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“Problems worthy of attack

prove their worth by hitting back”

Piet Hein, “Problems,” Grooks (1966)





Don’t just read it! Ask your own questions, look for your own examples, discover your

own proofs. Is the hypothesis necessary? Is the converse true? What happens in the

classical special case? Where does the proof use the hypothesis?

Paul Halmos
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Chapter 1

Introduction

It matters not what goal you seek
Its secret here reposes:
You’ve got to dig from week to

week
To get Results or Roses

Edgar Guest

(a) Condensation
on the inner wall of
a bottle of mineral
water

(b) Condensation on the underside of
a lid while cooking

(c) Dew on a leaf

Figure 1.1: Examples of breath figures in every day life.
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12 CHAPTER 1. INTRODUCTION

Figure 1.2: Visual agreement between size distribution of vapor-deposited tin on sapphire
surface (a) with simulation (b). Taken from Family and Meakin [7]

1.1 Motivation and Background

The formation, growth and coarsening of “dew [2]” droplets on flat surfaces has widely

been studied in the physics literature under the keyword “Breath Figures”. Early work

is in allusion to Rayleigh [13] and Aitken [1], who suggested the name “Breath

Figures”, due to an easy method of producing them in nature: the experimenter needs

only to exhale on a relatively cool glass plate. Of course, there is no actual dependence

on human breath as such, all that is necessary for breath figures to form is an over-

saturated vapor being exposed to a substrate which provides conditions favorable to

nucleation. Some particular every-day examples are shown in Fig. 1.1.

This makes breath figures almost everywhere vapor condenses, and thus unavoidable

in nature. This also lends particular practical importance to breath figures wherever

technological applications rely on the presence (or lack thereof) of condensation and

depositions.

One of the earliest notable theoretical advances towards a theoretical description of

breath figures was made by Family and Meakin [8], then later followed by Galvin

and Briscoe [4] and [5]. A thorough discussion in the framework of renormalization

groups has been given by Family and Meakin in the late 1980s. In order to facilitate

analytical and numerical treatment they considered the following idealized setting:

1. there is a spatially uniform mass flux onto the surface

12



1.2. SCALING THEORY BY FAMILY AND MEAKIN 13

2. there is no evaporation or other removal of material from the surface

3. all droplets are spherical caps with a fixed wetting angle

4. the only interaction between droplets is collision and merging, which subsequently

frees certain portions of the surface

Their results are summarized in the following subsection.

1.2 Scaling Theory by Family and Meakin

The Family-Meakin scaling theory suggests that the number of droplets of size1 s at

time τ is distributed as:

n(s, τ) = s−θf

(
s

S(τ)

)
(1.2.1a)

S(τ) ∼ τ z (1.2.1b)

where S(τ) may be thought of as reflecting the largest droplet size encountered in the

system. Its increase with time reflects the mass flux into the system. After all the theory

assumes that no matter is allowed to leave the substrate once it has been deposited.

One may then estimate the scaling exponent θ from knowledge about the dimensionality

of the substrate, d, and the droplets, D, such that the apparent radius of droplets is

proportional to R ∼ s1/D and the covered area on the substrate is A ∼ Rd.

The theory assumes the conservation of 2 quantities: a) The wetted area is constant

with time b) the total amount of mass in the system is proportional to the age of the

system. The latter conserved quantity is simply a formal re-hash of the fact that there

is a constant uniform flux, Φ, onto the surface and no material leaves the substrate.

The former follows from consistency: the self-similarity ansatz Eq. (1.2.1a) describes a

system for which a passage of time is equivalent to rescaling the length scale. And thus

the area of area covered by the droplets needs to remain constant. Otherwise we would

observe a different configuration of droplets (not accessible to rescaling) as time passes.

These conservation laws may be written formally:

Φτ =

∫
sn(s, τ) ds (1.2.2a)

W =

∫
sd/Dn(s, τ) ds (1.2.2b)

1As a general note regarding notation: in the spirit of the work by Family and Meakin, the volume
of a droplet is denoted the by s (read: “size”). To prevent confusion, when referring to the “size”, s, of
a droplet we will henceforth refer the actual amount of material or mass contained within a droplet.

13



14 CHAPTER 1. INTRODUCTION

where Φ is the flux of mass onto the substrate and W is the wetted area.

In order for the conserved quantities, Eqs. (1.2.2), to remain consistent with the scaling

behavior in ansatz (1.2.1) we arrive at Theorem 1.1

Theorem 1.1. Given a system with d-dimensional substrate and D-dimensional droplets,

without droplets yielding, and with conserved quantities, Eqs. (1.2.2), subject to the scal-

ing behavior in Eqs. (1.2.1) then:

z(2− θ) = 1 (1.2.3a)

z(1 + d/D − θ) = 0 (1.2.3b)

Proof. We start from the conserved quantity Eq. (1.2.2a) and apply our scaling ansatz:

Φτ =

∫
sn(s, τ) ds =

∫
s1−θf

(
s

S(τ)

)
ds (1.2.4)

and apply the coordinate transformation: x ≡ s/S(τ) to change the variable of integra-

tion: ∫
s1−θf

(
s

S(τ)

)
ds =

∫
(S(τ)x)1−θf (x)S(τ) dx

= (S(τ))2−θ
∫
x1−θf (x) dx (1.2.5)

where the integral in Eq. (1.2.5) is considered to be time independent. Hence we have:

τ ∼ (S(τ))2−θ (1.2.6)

And considering S(τ) ∼ τ z the result Eq. (1.2.3a) follows.

The result Eq. (1.2.3b) follows using the same reasoning, only stating the conserved

quantity Eq. (1.2.2b).

We may then apply Theorem 1.1 to our model system where d = 2 and D = 3 to find

theoretical predictions for the scaling exponents: θth = 5
3

and zth = 3. Family and

Meakin’s simulations find quantities close to this prediction: θsim = 1.56 ' 5
3
− 0.31

and zsim = 2.92 = 3− 0.08.

The exponents encountered in our simulations are near the results predicted by the

scaling theory. However there is a significant deviation. This deviation and the curiosity

of how the findings might change due to the influence of gravity motivated experimental

work in Göttingen.

14



1.3. EXPERIMENTAL WORK IN GÖTTINGEN 15

(a) Experimental setup (b) Image of breath figure on lid

Figure 1.3: A schematic of the experimental setup of Lapp (a), together with a representative
image, (b), of the droplets clinging to the underside of the cooled lid in (a).

1.3 Experimental Work in Göttingen

The research group in Göttingen has constructed a Rayleigh-Bénard cell with a trans-

parent ceiling Fig. 1.3(a). It contains steam floating on a shallow layer of water, which

is condensing on the cold lid of the cell. Droplets grow, merge and eventually drip

down into the water basin when they reach a centimeter critical size. When running

the setup for some time a steady state is reached, where one observes droplets of vastly

different sizes Fig. 1.3(b). At regular instances images are taken with a video micro-

scope, which are evaluated by image processing based on the Matlab Image Processing

Toolbox. Presently, there are first data available for the size distributions of the water

droplets forming on the ceiling Fig. 1.4(a). They are in a reasonable agreement with

the shape of the droplet size distribution suggested by Family and Meakin Fig. 1.4(b).

However, a priori it is not clear whether Family and Meakin’s results can apply to

this experimental setup. After all, they considered a system which keeps coarsening in

time, while the droplets in this system eventually drip off the cell’s ceiling. Furthermore

their models idealized the shape of, interaction between and flux onto droplets in order

to facilitate the renormalization group treatment and to be able to numerically treat

the model with the limitations of computing resources available twenty year ago. This

motives us to strive for a more complete model incorporating more physical detail.

Furthermore, Family and Meakin’s theory did not account for droplet sizes to have

15



16 CHAPTER 1. INTRODUCTION

(a) Measured size distribution based on pic-
tures as shown in Fig. 1.3(b). The quantity
s = r3 is the size of the droplets in terms of
perceived volume for a measured radius r.

(b) Simulated size distribution from Fam-

ily and Meakin[8]. The quantity s is the
actual volume of the droplets. The different
lines refer to different times. The “bump”
moves to the right with increasing time.

Figure 1.4: Comparison between the measurements taken by Lapp and that the simulations
conduced by Family and Meakin[8].

Figure 1.5: Freshly nucleated hanging droplets on a planar substrate. Since no smaller droplets
can be seen in the voids, this appears to indicate a minimal size for which droplets can nucleate.

a lower bound at droplets of a fixed minimum size. Essentially droplets below this size

cannot nucleate on a substrate, which is a direct contradiction to the scaling assumption

underlying the proof of Theorem 1.1.

Lapp found that there appears to be a minimum size for droplets nucleating on a

planar substrate. An example of this is demonstrated in Fig. 1.5, showing a minimum

size for droplets nucleating in a patch of the substrate that has recently been cleared by

coalescence or droplets falling off.

16



1.4. AIMS OF THE RESEARCH PROJECT 17

1.4 Aims of the Research Project

In our research project we will revisit the modeling of breath figures in order to address

in more detail the physical processes behind the formation of droplets suspending from a

flat level surface. We are looking for the most elementary generalization of the previous

studies, which will allow us to address:

1. the theory of Family and Meakin, in order to gain a deeper understanding of

the scaling behavior of breath figures when there is a lower cutoff to the droplet

size, and understand why the simulated distributions deviate from the theoretical

prediction.

2. how the droplet size distribution looks like in a steady state reached when particles

attach to the lower side of a horizontal surface such that very large droplets are

removed from the surface by gravity

3. the relevance of non-spherical (but still axially symmetric) droplet shapes arising

due to gravitational forces acting on the big droplets in the system.

17
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Chapter 2

Droplet Shapes

Nothing at all takes place in the
universe in which some rule of
maximum or minimum does not
appear

Leonhard Euler

This work differentiates itself from previous works (such as Family & Meakin [8] and

Beysens & Knobler [3]) in the sense that we explicitly address the effect of gravity

— in particular for the formation of dew on the underside of a substrate. Hence it

seems only natural to first ask what sets hanging droplets apart from sessile ones in the

presence of gravity?

In essence, a system of hanging droplets exhibits:

1. a length scale beyond which droplet shape can no longer be approximated by a

spherical cap, and

2. a fixed size characterizing the “yielding size”; the size of the largest droplet before

the droplet mass would cause it to be torn from the substrate.

In this section we formulate a means of characterizing the shape of hanging droplets

with a fixed contact angle and derive from this useful quantities such as:

1. the relationship between the observed radius and volume,

2. the maximal size of a droplet at a fixed contact angle (”Yielding Size”, or ”Yielding

Radius”), and

3. the contact line forces.

19



20 CHAPTER 2. DROPLET SHAPES

2.1 Total Energy Functional Approach

When a droplet of some liquid is subject to a body force, in the static case it will

assume a stationary state where the sum of all body forces are at balance with the

surface tension. This can be most readily written down as minimizing the total energy

as a functional of the enclosing surface.

2.1.1 Axially Symmetric Total Energy Functional

For an axially symmetric droplet, and in the absence of an interaction with a substrate

(i.e., negligible contrast of liquid-substrate and gas-substrate surface tension), the total

energy functional has a very intuitive and simple form, depending on which way we

write the function describing the surface φ(x). Here we may consider two alternative

approaches summarized in Fig. 2.1(a) and Fig. 2.1(b):

a) The free parameter is the radial distance, thus r is the radial distance and φ(r) is

the ”depth” of the droplet at a distance r from the center (Fig. 2.1(a)).

b) The free parameter is the axial distance, thus h is the axial distance and φ(h) is the

”breadth” of the droplet at a distance h from the substrate (Fig. 2.1(b)).

In either case, we may write the total energy functional independently of the chosen

coordinate system as follows:

Theorem 2.1. Let γµν be the metric describing the surface of a droplet, let ω be the

domain of a parametrization of γ and let Ω be the region bounded by γ. Then the total

energy functional for such a droplet attached to a substrate and subject to a body force

of magnitude g acting in direction x3 and surface tension σ between the droplet and

surrounding gas phase is given by:

F [γ] =

∫ ∫
ω

(
σ
√

det γ
)

dx1 dx2 −
∫ ∫ ∫

Ω

ρgx3 dx1 dx2 dx3 (2.1.1)

Proof. The total energy of a droplet, bounded by a surface ∂Ω and subject to a body

force described by a potential U , is:

F = σ|A|+
∫

Ω

U dΩ (2.1.2)

where |A| is the total surface area of the droplet. It is then a simple application of

calculus in curvy-linear coordinates to show:

|A| =
∫ ∫

ω

(
σ
√

det γ
)

dx1 dx2 (2.1.3)

20



2.1. TOTAL ENERGY FUNCTIONAL APPROACH 21

(a) An axially-symmetric droplet profile
characterized by a function as described by
case 2.1.1. The shaded slither will have a
total gravitational potential energy given
by: −

∫ φ(r1)

0

∫ 2π

0
ρghr dθ dh. The fatal

case described later is made apparent by
the multi-valued nature of φ(rbad).

