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Abstract
Due to its dissipative nature, wet granular matter is a great model system for non-
equilibrium thermodynamics. We propose a new thermostating scheme minimal
model that injects energy into the system via collisions with non-moving walls. Using
event-driven MD simulations, that were developed from scratch, we demonstrate
that this driving can lead to solid-like, liquid-like and gas-like phases, and that
for certain amounts of energy input this model also shows phase coexistence. The
different granular phases is characterized by observing macroscopic quantities like
temperature and density. With this we hence provide a minimal model system
with great prospect to understand in more detail the physics of granular phase
transitions.
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1 Introduction

The term granular matter describes an accumulation of solid, macroscopic particles
under conditions where Brownian motion of the grains is negligible. It is well known
from everyday life, for example as sand, coffee beans or washing powder, which
are all packed, shaken, poured and mixed in our daily routines. When doing so
granulates hold a multitude of surprises: if cereal is shaken, its components do
not mix. Rather the bigger flakes or nuts will move to the top. This is known
as the brazil-nut effect [33]. Dense packings can also support surprising loads, for
example, a pack of coffee does not deform much until the vacuum sealing is broken.
In contrast to fluids, the flow rate of sand in an hourglass does not depend on the
height of the sandpillar in the upper half. Flowing dry granular matter even shows
the Plateau-Rayleigh instability, i.e., the breakup of a stream into drops, known
from water flowing out of a tap [40].
In industrial processing granular matter also plays a major role [15]. Raw ma-

terials are often processed as grains or powder. A classical problem in pharmaceu-
tical and chemical industry is spontaneous plugging, e.g., in air activated powder
ducts [16]. Another industrial problem is jamming during discharge from a silo,
where the resulting pressure at the walls can lead to the collapse of silos and hop-
pers.
It is now recognized that these features result from the peculiar effective inter-

action laws of granular particles. Usually these particles carry no electric charge.
Therefore in granular matter other forces than the forces between microscopic par-
ticles become important. This is explained further in section 2.2.
Granular matter is a popular model system for the study of non-equilibrium ther-

modynamics, because of its strong dissipative nature. Grains dissipate kinetic en-
ergy via their internal degrees of freedom. A wealth of additional phenomena arise
when granular particles also interact via adhesion, e.g., due to the presence of a
fluid forming capillary bridges. We call these systems wet granular matter. The
most popular example of wet granular matter are sandcastles. If water is added to
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1 Introduction

granular matter in the form of sand, one can build beautiful castles and sculptures
(Fig. 1.1a). The water between particles forms capillary bridges, which hold the

Figure 1.1: Left: A sandcastle is the most popular example for wet granular matter.
Most people know from experience that dry sand is flowing through our
fingers, while a sandcastle remains solid when a certain amount of water
is added. Image from Wikimedia Commons. Right: Sketch of a liquid
capillary bridge between two spherical particles, taken from [3].

particles together (Fig. 1.1b). The amount of water is not important, there is no
recipe for sandcastles, provided there is enough to fill the surface roughness of the
grains and form capillary bridges. If too much water is added, the solid structure is
flowing again: The air has been replaced by water, creating a different form of dry
granular matter. In view of this one understands that heavy rain can lead to land-
or mudslides [12] (Fig. 1.2). Therefore the fluidization is an important subject of
research [4, 38]. If the experiment needs to be conducted under water, for example
with an external flow field provided by a water stream, (silicon-)oil can be used to
form capillary bridges [4].

When the particles are strongly agitated – e.g., in an avalanche – capillary bridges
only form upon collision, i.e., at any given time most of the particles do not form
capillary bridges. Such granular gases can also be found in interstellar dust clouds,
like in the rings of Saturn. They can also be produced in experiments, for example
by shaking glass or plastic beads [48].
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1.1 Phase Transitions

Figure 1.2: Example of major mudslides in Venezuela (dark brown color in the left
image, light brown color in the right image). The disaster is known as
the Vargas tragedy in December 1999, causing many deaths and exten-
sive damage to towns, cities and infrastructure. Heavy rain triggered
thousands of shallow landslides that evolved into debris flows. Images
from Wikimedia Commons.

1.1 Phase Transitions

In the previous section we have seen examples where granular matter behaves like
a solid, like a fluid, and like a gas. For condensed matter at thermal equilibrium,
the example of collective behaviour known as phase transitions is well understood
and considered textbook knowledge [50]. Phase transitions far from equilibrium are
similar, but less well understood. Quoting Axel Fingerle [21], “well-known examples
that are currently of great interest range from collective pattern formation in systems
of molecular and micron scale to transitions in social behavior.”
Interesting topics concerning granular matter are, for example, fluidization by

vibration and phase separation [25]. Our quest is understanding the phase diagram
and phase transitions of wet granular matter. The phase diagram of vertically
agitated wet granular matter was determined experimentally and numerically [21],
referring to an experimental setup, which is sketched in Fig. 1.3.

1.2 Numerical Simulations

With numerical simulations one can predict and optimize devices before they are
built, e.g., rotating drums for industrial applications. Some simulations can replace
expensive, time consuming, or dangerous experiments. Access to numerical data
allows observation of some parameters with less effort. Other parameters can not
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be determined experimentally at all. If one is interested in parameter ranges that
are not accessible experimentally, they may be accessible in numerical simulations.
This thesis is motivated by a liquid-gas coexistence regime observed both in exper-

iments (Fig. 1.3) and quasi-realistic numerical simulations (Fig. 4.2). In chapter 2,
a short introduction to the non-equilibrium features of dry and wet granular matter
is given in sections 2.1 and 2.2, respectively. The numerical methods are introduced
in section 2.3. Their implementation is verified in chapter 3. Chapter 4 introduces a
phase diagram (section 4.1) obtained numerically by Klaus Röller. A minimal model
for a system showing phase coexistence to simplify its theoretical description is de-
fined in section 4.2. The numerical results using this minimal model are presented
in section 4.3 and discussed in chapter 5.
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1.2 Numerical Simulations

Figure 1.3: Experimental setup [28]. A wide and flat cylindrical petri dish (diameter
14cm) is shaken vertically. It is filled about two-thirds of its height by
spherical glass beads with average diameter in the order of 1mm, i.e.,
6 − 7 layers at rest. The glass beads are wetted by water or nonane.
Shaking with amplitude A and angular frequency ω is performed by
an electromagnetic shaker driven by a function generator. The resulting
time-dependent height of the ground plate relative to its average position
is z(t) = A cos(ωt). The signal also triggers a strobe light illuminating
the petri dish from above. This ensures that all images are taken at the
same height z(t). The dimensionless control parameter peak acceleration
Γ (see section 2.1) can be compared with the acceleration measured by
an accelerometer. An example image is depicted at the upper right
corner. Glass spheres appear as bright dots on the dark background.
Thus areas with low density look darker than areas with high density.
In the example image you can observe a gas bubble inside a condensed
fluid phase.
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2 Theory and Numerical
Implementation

In an effective microscopic description the particle interaction can be modeled by an
elastic interaction force [26] and for macroscopic particles there can be also additional
dissipative force [9] as further specified in section 2.2. The motion of particles is
given by Newton’s equations of motion:

mi
d2ri
dt2

= Fi(r1,v1, r2,v2, . . . , rN ,vN) (2.1)

These equations can be numerically integrated to determine the particle trajectories
in molecular dynamics simulations (section 2.3.1).
Granular gases may be described by varying amounts of detail. Instead of de-

scribing the granular gas by positions ri and velocities vi of particles, it may also
be described by hydrodynamic equations for its coarse-grained properties number
density n(r, t), flow velocity u(r, t), and temperature T (r, t). Their gradients induce
macroscopic flows of mass, momentum and energy [8].

