Figure 2.3) by

pL = γ(1/R1 + 1/R2), (2.9)

Note, the curvature R1 is negative and thus the pressure difference is negative too.

This force drives the system towards an equilibrium once a spatially constant mean

curvature has been reached.

Counter-acting the Laplace pressure is a force due to the surface tension between liquid

and grain γ . The force can be calculated via Young’s equation that relates the surface

tension γ and the contact angle between grain and liquid ϑ

FB = 2πγr cosϑc, (2.10)

where θc is the critical wetting angle.

Solving the resulting force analytically is not possible. The consensus on an approximate

force law for two particles with equal radius r is (see, e.g., Herminghaus [2005])

F(ξ) =
F0

1 + 1.05 r
V̂
ξ + 2.5 r

V̂
ξ2 . (2.11)
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Chapter 2 Fundamentals

ϑ

R1

R1

D

Figure 2.3 – Two spheres with identical Radius are covered by a liquid film. The liquid film
contacts the sphere’s surface under an angle θ. Determined by Young’s equation a force
is exerted on the liquid depending on the surface tension γ . This force is balanced by the
hydrostatic pressure difference due to the Laplace pressure. This pressure depends on the
radii of curvature R1,R2. Combining these forces we can obtain an approximate force law
in Equation (2.11)

This compares well to experiments as convincingly done by Willett et al. [2000] , see

Figure 2.4.

For this force the distance where the bridge ruptures, the rupture distance sc can be

fitted. Willett et al. [2000] obtain

sc = r
(
V̂ 1/3 + 0.1V̂ 2/3

)
(2.12)

where V̂ is a dimensionless quantity connecting the volume of fluid L and the grain

volume

V̂ �
L

r3 . (2.13)

The total energy dissipated by forming a bridge with force according to Equation (2.11)

over a distance given by Equation (2.13) is the integral

∆E =
∫ sc

0
Fbridgeds ≈ 5.5

√
V̂ γr2 cosϑ (2.14)

An approximation to this can be found for complete wetting (cosϑc ≈ 1). Herminghaus

[2005] proposes

∆E ≈
2πγ
R

√
V̂ . (2.15)

To facilitate the theoretical considerations we will use ∆E given by Equation (2.15)

as energy scale and thus give all energy units in term of ∆E. Also, distances will be

measured in grain diameters 2r.

The important features that these mechanisms introduce are dissipation and stiffness
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2.1 Dry and Wet Granular Interaction

Figure 2.4 – The capillary force F between a spherical particle and a wall depends on
surface separation (here, s). The force decreases monotonically with a clearly visible rupture
distance.Willett et al. [2000] performed experiments with perfect wetting (points) and
compared them to numerical estimate (line).
Figure reprinted from [Willett et al., 2000].

due to the attractive nature of Equation (2.11).

As an additional note, we discuss another force that gives rise to a hysteretic interaction.

These are collected under the term of cohesive forces (c.f. Figure 2.5).

The Van der Waals force is the most ubiquitous cohesive force. However this type of

force may be neglected for typical grain sizes R > 20µm. Additionally the kinetic energy

scales with length-scale squared, whereas the van der Waals interaction scales with the

radius [Zhu et al., 2007]. We will therefore neglect this type of interaction.

An overview of energy-scale can be found in Figure 2.6 from [Zhu et al., 2007].

11



Chapter 2 Fundamentals

Figure 2.5 – Left: Water bridges have formed between glass beads. Right: The cohesive van
der Waals force leads to necks.
Liquid bridges dominate on larger length-scales compared with O(nm) where van der Waals
forces dominate. Both interactions lead to a hysteretic potential which in turn leads to
dissipation. (Pictures from Glassmeier [2010] referencing work from Scheel [2009] (left)
and Iijima [1987] in Chokshi et al. [1993] (right) ).

Figure 2.6 – Comparison of different inter-particle forces. The capillary force responsible
for liquid bridge formation is on average half a decade stronger than the van der Waals
Force for particles with sizes exceeding µm. Both of these forces are on turn a decade larger
than electrostatic and weight forces.
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2.2 Models for Granular Interaction

2.2 Models for Granular Interaction

For our system there are different candidates for simple models of the microscopic

interaction. First, we discuss the dry interaction between two particles. The candidates

are:

Perfectly hard-spheres The interaction is defined by a infinitely steep potential. The

model potential for a particle of Radius r as a function of distance to its center is

V (ξ) �

0 ξ < 0

∞ ξ > 0
(2.16)

This model is often used in Event Driven Molecular Dynamics and also by the

Sinai billiard model. It is elegant in some aspects: it does neither introduce an

energy nor a temperature scale and a change in energy of the whole system can be

described as rescaling of the time scale. Another feature is that due to the instan-

taneous nature of collisions the probability for three-particle interaction is zero

[Brilliantov and Pöschel, 2004]. Also, there are some problems with phase transi-

tions: in simulations one can find a crystallization transition for high densities

in three dimensions (Hoover et al. [2009]) but if this transition still exists in two

dimensions is still under discussions [Mak, 2006]. Lacking attractive interactions

such systems also can not show a liquid-gas transition.

Soft potentials We summarize the potentials in the form of

V (ξ) �

0 ξ < 0
1
ξn ξ > 0

(2.17)

as soft potentials. Note that the repulsive part of the Lennard Jones potential,

as well as the Hertzian repulsion fall under this definition. If we want to use

Molecular Dynamics we need a force law and since we are not interested in the

collisions themselves we want to choose the potential as steep as the Molecular

Dynamics simulations allow us. But since the force law for granulates is known

to be roughly Hertzian, we will simply choose the exponent belonging to the

Hertzian force law (cf. Equation (2.5)) and choose the parameters as such that the

collision time and disk overlap are as small as possible. As a remark we mention

that Rapoport et al. [2008] argues the Sinai billiard is chaotic, the smooth billiard

possesses a stability region that scales with the steepness n of the potential like

1/n. However we note that this is not unexpected and should not be detrimental

for comparison of the hard-sphere model to the one we use in Molecular Dynamics
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potential

distance

potential

distance

a) no contact b) contact

Figure 2.7 – In the thin-film model granulates move freely until they collide. They reflect
then according to the repelling force model and also build a liquid bridge. In reality this
bridge exerts an attracting force. However, Fingerle [2007]; Röller [2010] showed that the
exact behavior of the force is not important at least for dilute granulates. Thus an easy
model is to neglect the force and simply reduce the relative normal energy by ∆E of the two
spheres whenever they rupture the bridge at a critical distance sc. This implies an infinite
force at rupture and can be problematic for Molecular Dynamic simulation where a force is
needed. Hence, we use a smoothed out potential of the same form for our simulations where
still the energy dissipation is equal to ∆E. Note that this interaction breaks time-reversibility
and is dissipative. This alone is responsible for driving the granulates out of equilibrium.

simulations. Additionally, the range of our forces are small in comparison to the

box length—thus we do not expect to see such contributions.

For the wet interaction especially the hysteretic nature of the force law is important.

There are some natural candidates for modeling the potentials. For a direct comparison

regard Figure 2.8.

Thin Film Model When two disks collide they form a liquid bridge. In the thin film

model this bridge forms at contact, if the distance between the center of mass of

the disks is smaller than their combined radii. After reflection the particles see a

potential well that is reflecting if their relative radial velocity is smaller then the

escape velocity dictated by the depth ∆E of the potential

V (ξ) �

∆E ξ < −sc if bridge formed

0 −sc ≤ ξ < 0
. (2.18)

This model assumes that the wetting layer of liquid is infinitely small and that

the force transmitted by the bridge can be infinitely large. Realistically there is

a finite critical force that when transceded leads to a bridge rupture. Note that

this does not allow one to store arbitrary energy into the rotation of two particles,

there still is a critical energy depending on the bridge rupture energy and on the
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Figure 2.8 – The soft hysteretic well, constant force and thin film model describe a hysteretic
pair interaction that leads to dissipation. The thin film model has a step from zero potential
to the bridge rupture energy. Since the force is the derivative of the potential, it becomes
infinite at the rupture distance and hence is not suited for direct integration of the equations
of motion. In the constant force model this is remedied by interpolating between zero and
the rupture energy linearly. However, the first derivatives behaves discontinously at the
rupture distance. To obtain a continuous behavior everywhere the soft hysteretic well uses a
part of the cosine for interpolation.

bridge rupture distance. Shokouhi and Parsafar [2008] discusses some properties

of square well liquids.

Thick Film Model In the thick film model the assumption of a infinitely thin layer of

liquid wetting the disks is relaxed. Glazing collisions will too, lead to the forming

of a liquid bridge if the distance between grains is smaller then the liquid film’s

thickness. Glassmeier [2010] compared the thin and thick film model and notes

that they equal each other in almost any aspects.

Hysteretic Constant Force For Molecular Dynamics simulations the above mentioned

potential carries the disadvantage of possessing an infinite forces. A simple model

with finite force in radial direction is

V (ξ) �


∆E
sc
ξ ξ < −sc if bridge formed

0 −sc ≤ ξ < 0
(2.19)

Yet there is a problem that this force is discontinuous at the point of bridge

rupture.

Soft Hysteretic Well To remedy the problems of the constant force model in Equa-

tion (2.19) the interaction is replaced by

V (ξ) �


2∆Esc
π cos

(
π ξ

2sc

)
ξ < −sc if bridge formed

0 −sc ≤ ξ < 0
(2.20)
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Chapter 2 Fundamentals

The advantage is that this model has continuous derivatives everywhere. Thus we

will use it.

Numerical studies comparing different force laws in different regimes (liquid, gas, solid)

confirm that the thin-film model is a good approximation and the relevant parameters

are the depth of the potential ∆E and the rupture distance sc [Röller, 2010].