(b) An axially-symmetric droplet profile
characterized by a function as described by
case 2.1.1. The shaded slither will have a
total gravitational potential energy given
by: −

∫ φ(h1)

0

∫ 2π

0
ρghr dθ dr. What was a

fatal case in 2.1(a) is no longer present here
as the function φ(h) remains single valued
for all values of h.

Figure 2.1: Parametrization of surface integrals, and the parametrization used in Wente

theory. Note that in this coordinate system, gravity is directed towards the left. Hence the
integrals potential energy having a negative value.

where γ is the metric of the surface and ω is the domain of its parametrization. Fur-

thermore, if we restrict the body force along the direction dx3, our potential U may be

written as ρgx3 for a liquid mass with density ρ in a gravitational field g.

Eq. (2.1.1) is nothing more than the expression that energy can be gained by going

deeply into the gravitational potential, and that energy is lost for every unit surface

area that the droplet possesses. Interactions with the substrate have not been included

other than the substrate providing a boundary of integration. In other words, the

substrate provides us with an axis bounding our integral. This is not a physically

correct method for dealing with the interaction energy between droplet and substrate

as energy can be gained/lost when the liquid is wetting the substrate (depending on

whether our substrate is hydrophilic or hydrophobic). In section 2.2.1 we will show,

how to augment the approach to account for these contributions.

21



22 CHAPTER 2. DROPLET SHAPES

The parametrization shown in Fig. 2.1(a) has a very intuitively appealing form and so

we shall examine it first. For this case, the metric γµν has the following properties:

γhh = φ′2(r)

γrr = 1 (2.1.4)

and 0 elsewhere, where the r and h directions are defined in Fig. 2.1(a). Also choosing

cylindrical coordinates centered about the axis h we may write the Jacobian determinant

as: det J = r.

Hence we can write the total energy functional as:

F [φ(r)] =

∫ R

0

∫ 2π

0

(
σ
√

1 + φ′2
)
r dθ dr −

∫ R

0

∫ φ(r)

0

∫ 2π

0

ρghr dθ dh dr

= π

∫ R

0

r
(

2σ
√

1 + φ′2 − ρgφ2
)

dr (2.1.5)

where φ(r) is the depth the droplet at a radial distance r from its center, σ is the surface

tension of the liquid phase, ρ is the density of the liquid phase, R is the radius of the

wetted region of the substrate, and g is gravitational constant.

While the formulation based on the parametrization in Fig. 2.1(a) is probably the most

intuitive, it is not the most universal as undulations would make φ(r) no longer a

function (example shown in Fig. 2.1(a)). Since undulations are commonly seen for

these surfaces [10], it would seem sensible to formulate our problem in such a light that

φ(x) remains a function for all parameters that we wish to choose. This motivates us

to formulate the total energy functional as shown in Fig. 2.1(b).

In the parametrization detailed in Fig. 2.1(b), the metric γµν has the following properties:

γrr = φ′2(h)

γhh = 1 (2.1.6)

and 0 elsewhere. Where the r and h directions are defined in Fig. 2.1(b). Also choosing

cylindrical coordinates centered about the axis h we may write the Jacobian determinant

as: det J = φ(h).

Hence, in such coordinates, Eq. (2.1.1) would become:

F [φ(h)] =

∫ h0

0

∫ 2π

0

(
σ
√

1 + φ′2
)
φ(h) dθ dh−

∫ h0

0

∫ φ(h)

0

∫ 2π

0

ρghr dθ dr dh

= π

∫ h0

0

φ(h)
(

2σ
√

1 + φ′2 − ρghφ(h)
)

dh (2.1.7)

As the static shape of a droplet is given by the surface which minimizes the total energy

functional of said droplet, in order to determine the shape of the surface of such a

22



2.2. WENTE’S PARAMETRIZATION 23

droplet, all that now needs to be done is to determine the surface such that the total

energy functional is stationary:
δF [φ(x)]

δφ(x)
≡ 0 (2.1.8)

According to the Euler-Lagrange formalism, condition (2.1.8) is satisfied for the total

energy functional Eq. (2.1.7) iff:

2σ
√

1 + φ′2(h)− ρghφ(h)− d

dh

(
2σφ(h)φ′(h)√

1 + φ′2(h)

)
= 0 (2.1.9)

2.2 Wente’s Parametrization

An approach to solve the differential equation (2.1.9) has been suggested by Wente

[17] who has proven the following theorem:

Theorem 2.2. Let the parameter s(τ) ≡
∫ τ

0

√
1 + φ(x)′2 dx be the distance along the

curve φ(x) starting the integral from the point (0, h0) and integrating towards the sub-

strate. Let ψ be the angle between the tangent to φ(x) and the substrate, and let h be

the axial coordinate and r be the radial coordinate of the parametric curve for ψ(x) (as

defined in Fig. 2.1(a) and Fig. 2.1(b)). Then φ(x) is a surface satisfying (2.1.8) for

(2.1.5) or (2.1.7) iff:

dψ

ds
= −h− sinψ

r
(2.2.10a)

dr

ds
= cosψ (2.2.10b)

dh

ds
= sinψ (2.2.10c)

Where r and h are measured in units of capillary length.

Proof. We may simplify the rather nasty Eq. (2.1.9) using the parametrization described

in Theorem 2.2 and Fig. 2.1(b):

As Eq. (2.1.9) holds at the surface of our droplet, it is more sensible to describe the

parametrized surface of the droplet (h(s), r(s)) as solving a set of differential equations

defined on (h(s), r(s)). Firstly, as ψ is the angle of the surface to the substrate, we find:

1

φ′(h)
=

dh

dr
= tanψ ⇒ ds

dh
=
√

1 + φ′2(h) =

√
1 +

1

tan2 ψ
(2.2.11)

and using this, we may now re-express Eq. (2.1.9) in terms of our parametrized curve

23



24 CHAPTER 2. DROPLET SHAPES

(h(s), r(s)):

ds

dh
=

√
1 +

1

tan2 ψ

⇒ dh

ds
= sinψ (2.2.12)

dr

ds
=

dr

dh

dh

ds
=

dr

dh
sinψ =

1

tanψ
sinψ

⇒ dr

ds
= cosψ (2.2.13)

whereas the equation for ψ is somewhat more inspired. Starting from Eq. (2.1.9), we

may apply the parametrization discussed in Fig. 2.1, namely (φ(x), x) = (r(s), h(s))

This means that φ (h(s)) = r(s):

2σ
√

1 + φ′2(h)− ρghφ(h)− d

dh

(
2σφ(h)φ′(h)√

1 + φ′2(h)

)
= 0

⇒
√

1 + r′2 − d

dh

(
r dr

dh√
1 + r′2

)
= −ρg

σ
hr (2.2.14)

Re-expressing all units in terms of the capillary length λc =
√

σ
ρg

yields:

1

sinψ
− d

dh

(
r 1

tanψ

1
sinψ

)
= −hr

⇒ 1

sinψ
− d

dh
(r cosψ) = −hr

⇒ 1

sinψ
− dr

dh
cosψ + r

d

dh
(cosψ) = −hr

⇒ 1

sinψ
− cosψ

tanψ
+ r sinψ

dψ

dh
= −hr

⇒ dψ

dh
= −h− sinψ

r
(2.2.15a)

Where the last step relies on: 1
sinψ
− cosψ

tanψ
= sinψ and Eq. (2.2.12). Thus completing

the proof1.

Also, nothing has been said about the boundary values of this problem. We will use

the convention that s(τ = 0) = 0 represents the lowest point on the droplet, and that

s(τ = h0) = S represents the point where the droplet meets the substrate such that

h(S) = 0.

1We remark: the same approach can be applied to Eq. (2.1.5), yielding the same result with some-
what simpler algebra. However, as the parametrization shown in Fig. 2.1(a) is only well defined for a
subset of shape profiles the proof will be omitted here.
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In other words, physically realistic solutions are ones that solve Eq. (2.2.10a) to Eq. (2.2.10c)

under the constraint that:

ψ(0) = 0 (2.2.16a)

r(0) = 0 (2.2.16b)

h(0) = h0 (2.2.16c)

and upon integration2 we find:

ψ(S) = α (2.2.18a)

r(S) = R (2.2.18b)

h(S) = 0 (2.2.18c)

where α is the contact angle with the substrate.

When computing the shape profiles defined by Eq. (2.2.10) for different h0 values and

subject to constraints (2.2.16), one notices a spread of contact angles at the substrate.

This observation is actually sensible as Eq. (2.1.1) has ignored the interaction between

the substrate and the droplet which fixes the contact angle. This motivates us to extend

the method to find droplet shapes with a prescribed contact angle.

2.2.1 Including Contact Angle in Wente’s Solution

Modifying Eq. (2.1.1) to include a term for the energy due to an interaction between

droplet and substrate would require numerical solutions to be somewhat more laborious,

as they usually require self-consistent solutions to be found for some discretized surface

elements. The elegance of solutions discussed in section 2.1.1 lies in the fact that they

may be integrated with relative ease, using programs such as MATLAB c© leaving the

physicist time for physics rather than programming.

An inspiration into how contact angles may be included in the method by Wente

comes from realizing that contracting the r axis and stretching the h axis would in

2There is a subtlety to be taken into consideration when computing solutions numerically: At the
point (r, h) = (0, h0), Eq. (2.2.10a) has a singularity which fortunately is a removable singularity:

lim
s→0

dψ
ds

= 0 (2.2.17)

i.e., the profile becomes flat at the lowest point, and therefore does not pose a formal concern to the
regularity of this problem. However, numerical methods such as Runge-Kutta methods can quickly
become unstable near the point (r, h) = (0, h0) and yield divergent solutions due to numerical errors.
Hence care needs to be taken at the point (r, h) = (0, h0). Ergo, it is a wise strategy to require
Eq. (2.2.16a) to read ψ(ε) = 0 (allowed because of 2.2.17) and integrate from there until such a τ such
that h(s(τ)) = 0.
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26 CHAPTER 2. DROPLET SHAPES

fact produce a different contact angle in these new coordinates. Of course one needs

to know how equations (2.2.10a), (2.2.10b), and (2.2.10c) change under said coordinate

transformation.

In this section a primed-derivative, φ′(h) denotes the derivative with respect to un-

transformed coordinates, whereas a dotted-derivative, φ̇(H), denotes a derivative with

respect to a transformed coordinate.

Definition 2.1. For some dilation factor, q ∈ R, let capital letters3 denote the coordi-

nates obtained by transforming their lower-case counterparts introduced in Fig. 2.1(a)

and Fig. 2.1(b) subject to the transformation:

R ≡ q · r (2.2.19a)

H ≡ 1

q
· h (2.2.19b)

S(τ) ≡
∫ τ

0

√
1 + φ̇2(X) dX (2.2.19c)

where Eq. (2.2.19c) refers to the distance along our droplet surface in the new coordi-

nates, the integral is performed in the new coordinates.

Lemma 2.1. Given the coordinate transformation definition 2.1, derivatives transform

as follows:

d

dr
= q

d

dR
(2.2.20a)

d

dh
=

1

q

d

dH
(2.2.20b)

Proof. Application of the chain rule.

Lemma 2.2. In the spirit of the convention outlined in definition 2.1 we interpret Ψ as

the angle between the substrate and the tangent of the droplet surface measured in the

transformed coordinates giving:

1

φ̇(H)
=

dH

dR
= tan Ψ (2.2.21)

Proof. Repeated application of lemma 2.1 on the parametrization used in the proof for

theorem 2.2.

With these lemmas we now have an understanding that the quantities in the transformed

coordinates can be parametrized in a similar manner as with the surface in the untrans-

formed coordinates. The intuitive step here, is that we may adjust the contact angle of

3Note, the symbol R also refers to the wetting radius of our droplets (refer to Fig. 2.1). This should
not lead to any confusion, for the convention that capital letters refer to transformed coordinates is
only used in this subsection.
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2.2. WENTE’S PARAMETRIZATION 27

an already determined surface by squeezing it lengthwise and stretching it breadthwise.

All that now remains to be done is determine how Equations (2.2.10a), (2.2.10b), and

(2.2.10c) change under the transformation, this is done with the following theorem:

Theorem 2.3. Let q ∈ R, let the parameter S(τ) ≡
∫ τ

0

√
1 + φ̇2(X) dX be the distance

along the curve φ(X), let Ψ be the angle between the tangent to φ and the substrate, and

let H be the axial coordinate and R be the radial coordinate of the parametric curve for

ψ(X) [analogue to the lower-case units defined in Fig. 2.1(a) and Fig. 2.1(b)]. Then

φ(X) is a surface satisfying (2.1.8) for (2.1.5) or (2.1.7) iff:

dΨ

dS
= −

(
λ3(Ψ, q)

q2

)
H −

(
λ2(Ψ, q)

) sin Ψ

R
(2.2.22a)

dR

dS
= cos Ψ (2.2.22b)

dH

dS
= sin Ψ (2.2.22c)

λ(Ψ, q) =

√
cos2 Ψ + q4 sin2 Ψ (2.2.22d)

where R and H are measured in units of capillary length.