2.1 Dissipation and Energy Input

In granular matter energy is dissipated due to collisions. The ratio between initial
relative velocity vinitial in radial direction, i.e., the direction of the distance vector
between two colliding particles, and the final velocity vfinal after a the collision is
called coefficient of restitution ε. It is frequently assumed to be a material constant
in the form of

ε = vfinal
vinitial

. (2.2)

This relates initial and final kinetic energy as

Efinal = ε2Einitial. (2.3)
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2 Theory and Numerical Implementation

The dissipated energy is transferred to the grains’ internal degrees of freedom like
deformation and heat. Compared to the kinetic energy of a particle, the resulting
increase of temperature is negligible. Owing to its highly dissipative nature, granular
matter is a great model system for non-equilibrium thermodynamics.

A granular system with dissipation and no energy input will undergo free cooling.
Kinetic energy is dissipated until no particle is moving. A detailed account of studies
on free cooling of dry granular matter can be found in [8].

To maintain motion of particles additional energy needs to be supplied. Kinetic
energy can be injected into the system by external driving, like shaking, tapping
and shearing. One of the most convenient ways to inject energy in experiments is
vertical shaking (see Fig. 1.3 for an illustration). For a vibrated system under gravity
g the most important control parameter (see section 4.1) is the ratio of maximum
acceleration of the moving ground plate and the gravitational acceleration [41]. This
parameter, Γ, is called peak acceleration. For sinusoidal shaking, z(t) = A cos(ωt),
it amounts to

Γ = Aω2

g
, (2.4)

where A and ω are the amplitude and angular frequency of the vibration, respec-
tively.

Low values of Γ allow the system to approach a non-zero temperature by moving
towards a configuration of lower potential energy and increasing packing fraction.
When the vibrational acceleration is larger than the one due to gravitation (Γ > 1),
several types of symmetry-breaking instabilities can occur. Faraday reported his
observation of convection in vibrated granular matter in 1831. Higher values of Γ
show standing waves in two dimensions [11, 13] or patterns in three dimensions [6,
32]. For sufficiently large Γ the system shows a fluid state [18, 35]. Due to its
dissipative nature, the system shows an instability that forms coherently moving
clusters [22]. The theoretical consequences are described in [14, 52].

Some thermodynamic principles can be applied to granular matter. Consider a
homogeneous and isotropic granular gas of infinite extension in the absence of ex-
ternal forces. Analogously to molecular gases, the random motions can be regarded
as a granular temperature. It depends on the particle velocities via Tg ∝ 〈v2〉− 〈v〉2.
Assuming the average velocity to be zero, we define the granular temperature of a
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2.2 Wet Granular Matter

system of N particles with velocities vi, i = 1 . . . N , as

Tg = 2
fd

1
N

N∑
i=1

miv2
i

2 , (2.5)

where fd are the translational degrees of freedom. In the spirit of kinetic theory one
can also define pressure, particle diffusion, and transport of momentum and energy.
A full analogy to ordinary thermodynamics cannot be achieved. Our hope is that
this work will contribute to a better understanding of the relation between these
quantities.

2.2 Wet Granular Matter

Here, different effective microscopic descriptions of wet granular matter are intro-
duced. For simplicity, molecular degrees of freedom inside a particle are neglected
and replaced by a model accounting for the forces which occur due to molecular
interaction. Particles of irregular shape can be approximated by an accumulation
of spherical particles [5, 41]. Different approaches modeling normal and tangen-
tial forces between colliding spherical particles have been proposed, e.g., the hard
core interaction model, linear dashpot model, Hertz model and Walton and Braun’s
model [36, 53, 54]. There is usually a component of repulsion because of elastic
deformation and a component responsible for the dissipative energy loss.
Between granular particles which are not in contact, several other – mostly co-

hesive – forces can act, like van der Waals forces, electrostatic forces, gravitational
forces, or capillary bridge forces. Their magnitude as a function of particle diameter
is shown in Fig. 2.1. The capillary bridge force results from the surface tension and
resulting Laplace pressure between the wetting liquid (e.g., water) and the surround-
ing atmosphere (e.g., air). See [43] for experimental details. For granular particles it
is the strongest inter-particle force and therefore has the most significant influence
on the physical behaviour of granular matter. The past focus of research was mainly
on dry granular matter or powders. Still there is a decent amount of work dedicated
to wet granular matter (see for example [7, 25, 27, 34, 42] and references therein).
A capillary bridge is formed when two particles, wetted by a liquid film, touch

(sketched in Fig. 2.2). This liquid bridge gives rise to an adhesive force and – under
dynamic conditions – an additional force due to viscous dissipation [29]. At a critical
separation scrit the capillary bridge will rupture and only reform when the particles
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2 Theory and Numerical Implementation

Figure 2.1: Interparticle force in dependence of particle diameter. [54]

touch again. Thus the formation and rupture is a hysteretic process which dissipates
energy. The total amount of energy dissipated during separation and by rupture will
be called capillary bridge energy Ecb henceforth.

2.2.1 Capillary Bridge Models

The capillary bridge force has been determined experimentally (Fig. 2.3). However,
many physical aspects in the liquid and gas phase of the system do not depend on the
detailed functional form of the underlying force [41]. Consequently, simpler models
can be used in numerical simulations. The minimal capillary model [25] (Fig. 2.4a)
assumes a constant force, FB, independent of separation until rupture at a critical
separation, scrit. The dissipated capillary bridge energy is Ecb = FB · scrit. In some
cases only the capillary bridge energy Ecb is important [41]. This inspired the thin-
thread model [21], which assumes that no force is acting until the particles are at
critical separation scrit. The capillary bridge force is modeled as delta distribution
F = Ecb · δ(s − scrit) such that the area under the distribution again gives Ecb
(Fig. 2.4b).
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2.3 Molecular Dynamics Methods

Figure 2.2: Formation and rupture of a capillary bridge [41]. Two wetted parti-
cles approach each other (a). When they collide, a capillary bridge is
formed (b) which exerts force (c) until rupture at the critical separation
scrit (d).