A model similar to this hysteretic interaction was used by Walton and Braun [1986]; Wal-

ton [1982] in the context of dry granular matter. It was used to model the viscoelasticity

for high impact velocities.

2.3 Equations of Motion

We describe the motion of N spherical, mono-disperse particles in D dimensions. Their

coordinates xi ∈RD and momenta pi ∈RD constitute the phase space3. We assume that

the particle radii are equal for all particles ∀i,jri = rj . Their radii ri are normalized to 0.5

to compare the two disk case with Glassmeier [2010]. Furthermore we set the individual

particle masses mi to one, such that momenta and velocities become equal.

3Note that: The phase space of the simulations and the model system that is discussed later on is
compact due to periodic boundary conditions. The particle positions in this case live on the D-torus
T
D .

r

b
ϑ

Figure 2.9 – The thin-film-Sinai billiard is described by one scatterer of double the radius
of one disk. In periodic boundary conditions the other, now point-sized, disk collides
elastically at the boundaries of the scatterer and is deflected at the bridge rupture distance.
The coordinates b,θ allow a full description of the system since the center-of-mass-energy
and time (via a Poincare section) can be eliminated as constants of motion. (Note: the energy
is not constant but depends on time in a simple fashion since every collision reduces the
energy by ∆E ).
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v

origin origin

Figure 2.10 – To demonstrate that a system of disks with periodic boundary conditions does
not conserve angular momentum. We consider a disk moving with a certain velocity from
the direction of the origin (left). Its angular momentum is zero. When the disk crosses the
boundary the origin is translated in such a way as to conserve linear momentum. However, if
the disk reappears on the right it becomes apparent that the angular momentum is non-zero
because of this translation. Hence, angular momentum is not conserved

Additionally, the center of mass is defined as

xc �
∑
imixi∑
mi

=
1
N

∑
i

xi (2.21)

and the total angular momentum as

L �
∑

xi ×pi . (2.22)

If we use periodic boundary conditions the center of mass velocity and the total

momentum is conserved, however the angular momentum is not (see Figure 2.10).

If only two disks interact in a box with periodic boundary conditions this system is

known as the infinite-horizon Lorentz or Sinai billiard. It was investigated thoroughly

by, e.g., Chernov and Markarian [2003]; Gaspard and Dorfman [1995]; Sinai [2007] and

first adapted to wet granulates by Glassmeier [2010]. It has the remarkable property

that for Sinai billiard chaoticity has been proven.

In essence the Sinai billiard describes a two particle system with periodic boundary

conditions,or, from another viewpoint, one particle with zero radius moving in a lattice

of scatterers with the combined radius (r1 + r2 = 1), see Figure 2.11. For the two particle

system the center of mass motion is not important. Thus one eliminates it in the analysis

by going to relative coordinates. In two dimensions those are (q1,q2;p1,p2) and they are
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Figure 2.11 – The Sinai billiard with infinite horizon is equivalent to one point-particle
moving in a lattice of disk-scatters with the combined radii of the two original disks.
Crossing from one elementary box into another is equivalent to translating the origin by the
box size.
This is also known as Lorentz gas.

defined by

q1 � x2 − x1 (2.23)

q2 � y2 − y1 (2.24)

p1 �m(vx2 − vx1) (2.25)

p2 �m(vy2 − vy1) (2.26)

These coordinates are not especially adapted to the evolution in the Sinai billiard. As

more suitable parameters the energy (because if counting the time in collisions n the

energy depends on ∆En and we know this quantity for all n) the angular momentum

(because it is related to the impact parameter) and the angle on the energy sphere of

the momenta.

Vollmer [2002] describes a canonical transformation (q1,q2;p1,p2)→ (θ,−p; I,Q) to new

coordinates. By specifying the above coordinates and the generating function the fourth

coordinate is determined by this transformation. The complete set of new coordinates

in terms of old ones is

I = q1p2 − q2p1 (2.27)

Q = (q1p1 + q2p2)/p (2.28)

p =
√
p2

1 + p2
2 (2.29)

θ = arctan
(
p2

p1

)
(2.30)

The new coordinates are: Q is the projection of relative position on relative momentum

normalized by the total momentum. I corresponds to the angular momentum, p is the

modulus of momentum (and, since m = 1, the speed); θ is the direction in which the
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bR bR

Figure 2.12 – The impact parameter b describes the distance to the point of impact. The
angle of incident ϕ can be related to θ by noticing that 2ϕ = ∆θ −π.

point-particle travels.

Since we have conserved quantities we can reduce the degrees of freedom:

• A Poincare section at times of collision eliminates the Q coordinate. This also

implies that we loose information about how our system behaves during collisions.

At the first moment this may be alarming because as we will see later on bridge

rupture, collision and boundary crossings will happen at different points and at

different times.

• The number of collisions determines the energy E(n) = E0 − n∆E and therefore

p =
√

2E is a strict function of n

Furthermore, for contrasting the system with classical scattering we define the impact

parameter (that coincides with the one known from scattering theory) to be

b �
I
p

(2.31)

This leaves us with two coordinates necessary for describing the system: b,θ

We now regard the different maps namely, collision, bridge rupture, boundary crossing

(see also Figure 2.9)

Collision The collision reflects the incoming particle relative to the surface normal and

conserves energy. Therefore the angle θ changes according to

θ→ θ +π+ arcsinb (2.32)

Periodic Boundary Crossing the boundary preserves translational invariance but de-

stroys rotational invariance, hence angular momentum is not conserved. Crossing

the boundary leads to a translation in b

b→ b −Lsin(θ −α) where α ∈ {0, 1
2π,

3
2π,π} (2.33)
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Bridge Rupture First the energy is reduced according to

E→ E −∆E (2.34)

then, since angular momentum is conserved (only a central force is exerted by the

liquid bridge) √
Eb =

√
E′b′ (2.35)

the impact parameter has to change like

b
(2.35)
→ b√

1− ∆EE
(2.36)

We also know that

sinφ =
b
R

(2.37)

where φ is

2φ � θ′ −θ −π (2.38)

the difference to ordinary, elastic scattering and since R does not change

b
b′

(2.37)
=

sinφ
sinφ′

(2.35)
=

√
1− ∆E

E
(2.39)

holds. Thus

φ→ φ′ = arcsin
sinφ√
1− 1

E

(2.40)

or in terms of θ

θ
(2.40),(2.38)
→ θ + arcsin

 b

(1 + sc)
√

1− 1
E

− arcsin
(

b
1 + sc

)
(2.41)

This processes can be thought of operators acting on the phase space spanned by (b,θ).

The collision operator C acts on (b,θ) like

C ◦ (b,θ) � (b,θ +πarcsinb) (2.42)

the change in phase space volume is described by the Jacobian

Jij = ∂iC. (2.43)
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For the collision it is given by

J =

1 1√
1−b2

0 1

 (2.44)

whose determinant is 1 since Jbθ = 0 thus a collision only stretches the phase space

volume it acts on. For the bridge rupture operator we have

B ◦ (b,θ) � (
b√

1− 1
E

,θ + arcsin

 b

(1 + sc)
√

1− 1
E

− arcsin
(

b
1 + sc

)
(2.45)

With the Jacobian

J =


1√
1− 1

E

1√
1− 1

E (sc+1)
√

1− b2

(1− 1
E )(sc+1)2

− 1

(sc+1)
√

1− b2

(sc+1)2

0 1

 (2.46)

and thus the determinant

|J | = 1

1− 1
E

. (2.47)

However, this is not surprising since b is not part of the original canonical coordinates.

When using I instead of b the determinant of the bridge rupture is 1 as can be read-

ily seen by considering Equation (2.35) in which it becomes clear that the angular

momentum is conserved.

Finally, the periodic boundary crossing operator P is defined

P ◦ (b,θ) � (b −Lsin(θ −α),θ) where α ∈ {0, 1
2
π,

3
2
π,π} (2.48)

with Jacobian

J =

 1 0

−Lcos(θ −α) 1

 (2.49)

and thus determinant |J | = 0. A boundary crossing thus does not change phase space

volume but shears along the b direction.

Together P and C shear and fold in b and θ direction. Their action on the phase space

can be compared to the well studied baker map, which describes the action of stretching

and folding of phase space.

In contrast to the baker map the operators (C,P,B ) acting on the canonical variable are

only invertible and volume preserving on the conditional phase space: the submanifold

of constant energy. On this submanifold we can retain a “volume preserving” measure.

With regard to this condition the stretching and folding leads to mixing of phase

space. Glassmeier [2010] found additional structure in the non-injectivity of the bridge

ruptures C.
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Figure 2.13 – After a reflection and bridge rupture the trajectory can not be inverted in
time, since a particle that is only performing a fly-by is mapped to the same outgoing state.
Glassmeier [2010] investigated the fine structuring of the phase space that results from this
two-to-one-mapping

This non-injectivity is not an inherent property of the operatorC but rather of a collision

followed by a bridge rupture since the resulting, final, state can also be obtained by a

non-colliding particle. For details see Figure 2.13.

2.4 Shearing

Wet granular matter with a hysteretic potential is dissipative. A system with arbitrary

initial energy will thus loose energy until a clustered low-energy state is reached. To

 ∆x = s∆t

 ∆x = -s∆t

Figure 2.14 – The thin-film model is hysteretic: at each collision ∆E is lost. Too inject
energy into the system we use shearing. This can be implemented easily be Lees Edwards
boundary conditions. In x-direction the system still has periodic boundary conditions, but
in y-direction the mirror images are moving with a shear speed s and −s respectively if
the disk crosses the northern or southern boundary. Since the energy is quadratic in the
velocities each crossing increases the energy of the disk by s2/2 on average. The energy
increase does depend on the angle under which the boundary is crossed but since the
billiard is hyperbolic the crossing angles are distributed uniformly.
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2.5 Simulation of Granular Systems

avoid the clustered state one has to inject energy. There are different means to achieve

this, e.g., thermostats, randomly picking particles and rescaling their kinetic energy.