Proof. By application of Lemmas 2.1 and 2.2 to Eq. (2.2.14), we get the Euler-Lagrange

equation for our system in the transformed coordinates:

− 1

q2

√
q4 + Ṙ2 − 1

q2

d

dH

 R dR
dH√

q4 + Ṙ2

 = −HR (2.2.23)

Using the definition of the angle in the new coordinates, Ḣ = tan Ψ, and the natural

parametrization of the curve in the new coordinates dS
dR

=
√

1 + Ḣ2, the same algebra

utilized in the proof for Theorem 2.2 yields that, given Eq. (2.2.23):

dR

dS
= cos Ψ (2.2.24)

and:
dH

dS
= sin Ψ (2.2.25)

It is then a matter of more tedious but still trivial algebra to find4:

dΨ

dS
= −

(
λ3(Ψ, q)

q2

)
H −

(
λ2(Ψ, q)

) sin Ψ

R
(2.2.26)

completing the proof.

4Following essentially the same tricks used in the derivation (2.2.15) and recognizing the form of
Eq. (2.2.22d)
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28 CHAPTER 2. DROPLET SHAPES

The ODEs found by Wente are unit-free, hence each solution to Wente’s equations

(2.2.10) represents a class of droplets where the capillary length would be used to relate

this unit-free solution to real-world materials. Hence, how theorem 2.3 ought to be

interpreted is that the parameter q makes the radial and axial directions have slightly

different lengths, in turn changing the contact angle. In order to ensure that the same

physics takes place in the new coordinates, the coupled ODEs which determine the

surface are also changed. Yet they remarkably retain most of their form except for a

shape distortion function λ(Ψ, q).

The droplet volume is not conserved by this transformation, in spite of this, this does

not constitute a problem since quantities such as radius of the wetted area and volume

are quantities that are “measured” from the droplet profiles. The user of this model only

fixes the depth of the droplets and their contact angle calculating the droplet profile,

from this they derive useful quantities such as radius and volume which can then be

plotted against each other. In this sense, the droplet depth enumerates the set of all

droplet profiles which can then be analyzed for the quantities of interest.

2.3 Shape of Hanging Droplets

Now we have a means to using Wente’s solution on real-world problems which actually

interact with the substrate to which they cling. This interaction is phenomenologically

modeled using the contact angle α, which is a quantity depending on the materials of

the liquid phase and the substrate, and the morphology of the substrate.

2.3.1 Applying the Modified Wente Equations

The factor q only implicitly determines the contact angle α. Hence the function q(α) is

not known explicitly. It turns out, however, that for any contact angle α of interest it

is relatively straight forward to guess solutions φq1 and φq2 with contact angles αq1 and

αq2 respectively, such that αq1 < α < αq2 . Consequently, bisection iteration lends itself

as a suitable means for improving the estimate for the q yielding our desired α5.

This provides us with a simple algorithm for finding solutions with fixed contact angle:

1. Let α be our desired contact angle. Determine an upper bound, qu, and a lower

bound, ql, solutions for the q factor.

2. Determine the contact angle for the upper and lower bound solutions, with contact

angles αu and αl respectively.

5An important limitation of using this method is that up to now, we could not find profiles with a
angle greater than 90◦. Consequently, profiles with contact angles greater than 90◦ are not accessible.
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2.3. SHAPE OF HANGING DROPLETS 29

(a) (b)

Figure 2.2: The volume (Fig. 2.2(a)) and the radius (Fig. 2.2(b)) of different solutions to
Wente’s problem whilst holding contact angle fixed at the values shown. The different h0

values represent different solutions (and also representing the depth of the droplets).

3. Iterate the following algorithm until |α − αm| is less than the error tolerance

(typically 10−6 for this work).

(a) Compute the mid-point solution for qm ≡ qu+ql
2

and determine its contact

angle αm

(b) If αm − α > 0 then re-assign the mid-point solution to the upper-bound

(c) else re-assign the mid-point solution to the lower bound.

2.3.2 Results

The model parameter which determines the solution found by integrating Eq. (2.2.22)

is the starting point h0. Hence {h0} enumerates the solutions for the Wente problem.

We can now apply the algorithm discussed in section 2.3.1 to fix the contact angle while

varying h0. Moreover we can extract useful measurable quantities such as volume and

radius of the wetted area (henceforth this shall be referred to as just “radius”) from

these profiles. These shall be discussed here:

We may then combine the relationships S(h0) and R(h0), shown in the two panels

of Fig. 2.2 to determine the quantity S(R), the dependence of volume on radius, by

interpreting h0 as the parameter of a parametrized version of the curve of S(R), simply

by using: (R, S(R)) = (R (h0) , S (h0)). This yields Fig. 2.3.

Fig. 2.3 surely shows a rather curious behavior: there are multiple solutions for the

volume of a droplet for a given volume. The reader ought to think of going to these

more exotic solutions by starting at the lower branch of Fig. 2.3 and then traveling
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30 CHAPTER 2. DROPLET SHAPES

Figure 2.3: The volume dependence on radius of different solutions to Wente’s, S(R), prob-
lem whilst holding contact angle, α, fixed at the values shown. The observed cycles that there
are multiple solutions for given S. Bifurcations in the shape of the profiles have been observed
whenever the cycle is interrupted. At these points the pendant droplet develops another “pen-
dant”. Solid lines represent both the relation that S(R) ∼ R3 (red line) and S(R) ∼ R3 + R5

(green line) to aid the reader in observing the transition from spherical caps to more elongated
profiles.

counter-clockwise to solutions of higher volume. As discussed later, these solutions

are not stable against axial perturbations and therefore are not physically realizable.

However this is still an interesting mathematical curiosity which can be understood by

examining the shape of the droplet. Fig. 2.4 shows the shape of droplets for different h0

parameters.

From the transition from Fig. 2.4(b) to Fig. 2.4(c) we can see a clear difference in shape,

most notably: the development of inflection. This causes most of the volume to become

displaced in the “pendant” rather than near the surface, and so the apparent contact

radius is reducing with increasing volume. If one was to take this a step further, we

could see a profile shown by Fig. 2.5 which represent the creation of new pendants and

correspond to the saddle-node bifurcations seen in figures 2.2(a) to 2.3. See Wente

[17] for a more detailed discussion of these unstable solutions. However, as these profiles

are far from stable, they are not physically relevant. We have shown these only for

mathematical completeness.

We now return to the subject of the function V (r) as shown in Fig. 2.3. One question
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(a) Metastable droplet. In
capillary length units: h0 =
1.65, R = 1.96

(b) First unstable droplet.
In capillary length units:
h0 = 1.70, R = 1.85

(c) Pendant droplet. In cap-
illary length units: h0 =
2.50, R = 1.12

Figure 2.4: Profiles of droplets for fixed contact angle α = 45◦: (a) metastable droplet just
before it becomes unstable; (b) unstable case; (c) unstable case displaying a characteristic inflec-
tion, which is often called a “pendant” droplet. The change in radius from (a) to (b) indicates
that the least stable droplet also has the largest wetting radius.

(a) Shortly before bifurcation.
h0 = 4.30(units of capillary
length)

(b) Shortly after bifurcation.
h0 = 4.35 (units of capillary
length)

Figure 2.5: Saddle-Node bifurcation causing the “jumps” visible in Fig. 2.3. These cases are
plotted for a contact angle of α = 45◦. At critical depths h0, the shape discontinuously changes,
causing the formation of an additional point of inflection. This is responsible for discontinuities
in functions such as the volume S(R) or the energy of the droplets. Of course these droplet
profiles are far from being stable.

that greatly concerns the experiments by Lapp is at which radii do the droplets stop

being spherical caps? One method would be to include a high order-dependence on

radius in the equation form volume:

S(R) ' c(α)R3

(
1 +

κ

c(α)
R2

)
(2.3.27)

Eq. (2.3.27) may be considered an approximation to the “true” function V (r): We
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32 CHAPTER 2. DROPLET SHAPES

consider the total energy functional

F [φ(h)] = π

∫ h0

0

φ(h)
(

2σ
√

1 + φ′2 − ρghφ(h)
)

dh

F [φ(h)]] = 2π

∫ h0

0

φ(h)σ
√

1 + φ′2 dh− π
∫ h0

0

ρghφ2(h) dh (2.3.28)

where the first integral goes as O (σR2) and the second integral scales like O (ρgR4), R

being the wetting radius of our droplets. Hence the second term is a correction of order

ε ≡ O
(
ρg
σ
R2
)

= O
(
R2

λ2
c

)
. Thus corrections to our volume are expected to take the form:

S(R) = c(α)R3
(
1 + ε+O

(
ε2
))

= c(α)R3

(
1 +O

(
R2

λ2
c

)
+O

(
R4
))

(2.3.29)

hence indicating that the first correction ought to be of order 5 with respect to the

wetted radius.

The term c(α) is a term depending on the contact angle and would be 2π
3

for a contact

angle of 90◦. c(α) may be given analytically as demonstrated by Tadmor [14]:

c(α) =
π

3

(
2− 3 cosα + cos3 α

sin3 α

)
(2.3.30)

As Fig. 2.6 shows, there is a transition at about 0.6 times the capillary length.

It is also clear form Fig. 2.6 that κ in Eq. (2.3.27) can be used to determine when

the transition from spherical caps occurs. As the contact angle in many experiments is

poorly defined (either due to contact angle hysteresis or because of contact line pinning),

or difficult to measure as in the case of Lapp, it may be a suitable fitting parameter.

Hence, we studied the dependence of κ on α as shown in Fig. 2.7.

2.4 Stability and Yielding of Hanging Droplets

Another quantity of great interest is the radius at which droplets pinch off due to surface

tension forces no longer being able to withstand the droplet’s weight (henceforth this

shall be referred to as “yielding radius”).

In order to find this quantity, one first needs to define a stability condition for hanging

droplets. This is most readily determined from the total energy functional Eq. (2.1.1)

using Eq. (2.4.31).

Lemma 2.3. Given a function φh0α which minimizes Eq. (2.1.1) according to Eq. (2.1.8),

and letting E(h0) = F [φh0α] then φh0α is physically stable if:(
∂E(h0)

∂h0

)
α, S

> 0 (2.4.31)

where the derivative is taken while holding the contact angle α and volume S constant.
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Figure 2.6: The actual function S(R) for α = 81◦ showing the transition from spherical caps
(red line) to a higher-order function (approximated by Eq. (2.3.27)). Magenta points have been
used in fitting Eq. (2.3.27), which then extrapolates well for greater radii. For a radius of approx.
0.6 capillary lengths the droplet no-longer may be considered a spherical cap.

Proof. If Eq. (2.4.31) is negative, then allowing the lowest point of the droplet to move

lower is energetically favorable. Thus, while such solutions represent stationary surfaces

according to Eq. (2.1.8), these would not be stable against small perturbations in the

axial direction.

2.4.1 Numerical Data

We may now apply Eq. (2.4.31) to our numerical data, giving Fig. 2.8. This may be

interpreted using Theorem 2.3.

Our data shows a clear cutoff after which solutions are no longer physically stable as

they would loose potential energy by moving their lowest point deeper.6

6Yet, there are h0 parameters for which the droplets should become stable again according to
Theorem 2.3. This however, does not constitute real physical stability as these states cannot be reached
from physically stable states since they need to pass through the physically unstable ones. Furthermore
these sudden stable regions appear to be caused by the shape bifurcations discussed earlier; when a
droplet needs for form additional “pendants” for a short time, the surface area needs to be increased
without gaining much gravitational potential energy. This would constitute a form of meta-stability
near such bifurcations. Yet in reality a droplet would just yield by forming one “pendant” which would
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34 CHAPTER 2. DROPLET SHAPES

Figure 2.7: Plot of κ(α)
c(α) in Eq. (2.3.27). As of the time of writing, there exists no theory to

explain the form of the function.

From this first onset of instability, we can make a prediction about the dependence of

contact angle on the yielding radius, this is outlined in Fig. 2.9. We can also see from

this data, that as the contact angle increases, the droplets become deeper (relative to

their radius) before they fall than their counterparts with low contact angle.

2.4.2 Comparison to Experiments

From Fig. 2.9 we can predict the contact angle, merely by observing the largest droplet

radius hanging from the substrate. The maximum, radius observed in the experiments

of Lapp is 0.87 capillary lengths, which according to Fig. 2.9 corresponds to a contact

angle of approximately 79◦.