2.3 Molecular Dynamics Methods

A molecular dynamics (MD) method is the process of generating trajectories of a
system containing N particles subject to an interparticle potential and reasonable
initial and boundary conditions. Trajectories are obtained by direct numerical inte-
gration of Newton’s equations of motion.
For comparison of the experimental setup described in section 1.1 with numerical

results, Klaus Röller took the effort to model sinusoidally moving walls in a system
under gravity and matched the numerical system parameters to the experimental
setup [41]. Some of his findings are discussed in section 4.1. As it is hard to find
a theoretical description under such conditions, in this thesis we are looking for a
simplified minimal model which shows similar behaviour.

2.3.1 Time-Driven MD

For spherical particles the dynamics of granular matter is governed by Newton’s
equations of motion for the center of mass coordinates of its particles i (i = 1, . . . , N)

∂2ri
∂t2

= 1
mi

F i({rj,vj,ϕj,ωj}) (2.6)
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2 Theory and Numerical Implementation

Figure 2.3: Capillary bridge force F between a spherical particle and a flat wall in
dependence of surface separation s [49]. Circles and squares denote ex-
perimental results for different liquid volumes, straight lines show the so-
lution of the Young-Laplace equation. The shape of the capillary bridge
force between two spherical particles is similar [37].

and for the respective Euler angles

∂2ϕi

∂t2
= 1
Ĵi

M i({rj,vj,ϕj,ωj}), (2.7)

where j = 1, . . . , N . The force F i and torque M i, acting on particle i with mass mi

and moment of inertia Ĵi, depend on the particle positions rj, angular orientiations
ϕj and their corresponding velocities vj and ωj of all particles j = 1, . . . , N [36].
This system of coupled differential equations is nonlinear due to appearances of the
interaction forces F i and torques M i. Hence, it can not be solved analytically.
The numerical computation of trajectories of all particles is an approximate solu-
tion, known as (force-based) Molecular Dynamics [1], which is described in standard
textbooks on modern Molecular Dynamics such as [2].

Central to this method is the computation of the forces and torques. Considering
only short-range forces, i.e., via mechanical contact, the force F i and torque M i

acting upon a particle i are given by summation of the pairwise interaction F ij,
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2.3 Molecular Dynamics Methods

Figure 2.4: Capillary bridge models [41]. In both models there is no capillary bridge
force acting until the particles touch (dashed black line). In the minimal
capillary model (a) the force has a constant value FB until the bridge
ruptures. The performed work is Ecb = FB · scrit. In a pseudo-potential
representation this model jumps to −Ecb at collision and goes back to
zero potential at scrit with a constant slope. The thin-thread model (b)
has a different approach: no force is acting after collision until the par-
ticles are at critical separation scrit. There is a force peak at scrit with
area Ecb. This model looks like a hysteretic square-well potential in
pseudo-potential representation.

M ij of the particle with all other particles of the system:

F i =
N∑

j=1,j 6=i
F ij, (2.8)

M i =
N∑

j=1,j 6=i
M ij. (2.9)

The interaction laws for the pairwise forces F ij and torques Mij are model specific.
We will summarize one model used for the simulation of spherical granular par-

ticles in [41], because some of the results are presented in section 4.1. The torque
and forces tangential to the particle surface were neglected. For the normal force

13



2 Theory and Numerical Implementation

component, the following modified version of the Hertz model (see [36, p. 21]) was
used:

F (ζ) = 2Y
√
Reff

3(1− ν2
p)

(
ζ

3
2 + Ad

√
ζ
dζ
dt

)
, (2.10)

with effective radius 1
Reff

= 1
Ri

+ 1
Rj

of the spheres i and j with radii Ri and Rj,
deformation ζ = Ri + Rj − |ri − rj| and the material parameters Young modulus
Y , Poisson ratio νp and dissipative constant Ad. The Gear integration scheme has
proven to be successful as time-driven integration method for granular matter [36,
p. 26] and was also employed in [41]. The force-based model for capillary bridge
interaction is the minimal capillary model introduced in section 2.2.1.
In this thesis we are using a different approach which was also used in [41], and

is presented below.

2.3.2 Event-Driven MD

If the typical duration of a collision is much shorter than the mean time between
collisions, particles are very rarely in contact with more than one other particle. As
collisions are of very short duration, the particles propagate along ballistic trajecto-
ries most of the time. For such systems, e.g., granular gases, one may assume that
the statistical properties of the system are determined by pairwise (also known as
binary) and instantaneous collisions [8]. This assumption is also called hard-particle
approximation. In strict mathematical sense multi-body collisions can be excluded
only for an infinitely steep interaction potential or for vanishing particle density [8],
but still these models provide valuable insight into the properties of real gases also
far beyond this regime (see e.g., [1, 2, 39]).
If there are only binary, instantaneous collisions, force-based molecular dynamics

is applicable, but the computation is very inefficient as particles are mostly propa-
gating without interaction. A more efficient approach in this case is straight-forward
analytical integration, which tracks and takes into account the sequence of binary
collision events. The positions of all particles at the time of the next collision can
be calculated as they move along ballistic trajectories. The post-collision veloci-
ties can be written as functions of the pre-collision velocities. This algorithm is
known as event-driven molecular dynamics. The computational effort only depends
on the collisions, no time is spent on computations of positions and velocities be-
tween collisions. For dry granular matter the particle interaction is modeled using
the coefficient of restitution introduced in section 2.1, which can be determined
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2.3 Molecular Dynamics Methods

experimentally or analytically from (2.10).

For wet granulates I will adopt the hard-sphere model for granular particles and
the thin-thread model, which was introduced in section 2.2.1, for capillary bridges.
Also in this situation the equations of motion can be solved analytically between
collision events.

The so-called collision rule, a set of functions for the post-collision velocities will
be derived in the following. In doing so we will disregard particle rotation, i.e.,
we assume that translational and rotational motion are not coupled. The relative
velocity of colliding particles i and j at the point of contact is defined as

vij = vi − vj (2.11)

and, analogously, the post-collision velocity is denoted by the primed symbol:

v′ij = v′i − v′j. (2.12)

The normal and tangential velocities are given by projections using the unit vector
en
ij pointing from particle j to particle i:

vn
ij = (vij · en

ij)en
ij, (2.13)

vt
ij = −en

ij × (en
ij × vij). (2.14)

The coefficient of restitution in normal direction ε is defined as

(vn
ij)′ = −εvn

ij, (2.15)

with 0 ≤ ε ≤ 1. For simplicity we consider the case where all particles have the
same radius R and mass m = 1. Conservation of linear momentum yields

v′i + v′j = vi + vj. (2.16)

The post-collision velocities can be expressed as functions of the pre-collision veloc-
ities and v′ij − vij using (2.12) and (2.16):

2v′i = 2vi + v′ij − vij,

2v′j = 2vj − v′ij + vij. (2.17)

15



2 Theory and Numerical Implementation

Moreover, using the definition (2.15), we can express v′ij − vij as

v′ij − vij = −(1 + ε)vn
ij, (2.18)

if vt
ij is preserved. Hence, combining (2.18) and (2.17) we obtain the collision rule:

v′i = vi −
1 + ε

2 vn
ij,

v′j = vj + 1 + ε

2 vn
ij. (2.19)

An event-driven algorithm can be sketched as follows:

1. At time t = 0 initialize the positions ri and velocities vi of all N particles.
Usually it is made sure that the initial system has no center of mass velocity∑n
i=1 vi = 0, and particles do not overlap.