However, since in reality shear-flows are abundant, there is an additional method for

energy injection: the Lees Edwards boundary conditions. They mimic a sheared system

in that there are periodic boundary conditions in horizontal direction but the mirror

images in vertical direction move with a velocity s, the shear speed. When a particle

with velocities vx,vy crosses a horizontal boundary under an angle θ the energy changes

according to

E→ 1
2

[
(vx ± s)2 + v2

y

]
= v2 + s2 ± 2s|v|cosθ (2.50)

therefore the energy increase is given by the difference of the pre- and post-crossing

energy (E,E′)

E′ −E (2.50)
=

s2

2
− s
√

2E cosθ. (2.51)

This amounts to an average increase of

1
π

∫ π

0
∆Edθ =

s2

2
(2.52)

2.5 Simulation of Granular Systems

The main simulation methods used in granular media are Stochastic Rotation Dynamics,

Lattice Boltzmann simulations, Molecular Dynamics, Direct Simulation Monte Carlo

and Event-Driven Molecular Dynamics [Brilliantov and Pöschel, 2004].

Often, Molecular Dynamics simulation of granulates, especially if focus is put on their

dissipative interaction, are also called discrete element simulations, DEM. The Stochas-

tic Rotation Dynamics, Lattice Boltzmann and Monte Carlo methods are approximations

that already use some assumption of molecular chaos. This is why they are not suitable

to study this exact behavior.

Since we are interested in the long time behavior of small systems we do not have to

deal with any sophisticated optimization techniques with regard to number of particles

N since even the usual scaling of the complexity class of O(N 2) in calculating forces or

next collisions is sufficiently fast.

Also, we want to directly solve the equations of motion. Hence, only Molecular Dynam-

ics, or Event Driven Molecular Dynamics is suitable. The idea behind Event Driven

Molecular Dynamics is to exploit the free motion of the disks whenever they are not

in collision. If no external force is present it is easy to calculate the trajectory that

a free particle is following and thus when the next collision occurs. These kind of
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Chapter 2 Fundamentals

simulations are vastly faster then time driven alternatives. However, it is assumed that

only pair interactions take place. Since in principle the force exerted by liquid bridges

is nonzero for the bridge rupture distance, it has a finite size and for high densities

three-body interaction can become important [Müller and Pöschel, 2011]. Especially

since a granular gas looses energy by collisions the system will end in a clustered state

where many body interactions become dominating.

The idea behind Molecular Dynamics is straightforward integration of Newton’s equa-

tion of motions. For those, several good numerical solvers are known (Euler, Runge-

Kutta to name the most prominent).

The complete Discrete Element Method or Molecular Dynamics method we use can be

easily summarized by the following algorithm

1 Given : P a r t i c l e pos i t ions , v e l o c i t i e s , time and run−time T

2 time−step ∆t

3 t = 0

4 while t < T do
5 for a l l p a r t i c l e s do
6 f ind i n t e r a c t i n g p a r t i c l e s

7 compute f o r c e s

8 end for
9 for a l l p a r t i c l e s do

10 i n t e g r a t e equations of motion

11 update boundary condi t ions

12 end do
13 t = t +∆t

14 end while

Additionally the system’s state (e.g. the disk coordinates, average kinetic energy) is

written out in pre-defined time-intervals and on top of that every few collisions. The

exact details depend on the number of collisions per time and thus changes depending

on initial energy or - in sheared systems - depending on the shear rate.

Since we are interested in the dynamics of phase space volumes we have to be careful

since they do not preserve this volume [Frenkel and Smit, 2002]. Therefore we use a

symplectic integrator: the Velocity Verlet method.

The advantage of the Verlet algorithm, which is a simple form of a truncated Taylor

series approximation, is that it preserves volume and is also numerically stable. For
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2.5 Simulation of Granular Systems

dissipative systems one actually prefers the Velocity Verlet method, since its use allows

to utilize velocity dependent forces. It can be summarized.

1 Given : P o s i t i o n s xi , a c c e l e r a t i o n s ai , v e l o c i t i e s vi , f o r c e s

fi , masses mi and time−step ∆t

2 for i = 0,N do
3 xi = xi + vi + 1

2ai(∆t)
2

4 vi = vi + ai 1
2∆t

5 ai = fi
mi

6 vi = vi + ai 1
2∆t

7 end for

The disadvantage is however, that the time-step ∆t can not be adapted. This is crucial

for simulating steep potentials: In the vicinity of steep changes in the potential - for

comparing with hard-sphere models - the time-step has to be small because the forces

acting are large. On the other hand, if disks are not in contact, this time-step is much

too small.

Also, for sheared systems the energy can vary over several decades, thus the time-step

has to be adapted.

With this in mind, there are several integrator schemes of higher order than the Velocity

Verlet that deal with this problem. Often used in Molecular Dynamics is the 4th-order

Gear-Adams integrator. The problem with this algorithm is that it is not a symplectic

integrator: it does not conserve phase space volume. Thus we used the Velocity Verlet

scheme for the free cooling systems and the checks for uniformity of phase space and

cross checked this with the Gear-Adams integrator we need to simulate sheared systems

in reasonable time. It turns out that numerical errors are unnoticeable small for the

large number of systems we use (more than 1000)4.

Another important implementation point are the boundary conditions. When studying

the system in free cooling we use periodic boundary conditions. Since the forces we use

have a natural cutoff the implementation is easy: If, e.g., the distance between two disks

in x-direction exceeds half the box length Lx/2 then the box length is subtracted from

this distance until it is smaller.

In contrast, implementing the Lees Edwards boundary conditions is more involved.

They are used to inject energy by implementing a kind of shearing [Lees and Edwards,

1972]. If a disk with velocity v crosses the boundary, its velocity is changed to v± sx̂, in

the direction of the unit vector x̂. Also, given the simulation time passed t, the disk is

translated from its former position at x to x± stx̂.

4For a detailed discussion on the merit of different integrator schemes see [Dullweber et al., 1997;
McLachlan and Atela, 1992]
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Chapter 2 Fundamentals

s

Figure 2.15 – In Lees Edwards boundary conditions the upper and lower boundaries are
moving with a shear velocity ±s. If a disk crosses the boundary, the shear speed s is added
to the x-component of its velocity and it is translated. The translation is due to the moving
coordinate frame.
Also, if a collision over a boundary occurs the relative velocity has to be corrected with
regard to the moving coordinate frame.

Additionally, if disks interact across a Lees Edwards boundary we have to consider that

both disks see each-other from a moving frame of reference. Thus, when computing

interactions over a boundary we have to account for the translation, and the moving

frame of reference, see also Figure 2.15. Additionally, if the system is sheared and the

energy injection is positive, i.e., if the particles gain more energy by crossing the Lees

Edwards boundary than by loosing energy in collisions, the average energy increases.

For long simulation times we then have to adapt the time-step δt since for high energies

the relative velocities are higher as well. That means we have to resolve the steep

potential better for getting accurate results. On the other hand, for low energies, the

time-step can be larger, thus again saving time in simulation. A good approach is to set

∆t = 10−4 ·max(‖v‖) every 102–103 collisions.
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Chapter 3

Small Conservative Systems

We discuss the statistical physics of small, conservative systems
and provide the distribution functions for energy, momentum and
relative momentum. Additionally, we investigate how periodic
boundary conditions affect these distribution.

3.1 Prelude

In classical statistical mechanics we look at well known ensembles from which we obtain

approximations to our systems. However, in small systems with periodic boundary

conditions there are some differences to account for:

(a) Corrections to distributions for small number of particles, e.g. N < 10, are notice-

able

(b) Because of periodic boundary conditions angular momentum is not conserved for

N > 2 particles

(c) Even though linear momentum is conserved

The following, mostly technical discussion, will be kept brief and relevant to our system.

If the reader is interested in a more detailed discussion, the texts of Huang [1987];

Reichl [1980] are recommended.

Given a fixed number of particles N , fixed system volume V and initial energy E the

relevant ensemble is the microcanonical ensemble with the partition function QNVE

QNVE =
∑
Γ

[H = E]
(3.2)
=

1
N

1
(2π)DN

∫
[H = E]dΓ (3.1)

where Γ is the phase space volume defined by

dΓ = dxDNdpDN (3.2)
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Chapter 3 Small Conservative Systems

As an aside, since for large number of particles the volume of an N -sphere is cen-

tered around its surface one replace the delta-function in Equation (3.1) by [H < E],

a Heaviside-function. Another justification for this is the invariance of phase volume

to changes of external parameters [Pearson et al., 1985]. This energy-shell volume is

defined by

ΩNVE �

∫ E

0
QNVEdE. (3.3)

To obtain statistical quantities one has to perform the integration in Equation (3.1).

Khinchin [1949] obtained

QNVE =
2(2πE)DN/2

dN Γ (DN/2)

(
ΠN
i=1m

D/2
i

) Z(N,V )
(2π)DN

(3.4)

where Z(N,V ) is the hard-sphere configuration integral [Reichl, 1980]. This is the basis

for calculating different observables. We, however are more interested in the energy

and velocity distribution function.