This is in agreement with direct measurements of the contact angle in Lapp’s experi-

ment. One needs to be cautious though. Real world experiments always have a degree of

contact angle hysteresis and contact line pinning, whilst such quantities are not included

in this static theory as they are variables depending on the dynamics of the droplets.

Of course this is only a verification with one data point, and so does not carry much

consequently drip off. Investigation the existence of these metastable regions of many pendants would
require the inclusion of the dynamics of a droplet while it moves from one state to another and thus is
beyond the scope of this research.
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2.5. CONTACT LINE FORCES 35

Figure 2.8: Plot showing the change in total energy of a droplet given a small positive change
in the axial direction. Once this change in total energy becomes negative, the droplet is no longer
stable against axial perturbations. The change in energy becomes positive again for very deep
droplets, this however is an artifact due to the bifurcations in droplet shape discussed earlier.

weight. Further experiments with different contact angles is left to future research, due

to the technical complexity associated with changing the contact angle of the experi-

mental procedures used in tandem to this work.

2.5 Contact Line Forces

Using our data, we may also estimate the force on the contact line with the following

lemma:

Lemma 2.4. Let r be the radius of a droplet on the substrate, given a function φrα
which minimizes Eq. (2.1.1) according to Eq. (2.1.8), and letting E(r) = F [φrα] then

the force exerted in “moving” the solution φrα to one with a different radius is given by

f :

f ' 1

2π

(
dE(r)

dr

)
α, S

(2.5.32)

where the derivative is taken while holding the contact angle α and volume S constant.

Proof. Eq. (2.5.32) is nothing more than staying “Virtual work is force times infinites-
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Figure 2.9: Plot showing the yielding radius as a function of α (blue line) and the maximum
depth of droplets shortly before yielding (green line) for comparison. For larger contact angles,
the largest droplets extend further downwards.

imal distance”. Thus Eq. (2.5.32) represents the change in the energy given a change

brought about by moving the contact line for a small amount which is exactly the

definition of a force.

Lemma 2.5.32 can be thought of giving a estimate for the force per unit length along the

contact line at the very least. Applying Lemma 2.5.32 to our data yields the dependence

of the contact line forces on the radius of the droplet as detailed in Fig. 2.10(a).

For comparison, two extreme cases for contact angle have been plotted showing that for

larger contact angles, the droplets exert a greater force onto the contact line and that

this force grows with the radius of the droplet. The first observation is an expected result

as contact line pinning decreases with increasing contact angle. The second observation

can be understood as larger droplets having greater mass, and so these would “pull”

more on the contact line. Whereas the sudden drop in contact line forces occurs at the

same radius where droplets start yielding, and so is associated with the instability of the

solution. This also indicates the dynamics of droplet yielding; once a droplet becomes

unstable, a large amount of the bulk pinches off, alleviating the “pulling” of the droplet

bulk on the contact line.

This has also been seen by Lapp in experiments involving glass plates, were the larger

droplets where “more spherical” i.e., not subject to as much contact line pinning.
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Figure 2.10: The force per unit length at the contact line of a droplet with α = 45◦ (blue line)
and with α = 81◦ (green line). The power law f(r) = r

3
4 is shown in the red line for comparison.

Panel (b) shows the data of (a) on a log-log scale.

(a) (b)

Figure 2.11: Pictures from the experiments of Lapp. Fig. 2.11(a) shows the shape of droplets
for low contact angles (water on glass). Of particular note is that the large droplets are sig-
nificantly more round than the small droplets. This is agrees with the maximum observed in
Fig. 2.10(a). Fig. 2.11(b) show the shape of droplets on a plastic coating, where the contact
angle is significantly higher. We can see that for high contact angles, contact line pinning has
little effect.

Fig. 2.11 demonstrates this and that when the contact angle is increased by coating

the plate with plastic, then all observed droplets are almost circular.

A final interesting note is the observation that this force is dependent on the radius by

a power law of exponent 3
4

(red line in Fig. 2.10(a)).

37



38 CHAPTER 2. DROPLET SHAPES

2.6 Conclusion

We have extended Wente’s model for hanging droplets to account for fixed contact

angles. Wente’s model has the advantage of being easily applied as solving it merely

involves numerically integrating a system of ordinary differential equations.

Our improved model can be applied to axially symmetric droplets hanging off a planar

surface with a fixed contact angle less than 90◦.

Including contact angle in this model has made it applicable to a wide range of problems.

Using this improved model, we were able to determine the dependence of volume on

radius for droplets hanging off a planar surface. We were also able to determine the

stability threshold of droplets and how this depends on the contact angle. This gives us

a means of estimating the contact angle, simply by observing the yielding radius. This

was found to be in agreement (at least qualitatively) with experiments. Furthermore, we

were able to estimate the contact line forces. This allowed us to explain why an increased

contact angle causes droplets to be less sensitive to contact line pinning effects.
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Chapter 3

Numerical Implementation

Hardware: the parts of a
computer that can be kicked

Jeff Pesis

There exists no characteristic scale for the droplet sizes observed in breath figures, or

at the very least, we do not know the scale in advance. This may be illustrated by

examining how droplets interact when they produce a breath figure: when the edges

of 2 or more droplets are in contact, they coalesce. This means that when we wish to

determine whether a given droplet is in contact with any other droplet in the system,

we need to compare it to every droplet in the system. Knowing the coordinate of the

droplet in question does not help us reduce to number of comparisons that need to

be made. This is simply because a very large droplet may be very far away from our

droplet in question, yet due to its size, its edge may be very near the edge of the droplet

being tested. Hence, storing all droplets merely in an array of N elements would result

in the need to perform N(N − 1) collision checks for every new droplet added and

every coalescence event. Considering that there may be many millions of droplets, this

checking may take a long time.

Instead, the more intelligent solution would be to keep a list of “nearby” droplets asso-

ciated with each droplet. Then our droplet in question only needs to perform collision

checking with the nearby droplets without needing to check all droplets.

This does require an intelligent and fast method of updating these lists of nearby

droplets.
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(a) (b) (c) (d) (e)

Figure 3.1: The Delaunay property in action: In (a) we have 4 points, for these 4 points, there
are 2 possible triangulations. The boundary of our set may be connected trivially as seen in
(b). This is the only configuration as links are not allowed to cross. We then have to make a
decision about which diagonal to choose. In (c) and (d) we see the two possible choices for the
diagonal. For each choice of the diagonal we have 2 triangles which may be circumscribed by
a unique circle. For the case of (c) at least one node falls into into at least one circumcircle.
This means that there this troublesome node is closer to the circumcenter. This violates the
Delaunay property. However in the case of (d), every circumcircle is empty. Hence the vertexes
are either equidistant, or further away, from each circumcentre. Since we are interested in a
minimal neighborhood network, we shall choose the configuration (d) as our final choice of the
Delaunay network (e). In this way, each circumcircle’s center has exactly 3 closest neighbors.

3.1 Delaunay Triangulation

The method of Delaunay triangulations1 assigns a set of neighbors to each node in a

network. This set of neighbors is a minimal set, i.e., any network which assigns each

node with fewer neighbors would “miss” some of them.

Furthermore Delaunay triangulations provide themselves as a candidate for this intelli-

gent method for keeping lists of adjacent nodes because it is fast and well studied. As

an added bonus, the Voronoi network (which tells us the region closest to each node) is

simply the dual lattice of the Delaunay network.

Consequently, in this work we shall then use the Delaunay triangulation to determine.

Appendix A is a detailed background on why triangulations work, instead, here we

shall give the reader an intuition into Delaunay triangulations using Fig. 3.1 and the

associated caption.

1A triangulation of a set of points, is a set of triangles, such that these triangles have the points at
their vertexes and no point is left out. In a triangulation the only polygon is a triangle and no edges
of the triangles may cross each other.
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3.1.1 Computing Considerations

Initially this proved to be anything but a trivial task; most algorithms for finding nearby

vertexes in a collection of points are optimized for “sweeping” through all points and

constructing the Delaunay and Voronoi network from scratch. We found only little

research on locally updating an existing network.

Ultimately a very insightful paper [9] was found detailing a simple algorithm for updating

the Delaunay network. This provided us with a strategy for performing our simulations:

1. set up an initial “trivial” grid by hand (connect the few initial points manually

using a A.connectWith(B) method

2. add a new droplet to a Voronoi cell, connect the new droplet to its neighbors, and

locally update the Voronoi and Delaunay networks

3. resolve collisions

4. repeat from step 2, until a criterion for maximum time or droplet size is reached.2

It is worthwhile to note that the choice of programming language is very important

at this stage. Obviously our algorithm is going to be recursively defined, each object

was going to contain a list of arbitrary length denoting its nearest neighbors, and each

update may alter an arbitrary number of vertexes in the Delaunay network. These

properties make it clear that our algorithm requires:

1. lists of objects with variable length, requiring fast access speeds.

2. a variable amount of temporary memory which cannot be deterministically pre-

allocated before it is actually needed (since each update may be followed by an

unknown number of nearby updates).

This means that the computer will need to reserve and then free a lot of memory dy-

namically. Also the language of choice should come with a large collection of methods

and objects to efficiently deal with dynamical array lists. As a result the Java program-

ming language was chosen as it has a very efficient and highly tunable garbage collector

(to save the physicist from needing to hunt for good memory management algorithms,

something which is not really an interesting physical problem) and it comes with a large

library of generic data types called “Collections” which very efficiently deal with col-

lections of abstract objects which require dynamic memory allocation and require fast

access, searching and sorting all the while being large and unwieldy.

2or until the computer starts to swap!
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This philosophy of “the physics is the interesting part, not the pointers” ultimately

resulted in the choice for Java. In particular since for Java 1.2 (and newer versions)

the virtual machine performs just in time compilation (the java bytecode is compiled

to native code at runtime) which results in program performance which is comparable

to that of C++ programs after the Java program has been running for a short time.

Furthermore, the JVM does perform some optimization of the code based on information

gathered during runtime.

3.1.2 The Mostafavi Algorithm

Mostafavi et al [9] proposed an algorithm for locally updating Delaunay triangu-

lations based on “Swap” operations similar to rearrangements in soap foam bubbles.

Such algorithms have reported performance between O (
√
n) and O (log n), for networks

containing n nodes, depending on specific optimization techniques for traversing the

network [9].

In short, Mostafavi’s algorithm entails:

add Finding a location to add a new node too

walk Performing a “walk” from some previous triangle to the triangle containing the

new point P; Fig. 3.2(a)

split Splitting that triangle into three new triangles, each having P as a vertex Fig. 3.2(b);

and

repair Ensuring that every edge is Delaunay by recursively testing each edge (triangle

pair) and switching the diagonal if necessary. Fig. 3.2(c).

Add Algorithm

Fig. 3.2 depicts the general approach to locally adding a node to the Delaunay network.

Using a walk algorithm the triangle surrounding the new point is located. Then the

point is linked to each vertex within the triangle as shown in Fig. 3.2(b). After the

new point P is included in the triangulation, each of the adjacent links is tested if it

is Delaunay, and the offensive links are swapped as described in Fig. 3.2(c) and section

3.1.2.

Any updates to the Delaunay network through swapping will require nearby links to be

checked also. Thus a recursive definition lends itself as an algorithm that only updates

the minimal part of the network. In this case care needs to be taken to avoid stack-

overflows.
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(a) Add (b) Walk and Connect (c) Swap/Repair

Figure 3.2: Sketch of the steps involved in adding a drop to the network. First the triangle
surrounding p is identified in Fig. 3.2(a). This can be most readily done using a walk algorithm.
Then the point is linked to each vertex within the triangle as shown in Fig. 3.2(b). After the
new point P is included in the triangulation, each of the adjacent links is tested if it is Delaunay,
and the offensive links are swapped as described in Fig. 3.2(c) and section 3.1.2. Any updates
to the Delaunay network will require nearby links to be checked also.

Walk Algorithm

The walk operation uses the determinant a(A,B, P ):

a(A,B, P ) =

∣∣∣∣∣∣∣
xA yA 1

xB yB 1

xP yP 1

∣∣∣∣∣∣∣ (3.1.1)

If the point P = (xp, yp) is to the left of the directed edge AB of some initial triangle,

then a(A,B, P ) > 0. If so, the next clockwise edge from B is used, if not the next

clockwise edge from A, and the test is repeated until three successive edges have P on

the left, or the right3. This is, theoretically, the least efficient part of the algorithm, and

more efficient search algorithms may be used for extremely large data sets.

The case a(A,B, P ) = 0 corresponds to P being on the line AB.