2. Determine the time t∗ > t of the next collision event, i.e.,

t∗ = min(tij > t : |ri(tij)− rj(tij)| = 2R, i, j = 1, . . . , N) (2.20)

3. Determine the positions of all particles at t∗. In the case without external
acceleration the positions are given by

ri(t∗) = ri(t) + (t∗ − t)vi (2.21)

4. Computation of the post-collisional velocities of the two colliding particles
according to (2.19).

5. Set the system time t to t∗ and repeat from step 2.

In addition to particle-particle collisions, there can also be collision of a particle
with a reflecting wall. In that case its velocity normal to the wall is reflected, while
again the tangential component remains unchanged:

vn
i
′ = −εwallvn

i . (2.22)

Here εwall is the coefficient of restitution of the wall, which may be different from ε,
depending on the material properties of the wall.
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2.3 Molecular Dynamics Methods

2.3.3 Heated Walls

The energy input introduced in section 2.1 is supplied through the boundaries in
many applications. Driving by a vibrating wall with high frequency may be modeled
by a heated wall [36]. One approach is resetting the velocity of a particle touching
the wall to a value chosen from a Maxwell distribution according to a given temper-
ature Tg. The probability distribution functions for normal and tangential velocity
components can be found in [36, p. 175]. The disadvantage of this approach is that
the wall temperature would not reflect, in general, the natural granular temperature
in a phase-separated system, where Tg is different in the coexisting phases.

We decided therefore to use a different approach, which does not enforce a Maxwell
distribution, but depends on the actual velocity of the particle and seems to be closer
to the realistic shaking model used in [41]. The normal velocity component of the
particle is reflected as in (2.22) with εwall = 1 and gets an additional term modeled
after a sinusoidally moving wall:

vn′ = −vn + 2
√
Ewall

m
cos(ξ). (2.23)

The parameter ξ ∈ [0, 2π] is a uniformly distributed random number. This ad-
ditional term may result in a post-collision velocity with a direction still pointing
towards the wall. If a sinusoidally moving wall was moving away from a particle
because its velocity was higher than the particle velocity, there would be no collision
at this time. The collision would happen later, when the wall velocity decreases or
changes sign. As the heated wall is not moving, the subsequent collision rather hap-
pens instantaneously. Thus, in our wall model we chose to repeatedly reapply (2.23)
with a new random number ξ until the particle is moving away from the wall, i.e.,
sign(vn′) = −sign(vn).

The amplitude of the additional term in (2.23) was chosen such that the average
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2 Theory and Numerical Implementation

energy input is Ewall:

〈∆E〉 = m

2
〈
(vn′)2

〉
− m

2
〈
(vn)2

〉
(2.24)

= m

2

〈
(vn)2 − 4

√
Ewall

m
cos(ξ)vn + 4Ewall

m
cos2(ξ)

〉
− m

2
〈
(vn)2

〉

= −2m
√
Ewall

m
〈cos(ξ)〉︸ ︷︷ ︸

=0

vn + 2Ewall
〈
cos2(ξ)

〉
︸ ︷︷ ︸

= 1
2

= Ewall (2.25)

2.3.4 Bridge Rupture

The formation of a capillary bridge (Fig. 2.2 between particles i and j happens
at each collision event. Using the thin-thread model (Fig. 2.4b), this introduces
another event involving the particles. At the time

tij > t : |ri(tij)− rj(tij)| = 2R + scrit, (2.26)

where the surfaces of the two particles are separated by the critical rupture sepa-
ration scrit, the capillary bridge might rupture and dissipate the energy Ecb from
the relative velocity between the particles in radial direction. If the kinetic energy
in radial direction is not high enough, the particles will reflect at the square well
potential (Fig. 2.4b) without losing energy and the capillary bridge will not rupture.
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3 Verification

The implementation of the event-driven algorithm for wet granular matter is tested
by comparison to the theoretical prediction for the free cooling behaviour of the
numerical simulations.

3.1 Free Cooling

The driving method known as free cooling is mainly used in simulations and theoret-
ical approaches [8]. Driving is reflected only in the initial conditions of the system,
usually meaning random motion at the beginning which slows down over time be-
cause of dissipation in the absence of external forces. For dry granular matter, this
is well studied [8, 22]. It is not easy to perform in experiments, because there are no
gravitational forces. Still there is an experimental investigation for free cooling of a
quasi two-dimensional granular gas [31]. For wet granular matter there are studies
in one dimension [19, 51] and three dimensions [46, 47].
Let us make an estimate for the decay of granular temperature Tg in a D-

dimensional system of N particles where energy is dissipated only by rupture of
capillary bridges. The two-dimensional calculation for a dry granular gas which
obeys Haff’s law can be found in [8, pp. 51-53, 115-118]. The results of the follow-
ing calculation – similar to Haff’s law – in three dimensions with dissipation only
by rupture of capillary bridges and a comparison with numerical simulations can be
found in [45–47].
In D dimensions we define granular temperature as

D

2 Tg = 1
N

N∑
i=1

mv2
i

2 . (3.1)

It is equal to the average kinetic energy for the case D = 2.
Assuming a homogeneous spatial distribution of particles, the total number of
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collisions in our system during a time interval ∆t is

fcollN∆t
2 , (3.2)

where fcoll and N are the collision frequency (per particle and unit time), and
number of particles, respectively. Division by 2 accounts for double-counting, as
two particles are involved in each collision.
The kinetic energy decreases by the rupture energy Ecb for each bond that breaks,

which occurs after collisions with a bond breaking probability Pbb. The total energy
loss in an interval ∆t is therefore given by [45, p. 87]

∆Ekin = −Ecb
fcollN∆t

2 Pbb. (3.3)

Division by N and ∆t results in

1
N

∆Ekin

∆t
(3.1)= D

2
∆Tg
∆t = −1

2fcollEcbPbb. (3.4)

Under the assumption that sufficiently many collisions are happening per unit time,
we can take the limit ∆t→ 0 and we get the following differential equation:

D

2
dTg
dt = −1

2fcoll∆EPbb. (3.5)

Estimation of collision frequency Consider the motion of a single spherical par-
ticle with velocity v and diameter d in time ∆t, assuming all other particles are
stationary. In three dimensions the particle will collide with all particles in a cylin-
der of length 〈v〉∆t ∆t and base area equal to the scattering cross section σ3D = πd2.
In two dimensions the collision volume is a rectangle of the same length and width
σ2D = 2d. The number of collisions is

Ncoll = nσ 〈v〉∆t ∆t, (3.6)

where n = N
V

is the number density and V the volume/area of the system.
As the other particles are actually moving, we need to consider the relative velocity

between particles. With the average relative velocity 〈vrel〉 we obtain:

fcoll = Ncoll

∆t = nσ 〈vrel〉 (3.7)
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3.1 Free Cooling

We need an estimate for the average relative velocity. Assuming the particle
velocities follow the Maxwell-Boltzmann distribution function

f(v) =
(

m

2πkTg

)D
2

exp
(
−mv2

2kTg

)
, (3.8)

where k is the Boltzmann constant, the general expression for the average velocity
is

〈v〉 =
∫
all v
|v|f(v) dv. (3.9)

The respective coordinate transformation of (3.9) to the velocity magnitude is

〈v〉 =
∫ ∞

0
vF (v)dv. (3.10)

Transforming (3.9) to spherical coordinates in the case D = 3 and integrating over
the angles yields an additional factor equal the surface 4πv2 of a sphere of magnitude
v:

F3D(v) dv = 4πv2
(

m

2πkTg

) 3
2

exp(−mv
2

2kTg
) dv. (3.11)

In the case D = 2 transformation to polar coordinates yields a factor equal to the
circumference 2πv of a circle of radius v. The resulting probability distribution
function is

F2D(v) dv = m

kTg
v exp

(
−mv

2

2kTg

)
dv. (3.12)

Inserting (3.11) and (3.12) in (3.10) we obtain the average velocity

〈v〉 =


√

8kTg

πm
, D = 3√

πkTg

2m , D = 2.
(3.13)

The general expression for the average relative velocity of two colliding particles
is similar to (3.9), but involves the two-particle distribution function f2:

〈vrel〉 =
∫
all v1

∫
all v2
|v1 − v2|f2(v1,v2) dv1 dv2. (3.14)

An approximation for f2 suggested by Enskog [8, p. 59] assumes correlation just in
space and no correlations in velocity. The two-particle distribution function becomes
the product of the two single-particle velocity distribution functions and the pair
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3 Verification

correlation function or radial distribution function g2(r):

f2(v1,v2) ≈ g2(r)f(v1)f(v2). (3.15)

The pair correlation function describes the probability that a pair of particle is at
distance r from each other. As the distance between the particle centers of two
colliding particles is the diameter d, we use the value of the correlation function at
contact g2(d). Using this approximation (3.14) becomes

〈vrel〉 = g2(d)
∫
all v1

∫
all v2
|v1 − v2|f(v1)f(v2) dv1 dv2. (3.16)

Inserting the long form of the absolute relative velocity

|v1 − v2| =
√

(v1 − v2)2 =
√

v2
1 − 2v1v2 + v2

2 (3.17)

we obtain

vrel = g2(d)
∫
all v1

∫
all v2

√
v2

1 − 2v1v2 + v2
2f(v1)f(v2) dv1 dv2. (3.18)

Working out the integral under the assumption that v1 and v2 are uncorrelated, one
finds

〈vrel〉 = g2(d)
√

2 · 〈v〉 . (3.19)

Inserting the average velocity from (3.13) we get an estimate for the average relative
velocity

〈vrel〉 =

4g2(d)
√

kTg

πm
, D = 3

g2(d)
√

πkTg

m
, D = 2

(3.20)

and the collision frequency [47]

fcoll =

4g2(d)σ3Dn
√

kTg

πm
, D = 3

g2(d)σ2Dn
√

πkTg

m
, D = 2.

(3.21)

Early stage of cooling During the early stage of cooling the particle energies are
still much larger than the bridge rupture energy. We can assume that the bond
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3.1 Free Cooling

breaking probability Pbb ≈ 1. Inserting this and (3.21) into (3.5) yields

dTg
dt = − 1

D
∆E = fcoll

(3.21)=

−
4
3Ecbg2(d)d2n

√
πkTg

m
, D = 3

−Ecbg2(d)dn
√

πkTg

m
, D = 2.

(3.22)

Differential equations of the form dT
dt ∝ −

√
T are solved by T (t) ∝ (t− t0)2. Solving

with the initial condition Tg(0) = T0 we get

Tg(t) =

T0(1− t/t0)2 if t ≤ t0

0 if t > t0
(3.23)

with the characteristic time scale

t0 =


3

2g2(d)σ3DnEcb

√
πmT0
k

, D = 3
4

g2(d)σ2DnEcb

√
mT0
πk

, D = 2.
(3.24)

The resulting temperature decay is similar to Haff’s law for the temperature decay
of a dry granular gas of initial temperature T0 [8, 23],

T (t) = T0

(1 + t/τ0)2 , (3.25)

where τ−1
0 ∝ nd2(1− ε2)

√
T0.

For hard spheres (D = 3) we can use [8, p. 59]

g2(d) = 2− η
2(1− η)3 , (3.26)

where η = n1
6πd

3 is the packing fraction or volume fraction. For hard disks (D = 2)

g2(d) = 1− (7/16)η
(1− η)2 , (3.27)

with η = n1
4πd

2 [8, p. 116].
At this point we have a theoretical prediction for the early stage of cooling. A

more detailed discussion of free cooling, including the late phase of cooling, can be
found in [44].
Simulation results for the decay of temperature over time are shown in Fig. 3.1.

If the theoretical prediction for the characteristic time scale t0 (3.24) is multiplied
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by 1.4, the data points lie on the resulting curve.

 1
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 0.01  0.1  1  10  100  1000  10000
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theory, 15.6%

3.9%
15.6%

Figure 3.1: Free cooling in two-dimensional event-driven molecular dynamics sim-
ulations of N = 104 particles. Temperature is plotted over time on
double-logarithmic axis. The system is quadratic (Lx = Ly = L) with
periodic boundary conditions and variable area fraction φ = N ·πR2

L2 . The
parameters were chosen as in [46]: rupture energy Ecb = 1, rupture
distance scrit = 0.28, coefficient of restitution ε = 1, initial tempera-
ture T0 = 50, particle radius R = 2. Simulations of two different area
fractions φ = 3.9% and φ = 15.6% are compared with their theoretical
prediction (3.23).
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4 Granular Phase Diagram

4.1 Phase Diagrams

In time-driven simulations performed by Klaus Röller using sinusoidally moving
walls, slightly polydisperse particles (σp = 0.06) with average diameter d = 1, and
gravitational acceleration g = 1, he observed different states (Fig. 4.1), depending
on two control parameters.