Graben and Ray used Equation (3.4) to compute the one-particle momentum distribu-

tion by tracing out all momenta and coordinates except the momentum p1

P (N,V ,E,p1)dp1 =
Γ (DN/2)

Γ (D(N − 1)/2)(2πm1E)D/2

(
1−

p2
1

2m1E

)[D(N−1)/2]−1

[E >
p2

1

2m1
]dp1

(3.5)

From which one can obtain by change of variables E = p2
1/2(m) the one-particle energy

distribution

P (N,V ,E,E0)dE =
Γ (DN/2)

Γ (D/2)Γ (d(N − 1)/2)

(
E
E0

)D/2 (
1− E

E0

)d(N−1)/2−1 1
E

[E < E0]dE (3.6)

As a side note: by performing the limit N →∞,E→∞ one obtains with

E
N

= dkBT /2 (3.7)

the classical Maxwell Boltzmann distribution

PBoltzmann(E1) =
(kBT )−d/2

Γ (D/2)
Ed/2−1

1 exp(−E1/(kBT )). (3.8)

Equation (3.6) does describe the hard-sphere gas for small systems. This works well for

reflecting boundary conditions, yet, if one wants to minimize the effects from walls one

uses periodic boundary conditions. These however introduce constraints in the form of

a conserved center of mass motion. Denote by P the total momentum and vij the jth

28



3.1 Prelude

velocity component of the ith particle, then there are 2d constraints

Pj =
N∑
i

mivij (3.9)

and the position of the center of mass G

Gj =M−1
tot

Pjt − N∑
i

mi(rij(t) + σij)

 (3.10)

The quantity σ is a d-dimensional vector that describes the repeating-cell lattice vector

to which the ith particle moves in time t and is included such that G does not behave

discontinuous while crossing a boundary. These constraints have to be incorporated

into the partition function Equation (3.1)

QNVEPG =
1
N

1
(2π)dN

∫
[H = E][P =

N∑
i

Pi][G =M−1
tot

P t −∑
σ

N∑
i

miri(t)

]dΓ (3.11)

From here, Shirts et al. [2006] performed the integration of Equation (3.11) and obtained

the one particle energy distribution given that the whole system has an energy E0

Pd(N,V ,E0,E)dE =
Γ
(
d(N−1)

2

)
Γ
(
d
2

)
Γ
(
d(N−2)

2

)  E

E0
N−1
N

d/2 1− E

E0
N−1
N

d(N−2)/2−1
1
E

[E < E0
N − 1
N

]dE

(3.12)

Moreover, for the relative momentum distribution we can obtain

P (N,V ,E,p1,p2) = Γ (D(N−1)/2)
Γ (D(N−3)/2)(2πmeffE)D [E > E12]

(
1− E12

E

)D(N−3)−1
(3.13)

where, with the total mass Mtot �
∑
imi ,

E12 �
(m2p1 −m1p2)2

2m1m2(m1 +m2)
+

Mtot(p1 +p2)2

2(m1 +m2)(Mtot −m1 +m2)2 . (3.14)

Additionally, the effective mass meff is defined by

meff �

(
m1m2(

∑
imi −m1 −m2)∑
imi

)1/2

(3.15)
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Chapter 3 Small Conservative Systems

In our case we can simplify this as all masses are equal and normalized to 1, the total

momentum is 0. With this simplifications we obtain

E12 =
(v1 − v2)2

4
+

(v1 + v2)2

4
(3.16)

meff =

√
N − 2

2
(3.17)

therefore

P (N,V ,E,v1,v2) = Γ (D(N−1)/2)

Γ (D(N−3)/2)(2π
√

N−2
2 E)D

[E > (v1−v2)2

4 + (v1+v2)2

4 ]

·
(
1−

(v1−v2)2

4 + (v1+v2)2

4
E

)D(N−3)−1

dv1dv2

(3.18)

For easier use the different distributions in the NVEPG-Ensemble are summarized in

Table 3.1.

In later calculations we are additionally aided by the calculations of the n-th moment

of the velocity distribution. Shirts et al. [2006] provide

〈vkrel〉NVEPG =
Γ ((D + k)/2)Γ (D(N − 1)/2)
Γ (D/2)Γ ((D(N − 1) + k/2))

( 2NE
N − 1

)k/2
. (3.19)

With this1 we have everything to calculate averages for small granular systems.

In the Maxwellian limit we should be able to retain the collision frequency and relative

velocity known from literature. The relation between 〈v〉 and 〈vrel〉 is in most cases a

simple one. An intuitive deviation relates
∫
vf (v)dv to

∫
‖vrel‖f (v1,v2) by noting that

the absolute value is defined by ‖vrel‖ =
√

(‖v2‖ − ‖v1‖)2 and if we neglect correlations in

the square root as well as assuming molecular chaos v1v2 = 0 and f (v1,v2) = f (v1)f (v2).

Thus we have

〈vrel〉 ≈
√

2〈v〉. (3.20)

For a more detailed discussion, Shirts et al. [2006], provide the complete calculation and

a comparison of 〈vrel〉 and 〈v〉—we only note that we neglected not only correlations

but also assumed the disk masses to be equal.

From Equation (3.19) we get2

lim
N,E→∞,∞

〈vrel〉NVEPG =
√

2kT
Γ ((1 +D)/2
Γ (d/2)

=


√

8kT
π D = 3√
πkT

2 D = 2
(3.21)

1To check the trustworthiness of this claim, we insert example numbers for the Sinai billiard. For
D = 2,N = 2 the average relative velocity is 2

√
E which is what we expect.

2Checked by Mathematica
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Figure 3.1 – Relative velocity from Equation (4.51) for D = 2 with normalized y-axis in units
of kT . In this double logarithmic plot the relative velocity converges rapidly to its N →∞
limit value. From approximately N = 10 upwards the deviations are nearly negligible.

Comparing Equation (3.21) with classical statistical physics [Reichl, 1980] and Bril-

liantov and Pöschel [2004] this matches nicely.

Finally we note that Equation (3.19) converges rapidly for increasing N—this can be

seen in Figure 3.1.

probability distribution

momentum Γ (D(N−1)/2)
Γ (D(N−2)/2)(2π(N−1)/NE)D [E > v2

2
N
N−1 ]

(
1− v2

2E
N
N−1

)D(N−2)/2−1

energy Γ (D(N−1)/2)
Γ (D/2)Γ (D(N−2)/2)

(
E
E0

)d/2 (
1− E

E0

)D(N−2)/2−1 1
E [E < E0]

relative momentum Γ (D(N−1)/2)

Γ (D(N−3)/2)(2π
√

N−2
2 E)D

[E > (v1−v2)2

4 + (v1+v2)2

4 ]
(
1−

(v1−v2)2

4 + (v1+v2)2

4
E

)D(N−3)−1

Table 3.1 – Probability Distributions in NVEPG ensemble.
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Chapter 4

Free Cooling

We derive under which conditions wet granular disks form clus-
ters. The clustering probability turns out to be a function of the
relative energy distribution. We derive the probability of clus-
tering. As an example of how this can be applied to a coarser
description we propose corrections to Haff’s law that describes the
free cooling of a granular gas. Eventually, we discuss the simula-
tion of wet granulates for a small number of disks and compare
them to the wet Sinai billiard.

4.1 Clustering

In this section we aim to understand the cluster formation of a freely cooling granular

system. Let us therefore consider two disks: they form a cluster if the radial energy

Erad,c with respect to their center of mass is smaller than the escape energy (i.e. the

energy needed for the liquid bridge to rupture)

Erad,c < ∆E (4.1)

For obtaining an expression for the radial energy we note that the whole center of mass

energy can be divided into the radial and tangential part—Erad,c,Etan,c respectively—

by

Ec = Erad,c +Etan,c. (4.2)

With respect to the collision angle φ (see Figure 2.12) this gives

Ec = Ec cos2φ+Ec sin2φ (4.3)
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4.1 Clustering

Now we know that in a bridge rupture the impact parameter b changes according to

b→ b√
1− 1

R

. (4.4)

With the following identity

cos2φ = 1− sin2φ (4.5)

and the fact that

sin2φ =
b2

(R+ sc)
(4.6)

we get the expression

cos2φ
(4.5)
= 1− sin2φ (4.7)

(4.6)
= 1− b2

(R+ sc)2 . (4.8)

Using this we obtain

Erad,c
(4.3),(4.8)

= E

(
1− b2

(R+ sc)2

)
. (4.9)

For clustering to occur the condition from Equation (4.1) has to be satisfied

Erad,c = E
(
1− b2

(R+ sc)2

)
. (4.10)

This gives a bound on a critical center of mass energy

Ecrit <
∆E(

1− b2

(R+sc)2

) (4.11)

Assuming a flat distribution of b we can hence obtain the clustering probability

P (cl|Es) =


1 [Es < ∆E]

1− (1 + sc)
√

1− 1
E E ∈ [1,Ecrit]

0 else

(4.12)

We can additionally exploit that total energy is given in terms of number of bridge

ruptures n to express the “time-dependent”-energy En∑
En = E0 −n∆E. (4.13)

In the two-particle case Equation (4.12) gives us directly the result for the clustering

rate. However, in the N > 2 particle case the center of mass energy of two disks depends
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Chapter 4 Free Cooling

on the one-particle energy. This one-particle energy is again distributed according to a

probability distribution that we either put in via initial conditions or which relaxes to

an equilibrium distribution after some collisions.