With this algorithm, one may start from an arbitrary triangle and “walk” to a desired

point to find the surrounding triangle. This algorithm is the slowest part of performing

local updates to a Delaunay triangulation, with typical algorithms performance being

reported to be O(
√
n) [9].
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(a) (b)

Figure 3.3: The swap algorithm explained: In Fig. 3.3(a), the node D is inside the circumcircle
for the triangle ABC. Thus the link BD is preferred over the link AC as a triangle ABC would
violate the Delaunay property (that all other nodes fall outside the circumcircle of each triangle).
In Fig. 3.3(b) the link AC is preferred over the link BD as the point D (which is now further
away than in Fig. 3.3(a)) now falls outside the circumcircle for the triangle ABC.

Swap Algorithm

The pivotal idea behind the algorithm is that the Delaunay network is a triangulation.

That means every polygon in the network has exactly 3 sides. Furthermore, this network

possesses the “Delaunay property”, that is every other point in the network lies outside

the circumcircle of any given triangle.

When adding new nodes to this network, the new edges might be in violation of the

Delaunay property by falling within the circumcircle of a nearby triangle. Consequently,

fixing the network proceeds by replacing offensive links by compliant ones in their stead.

However, since the Delaunay network is a triangulation, for every link destroyed one

must be created, otherwise the number of links is not conserved, creating at least 1

4-sided polygon. We can picture this as turning or swapping the link as shown Fig. 3.3.

In this algorithm, the swap will be the primitive operation. Adding or removing links on

their own is syntactically impossible as the data structures were deliberately not given

such an operation.4

3At this point an important correction was incorporated to the algorithm of Mostafavi: the original
algorithm suggested only counting left turns, however we have discovered cases where the algorithm
would circle around the point P in the right direction.

4early implementations of our code did include a .remove method, but this caused much more
trouble than it was worth.
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Delete Algorithm

The deletion algorithm is essentially the inverse to the add algorithm. Thus what needs

to be done is to “swap away” all but 3 of the links to a given point, and then remove

the last remaining links.

However this is not a trivial task: the nature of the Delaunay object is that every

modification to the network results in adjacent links being tested for the Delaunay

properties. Hence one needs to first suppress this test for (and only for) the node being

deleted (i.e., it is OK that the node being deleted falls within an circumcircle).

Furthermore, one needs to be careful that the swap away operation does not create a

new link that crosses an existing link. As this is inevitable when swapping away all of

the links for a node, a well defined order for which links get swapped first needs to be

established. The most intuitive method is to perform the swap operation which would

produce the “least Delaunay” network. Hence the link which would produce the largest

circumcircle is swapped into the now offensive position.

We swap the links producing the largest circumcircle first because: when swapping a link

into an offensive position, a number of nearby nodes would fall within the circumcircle

of the new, now defective, triangle. The network responds in the following way: all

nearby links are re-arranged such that the Delaunay property is restored for all points

except the one being deleted, essentially, the network “relaxes” into a non-defective

state. By swapping the links which produce the largest circumcircles first, this relaxation

process has a high probability of swapping many links away from the point being deleted,

reducing the number of followup swaps.

We had experienced performance issues with Mostafavi’s deletion algorithm as it did

not properly test for the newly produced links crossing existing links in cases where

deleting a node can potentially produce very long links (as it is the case for removing

a very large droplet). The appropriate changes to the algorithm are addressed in the

next section.

3.1.3 Modifications to the Mostafavi Algorithm

We modified Mostafavi’s algorithm to better deal with (a) adding droplets at random,

(b) dealing with periodic boundary conditions and (c) identifying and dealing with

droplets that can merge.
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Figure 3.4: Case where Delaunay triangulation does not connect adjacent droplets due to a
large difference in droplet sizes. This is a valid Delaunay network: if the link between the red
droplets was swapped, the red droplets would be in the circumcircle of the 2 resulting triangles.
This is because the Delaunay network is the minimal adjacency network for centers and not the
contact lines of droplets. However, the blue droplets are mutually members of the red droplet’s
Delaunay networks. We can use this “mutual friends of friends” approach to prevent this fatal
overlooking of potential neighbors. This case is unique to systems that have a large range of
droplet sizes.

Accounting for Interface-Interface Interactions

In order to digest a subtlety when using Delaunay networks to follow the dynamics

of breath figures we consider two very large droplets immediately before they merge.

They have two little droplets on either side of the cusp formed between them. Then the

Delaunay network might be such that the two little droplet’s centers are closer, and ergo

there is a link between them. There will not be a link between the two large droplets

even though they are in a position to be able to merge, yet the two little droplets are

not. Fig. 3.4 is a sketch of this situation. In this case, the Delaunay network exhibits a

structure exactly the opposite to what we desire.

It is possible to construct a Delaunay network based on the distance between the

droplet’s contact lines, however this would be computationally far more intensive than

the simple solution we provide here.

In order to cope with this problem, we define “neighbors” and “friends”. A neighbor

is a droplet whose interface can come in contact with the interface of another droplet

without “going through” the interfaces of any others. Hence it is a candidate for merging

irrespective of where it is. This does not have to mean that the droplets are adjacent

according to the adjacency matrix of the Delaunay network. We call droplets friends, if

there is a direct link between the droplets in the Delaunay network.

The set of neighbors forms a covering set of all droplets that can merge. Since the set

of friends is only a subset of the set of neighbors, we have to keep track of all neighbors

rather than going through the set of friends when checking for collisions.

The set of neighbors can be quickly constructed. Since Voronoi cells completely cover

the system, the set of friends and friends of friends would form a “ring” of Voronoi cells
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around the droplet in question which contains all possible candidates which may merge

with the droplet in question.

In fact, this procedure can be distilled more so: being a triangulation, 2 friends will also

have exactly 2 mutual friends. One of this mutual friends will be the droplet which we

want to test for collisions, the other will be the only candidate for collision. Fig. 3.4

provides a sketch of this: the two blue droplets are the mutual friends of the 2 red

droplets (who themselves are friends). Hence the set of friends and pairwise mutual

friends will be a covering set of all neighbors. Each droplet stores its friends in an

ordered ArrayList<Droplet>, being ordered by angle to some fixed axis. Hence finding

mutual friends requires only accessing the next index and so it is very fast.

Modified Add Algorithm

The integral requirement by our model for the evolution of breath figures is that new

droplets are added to the system at uniformly distributed random positions. This way

voids are slowly filled up proportional to their size and droplets grow (proportional to

their wetted area) in a manner that reflects the phenomenology of nucleation and droplet

growth on surfaces.

It would be rather foolish, however, to simply choose a position at random and then

walk to this position because the walk algorithm is the slowest step of the Mostafavi

Algorithm. Instead a droplet is picked at random weighted by the size of its Voronoi

cell as follows:

1. pick a random number r between 0 and A (the system size)

2. pick a droplet, get the size of its Voronoi cell area a.

(a) if a > r, a uniformly distributed random position is picked by picking Carte-

sian coordinates from the uniform distribution (bounded by the bounding

rectangle of the Voronoi cell) and repeating this until it falls within the

Voronoi cell.

(b) if a < r, then r → r − a

3. repeat until a droplet is found

This means that ultimately the .add operation really means an .addTo operation, where

a lot of performance is gained because we already know to which node we will be adding

the new node after all, the coordinates of the new node are generated such that it falls

within the Voronoi cell of the node it is being added to.
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A word of warning needs to be said about crossing links: the Voronoi cell might have

Delaunay links belong to other Voronoi cells running through it. If the new node falls

into an unlucky corner that is being cut off from the center of the Voronoi cell by an

external link, then the assumption that it was safe to add the new node to the node

which owns the Voronoi cell is invalid! This isn’t a problem that Mostafavi had. One

might be tempted to now implement the walk algorithm, but that is not necessary!

Instead what we can do is “hand off” the add command to the next droplet in the

counter-clockwise direction. Eventually the hand offs would reach the perpetrator of

the transecting link and we can add the new droplet to this link.

Only when all other means fail, we resort to the walk algorithm, while being slower,

is also more robust than more optimized algorithms, furthermore it is independent of

boundary conditions.

Periodic Boundary Conditions

We have employed a simple trick for dealing with periodic boundary conditions: every

time a droplet is added to the network, 8 copies are added in the 8 adjacent periodic

images. In this sense the periodic images of our system are also real (and have an

“edge”, however this does not matter as the information from these is not included in

the data analysis).

One might ask, why use such a method? Why not define distances on a torus? This is a

question of pragmatism over idealism. As explained in the section on the implementation

of our code, a clear “hierarchy” of information was followed: the Delaunay portion only

knows the droplet’s positions in real coordinates, then a class for periodic boundary

conditions was extended from this. In other words, the individual nodes of our network

should not “know” that they are actually living on a torus. This allows the code on

Delaunay networks to be applied to many different problems not just those involving

problems derived from periodic boundary conditions.

Care needs to be taken when implementing the periodic “copy” approach, as the way

in which the add algorithm works can produce severely elongated circumference and

aspect ratio, as shown in Fig. 3.5.

This would cause the program to eventually crash as 8 periodic copies on a square grid

are not enough to surround the central period if the system becomes so contorted that

its length is comparable to 2 times the length of an original period.

As a consequence, bias is incorporated in to the add algorithm; such that when an

added droplet falls outside a bounding box of twice the system size, we try to move

the droplet to the corresponding place on the other side of the system. This does not

always work because of errand links being in the way and so some problematic droplets
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(a) (b)

Figure 3.5: Voronoi (green) and Delaunay (blue) diagrams for breath figures. The periodic
boundary conditions have been displayed explicitly. Red circles denote the droplets belonging to
the list of droplets in the “central” period. While certainly being very pretty, the unusual pattern
of the central period ultimately becomes pathological since the dynamics of our simulations might
cause their width to reach the other side of one of the adjacent units.

remain outside the bounding box.5 As we can see from Fig. 3.6 such a bias is sufficient

to produce periodic boundary conditions without contorted systems.

One particularly beautiful feature of periodic boundary conditions is that the sum of

the areas of all the Voronoi cells needs to equal the system size. A special cautious

mode has been implemented which regularly goes through all droplets and measures the

sum of the Voronoi cell areas. The program would terminate if this did not equal the

predefined system size. Also whilst saving, the total size of the Voronoi cell areas is

measured (as the program would have to read the entire memory anyway), and an error

would be printed in the output if the data ought not to be trusted.

Modified Delete Algorithm

As described in the previous section, the delete algorithm had to be modified to account

for the new link crossing other already existing links. This is only an issue when the

Voronoi cell of the node being deleted is very large and has many neighbors. In this

configuration a link originating from a neighbor’s-neighbor’s-...-neighbor could almost

5As a passing note: it is not always possible to “move” a droplet from one of the periodic copies
because: 1) the periodic copies are “watered down” objects referencing only the most relevant infor-
mation from the parent, and 2) droplets are stored in unsorted data structures, one might not be able
to find the droplet’s virtual copies in memory with reasonable computational effort.
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(a) (b)

Figure 3.6: Voronoi (green) and Delaunay (blue) diagrams for the fundamental domain of
breath figures in a system with periodic boundary conditions.Fig. 3.6(a) shows the result for a
system containing a massive droplet. Fig. 3.6(b) shows a steady state of a system with gravity

cross half of the freed region. And so the algorithm does unfortunately have to check all

internal links of the region being freed for possible intersections. Mostafavi’s algorithm

only checked direct neighbors for intersecting links and therefore produced nasty errors

whenever very old droplets were removed.

The algorithm goes as follows:

1. Set the private boolean is alive flag to false. This will prevent the node

from being considered in Delaunay testing.6

2. Go through all adjacent nodes and determine the radius of the potential circum-

circle. Then swap the link producing the largest circumcircle. If this link crosses

any other links, the swap is undone and the next largest circumcircle producing

link is swapped.

3. Repeat step (2) until only 3 links remain. Then remove these 3 links directly by

erasing the node.
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Figure 3.7: The Delaunay and Voronoi diagrams for a set of points (red circles) for a fairly
evenly distributed set of points in periodic boundary conditions. The Delaunay Triangulation is
the blue network (notice that this network is indeed a triangulation). The Voronoi diagram is
the green network with vertexes at the centers of the Delaunay triangulation’s circumcircles.

A Common Misconception

The most common misconception is that the Voronoi-cell lines have to actually intersect

with the Delaunay grid. While the Voronoi network is the dual network to the Delaunay

network, and thus does not have to bisect every edge of the Delaunay network, these

are very frequently depicted as bisecting each other. One may conjecture that these

pictures are frequently used due to their aesthetic value. Fig. 3.7 is a good example of a

“real” system where either network rarely bisect. The implementation of this algorithm

therefore was a good example how literature can shape ones subconscious assumptions

and only an examination of the basic geometric properties (without pictures) made this

grave mistake apparent whilst frustratedly attempting to convince the computer that

certain lines should intersect.