Figure 4.1: States of wet granular matter [41]. Two-dimensional time-driven molec-
ular dynamics simulations were performed using the minimal capillary
model. The system of 1.2 · 103 slightly polydisperse (σp = 0.06) parti-
cles with mean diameter d = 1 in a box of size 9d × 400d as sketched
in Fig. 4.3. Shaking is performed in vertical direction, gravity points
downward (g = 1). The capillary bridge energy is Ecb = 1.14. The
phase states depend on the driving parameters peak acceleration Γ and
driving energy E∗.

The sinusoidal driving z(t) = A cos(ωt) (see Fig. 1.3) is characterized by its am-
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4 Granular Phase Diagram

plitude A and angular frequency ω. Driving can be characterized by other control
parameters as well. The control parameter chosen in [17] is the maximum kinetic
energy a particle can obtain from the collision with a wall:

Emax = 1
2mv

2
max = 1

2m(Aω)2, (4.1)

with the mass of a particle m and the maximum velocity of the wall,

vmax = max( dz(t)
dt ) = Aω. (4.2)

Klaus Röller chose to normalize this parameter with the capillary bridge energy and
used the dimensionless control parameter

E∗ = Emax

Ecb
. (4.3)

The other dimensionless control parameter is the maximum acceleration of a particle,
normalized with respect to the gravitational acceleration g:

Γ =
max( d2z(t)

dt2 )
g

= Aω2

g
(4.4)

These equations show that the parameters E∗ and Γ can be controlled independently
by varying the driving amplitude A and angular frequency ω.

It turned out to be enlightening to plot the phases and phase transitions in the
plane spanned by Γ and E∗ [41]. The resulting phase diagram for Ecb

mgscrit
= 4.0 is

shown in Fig. 4.2. Low values of the peak acceleration lead to a solid phase, mostly
independent of the driving energy. The particles lie on the moving ground plate
and follow its sinusoidal movement without being accelerated enough to lift from
the ground. For higher driving energies, there are two kinds of solid-gas coexistence.
One is depicted in Fig. 4.1. The other is called granular Leidenfrost effect (see [17]),
where particles close to the ground absorb the driving energy in a gas state and
a solid phase is floating on top of the gas bubble. Low driving energies at high
peak acceleration result in a liquid phase (denoted as fluid in the phase diagram),
where particles are moving, but the density is high and they are not filling the
whole system volume (see Fig. 4.1). High driving energies at high peak acceleration
result in a gas state. The solid red line is a theoretical prediction for the solid-liquid
transition, derived in Ref. [41, chapter 4]. Between the liquid and the gas state
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4.2 Minimal Model

Figure 4.2: Phase diagram of agitated wet granular matter [41] from simulations
with 1200 particles in two dimensions. Circles denote time-driven sim-
ulations (minimal capillary model), squares denote event-driven simula-
tions (thin-thread model). The solid red line is a theoretical prediction
for the solid-liquid transition. At the solid black curve the excitation
amplitude A equals the capillary bridge rupture length scrit.

there is a liquid-gas coexistence regime. The critical values of E∗ for the vertical
liquid-gas boundaries are indicated by arrows at the top. At the solid black curve
the excitation amplitude A equals the capillary bridge rupture length scrit. This
curve seems to be the lower boundary for liquid-gas coexistence. Below the black
curve, A > scrit. The reasons and requirements for the existence of this coexistence
regime are not yet understood.
The goal of the following section is to establish a minimal model that can be used

as a starting point for a further characterisation of the coexistence regimes.

4.2 Minimal Model

The required elements of our minimal model have been introduced in chapter 2.
We perform event-driven molecular dynamics simulations of a dilute system of wet
granular matter in two-dimensions. N particles of equal diameter, d, and equal
mass, m, are filled in a flat box of length Lx and height Ly having periodic bound-
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4 Granular Phase Diagram

ary conditions in horizontal direction. The reflecting walls in vertical direction are
heated walls according to section 2.3.3. The system is sketched in Fig. 4.3. It needs

x

y
Lx

Ly

Figure 4.3: Sketch of the two-dimensional simulation system. Particles of diameter
d are filled in a flat box (Ly = 9d) with periodic boundary conditions
in horizontal direction (Ly = 400d, if not noted otherwise), and heated,
reflecting walls in vertical direction. Note that the actual systems are
much longer in horizontal direction.

to be flat to ensure homogeneous vertical density and good coupling of the whole
system to the walls.
For simplicity, particle-particle and particle-wall-collisions are elastic, i.e., ε = 1

and εwall = 1. Moreover, units are chosen such that the particle mass is m = 1,
their diameter d = 1, and the Boltzmann constant is k = 1. In order to simplify the
prospective theoretical description, there is no gravitational acceleration (g = 0).
Capillary bridges are formed between particles as well as between particle and wall.
The numerical values for rupture energy Ecb = 0.2844, and rupture distance scrit =
0.0711d, as well as the system height Ly = 9d, coincide with Röller’s choice [41],
and are matched to the experiment described in chapter 1. Initially the particles
are uniformly distributed over the whole system with random velocities, normalized
to result in a given initial granular temperature T0.

4.3 Simulation Results

All results presented in this section were obtained using the minimal model described
in the previous section.The control parameter of the wall model is Ewall. We define
the driving energy for this model as E∗ = Ewall

Ecb
.

We are interested in the time evolution of coarse-grained quantities like density
and temperature. A local number density, averaged in vertical direction, is obtained
by counting particles in a given interval (bin). The local temperature is obtained
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analogously, by averaging over the temperatures of all particles inside the bin. The
areal density is obtained by division of the time averaged particle number density
over the maximum number density at cubic packing. The time-averaging interval is
∆t = 0.1, the spatial binsize is ∆x = 4 in all following space-time plots.