From Table 3.1 we know the energy distribution. In the N = 3 case the energy distribu-

tion is—for the first time—non-trivial. It is a uniform distribution

p(Es) =
1

E0 −n∆E
[Es < E0 −n∆E] (4.14)

The relative energy between two disks is given by

1
2

(v1 − v2)2 = v2
1 + v2

2 − 2v1v2 (4.15)

in the average over the angle between two disks the third term on the r.h.s. equals zero

if we can neglect any correlation due to previous collisions. We do this here exemplary

for the three particle case:

Es � 〈Es〉2(E1 +E2) (4.16)

Since the Ei are random variables their pdf changes according to a convolution if we

assume molecular chaos

p(Es) =
1
2
p(Ei) ? p(Ei) (4.17)

we get

p(Es)
(4.12)

=
1
2

(
1

E0 −n∆E

)2∫ ∞
0

[Ei < E0 −n∆E][Ei −Es < E0 −n∆E]dEi (4.18)

part. int
= −1

2

(
1

E0 −n∆E

)2∫ ∞
0

(E0 −n∆E)[Ei = Es = E0 −n∆E)dEi (4.19)

= −1
2

1
E0 −n∆E

(E0 −n∆E +Es) (4.20)

In general we have to calculate the conditional probability P (cl). We will calculate it

and compare it to Equation (4.20):

P (cl) =
∫
P (cl|Es)P (Es)dEs (4.21)

We need the distribution P (Es|Es = 1/2v2
rel). We obtain this by calculating∫

R

P (vrel)[Es =
1
2
v2
rel]. (4.22)
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4.1 Clustering

The Delta Distribution in Equation (4.22) transforms like

[h(x) = 0] =
∑
i

[x = xi]
h′(xi)

. (4.23)

Since [Es = 1
2v

2
rel] has two solutions we have to use Equation (4.23) to obtain

P (Es) =
2
√

2Es
Pvrel (

√
2Es) (4.24)

where we used that P (vrel) is an even function in vrel

Before being able to insert the distribution function from Equation (3.18) into Equa-

tion (4.24) we must note that we have to bring it in a different form, since it still depends

on v1,v2 in Equation (3.18):

P (N,V ,E,v1,v2) = Γ (D(N−1)/2)

Γ (D(N−3)/2)(2π
√

N−2
2 E)D

[E < (v1−v2)2

4 + (v1+v2)2

4 ]

·
(
1−

(v1−v2)2

4 + (v1+v2)2

4
E

)D(N−3)−1

dv1dv2

(4.25)

Introducing ~α � v1 − v2 and ~β � v1 + v2 the non-constant part of Equation (4.25)

becomes ∫ α=−
√

4E+β2

α=−
√

4E−β2
[4E < β2]

(
1−

α2 + β2

E

)D(N−3)−1

αD−1dαdθ (4.26)

where we introduced spherical coordinates d~α = αD−1dθ. Integrating over θ yields the

volume of the D − 1-sphere ∫
D−1 sphere

=
πD/2

(D/2)!
D. (4.27)

This, together with integrating over dα leads to

πD/2/(D/2)!D(2−2+D(− 7
2 +n)e1+2D−DN (−2 +N )−D/2π−

1
2−D(

e − v2/2
)−1+D(−2+N )

Γ
[

1
2 +D

]
Γ
[

1
2(1 +D(−3 +N ))

]
Γ
[

1
2D(−1 +N )

]
)/Γ

[
1
2 +D(−2 +N )

]
.

(4.28)

As an example let us consider the case ofD = 2,N = 3. Inserting this into Equation (4.28)

we obtain
(E − v2/2)
√

2E
. (4.29)

Or, in terms of relative energy Es, with respect to Equation (4.24)

E −Es
2E

(4.30)

Not surprisingly, this gives the same result as in Equation (4.20).
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This allows us to compute, in dependence of the system’s energy, for example the

probability of a two particle cluster in a three particle system. We compute this for the

three particle clustering

p(cl) =
∫
dES

E − 2Es
E


1 [Es < 1]

1− 1.1
√

1− 1
ES

E ∈ [1,Ecrit]

0 else

(4.31)

For ∆E = 1, sc = 0.1 the critical energy Ec becomes Ec = 5.76. The integral consists

additively of the three cases. They can be integrated separately to obtain

P (cl) = 2.88− 2.618

√
−1 + E

E
+

8.84884
√
−1 + E

E3/2
− 8.2944

E
(4.32)

This means, that even in the limit of large systems there is still a chance of bridges to

occur. However, the third particle may free the two-particle cluster. For the whole system

to cluster there has to be a two-particle cluster with probability given by Equation (4.32)

and additionally the third particle has to have a small enough energy relative to the

two-particle cluster.

If we consider Equation (4.32) in the limit of large energies and many particles with

E = 1/2NkT , then the probability of the whole system to cluster is given by

P (clustered system) ≈ lim
N→∞

P (cl)N = (0.738)N (4.33)

When the number of particles grow large in Equation (4.33) the probability of clustering

the whole system becomes zero if the system energy is larger then bridge rupture energy

and 1 if it is smaller.

In the simulations we will see this behavior confirmed in Figure 4.4.

4.2 Haff’s Law

To study free cooling it is useful to introduce an easy to compute observable that

measures the average energy in the system. For granular matter one can define a

granular temperature. This is not a temperature in the thermodynamic sense since

granular matter is inherently out of equilibrium and even there shows some unexpected

behavior [Kleider, 2012]. We define the granular temperature T as average kinetic

energy per particle

T �
2
D

1
N

N∑
i=1

1
2
miv

2
i . (4.34)

36



4.2 Haff’s Law

To describe the change of granular temperature over time we look at the average loss of

energy per unit time

∆Etot = ∆E
Nfcoll∆t

2
Pbb (4.35)

this means: the change in energy depends on the number of particlesN , the frequency of

their collisions fcoll and the time step ∆t as well as the probability that a collision results

in a bridge rupture and not in a 2 particle cluster that persists. Ulrich et al. [2009a]

argue that the collision frequency depends on the scattering cross-section σ = πd2, the

number of particles per volume n � N
V and the square root of the temperature (for unit

mass temperature has units of velocity squared—thus the square root of this equals the

average velocity)

fcoll � 4g(d)σn

√
T
πm

(4.36)

the remaining g(d) is the two particle correlation function.This can be rationalized

the following way: A particle moving with the average relative velocity v̄12 traverses

a cylinder of length v̄12δt in a time δt with volume πσ2. Together with the particle

density n this gives

ν(δt) = πσ2v̄12δtn. (4.37)

This leads to a temperature decay

dT
dt
≈ 1
δt

1
2

(v
′2
12 − v

2
12)ν(δt) ≈ −nσ2(1− ε2)T 3/2 (4.38)

For viscoelastic particles ε depends on T and substituting this back changes Equa-

tion (4.38) in the high temperature regime.

From Barker and Henderson [1976] we know heuristic two and three dimensional fits

to g(d). Following Ulrich et al. [2009a] we first consider the three dimensional

g(d) =
2−φ

2(1−φ)3 (4.39)

Putting this all into Equation (4.35) we obtain

dT
dt

(4.34)(4.35)(4.36)(4.39)
= −2

3
2−φ

2(1−φ)3d
2π
N
V

√
T
πm

(4.40)

In the case of hard-sphere fluids g(d) is related to the contact value χ

χ � g(2R) (4.41)

which is related to the equation of state

pV =NkBT (1 + 4φχ(φ)) (4.42)
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Chapter 4 Free Cooling

Ulrich et al. [2009a] choose the common Carnahan and Starling approximation (see

Carnahan and Starling [1969] and Song et al. [1989] why this is a good approximation)

following Brilliantov and Pöschel [2004]

χ(φ) =
1 + φ

2

(1−φ)3 (4.43)

The pair correlation function of the thin thread model should, intuitively, possess two

limiting cases: For high energies the energy loss due to bridge ruptures is not significant

(it aligns velocities and leads to correlations, but there is nearly no clustering) but for

low energies it resembles the sticky gas limit [Yuste and Santos, 1993].

We thus expect two different regimes for high and low temperature. if the temperature

is high and therefore the velocity, the probability of bond breaking is Pbb = 1 and g(d) as

well as fcoll do not have to be corrected for density effects of clustering. The temperature

then follows Haff’s law

dT
dt

(4.40),(4.45)
= T0

(
1− t

t0

)2

[t < t0] (4.44)

where t0 is given by

t0 �
2
√
πmT0

2g(d)σn∆E
(4.45)

This fails to describe the regime for later times. Ulrich et al. [2009a] propose to correct

the equation by looking at the bridge rupture probability Pbb We will briefly follow their

argument: Pbb depends on the fact that the energy is smaller then the bridge rupture

energy ∆E, in the limit of N →∞,E→∞ the distribution function of the kinetic energy

is Maxwellian

w(v) =
(

m
2πT (t)

)3/2

exp
(
− mv

2

2T (t)

)
(4.46)

and bridges rupture if the (radial) kinetic energy is smaller than the bridge rupture

energy

Pbb
(4.46)

=
∫

[mv2/2 < ∆E]w(v)dv (4.47)

Evaluating the integral in the asymptotic limit yields in terms of a proportionality

constant ν
T (t)
∆E
∝ 1

lnνt
. (4.48)

To augment his findings we propose some corrections for small number of particles

(a) we can compute Pbb depending on the center of mass energy of two particles

(b) we know the center of mass distribution function from the one particle energy

distribution function
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4.2 Haff’s Law

(c) this in turn resembles a Maxwellian for N > 5 particles but has to be corrected for

the effect of periodic boundary conditions (non-conservation of angular momen-

tum leads to N-1 particles , different energy distribution)

Changing the Energy Distribution Let us reconsider the bridge rupture probability in

Equation (4.47). For the first correction we only augment the equation by using the

velocity distribution for small N with periodic boundaries from Table 3.1

Pbb =
∫

[mv2 < ∆E]
Γ (D(N − 1)/2)

Γ (D(N − 2)/2)(2π
√

N
N−1 )d/2

(
1− N − 1

N
v2

)[D(N−2)/2]−1
[E >

N
2(N − 1)

v2]dv

(4.49)

we obtain with the help of Gradshteyn and Ryzhik [1980]

Pbb =
Γ (D(N − 1)/2)

Γ (D(N − 2)/2)(2π
√

N
N−1 )d/2

√
8
√
∆E 2F1

(
1
2
,1 +D − DN

2
,
3
2
,
∆E(N − 1)

EN

)
. (4.50)

Here, 2F1 is the Hypergeometric function defined by 2F1(a,b;c;z) =
∑∞
k=0(a)k(b)k/(c)k zk

/
k!

Correction for Clustering In Equation (4.32) we showed how to compute the clustering

probability. This is more accurate than Equation (4.47) in the limit of low energies,

especially if the critical energy becomes comparable to the system’s energy.