6The object oriented nature of our code means that every modification automatically results in
Delaunay testing.
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3.2 Triangulation-Based Algorithm for Simulating

Breath Figures

The philosophy that the triangulation ought to be separate from the code which deals

with periodic boundary conditions — and that this should in turn be separate from

code which deals with droplets — is very appealing and thus dictated the shape of our

program.

All code relevant to triangulations was implemented in the class7

public class NetNode<extends NodeContainer>

With this philosophy at heart, all code relevant to updating and maintaining the trian-

gulation is in the public class NetNode<extends NodeContainer>. We then extend

this class with

public class PeriodicNetwork<extends NodeContainer> extends NetNode

to deal with periodic boundary conditions. Leaving the triangulation code unharmed

and applicable to many other uses if need be. The periodic network is then extended

upon by

public class Plate<extends NodeContainer> extends PeriodicNetwork

which deals with the fact that we are simulating droplets which interact upon interface

contact and are distorted by gravity.

We then use the Delaunay network for storing the droplets in memory. There exists no

grand register of all droplets, instead they are stored in the heap and contain pointers

to their neighbors given by the Delaunay network.

As part of an investigation into which droplets fall off first, each droplet is assigned a

“date of birth” upon creation. When 2 or more droplets merge, the resulting droplet’s

date of birth will be that of the oldest droplet, this is almost invariably the larger

droplet. The age of droplets may then simply be computed by taking the system’s age

and subtracting the date of birth. If a droplet falls off the substrate due to excessive

mass, its remnant is given a new date of birth corresponding to the current system age.

3.2.1 Implementation

The implementation of the algorithm described in the previous section, along with the

modifications we have had to make, was given the name “Doogle” (read: Droplet-

7<> denote Generic Data types. That’s right! Everything that extends the container object
public class NodeContainer can be put onto each node. This is very useful as it allows us to
include additional properties in the droplets without needing to modify existing code.
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Google) in honor of the fictional character Father Dougal McGuire from the television

comedy “Father Ted”. The final implementation relies on a very large amount of (un-

expected) special cases and complex logic, this made the first versions intractable to

debugging and so, our program is deserving of a name reflecting the extremely dim-

witted but well intentioned Dougal McGuire.

Difficulties

As stated in the previous section, the slowest step of Mostafavi’s Algorithm is the walk

procedure for finding the correct triangle which is to be updated. As we already know

the Voronoi cell which to add the new network vertex too, it seemed logical to make the

modifications described in section 3.1.3.

However, for many technical reasons, this kind of algorithm requires many special cases

to work. The most common may be described as the public boolean is complete

property of every network node. If is complete is true, then the node has sufficiently

many nearest friends surrounding it for there to exist a finite8 Voronoi cell. This would

then allow for many simplifying assumptions. In the case of is complete being false

a node might not have a surrounding triangle, consequently a different set of rules needs

to exist for such droplets.

Furthermore, since the Delaunay network is also the structure of our memory, over-

connectivity in the regions not used to obtain physical data is better than under-

connectivity. As a consequence, algorithms which distinguish between edge nodes and

interior nodes had to be developed (and their bugs “ironed out”). An important lesson

was that it is OK for Delaunay links to cross at the edge to prevent isolated “peninsulas”

from forming (these would slow down the code). Of course identifying if a node is at

the edge of the system is non-trivial!

In the end the following approach was used: attempt to use our optimized code and if

this fails (because of a special case), the less optimized but more robust code is employed.

Computational Considerations

In order to simulate the growth of breath figures, the numerical implementation dis-

cussed in section 3 was executed on a AMD64 architecture with 30 GB of RAM. De-

pending on the system size, and whether yielding was allowed to occur, the programs ran

between 2 days and 2 weeks. Systems with yielding could theoretically be allowed to ex-

8How can there be an infinite voronoi cell? Recall that periodic boundary conditions which force
all Voronoi cells to be finite are defined in an extension class: the nodes of the Delaunay network live
in Euclidean space! Hence the edges of the periodic images actually have fewer neighbors, hence their
Voronoi cell can become infinite.
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ecute indefinitely, but were ultimately terminated once limited disk space prevented the

saving of new data. This was done manually and not subject to any criterion. Whereas,

systems without yielding where configured to purposefully halt once the largest droplet’s

radius exceeded 10% of the system’s size.

In all simulations, dimensionless units where used with a minimum droplet size of smin =

1. All length scales are expressed in term of the smallest droplet size smin.

In order to speed up the numerics, the volume of droplets did not include the coefficient

c(α) (defined in Eq. (2.3.27)), i.e., we chose α such that c(α) = 1. Solving Eq. (2.3.30)

yields: c (59.7◦) ' 1. And so all simulations may be thought of as directly corresponding

to breath figures where the liquid has a contact angle of 59.7◦ on the substrate.

The time scale τ was chosen in terms of droplets added9 per unit area. For a system

with period l, the total area is l2, and thus our time scale will be τ = N
l2

, where N is

the number of droplets in total that have been added to our system. This time scale is

very intuitive because when τ is near 1, then every position in the system should have

had about one droplet placed on it.

While not being an original problem as such, the case of sessile spherical-cap droplets

was still considered, principally to serve two goals: a) serve as a verification of the code’s

correctness by comparing these results to those of Family and Meakin and b) gain

further insights into the “original” theory of breath figures as our code was significantly

more advanced than that of Family and Meakin allowing for more information to be

gathered of the system.

3.3 Conclusion

Here we have developed an efficient algorithm for following the evolution and growth

of breath figures. This code allows us to track merging and yielding of droplets on a

planar surface.

In order to determine the nearest neighbors, we have implemented Delaunay triangu-

lations. Whilst typical applications of Delaunay triangulations in physics are based on

efficient algorithms which take sets of points and calculate the triangulation networks

from scratch, our application called for a network which can be efficiently updated. To

this end, we modified the algorithm of Mostafavi [9]. This new algorithm has the advan-

tage that only very few collision tests need to be made whenever a droplet is added to

the system, or whenever droplets coalesce. More transitional algorithms would require

9As we will discuss later, the number of droplets added to the system is equivalent to a time scale
(taking the metaphor of rain further: if the rate at which rain droplets fall to the ground is constant,
then one may estimate the time simply by counting the number of rain droplet impacts)
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N(N−1) collision tests for systems with N droplets. In order to deal with this diverging

number of tests, the algorithms of Family and Meakin and Briscoe and Galvin

would rescale droplet sizes, achieving a large range of droplet sizes without requiring

many “new” droplets to be added to the system. Since we faithfully follow the physical

growth mechanism by adding only droplets of the same minimal size smin, our code is an

improvement over that of Family and Meakin in that it more closely reflects reality.

The programming paradigm that the different attributes of the model system ought

to be separated in independent classes allowed for easily extensible code which is not

only applicable to just one particular situation. That is, the interaction model, boundary

conditions and triangulation processes are all separate features and thus ought to be able

to exist separate from each other. As a result, the means of calculating the Delaunay

triangulations and the boundary conditions may be freely changed without requiring a

review of the whole code. Similarly, further physical processes can extend the model

system easily. For instance, the droplets may be given additional features, and even

physical processes following different time scales may be introduced (such as Oswald

Ripening) without needing to modify existing code. This was particularly useful, since

the investigation in section 5.1.4 on the origin of the bump10, in the size distribution of

sessile droplets, was conceived after the first simulation results had been analyzed. If

more traditional coding practices had been used, the fundamental properties of the data

structures might have needed augmentation to allow for the droplet age. This would

have resulted in a lot of tedious work. However the usage of generics allows the droplet

object to carry any kind of data, ergo our modifications were only necessary on the

highest level.

10the bump at the position S(τ) in Fig. 1.4(b).
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Chapter 4

Sessile Droplets

Science is what we understand
well enough to explain to a
computer. Art is everything else
we do.

Donald Knuth, The Art of
Computer Programming, 1969

In the previous chapter, the problem of the shape of a single hanging droplet has been

examined. Here we shall now examine systems of many droplets residing on a two-

dimensional surface.

4.1 Model

Family and Meakin introduce a simple model in order to simulate the growth and

coalescence of breath figures:

1. Pick a coordinate in the system at random (in the case of this work this will always

be a uniform probability density function, representing homogeneous nucleation).

2. Place at this coordinate a droplet, henceforth denoted: n, of fixed initial size smin
located at the position ~qn.

3. Determine whether this new droplet overlaps with its neighbors and merge droplets

if appropriate:

(a) Find the closest neighbor, henceforth denoted: m, with size sm located at

position ~qm.
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Figure 4.1: When two droplets overlap or touch each other, then they merge into a new droplet
whose size is equal to the sum of the original droplet’s sizes and whose position is the center of
mass of the original droplets.

(b) If the droplet n at position ~qn , overlaps with droplet m: merge them as

depicted in Fig. 4.1:

(c) Remove the droplets n and m and place in their stead a new droplet, denoted:

r, with mass sr = sn + sm at position ~qr = ~qn
sn
sr

+ ~qm
sm
sr

(d) Repeat these steps for droplet r until no further collisions occur

4. Repeat all steps until the program is terminated.

Initially one might come to the mistaken conclusion that this model ignores one obvi-

ous physical process found in nature: that droplets grow not only through coalescence

but also by absorbing material from the surrounding over saturated vapor. This is an

erroneous conclusion to come to because when new droplets are added in step 2, this

position might already be occupied by a droplet. The result would be that a merger

between the existing and the new droplet immediately follows. As this probability of

an existing droplet being “hit” by a new droplet is proportional to the droplet’s wetted

area, one may consider this model as having a droplet growth rate proportional to the

droplet area.

Thus, an appropriate metaphor for this model is that of rain: new droplets of a fixed

size smin “rain” onto a substrate already occupied by a collection of droplets. This

shall be the minimal model used throughout this work. The addition of further physical

phenomena such as Oswald ripening, inhomogeneous nucleation and different droplet

growth rates are beyond the scope of this work, yet will frame the focus of future

research.

4.2 Numerical Simulations

The system studied has periodic boundary conditions, with a period of 1000. During

the simulations, the collection of droplets was stored after every 10000 droplets added.
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Figure 4.2: The size distribution of sessile droplets in a system without yielding nor shape
distortion due to gravity. n(s) is the number of droplets with a size s

4.2.1 Results

Fig. 4.2 shows the number of droplets n(s) of size s observed in our system at time τ

when no yielding, nor shape distortion due to gravity, is present. The time evolution is

also presented.

We can clearly see several important features:

1. The number of droplets of a small size follows a power law distribution, n(s, τ) '
s−θn for some positive scaling exponent θn.

2. There appears to be some non-power law behavior for larger droplets, where there

appears to be an abnormally large quantity of large droplets. We shall call this

the “bump”.

3. The power law region of the distribution is independent of time, whereas the bump

moves to larger sizes as time increases.

These qualitative observations agree with those of Family and Meakin [8] observa-

tion 2 is highly indicative that there exists a characteristic size in our system, and that

this characteristic size is time dependent. As the bump is centered around the largest

droplets in the system, the characteristic size, S(τ), clearly is highly dependent on the
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Figure 4.3: Rescaling the droplet size distribution Fig. 4.2 according to Eq. (1.2.1a) will yield
the scale-invariant function f(x).

largest droplets, where the smaller droplets provide a “background”. Furthermore ob-

servation 1 indicates that, provided we remain within the domain of relatively small

droplets, the observed size distribution is invariant to rescaling the size scale of our

system. This scale invariance is not effected by time. However, as time progresses, the

region of size scale invariance increases depending on the size of S(τ).

Based on these observations Family and Meakin first postulated that there must exist

some data-collapse which allows for the results to be rescaled into some scale-and-time

invariant curve f(x) i.e., they postulated the following self similarity law:

n(s, τ) = s−θf

(
s

S(τ)

)
(4.2.1)

Where f(x) is a function that is “fairly flat” for small x, and then exhibits some sort of

cut-off, followed by a peak reflecting the presence of the bump. Family and Meakin’s

argument is detailed in section 1.2 and suggests that the exponent θ should be 5
3
.

We may graphically measure the scale-invariant function f(x) by rescaling our data

according to Eq. (1.2.1a). The results of this are displayed in Fig. 4.3 .

As all of the distributions displayed in Fig. 4.3 appear to fall onto one single curve, we can

say that the simulated system does exhibit scale invariance. Furthermore, we now have

a graphical representation of the universal function f(x). One may phenomenologically
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Figure 4.4: Examining the power-law distributed portion of the oldest size distribution dis-
played in Fig. 4.2. Applying a Levenberg-Marquardt non-linear fitting algorithm to the data
yield an estimate for the scaling exponent being -1.56.

express f(x) as follows:

f(x) = xδg(x) + h(x) (4.2.2)

where g(x) is a constant for x � 1 and exhibits a cutoff close to x = 1, and h(x) is a

function which is zero everywhere except for the bump centered about x = 1.