4.3.1 Solid (E∗ = 1.42)

Figure 4.4 shows snapshots of the system using a driving energy E∗ = 1.42 inspired
by Fig. 4.2. As there is no gravitational acceleration, and wall positions are constant
over time, the coupling to the energy-injecting walls is obviously different. Particles

Figure 4.4: Snapshots of a simulation withN = 1200 particles, box width Lx = 400d,
Ly = 9d, initial temperature T0 = 20Ecb, and driving energy E∗ = 1.42.
Starting at t = 0, each snapshot was taken after 105 events. Particles
are depicted as red circles, capillary bridges are shown as blue lines con-
necting the particle centers. Particles cluster in initially slighty denser
regions, forming five dense regions in this case. Subsequently, coarsening
results in an approaching and merging of these regions. Moving towards
each other, the clusters form a single large cluster with crystal-like struc-
ture.

cluster in initially slighty denser regions, forming five dense regions visible in the first
few snapshots. Coarsening results in an approaching and merging of these regions,
until there is only one remaining cluster.
At later times of this system, no particles are moving freely. Particles that detach

from the cluster reattach again at their next collision. The large cluster looks like
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multiple solid blocks connected by flexible hinges at regions with lower density in
vertical direction. This leads to a snake-like motion in animations. The solid blocks
move towards a wall until the particle closest to the wall collides. At this point the
block changes its vertical direction. Doing so, the energy injected into the system
by the heated wall is dissipated via rupturing bridges in the “hinges”.
Fig. 4.5 shows the evolution of areal density and temperature in dependence of

the lateral position x over time, obtained by coarse-graining as described above.
The plots are presented in both logarithmic and linear time scale to give a better
impression of both early and long time evolution. In the areal density plot one can
see the movement of single particles in the low density region. The “hinges” can be
seen as stripes of lower density (around 0.5) next to stripes of higher density (close
to 1). The movement of single particles is visible more clearly in the temperature
plot. The dense phase is almost invisible, because its temperature is very low.
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4.3 Simulation Results

Figure 4.5: Areal density (color) in a space-time plot on logarithmic (top left) and
linear (top right) time scale. Local temperature (color) in a space-time
plot on logarithmic (bottom left) and linear (bottom right) time scale.
The parameters are N = 1200, Lx = 400d, Ly = 9d, T0 = 20Ecb and
E∗ = 1.42.
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4.3.2 Solid-Gas Coexistence (E∗ = 3.195)

Increasing the driving energy, we obtain a nonzero density in the region not pop-
ulated by the cluster, also for greater system time (Fig. 4.7). At the early stage
of coarsening, there are approximately 25 dense regions that form a single dense
region surrounded by gas at t ≈ 100. In the center of Fig. 4.7 the capillary bridge
density of the system as a function of lateral position and time (averaged over ver-
tical position) is shown. It was obtained as described before for the areal density
and temperature. The maximum value of 6 is achieved if a particle has capillary
bridges with the maximum number of 6 neighbours. A capillary bridge between
two particles is counted once for each particle. Fig. 4.6 shows a snapshot of the

Figure 4.6: Snapshot (t ≈ 970) of the system showing liquid-gas coexistence. The
logarithmic color coding is chosen similar to Fig. 4.1, but with a maxi-
mum value of 10. Capillary bridges are drawn as light blue lines connect-
ing particle centers. The parameters are N = 1200, Lx = 400d, Ly = 9d,
T0 = 20Ecb and E∗ = 3.195.

system before the solid phase reaches a steady state. At its right boundary a lower
density region can be seen, which also shows as low density region in Fig. 4.7. The
solid phase clearly shows a high amount of capillary bridges (light blue lines) and
crystal-like structure as Fig. 4.4, but actually covers the whole vertical space.

Figure 4.7: Areal density (color) in a space-time plot on logarithmic (top left) and
linear (top right) time scale. Regions of lower density inside the clus-
ter (“hinges”), as described for the solid phase in section 4.3.1, can be
observed as lines over time. Capillary bridge density (color) in a space-
time plot on logarithmic (center left) and linear (center right) time scale.
For t < 10, capillary bridges do not persist over time. Local tempera-
ture (color) in a space-time plot on logarithmic (bottom left) and linear
(bottom right) time scale. The kinetic energy is equal to the granular
temperature in two dimensions (Eq. (3.1)). It is normalized by the rup-
ture energy Ecb. The solid cluster has a homogeneus very low kinetic
energy. The strong fluctuations in the remaining system are caused by
few particles moving around at high kinetic energies. The parameters
are N = 1200, Lx = 400d, Ly = 9d, T0 = 20Ecb and E∗ = 3.195.
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Figure 4.7: Caption on previous page.
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4.3.3 Liquid-Gas Coexistence (E∗ = 3.55)

For the driving energy E∗ = 3.55, we observe liquid-gas coexistence (Fig. 4.8).

Figure 4.8: Snapshot (t ≈ 920) of the system showing liquid-gas coexistence. The
logarithmic color coding is chosen similar to Fig. 4.1, but with a maxi-
mum value of 10. Capillary bridges are drawn as light blue lines connect-
ing particle centers. The parameters are N = 1200, Lx = 400d, Ly = 9d,
T0 = 20Ecb and E∗ = 3.55.

For t < 100, particles are moving towards a region of higher density (Fig. 4.9, top
left). On the reviewed timescale the region of higher density seems to be stable, like
in a steady state. Both phases are in motion. The density fluctuations of the less
dense phase are faster than the fluctuations in the more dense phase. Formation of
capillary bridges seems to happen in the same time scale as in the system showing
higher density (Fig. 4.7), but does not reach high values that remain stable over
time. Lower bridge density indicates a higher mobility. Most of the system cooled
down from the initial temperature T0 = 20Ecb faster than the time resolution can
resolve. The shape of the region of low kinetic energy (t . 10) looks very similar to
the shape of high bridge density (Fig. 4.9, top and bottom left).

Figure 4.9: Areal density (color) in a space-time plot on logarithmic (top left) and
linear (top right) time scale. Capillary bridge density (color) in a space-
time plot on logarithmic (center left) and linear (center right) time scale.
Local temperature (color) in a space-time plot on logarithmic (bottom
left) and linear (bottom right) time scale. The parameters are N = 1200,
Lx = 400d, Ly = 9d, T0 = 20Ecb and E∗ = 3.55.
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Figure 4.9: Caption on previous page.
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4.3.4 Granular Gas (E∗ = 4.26)

For high driving energy E∗ = 4.26 we observe a granular gas (Fig. 4.10). The system
shows severe density fluctuations, but there is no distinguishable structure.
Particles are distributed almost homogeneously over the system. At this driving

energy there are no persistent capillary bridges. At lateral position x ≈ 300 there
might be the onset of a distinguishable phase. The kinetic energy is slightly lower
at lateral position x ≈ 300, matching the area of slightly higher bridge density
in Fig. 4.10.