Corrections to the Collision Frequency The collision frequency of a particle depends

on the average velocity, according to Equation (4.36). With the average relative velocity

from Equation (3.19) for k = 1 we obtain

fcoll = g2(d)σn〈vrel〉
(3.19)

= g2(d)σn
Γ ((D + 1)/2)Γ (D(N − 1)/2)
Γ (D/2)Γ ((D(N − 1) + 1)/2)

( 4NE
N − 1

)1/2
(4.51)

Naturally, this proposals have to tested. For the need of such corrections we refer to

Kleider [2012] who performed Event Driven Molecular Dynamics Simulations of freely

cooling wet granulates and obtained in 2-dimensions a visible difference in the cooling

in contrast to the 3-dimensional simulations of Ulrich et al. [2009b]. We add that such

corrections are—although in real gases the number of particles is large—important

especially if the gas is inhomogeneous or shows clustering in some parts. In this partially

clustered areas corrections for small number of particles can become apparent even (as

can be seen, e.g., in Figure 3.1 ) most small-number-effects play only a role for less than

10 disks.
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Figure 4.1 – The phase space after 103 collision of isoenergetic system. Shown is the two
particle system yet the three particle system looks the same if the two particles in whose
center of mass frame the coordinates are calculates are chosen at random. It looks as if the
natural distribution is uniform. However we note that we only used 104 initial conditions.
Testing by looking at the cumulative distribution or with the help of a χ2 tests yields the
answer that the phase space is uniform. Glassmeier [2010] resolved a subtle fractal structure
inside the phase space; we do not see this with our resolution (which is for long enough
times and lots of systems exceedingly demanding for MD simulations).

4.3 Simulation

4.3.1 Ergodicity of the Wet Granular Gas

To discuss the ergodicity of the wet granular gas we first look at its natural distribution.

The Sinai billiard is a mixing, symplectic system. Therefore its natural distribution is a

uniform distribution and its natural measure is the Lebesgue measure.

The wet granular system is dissipative and it is not obvious what form the natural

measure has. Glassmeier [2010] observed a natural distribution with respect to a

conditional Lebesgue measure. The condition here was a simple restriction of the

measure to the energy shell.

Finding the natural measure with Molecular Dynamics to a high accuracy is non-trivial.

The simulations have to run a long time with sufficient many different initial conditions.

We use 104 different runs. It is questionable if we can resolve the fine fractal structure

observed by Glassmeier [2010] that is due to the non-injectivity of the bridge-ruptures.

And indeed, in Figure 4.1 we observe no structure in the phase-space. Testing if this

distribution is uniform can be achieved by using a χ2 test or comparing the projections
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(a) In the quantile/quantile plot of the
observed versus the expected—uniform—
distribution there are almost no deviations
visible. Both the distributions for b,θ lie
nicely on the diagonal which corresponds
to a good fit between expected and observed
distribution.
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(b) In the double logarithmic quan-
tile/quantile plot of the observed versus the
expected—uniform—distribution there are
small deviations visible in the tails. How-
ever, these are only pronounced for θ and
b smaller than 10−3 and can be considered
artifacts of the finite statistics.

Figure 4.2 – To test the uniformity of the phase space the distributions of b,θ are compared
to uniform distributions. Except for small deviations in the tails the phase space is indeed
uniformly distributed.

on the b and θ axis. Glassmeier [2010] notes that both b and θ are uniformly distributed

in the wet system, however, comparing with the cumulative distribution function is

sometimes problematic and it is not the most robust test of uniformity available. To see

this a quantile-quantile plot is used in Figure 4.2a that corresponds to comparing the

cumulative distribution function to a line-segment. The deviations are minute, however

in Figure 4.2b it becomes apparent that the uniformity is somehow mitigated in the

tails of the distribution.

4.3.2 Free Cooling

The uniformity of the natural distribution allows us to propose that no structure from

the two disk interaction remains in the many-body simulations. We extend the study

of two disk free cooling for different particle numbers and compare the results to

Glassmeier [2010].

If the same parameters (initial Energy, rupture length, bridge rupture Energy) are used

we expect a good agreement between the billiard and Molecular Dynamics simulations.

We start by considering free cooling. We simulate 103 system’s of different number of

disks (2–10) with uniformly distributed initial positions and velocities. We additionally

remove the center of mass motion and initialize our simulations such that center of mass

lies in the middle of the system The initial energy is also distributed uniformly forN > 3

(The removal of center of mass motion results in a fixed initial energy distribution of
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Figure 4.3 – Shown is the survival probability of a system of N disks with initial energy of
104 distributed uniformly (for N>2 disks). The survival probability denotes the number
of system that still loose energy (which is only possible if the system is not clustered) to
the number of clustered systems. In the two disk case this clustering for higher than zero
energies can be understood as the two particles circling one another. For two particles the
Molecular Dynamics simulations fit the systems studied by Glassmeier [2010]. For higher
number of disks the survivability curve drops of steeper. This can be attributed to the
possibility of a third particle colliding with two bound particles and thus freeing them.
Hence in the limit of N →∞ the probability that all of the system is clustered should drop
of like a Heaviside function. This can be seen in e.g. large scale Event Driven Molecular
Dynamics simulation where even after some time particles still move freely although most
of the system has already clustered.

the two disk simulations). The simulations were carried out with a time-step ∆t = 10−5

for 109 iteration steps thus allowing us to simulate up to a time of T = 104.

For two particles the simulations match nicely with Glassmeier [2010]. As can be

seen in Figure 4.3 the two-disk system shows the same cooling behavior. For more

than two particles the curves align more and more to a steep fall. This is in line with

Equation (4.28) and the reasoning that it becomes more and more unlikely for the whole

system to cluster if the number of particles increases.

The clustering probability depends on the relative energy distribution and this in turn

on the one-particle energy distribution. In the case of two particles this distribution is

simply a Delta-distribution since the center-of-mass motion is removed. For more then

two particles the distribution follows the constrained Maxwellian distribution from

Table 3.1 in the high energy limit.

For energies that are large in comparison to the bridge rupture and critical energy

the theories match nicely as can be seen by comparing their cumulative distribution

function, see Figure 4.4 . For low energies the disks can form clusters if the energy
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Figure 4.4 – The one particle energy distribution function for the elastic gas is Maxwellian.
With periodic boundary conditions the additional constraint that the center of mass velocity
is conserved reduce the degrees of freedom. Thus instead of the N -particle distribution
function we expect the elastic gas to follow the N − 1 distribution. We checked this for
different number of particles that were initialized with uniform energy distribution of
E0 = 104 after 9.99 · 104 collisions for 104 systems with remaining energy E = 100. We
compare the cumulative density function. The simulations fit neatly. The comparison above
was made for an inelastic system with the energy conditioned by E(n) = E0 −n∆E. It shows
that the deviations in the energy distribution are small if the average energy is high enough,
∆E� ∆E

is near the critical energy. This and the correlations induced by the higher likelihood

of two-particle pairs lead to deviations in the energy distribution. The extent of this

deviations are non-negligible: see Figure 4.5.

Correlation Function Another, interesting, insight can be gained by considering the

velocity auto correlation function.

The velocity auto correlation function is defined by

Ci(t) � 〈vi(t)vi(t)〉 (4.52)

For long it was expected that the velocity auto correlation function decays exponentially.

However, even for hard-sphere systems this is no longer true. Alder and Wainwright

[1970] discovered that the velocity auto correlation function decays algebraically. Cher-

nov and Markarian [2003] showed that in the finite horizon billiard that the decay

should be exponential. For hard-sphere and granular gases in D-dimensions the veloc-
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Figure 4.5 – In the limit of low energies we expect deviations from the hard-sphere behavior
and the energy distribution from Table 3.1. For E = 10 the deviations are clearly visible
since from an energy of Ecrit ≈ 6 disks can cluster.

ity auto correlation function scales like

≈ t−
D
2 (4.53)

We obtain the exponents of the velocity auto correlation function by a linear fit to a

double logarithmic plot; in principle the maximum likelihood fit yields more correct

estimates. However, due to the large sample size this discrepancy can be neglected.

Our simulations confirm an algebraic decay with t−1 as can be seen in Figure 4.6 with

numerical data in Table 4.1.

We additionally checked that the correlation function decays with the same exponent in

the sheared two and three body system. Figures for this can be found in the Appendix

A.

Number of disks Fitted Exponent Error

2 -0.955 0.12
3 -0.964 0.11
4 -0.954 0.11
5 -0.953 0.14
10 -0.96 0.12

Table 4.1 – The velocity auto correlation function decays algebraically with an exponent of
−1. This exponent is of negligible variance for different number of particles. The error here,
is one standard deviation obtained by a standard linear fit, checked with Gnuplot.
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Figure 4.6 – The velocity auto correlation function for systems with different number of
disks over time. The velocity autocorrelation function decays algebraically with t−1. This is
expected for hard-sphere systems. In this plot the disks were initialized with an energy 104

in units of bridge rupture energy.

45



Chapter 5

Sheared Systems

We derive a stochastic description for the energy distribution of
the sheared system. We show how a scaling ansatz for the lifetime
distribution can be obtained. Comparing this with the simulations
we note that the average energy of the systems that are not already
clustered increases. However, the clustered state is still absorbing:
for all shear rates the systems will eventually cluster. We then
allude that this absorbing state is not a two particle peculiarity
but persists for many particles. The main difference is that the
lifetime becomes very long since the probability of the whole
system to cluster becomes smaller as was noted for the freely
cooling system.