What is also of interest now is the scaling exponent θn, where θn is the exponent of the

size distribution n(s) for the power-law region. From Eq. (1.2.1a) and from Eq. (4.2.2)

we know that θn = θ − δ. In other words, δ provides a “scaling correction”.

Fig. 4.4 shows the power-law region for the oldest size distribution displayed in Fig. 4.2

with a power-law fitted to the data. Using the fitting method described in section B

(this being used in all other parts of this work henceforth), we find that the power-law

exponent θn is 1.56 which shows that the predicted exponent needs to be corrected by

δ = 0.11.

As we will discuss in section 4.3, there are further quantities of interest in this system.

Two such quantities are the number of droplets N(τ) in the system and a characteristic

cluster size S(τ) which was introduced earlier in Eq. (1.2.1a). The characteristic cluster
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Figure 4.5: The number of droplets N(τ) (blue line) and the characteristic size S(τ) (green
line) plotted over time. Power laws were fitted to the long term behavior of these quantities
showing good asymptotic agreement with power law behavior

size was defined by Family and Meakin to be:

S(τ) ≡
∑
s2n(s, τ)∑
sn(s, τ)

(4.2.3)

which is a length scale that strongly favors the largest droplets in the system. The

quantity Sq(τ)

Sq(τ) ≡
∑
sqn(s, τ)∑
sq−1n(s, τ)

(4.2.4)

only stabilizes for q > 3 indicating that if we chose q = 2, as was the case with Family

and Meakin, then S(τ) would represent a size slightly smaller than the largest droplets.

Furthermore the data-collapse shown in Fig. 4.3 is best if q > 3. Hence we shall choose

q = 5 for all data analysis henceforth.

Fig. 4.5 shows the time evolution of the number of droplets contained in the system,

N(τ) and the characteristic size S(τ), both showing good agreement with an asymptotic

power-law behavior. Especially the characteristic size S(τ) is required to follow a power

law for the scaling theory described in section 1.2 to hold. The number of droplets is

expected to follow a power-law behavior in the long term [8].

An important consistency check is given by the total mass (i.e., total volume) contained

in the system. As we do not allow droplets to leave the substrate, and since new droplets
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Figure 4.6: The total mass in the system M(τ) (blue line) and the wetted area W (τ). Fitted
power laws show that asymptotically M(τ) ∼ τ and W (τ) ∼ τ0.11, however, there might be a
plateau for extremely long time scales. The simulations were terminated too soon to conclusively
determine the existence the this plateau (marked in purple)

have a fixed volume, the total mass, M(τ) will be proportional to the time scale τ . Hence

we would expect that M(τ) is a power law with exponent 1. This is indeed the case.

Furthermore, the scaling theory in section 1.2 requires that the wetted area remains

constant over time for the long term limit. This does not appear to be entirely the

case, as a very small time dependence is apparent from the data. However it is also

not clear whether this time dependence will persist, or whether it will reach a plateau

in the extremely long time limit. Unfortunately the simulations halted too early to be

able to determine whether a plateau of constant wetted area will ever be reached. As a

constant wetted area is a natural consequence of the self-similarity ansatz Eq. (1.2.1a),

if there is no final plateau for the limit τ � 1 then the system would not be self-similar.

Furthermore, one would eventually expect that the wetted area reaches a constant value

because the system has only a finite size and eventually it would be full. Of course,

then the sensible question is does the wetted area reach a constant before finite size

effects play a role? Or does it follow a power law for some time until the system is

filled up. Fig. 3.6(a) shows a simple example for why the wetted area should not reach

the system area before finite size effects dominate, since in Fig. 3.6(a) finite size effects

clearly dominate, yet it is not full either.
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4.2.2 Consistency with Family and Meakin

The model system consisting of non-yielding sessile droplets of spherical-cap shape has

already been studied by Family and Meakin and so provides us with an excellent

method to check the consistency of our simulations against theirs. Family and Meakin

did not implement the model in section 4.1 in the same manner as we did. In the sim-

ulations of Family and Meakin, simulations were conducted in such a manner that

all existing droplets were rescaled after each new droplet had been added. This has the

advantage that one may cover a larger range of sizes in comparatively little simulation

time. However, this method assumes that the scaling ansatz in Eq. (1.2.1a) is correct in

the first place. We on the other hand have not performed rescaling during our simula-

tions. A droplet of size Nsmin would have at one time consisted of N individual droplets

(not necessarily at the same time). While this requires a significantly longer computa-

tional time to reach the same sizes the simulations employing rescaling, our results can

be used to confirm that the scaling ansatz (1.2.1a) is in fact valid. Furthermore, we can

test to what extent deviations from the scaling exponents are due to physical processes

and not artifacts generated by computational tricks such as rescaling.

Family and Meakin report a scaling exponent of θn = 1.54, this is within the 1–σ

confidence interval (refer to Appendix B) of our scaling exponent θn = 1.56. Further-

more, the scaling exponent for the time dependence of the characteristic size is reported

to be z = 2.92. This lies outside the confidence interval of our result of z = 2.87. This

discrepancy can be explained, by the fact that we utilized a somewhat more convenient

characteristic size function (giving better a better data-collapse) and that our method

of simulating did not employ rescaling. If the size distribution was to be rescaled during

the simulation, then it stands to reason that the time dependence of the characteristic

size ought to be closer to the theoretical value predicted by the scaling theory (in the

introduction). Our scaling exponent for the number of droplets1 is z′ = 0.23, and so

Family and Meakin’s result of z′ = 0.26 lies beyond the confidence interval. As with

the case for z, the reason is most likely also linked to our method of simulating. Nev-

ertheless, while not in good agreement, our results for z and z′ do not contradict the

previous works. Consequently, our implementation of the droplet coalescence model has

been successfully validated.

The scaling exponents for the total mass M(τ) ∼ τ 1.00 and for the total wetted area

Wτ ∼ τ 0.11 have not been reported in literature. That M is (effectively) linear with

time is an important verification that the program is correctly implemented, otherwise

does not have much use. Whereas the W not being entirely constant with time is an

important realization as it indicates a (minor) violation of the self-similarity ansatz

Eq. (1.2.1a) suggested by Family and Meakin.

1Family and Meakin observe that the total number of droplets appears to follow N(τ) ∼ τ−z′
[8].
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Only simulations which extend the time scale will be able to shine light on this question.

Since these are still being conducted, a definitive answer cannot be given at this time.

4.3 Scaling Arguments

4.3.1 Scaling Theory with Finite Quantities

Finite size effects due to a finite system size were ruled out simply by conducting sim-

ulations for different system sizes and determining that the scaling exponent does not

change significantly. Since power-law distributed data is very sensitive to its lower-

cutoff, we notice that the proof for Theorem 1.1 does not explicitly include the size of

the smallest droplets.

Thus we arrive at two principal causes for the deviation from scaling theory:

1. As the size distribution is largely a power-law distribution, its normalization

is strongly dependent on the smallest droplet size. In essence, Family and

Meakin’s theory may be improved by accounting for the boundaries of their

integrals in the proof to Theorem 1.1.

2. It seems clear from simulations is that the wetted area does not asymptotically

go to a constant value. Instead it rises according to the power-law: Wτ ∼ τ 0.11

according to Fig. 4.6.

Theorem 4.1. Given a system with d-dimensional substrate and D-dimensional droplets,

without droplets yielding, and subject to mass conservation: Eq. (1.2.2a), and where

the wetted area, Eq. (1.2.2b), follows W (τ) ∼ τσ. Assuming that the scaling ansatz:

Eq. (1.2.1a) and Eq. (1.2.1b) still holds with with number of droplets present in the

system being subject to: N(τ) ∼ τ−y then:

zδ = y (4.3.5)

z(2− θ) = 1 (4.3.6)

z(1 + d/D − θ) = σ (4.3.7)

Proof. We start from the normalization of our size distribution, and apply our scaling

ansatz, however this time we pay proper attention to the limit of our integrals. Let ε

be the size of the smallest droplets, then:

N(τ) =

∫ ∞
ε

n(s, τ) ds =

∫ ∞
ε

s−θf

(
s

S(τ)

)
ds (4.3.8)
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again, we apply the coordinate transformation: x ≡ s/S(τ) to change the variable of

integration:

N(τ) = (S(τ))1−θ
∫ ∞

ε
S(τ)

x−θf(x) dx (4.3.9)

We can now see the central fallacy in the previous section’s reasoning. The integral∫∞
ε

S(τ)
x−θf(x) dx is not time independent because of the coordinate transformation acting

on its limits. We know from the scaling ansatz that the function f is well behaved for

small arguments. In fact, it had been assumed to be constant for arguments much

smaller than 1. Here we will assume that f contains a “scaling correction”:

f(x) ' xδ (4.3.10)

for x << 1. Hence we may break the previous integral into a time dependent and a

time independent component:∫ ∞
ε

S(τ)

x−θf(x) dx =

∫ ε

ε
S(τ)

x−θf(x) dx+

∫ ∞
ε

x−θf(x) dx (4.3.11)

where we can approximate the time dependence as:∫ ε

ε
S(τ)

x−θf(x) dx =

∫ ε

ε
S(τ)

x−θ+δ dx =
εδ−θ+1

δ − θ + 1
− 1

(S(τ))δ−θ+1

εδ−θ+1

δ − θ + 1
(4.3.12)

We can use Eq. (4.3.12) in our expression for the normalization to find:

N(τ) = (S(τ))1−θ
(

εδ−θ+1

δ − θ + 1
− 1

(S(τ))δ−θ+1

εδ−θ+1

δ − θ + 1
+

∫ ∞
ε

x−θf(x) dx

)
(4.3.13)

Hence giving us a time dependence for the normalization which shows a crossover:

N(τ) = (S(τ))1−θ
(

εδ−θ+1

δ − θ + 1
+

∫ ∞
ε

x−θf(x) dx

)
− (S(τ))−δ

εδ−θ+1

δ − θ + 1
∼ τ−y (4.3.14)

If δ is small, in fact, if δ < θ − 1, the term (S(τ))−δ would dominate in the long term.

Our simulations indicate that the correction to the scaling exponent is of the order of

0.1, which is significantly smaller than θ − 1 and ergo, it seems plausible to argue that

for a sufficiently large time, (S(τ))−δ ∼ t−y. Hence: δz = y, proving Eq. (4.3.5).

The statement in Eq. (4.3.6) follows similar reasoning, except that for

Φτ = (S(τ))2−θ
(

εδ−θ+2

δ − θ + 2
+

∫ ∞
ε

x−θf(x) dx

)
− (S(τ))−δ

εδ−θ+2

δ − θ + 2
∼ τ (4.3.15)

the (S(τ))2−θ εδ−θ+2

δ−θ+2
term dominates as 2− θ is positive. Hence proving Eq. (4.3.6).

Likewise, Eq. (4.3.7) follows the same reasoning, and too is independent of the time

dependence of the integral limits in the long term. However, as our simulations indicate
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that the wetted area does not remain constant, we apply the ansatz that there exists a

power-law time dependence for the wetted area. Thus:

W (τ) = (S(τ))
d
D

+1−θ

(
εδ−θ+

d
D

+1

δ − θ + d
D

+ 1
+

∫ ∞
ε

x−θf(x) dx

)
−(S(τ))−δ

εδ−θ+
d
D

+1

δ − θ + d
D

+ 1
∼ τσ

(4.3.16)

Which proves the result for Eq. (4.3.7).

We may now use Theorem 4.1 to estimate the correction to the exponent of the power-

law distribution θn. According to Theorem 4.1, the exponent of the size distribution

ought to be: θ = 1 + d
D
− y

z
− σ

z
= 5

3
− 0.25

2.87
− 0.11

2.87
' 5

3
− 0.125.

Considering that the exponent observed in our simulations is approximately 5
3
− 0.104,

and that the error in fitting this exponent is difficult to determine, we may consider this

theory a fair estimate for the correcting to the exponent of the size distribution.

4.4 Conclusion

We have reproduced the data of Family and Meakin, thus providing an important

consistency check for our code. Furthermore, we were able to determine that the wetted

fraction is possibly not constant in the system. If this is indeed the case, then one would

expect important corrections to the theory put forward by Family and Meakin.

Furthermore, the traditional scaling theory did not include the fact that there exists

a minimum droplet size and it was found that this finite lower bound does indeed

constitute a correction to the scaling exponent of 5/3 being predicted by Family and

Meakin’s theory.

We were able to use additional information from our simulations to find a correction,

or at least an upper bound, to the scaling exponent which agrees with our and Family

and Meakin’s numerical data.

67



68 CHAPTER 4. SESSILE DROPLETS

68



Chapter 5

Hanging Droplets

The purpose of computation is
insight, not numbers.