Figure 4.10: Areal density (color) in a space-time plot on logarithmic (top left) and
linear (top right) time scale. Capillary bridge density (color) in a space-
time plot on logarithmic (center left) and linear (center right) time
scale. Local temperature (color) in a space-time plot on logarithmic
(bottom left) and linear (bottom right) time scale. The system is in
a steady state with severe density flucuations. The parameters are
N = 1200, Lx = 400d, Ly = 9d, T0 = 20Ecb and E∗ = 4.26.
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Figure 4.10: Caption on previous page.
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4.3.5 Consistency Checks

The existence of the more dense liquid phase should not depend on the initial tem-
perature. This is checked by a simulation with the same parameters and driving
energy that showed liquid-gas coexistence (E∗ = 3.55), but much higher initial
temperature T0 = 200Ecb (Fig. 4.11).
For t > 100 the system looks like the results for the same parameters with lower

initial temperature (Fig. 4.9), shifted over the periodic boundary as the position of
the dense phase should be random. Cooling is happening on a larger time interval.
If one would be drawing a curve beginning at the boundary between high and low
density (at t = 0 it begins at x ≈ 250) moving along equal density, this curve seems
to cross the dense phase up to the other side of the dense phase. The two curves
are more clear at very small times in Fig. 4.9, the crossing of both curves is more
clear in the current figure. The bridge density looks like Fig. 4.9, but having a later
onset of higher density in Fig. 4.11. Note that the color scale in the logarithmic plot
of the temperature is different, because the initial temperature is much higher than
the steady state temperature. After the initial cooling phase it looks like Fig. 4.9,
shifted over the periodic boundary.

Figure 4.11: Areal density (color) in a space-time plot on logarithmic (top left) and
linear (top right) time scale. Capillary bridge density (color) in a space-
time plot on logarithmic (center left) and linear (center right) time
scale. Local temperature (color) in a space-time plot on logarithmic
(bottom left) and linear (bottom right) time scale. The driving energy
E∗ = 3.55 like in Fig. 4.9, but at higher initial temperature T0 = 200Ecb.
Note that the color scale in the logarithmic plot is different as the initial
temperature is much higher than the steady state temperature. The
parameters are N = 1200, Lx = 400d, Ly = 9d, T0 = 200Ecb and
E∗ = 3.55.
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Figure 4.11: Caption on previous page.
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If the control parameter E∗ was an extensive order parameter, the previous system
should show the same behaviour at constant density and higher volume. Simulation
results of a system twice as wide are presented in Fig. 4.12.
The early stage (t < 11) looks similar to the previous density plots on a slightly

different time scale. After crossing of the two boundary curves there are more dense
regions aggregating to a very dense, stable phase. In the observed timeframe there
are three distinguishable phases. The bridge density does not show high density
regions at 11 < t < 100. For t > 100 the bridge density also has regions of three
distinguishable types and shows the same low density “bubbles” as the areal density.

Figure 4.12: Areal density (color) in a space-time plot for E∗ = 3.55 in a system
twice as wide (Lx = 800d) as in Fig. 4.11 at equal density (N = 2400) on
logarithmic (top left) and linear (top right) time scale. Capillary bridge
density (color) in a space-time plot on logarithmic (center left) and
linear (center right) time scale. Local temperature (color) in a space-
time plot on logarithmic (bottom left) and linear (bottom right) time
scale. Note that the color scale in the logarithmic plot is different as the
initial temperature is much higher than the steady state temperature.
The parameters are N = 2400, Lx = 400d, Ly = 9d, T0 = 200Ecb and
E∗ = 3.55.
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Figure 4.12: Caption on previous page.
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Our minimal model has proven to be sufficient to capture phase transitions and
coexistence in wet granular matter: for increasing energy input we observed solid-
like, liquid-like, and granular gas phases.
One way of distinguishing between homogeneous fluid and solid phases is the

quantification of particle mobility by calculating a dynamic order parameter called
frequency of location changes. A location change is happening, if the vectorial area
of a particle’s Voronoi cell changes sign, because it moved into the Voronoi cell of
another particle [41]. For our model and utilized parameters, the combination of
the three reviewed quantities areal density, bridge density and temperature provide
ample identification. Table 5.1 lists the value ranges we chose to distinguish between
solid, liquid, and gas phase. Areal density and bridge density of the liquid phase
show strong fluctuations than could also be taken into account as a unique feature.
In the model we observed solid-gas and liquid-gas coexistence. This is a very

important result, because it means that neither gravitational acceleration nor oscil-
lating walls are required for phase coexistence in wet granular matter.
From ordinary thermodynamics we expected that the temperature would be equal

in coexisting phases. The surprising result is that phases showed different temper-
atures instead. We still expect the pressure to be equal between phases, because
a difference in pressure would induce a particle flow from one phase to another,
which we could not observe in the examined quantities. The particle flux at phase
boundaries is another interesting quantity that could be measured in the future. For

areal density bridge density Tg

solid ' 0.9 > 4 . 2Ecb
liquid 0.5 . . . 0.9 1 . . . 3 2 . . . 4
gas < 0.7 < 1 � Ecb

Table 5.1: Value ranges for areal density, bridge density, and temperature, that can
be used to identify and distinguish phases.
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further investigation of phase interaction at their boundary, we will also look at the
dissipated power, which is proportional to the bridge ruptures per unit time. We ex-
pect that this quantity shows illuminating singularities at the phase boundaries that
will provide insight into the coexistance condition for granular phases with different
granular temperature. Other interesting quantities which might help understanding
boundary interaction are the mean free path and free time of particles close to the
boundary. For the most recent simulations, this data is already present and needs
to be analyzed.
If data is written and analyzed at higher time resolution for the coarsening be-

haviour at the beginning of the simulations, it would be an interesting challenge to
check in how far this agrees with standard scenarios for Ostwald ripening like the
Lifshitz-Slyozov theory of coarsening [30].
As the molecular interaction of the Van der Waals gas is similar to the interaction

in models of granular matter with elastic collisions (ε = 1), there have been attempts
to find an equation of state for granular matter [20, 24] – although it is a non-
equlibrium system. We could try to find an equation of state for the heated wall
model.
Arguably, the most surprising result of our exploratory study was the observation

of three phases coexisting in Fig. 4.12. It might be an artefact of crystallization or
a transient state that disappears after longer simulation time, but it could also be a
persistent feature: In private conversation Röller reported that indications into that
direction were also observed in experiments.
Hence, there emerges here another striking difference between conventional and

granular matter. In ordinary thermodynamics, the Gibbs phase rule describes the
thermodynamic degrees of freedom f for a system with r components and M coex-
isting phases [10, p. 286]:

f = r −M + 2 (5.1)

In a system with one component r = 1 and two coexisting phases M = 2 there
is one degree of freedom resulting in a coexistence curve in the phase diagram, for
example temperature as function of pressure. For three coexisting phases M = 3
there is no degree of freedom. The point in the phase diagram, at which three-phase
coexistence exists, is called triple point. In our system the degrees of freedom might
be the driving energy E∗ and area fraction of the system φ = N

Lx·Ly
. As it is not

very likely that we found exactly the tricitical point by coincidence, in wet granular
matter the three-phase coexistence might actually be an area rather than a triple
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point.
The step that needs to be done next is running many simulations in small intervals

of E∗ and identification of the resulting phases (type and size). This leads to a one-
dimensional phase diagram. Afterwards another dimension could be explored, for
example the area fraction φ.
Censequently in this simple model, there will be a lot to discover, and one has to

be ready for many surprises.
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