5.1 Theory

We use Lees Edwards boundary conditions to inject energy. The amount of energy in-

jected depends on how often the particles cross one of the sheared boundaries compared

to how often they collide. We call ν the average number of Lees Edwards crossings per

collision

In a sheared system the ensemble average of the energy change per collision is

δE = ν
s2

2
−∆E. (5.1)

Hence, the expected value for the system’s net energy increases if

δE > 0. (5.2)
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This is possible for a critical shear rate s that is obtained by comparing Equation (5.1)

and

s
(5.1),(5.1)

=

√
2∆E
ν

(5.3)

We assumed that ν is constant in time. This is not obvious since for systems with, e.g.,

N =3–10 disks two particles may be clustered and are thus highly correlated. This

probability in turn depends on the energy which depends on time.

The processes responsible for the change in energy are the crossing of Lees Edwards

boundaries and the rupture of liquid bridges. For the Lees Edwards boundary crossing

we define the operator L to be

Lv �
√
v2 + s2 + vs) (5.4)

and the bridge rupture operator B to act like

Bv �
√
v2 − 2∆E (5.5)

For the following, assume that b and θ are uncorrelated, this is only justified if the

correlations decay fast. Since the Sinai billiard is hyperbolic, the natural distribution is

uniform and if we restrain the analysis to energies larger than the critical energy this

approximation should yield good results.

Since the system is not directly effected by any dependence on b this may be averaged

out and since b is uniformly distributed we get rid of this coordinate.

However, what is correlated are the boundary crossings and θ. According to Glassmeier

[2010]

P (crossing|θ) =


L
2‖sinθ‖ if ‖sinθ‖ < 2

L

1 if ‖sinθ‖ ≥ 2
L

(5.6)

Clustering is actually an additional stochastic process that has to be considered. The

approximation of a constant cluster probability C however gives a good approximation.

This resembles a probability-density function P (cluster|v) that is 1 if v < C and zero

otherwise. The constant C must fulfill

P (cluster) =
∫ √2Ec

0
P (cluster|vrel)P (vrel)dvrel

!=
∫ C

0
P (vrel)dv. (5.7)

where P (cluster|vrel) is P (cl|Erel) from Equation (4.12) by changing vrel = 1/2E2
rel .

Glassmeier [2010] notes that obtaining P (vrel) is difficult because the dominating con-

tribution in Equation (5.7) results from small energies. With the large deviations from

Figure 4.5 in mind, together with that the sheared systems also show a energy distribu-

tion further complicates the matter.
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Nonetheless we can choose a C >
√

2∆E. Glassmeier [2010] chooses

C =
√

3 (5.8)

and obtained good results.

With this we formulate the problem as a random walk with absorbing boundary for

E < C ( at least in the two particle case ).

We do this the following way

vn+1 =

B
XLvn vn > C

0 vn < C
(5.9)

where X is a random variable that is uniformly distributed between 0 and ν. Notice,

that we neglected the correlations of P (crossing|θ)

It is surprising that this simple dynamic results in an exponential distribution of

energies without the θ correlations and qualitatively right deviations with correlations.

Glassmeier [2010] also proposes that one can exchange the order of bridge rupture and

collision - however since [B,L] , 0 one also has to adapt the constant C in a non-obvious

way.

5.2 Fokker-Planck Description

The stochastic model describes a simple Master Equation or generalized random walk.

This leads to a Fokker-Planck description of the probability density function.

A Fokker-Planck equation describes the evolution of a probability density P (v, t) in

terms of drift, proportional to the drift coefficient M(x), and diffusion, proportional to

the diffusion constant D(x). In this chapter the dimension of the system will be set to 2

and with D we will only refer to the diffusion coefficient. The Fokker-Planck equation

is defined as

∂tP (v, t) = −∂v(M(v)P (v, t)) +D/2∂2
vP (v, t). (5.10)

Intuitively, the model from describes a random walk in absolute-velocity space. The

drift and diffusion coefficients depend on the change of velocity (if we use velocity as

our prime variable) according to

M � 〈(∆v)〉 =
∫

(∆v)Pθ(θ|vn)dθ = 1
π

∫ π
0

(∆v)dθ

D � 〈(∆v)2〉 =
∫

(∆v)2Pθ(θ|vn)dθ = 1
π

∫ π
0

(∆v)2dθ
(5.11)

the velocity difference between two time-steps is given by Equation (5.5).

∆v � vn+1 − vn =
√
v2
n − 2∆E + 〈X〉(s2 + 2svn cosθ)− vn (5.12)
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Glassmeier [2010] approximates ∆v in a series expansion to first order, noting that clus-

tering can - in any case - not be modeled with this simple approach. Her approximation

reads

∆v = −∆E
v

+
〈X〉s2

2v
+ s〈X〉cosθ − 〈X〉

2s2 cos2θ
2v

+O
( 1
v2

)
(5.13)

From this one can calculate the drift and diffusion easily

M
(5.11),(5.12)

=
〈X〉
2 s

2 − 〈X〉
2

4 s2 − δE
v

(5.14)

D
(5.11),(5.12)

=
〈X〉2

2
s2 (5.15)

Note that the diffusion coefficient does not depend on energy directly. However, if

formulated for the energy instead of the velocity Glassmeier [2010] obtained

ME =
〈X〉2

2
s2 − δE (5.16)

DE =
(
〈X〉
2
s2 −∆E

)2

+
〈X〉2s2

2
E ≈ E (5.17)

In the limit v > s one can neglect the drift. Without drift the Fokker-Planck equation for

PE0
(E) can be understood as a simple diffusion equation for which the solution is the

well known decaying gaussian. For us, the scaling-behavior of PE0
(E) is more important

than the exact solution. The diffusion ansatz, made by Glassmeier [2010], uses

E
〈E〉

=
v2

2kDt
. (5.18)

Also—because of the absorbing boundary for v < C—the clustering is assumed to

behave like a Poisson process for which the percentage of clustered states is given by

n(t) ≈ t−γ (5.19)

Glassmeier [2010] also concludes that a relation for survival exponent γ can be found

such that it respects γ ∝ s−2. In the next section we will see if our simulations can

confirm this finding and if this behavior persists for more than two disks.

5.3 Sheared Simulations
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Figure 5.1 – Shown is the increase in energy of a system initialized with uniform one
particle energy distribution for three disks. The initial energy is 104 and the system is
sheared with s = 1.75. The starting conditions are: uniform distribution in position and
velocity with the center of mass velocity removed. The plot shows the increase in energy
in units of bridge rupture energy over time measured in number of collisions. Also the
standard deviation of the average energy was added to the plot. Although the ensemble
used consists of 103 systems the standard deviation grows and always encompasses zero
energy. This corresponds to a finite probability of a system with high energy to end up in a
clustered state which renders the system only transient. In this sense the three disk system
resembles the two disk iterated map studied by Glassmeier [2010]

5.3.1 Heating

Adding shear to the system injects energy proportional to the shear rate s.

Let us first study the increase in energy for different number of particles and different

shear rates. From Equation (2.52), we expect the energy to increase with s2 on average

if the bridge rupture energy can be neglected. For a range of systems with different

shear rates for three and two disks respectively we obtain the average energy increases

found in Figure 5.2 and Figure 5.3. We expect an asymptotically linear increase with

time according to Equation (2.52) and indeed this is the case.

A detailed account for the shearing rate of s = 1.75 with error bars can be found in

Figure 5.1. Noticeably, the standard deviation of the energy increases with time and

always encompasses the clustered state in one sigma. This means even for an increase of

average energy there is still a probability that a system ends up in a clustered state.
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Figure 5.2 – Shown is the increase in average energy of the two disk system for different
shear rates. Since the clustered systems are not averaged over the energy increases for all
shear rates. Asymptotically the increase in energy is linear.
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Figure 5.3 – Shown is the increase in average energy of the three disk system for different
shear rates. Since the clustered systems are not averaged over the energy increases for all
shear rates.
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Figure 5.4 – If one looks at the survival probability of the sheared two disk system it
becomes apparent that there still exists an absorbing state in form of a clustered system.
This is surprising because the system is heated by injecting energy via the Lees Edwards
boundaries with ≈ s2 per number of collision and for approximately 2 boundary crossings
per collision the average gain in energy compared to the loss 2s2 > 1 should lead to a
increasing overall energy for high shear rates. This is not the case since there is still a
non-zero clustering probability for systems with s > 1.5.

5.3.2 Clustering

Counter-intuitively not only the average energy increases but also the standard de-

viation of the one-system energy. This standard deviation always encompasses zero

energy in one sigma. This means that, although we have an average increase of energy,

the transient state of a clustered system persists. To study this we look at the survival

probability of the sheared billiard. We do this for 2, to compare to the simulations

of Glassmeier [2010], and 3 to study if this is a two-particle phenomena or system

inherent. For two particles we indeed find a persisting leak conformant with Glassmeier

[2010] in Figure 5.4. For three disks we find that this still exists again even for systems

where the average energy increases. However, in the three particle case the lifetime

distribution decays more slowly for high enough shear rates. The reason for this can be

found in that—as is the case for the clustering in free cooling—the probability for a

whole system of N particles to cluster completely whilst having more energy than the

bridge rupture energy decreases with the number of particles.

To confirm the scaling ansatz of Glassmeier [2010] we fit the survival exponents in

Figure 5.6.

We can see that the exponent of the survival probability indeed decays with the shear
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Figure 5.5 – For three disks the leak still exists but the probability for the whole system to
cluster is smaller (note that the initial energy is still the same as in the two particle case,
thus the energy per particle is smaller and for low energy-injection the system clusters
faster). We find a critical shear speed over which there is nearly no clustering. This is not
surprising because on each boundary crossing the energy added into the system transceeds
the bridge rupture energy.

rate. The plot also confirms the scaling proposed by Glassmeier [2010] of γ ∝ 1/s2. It is

also visible that at first the three disk system shows shorter lifetimes. We remark that

this is also due to the effect that we initialized the systems isoenergetically with E = 104

and thus more energy is shared between the disks in the three-disk system.
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Figure 5.6 – Survival exponents for the two and three disk system. With higher shear rate
the exponent decreases until it converges to zero for high energies. As Glassmeier [2010]
proposed the survival exponent scales according to γ ∝ 1/s2. In both cases the exponent
decays to zero which means, that for high enough shear rates a clustering is still possbile,
however, it will take much longer.

55





5.3 Sheared Simulations

0 0.5 1 1.5 2 2.5

10
−1

10
0

E/<E>

1
−

C
D

F
(E

/<
E

>
)

 

 
s 1.0

s 1.5

s 2.0

s 2.5

s 3.0

Figure 5.7 – Ensemble energy distribution of sheared two particle system. The evolution
of the energy distribution can be understood as governed by a generalized random walk
in energy space with an absorbing boundary if the energy decreases below the bridge
rupture energy. Since it can be modeled by a Fokker-Placnk equation the energy shows an
exponential shearing. This is confirmed by the numerical data.

5.3.3 Energy Distributions

To understand this clustering we further investigate the ensemble energy distribution.

The ensemble one can be found in Figure 5.7 for two disks and in Figure 5.8 for three

disks. In Equation (5.18) the scaling form for the energy distribution is shown. Since

the exponential distribution P (E) follows is “broad” and indeed the standard deviation

grows in the diffusion process, as was confirmed for the average energy increase and

its standard deviation. For three particles we, additionally, have a one particle energy

distribution function that is not a Delta distribution. However, it still looks the same:

The energy is distributed uniformly as has been shown in the free-cooling Chapter and

thus the one particle energy distribution should not look different from the ensemble

distribution as it is a function of the exponential distribution.
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Figure 5.8 – Ensemble energy distribution of sheared three particle system. The evolution
of the energy distribution can be understood as governed by a generalized random walk
in energy space with an absorbing boundary if the energy decreases below the bridge
rupture energy. Since it can be modeled by a Fokker-Placnk equation the energy shows an
exponential shearing. This is again confirmed by the numerical data.
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Figure 5.9 – According to the stochastic model the energy distribution of the ensemble, i.e.,
the probability that an ensemble has a certain energy, behaves exponential. Shown here is
the difference of the cumulative distribution function to the exponential distribution (note
that

∫∞
0 exp(E/〈E〉) = 〈E〉(1− exp(E/〈E〉) and thus we compare it to one minus the cumalite

distribution function)). Shown here is the two disk system after 104 collisions for different
shear speeds. The simulation and the scaling ansatz fit nicely for high shear rates. The
approximation becomes better with higher shear rates because for low rates the drift term
and the absorbing state dominate.

We also investigate the deviations in of the energy distribution function to the exponen-

tial scaling ansatz. This can be found in Figure 5.9 and Figure 5.10. In both cases the

deviations depend on the shear rate. In general the scaling ansatz fits more closely for

high shear rates. This is not surprising, since for small shearing the absorbing state of a

clustered system is much more prominent and the drift dominates the diffusion term in

the Fokker-Planck model.
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Figure 5.10 – According to the stochastic model the energy distribution of the ensemble, i.e.,
the probability that an ensemble has a certain energy, behaves exponential. Shown here is
the difference of the cumulative distribution function to the exponential distribution (note
that

∫∞
0 exp(E/〈E〉) = 〈E〉(1− exp(E/〈E〉) and thus we compare it to one minus the cumalite

distribution function)). Shown here is the three disk system after 104 collisions for different
shear speeds. The simulation and the scaling ansatz fit nicely for high shear rates. The
approximation becomes better with higher shear rates because for low rates the drift term
and the absorbing state dominate. For s = 3.5 the questions of data accuracy occur since the
energy after 104 collisions is very large and thus numerical problems can arise.
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Chapter 6

Summary

The wet billiard provides an excellent model system for the study of non-equilibrium

physics. It is strongly chaotic with a natural distribution that is uniform. Yet the freely

cooling as well as the sheared system are transiently chaotic: the absorbing state is a

clustered system and it exists even when the average energy increases.

The differences of the many-body system to the Sinai billiard can be summarized in the

following aspects

The one particle energy distribution appears for N > 2 disks. Along with it distribu-

tions for the relative momentum and relative energy are introduced. If the system’s

energy is noticeably larger than the critical energy these distributions match the classical

Maxwellian distributions closely.

The clustering for more than two disks is influenced by the addition of the one particle

energy distribution. Although it becomes possible to form two-particle clusters in N > 3

for arbitrary energies, the clustering of the whole system becomes more unlikely. In the

limit of many particles the complete energy has to be dissipated such that no particle

can be freed by collisions.

Additionally to this we have proposed

Changes to the collision frequency. We can bridge the small Sinai billiard to “large-

scale” observables. This is possible by using the Maxwellian limit as well as the cluster-

ing probability from the Sinai billiard.

We also confirmed

The Sinai billiard is strongly chaotic it possesses a natural distribution that is dis-

tributed uniformly when projected on the degrees of freedom.

For the sheared systems we confirmed that the

Increasing of average energy—while a leak persists—is not a peculiarity of the two-
disk billiard but instead that the average energy of the non-clustered systems increases;

and that this general mechanism that carries over to few particles.
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We also discussed the

Existence of an absorbing state. The survival probabilities decay algebraically for

the two and three billiard system. However, since the probability of the whole sys-

tem to cluster is lower, the absorbing state is harder to reach the more particles are

investigated.

The reason for this can be seen in the fact that

The two and three disk system can be modeled as undertaking a random walk in
energy space. This leads to the—succesfull—scaling ansatz for the exponential energy

distribution function. Comparing with numerical data for both the two and three disk

system confirmed this mechanism.

In summary we showed that we can bridge the gap between the many particle limit and

the two particle billiard. There, naturally, remain a great many open questions.

To study the scaling of the energy distribution in the sheared system we will perform

simulations for more than 3 disks, since from three disks onwards the one particle

energy function is not uniform anymore but tends to the Maxwellian.

In the line of using the Sinai billiard, we can investigate different methods of energy

injection. For example by using moving, reflecting boundaries. This would mimic

shaking, that is often used to inject energy in laboratory experiments of granulates.

Furthermore, the study of billiards with such moving boundaries is part of recent

research, regard for example Loskutov et al. [2008]. Since wet granulates have proven

to be an interesting model system, the question arises what new phenomena can be

studied if the system is used under different energy injection mechanisms.

We can ask how the system’s behavior depends on the geometry. This could be altered: it

is easy to introduce an anisotropy by adding, e.g., gravity, or discussing different shapes

of granulates. Especially with periodic boundary conditions the constrained Maxwell

distribution has a non-trivial dependence on masses. Can this be seen if the masses of

disks are, e.g., distributed according to a Gaussian distribution?

Another aspect that remains open to investigation is what happens if rotational degrees

of freedom are introduced. As alluded in the Introduction there is a non-trivial interplay

between rotation and translation. Especially if there is equipartition with respect to

both types is under discussion.

All in all, we can see that there is a great many fascinating research to be done in

studying wet granulates and small dissipative systems.

62



Appendix A

Correlation Functions in Sheared

Systems

Additionally, we can again look at the correlation functions. The velocity auto correlation

function is not influenced by the boundary conditions as can be seen in Figure A.1 for

two and Figure A.2 for three disks.
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Figure A.1 – The velocity auto correlation function for systems with different shear speeds
over time for the two particle system. The velocity autocorrelation function decays alge-
braically with t−1. This behavior is expected for hard-sphere systems and is interesting to
observe that this still holds for sheared systems. In this plot three disks were initialized
with an energy 104 in units of bridge rupture energy.
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Figure A.2 – The velocity auto correlation function for systems with different shear speeds
over time for the three particle system. The velocity autocorrelation function decays alge-
braically with t−1. This behavior is expected for hard-sphere systems and is interesting to
observe that this still holds for sheared systems. In this plot three disks were initialized
with an energy 104 in units of bridge rupture energy.

64



Appendix B

Molecular Dynamics Code

B.1 Tests

To validate the simulations we can use the following tests

Initial Condition For a total of 105 initial conditions with isoenergetic energy and disk

numbers N = 2,3,4,5 it was tested if: the energy is uniformly distributed and if

the initial conditions are uniformly distributed

Elastic Collisions For two disks with initial coordinates (−1,0) and (1,0) and non-zero

relative velocity there should be infinitely many elastic collisions without loss

of energy. The test passes if, after 106 collisions there is no noticeable energy

deviation or deviation in y-direction.

Inelastic Collisions For two disks with initial coordinates (−1,0) and (1,0) and non-

zero relative velocity the particles loose δE in each of their collisions until their

relative velocity is below the threshold to rupture the liquid bridge. The initial

energy of 106 is compared to the energy decrease of 1 per collision if there are no

deviations the test passes.

Integrator One disk with initial conditions (0,0) and initial velocity (1,1) is simulated

for 105 time-steps. Since the velocity is known the deviation from the analytic

result and the simulation can be compared.

Lees Edwards Boundary Conditions For one disk with initially zero velocity in x-

direction but a velocity of 1 in y direction and defined shear rate s = 2 the energy,

the y-velocity and the offset is compared.

Collisions and Bridges over Lees Edwards Boundary Conditions Two particles are

initialized at the position y-position −ly + 0.5 and ly − 0.5, both with a radius

r = 1. However, their x position differs such that they are not in contact at t = 0.

If the system is sheared the particles will collide since they move relative to one

another because of the moving reference frames at a defined time. Also, a liquid
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bridge will form that attracts the disks to one another and thus leads to a non-zero

velocity in x-direction. By making a movie of this, the correctness of this can be

easily verified.

Elastic Simulations For 100 disks the simulations are run for 104 collisions and the

energy distribution is compared to a Maxwellian with a χ2 test. If the χ2 test

passes, so does the whole test.
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