Richard Hamming

In this chapter we study the effect that gravity has on the evolution of breath figures.

This is an interesting extension to the work of Family and Meakin, as their scaling

theory no longer holds when droplets yield (let alone once they are distorted by gravity)

because:

1. The scaling ansatz Eq. (1.2.1a) is not valid for yielding droplets as the system is

no longer scale invariant near (and beyond) the yielding size.

2. The time dependence of the typical size Eq. (1.2.1b) disappears once droplets

begin to yield (i.e., z = 0), thus leaving us with trivial form for Eq. (1.2.2b) (this

essentially reads “a constant equals a constant”).

3. The total mass in the system is no longer conserved, ergo we loose our time scale

defined in Eq. (1.2.2a). Intuitively, when a yielding system is in the steady state,

it is no longer possible to tell from the system’s configuration how old it is.

These issues motivate us to extend the previous studies into the regimes of yielding

droplets, and yielding droplets that have been distorted by gravity. In order to de-

termine which property has what impact, yielding is first studied in the absence of

droplet distortion by the gravitational field, and then the shape changes are introduced

phenomenologically by employing Eq. (2.3.27).

An ansatz for a theory based on the steady-state master equation is also given.

The length and time scales have been defined in the same manner as in section 3.2.1.

Likewise for the contact angle.
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(a) τ = 0.2 (b) τ = 0.8 (c) τ = 1.2

(d) τ = 1.6 (e) τ = 2.0 (f) τ = 2.4

(g) τ = 2.8 (h) τ = 3.2 (i) τ = 4.0

Figure 5.1: Snapshots of the simulations at different instants of time τ , for a system that is
started empty at time τ = 0. Colors encode the droplet radii.
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5.1 Simulations with Yielding

On the way to simulating breath figure formation in gravity, we implement droplet

yielding. That is, once droplets exceed a critical size, these droplets are reset to a size

equal to the minimal droplet size.

5.1.1 Numerical Parameters

The system studied has periodic boundary conditions with a period of 500 and the

largest (yielding) droplet sizes where 1000 and 10000. Two separate maximum sizes

were simulated in order to determine the effect of setting an upper boundary for the

droplet sizes. Also, for a maximum size of 1000 a system with periodicity 1000 was

also simulated. After simulating for well over one month, a system with periodicity

of L = 1000 and yielding size smax = 10000 (which amounts to a yielding radius of

R = s
1/3
max ' 21.5� L did not reach a steady state.

5.1.2 Pictures of System Evolution

Fig. 5.1 shows a selection of snapshots taken of the simulation in order to provide an

overview of the evolution of breath figures as simulated by our model.

When the growth of a breath figure begins and the system is sparsely occupied, then

the likelyhood of a new droplet overlapping with an existing one is very small. Thus the

system is initially populated with droplets of almost all the same size (Fig. 5.1(a)). Once

system is densely packed, the likelyhood of a new droplet landing on unoccupied space

is very small. And since all droplets have almost the same size, the probability of being

struck by a new droplet is effectively equal for all droplets in the system. This leads

an almost mono-disperse population (except for some lucky small droplets which have

found a gap) which is evenly growing (Fig. 5.1(b)). Since the system is tightly packed,

coalescence would become the dominant contributor to growth [3]. This continues until

most droplets are close to the yielding size (Fig. 5.1(e)). At this point a large quantity

of these large droplets drip off the substrate. This leads to the oscillations in droplet

number, characteristic size, wetted area, etc as clearly seen in Fig. 5.2. Over time, poly-

dispersity develops as these oscillations become decoherent and global oscillations can

no longer be observed (Fig. 5.1(i)). However, on a local scale, droplets still prefer to be

adjacent to droplets of similar size.

We may estimate the time for which the first droplets begin to yield in the following

way: Consider a system where most droplets have a size equal to the yielding size smax.

Thus each droplet has an area of πr2
max = πs

2/3
max. The time scale of τ is essentially a
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(a) Yielding size 1000 (b) Yielding size 10000

Figure 5.2: The number of droplets N(τ) (blue line), the characteristic size S(τ) (green line),
the total mass M(τ) (red line) and the wetted area W (τ) for yielding sizes of (a) 1000 and (b)
10000. In both cases, these quantities exhibit some temporal oscillations of the same phase and
approximate frequency and then become coherent, eventually settling at a constant value.

measure of how many droplets of minimal size smin had been deposited onto every part

of the system. If a droplet yields because it coalesces with a neighbor of equal size, then

number of minimal droplets involved is approximately 2Aτ 1 where A is the area of the

maximal droplet. Thus, in a system populated by droplets of equal and maximal size,

the first yielding events will occur when:

2τA ' smax ⇒ τyield =
1

2

smax
A

=
1

2

smax

πs
2/3
max

(5.1.1)

for smax = 103 we get τyield ' 1.59 which is in agreement with what is observed in

Fig. 5.1.

The frequencies of the oscillations differ by a factor of approximately 2 when going from

a yielding size of 103 to a yielding size of 104. This can be understood by assuming that

locally the system exhibits the same characteristic size S(τ) (Eq. (1.2.1b)) as with the

case of sessile droplets2. The we may estimate the difference in the periods is by asking:

how much longer do we need to wait for the droplets to reach the yielding size when we

increase the system size by a factor of 10? Hence, if the yielding sizes differ by a factor

of 10:

10 =
S(τ1)

S(τ2)
=

(
τ1

τ2

)z
(5.1.2)

1The factor of 2 comes from the fact that when examining Fig. 5.1(d) we can see that most droplets
have a size close to the yielding size, yet for coalescence to cause yielding, two such droplets will be
involved.

2While this might not be the case globally, we assume that locally, droplets in a system with a
yielding size, still behave approximately as sessile ones.
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(a) Yielding size 1000 (b) Yielding size 10000

Figure 5.3: The size distribution n(s) of spherical cap droplets for systems with 2 different
yielding sizes. The period is 500 and 1000 respectively

hence, using our simulated zsim = 2.88, we predict that τ1 ' 2.2τ2. Indicating that the

oscillations in the system mass M are due to local patches yielding in unison.

5.1.3 Size Distribution

Fig. 5.3 shows the evolution of the number of droplets n(s) of size s observed in our

system for yielding sizes for 1000 and 10000 respectively.

All averages over time where taken after the oscillations shown in Fig. 5.2 have died

outin order to ensure averages over stationary and statistically independent samples.

As visible in Fig. 5.3, droplet yielding erases the bump once it “runs into” the yielding

size. Contrary to the system without yielding, we may now average the size distributions

over time τ once no further correlations are apparent in the system. The coherence time

may be read from Fig. 5.2 in order to ensure that no fluctuations affect the result of the

averaged size distribution.

Fig. 5.4 shows the average over the long term of the size distribution. When yielding is

included, the exponent θn changes from 1.56 to 1.38 for yielding at 1000 and to 1.45 for

yielding at 10000.

We have not yet come to an explanation regarding this difference in exponent. One

might suspect that this is an artifact of the fitting algorithm and that the distributions

are actually the same. This may be easily tested by plotting the reduced plots as seen

in Fig. 5.5. Here we have divided the data by the fitted power law for exponent 1.45. It

is interesting to note that both for both system sizes, the reduced plots show the same

characteristic shape. This is indicative of corrections to the power-law distribution as
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(a) Yielding size 1000 (b) Yielding size 10000

Figure 5.4: The effect of different yielding sizes on the size distribution of droplets. The
exponent of the size distribution changes from 1.38 to 1.45 when the yielding size increases from
1000 to 10000. This is not an artifact due to a finite system size as this change persists when
conducting simulations for periodic boundary conditions with periodicity 1000 as apparent from
Fig. 5.6

statistical noise should have produced a random pattern.

At this point, one might consider that finite size effects are responsible for the much

smaller exponent compared to the non-yielding result. This was tested in the most

direct manner by simulating a system with yielding 1000 and periodicity 1000. As we

can see from Fig. 5.6, increasing the system size by a factor of 4 did very little to change

the exponent.

Hence we may conclude that systems with yielding have a significantly different size

distribution, in particular, the size distribution remains a power law (without a “bump”)

and that the exponent of the power law is dependent on the yielding size. This indicates

that the droplet size distribution is affected as a whole (and not just the distribution

for large droplet sizes) if very large droplets are removed from the system.

It is unclear whether the exponent should approach that of no yielding for increasing

yielding size, as the distributions for yielding and no yielding are fundamentally different.

5.1.4 What about the “Bump”?

A question left open by Family and Meakin is the peculiar “bump” in the size dis-

tribution around the biggest droplet sizes. This indicates that there is an abnormal

number of large droplets.

An explanation of this may be found by analyzing the age of droplets. Each droplet is
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Figure 5.5: Examining the size distributions for 2 values of yielding: 1000 (green) and 10000
(blue). We have plotted the reduced plots in order to determine a systematic deviation in the
distribution for yielding size 1000 from the distribution for yielding size 10000. One can clearly
see a real difference in the distribution’s exponent. Hence our findings in Fig. 5.4 are not an
artifact of the fitting method.

assigned a “date of birth” upon creation as described in section 3.2. Yielding is expected

to cause some kind of erasure of the initial state of the system.

Fig. 5.7 shows that before the first generation of droplets fall from the substrate most

droplets in the system are about as old as the system itself. This is nothing more than a

re-hash of what we can see qualitatively in Fig. 5.1; before the droplets are old enough to

fall off the substrate, the first generation dominates the system. However, once yielding

sets in, the age distribution changes from being dominated by the oldest droplets, to

being exponentially distributed. Hence there is no longer a “characteristic age” in the

system.

As this occurs at approximately the same time as the “bump” disappearing, we are lead

to conclude that the “bump” in the droplet size distribution does indeed correspond to

the oldest droplets in our system. These would persist in systems without yielding, con-

sequently, the “bump” is caused by the initial state persisting throughout the evolution

of the breath figure.

However, once yielding is included in the evolution of the breath figures, the initial

homogeneous configuration is ultimately erased, leaving a memory-less system and hence
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Figure 5.6: In order to check the result in Fig. 5.5, we plot the size distribution for a system
with yielding at 1000 but with double periodicity. The exponent of the distribution is effectively
the same as Fig. 5.4, yet the droplet number is approximately 4 times greater. This is expected
as the system is also 4 times greater.

no characteristic sizes, nor ages of droplets.

This is also in agreement with Fig. 5.2, as the bump disappears only shortly before the

oscillations in droplet number, characteristic size, total mass and wetted areas begin

to die out, indicating that the bump is related to a temporal correlation of droplet

distributions.

5.2 Simulations with Gravity

In the previous section, we have dealt with gravity by simply removing droplets from

our system once they reach a critical yielding size.

As we have seen in chapter 2, the profiles of hanging droplets correspond to solutions of a

coupled system of ordinary differential equations which needs to be integrated every time

the volume of a droplet changes. This is prove to be a computationally very intensive

exercise if every coalescence event was to result in integrating said PDEs, followed by

iteration to fix the contact angle.

Instead, Eq. (2.3.27) presents itself as it has a closed form for writing but the volume
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Figure 5.7: The distribution of droplet ages. Yielding onset is between 80 and 140 time steps.
Before droplets are big enough to yield, most droplets have a very similar age with only a minority
of droplets being very “young” and the rest aging at approximately the same rate as the system.
This indicates that these droplets were indeed those from the initial “wave” seen in Fig. 5.1.
When yielding sets in, the oldest droplets are removed, ultimately erasing the age distribution’s
bias for very old droplets. In the steady-state, the droplet ages are distributed according to an
exponential distribution – as expected for random collisions.

of a droplet as a function of radius and radius as a function of volume.

Hence in this section we have used the relation s(r) = r3 + κ̂r5 (Eq. (2.3.27)) for the

volume of droplets instead of the s(r) = r3 which was used in the previous section.

The idea is fairly simple: for the shape factor, κ̂, very small3, small droplets will ap-

pear to be effectively the same as spherical caps. However, their shape will deviate

significantly from spherical caps for large droplets.

3The shape factor in section 2 refers to systems where the size scale is set by the capillary length
λc. In these numerical systems, the length scale is fixed by the maximum droplet size 104. In order to
make these numerical simulations comparable to the calculations from section 2, we choose our contact
angle α = 59◦, corresponding to a yielding radius of approximately 1.5 capillary lengths. Hence we have

an equivalent capillary length of λsim =
(

104

1.4

)1/3

It can then be shown that in these units, κ̂ = κ
λ2

sim

where κ is defined in Eq. (2.3.27)
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(a) (b)

Figure 5.8: The size distribution of droplets hanging under the influence of gravity. The shape
parameter simulated was κ̂ = 1 · 10−3. The distribution for the steady state clearly shows a
crossover from one power-law distribution to another for sizes around 103. For s � 103, the
exponent is θn = 1.45 which is extremely close to the exponent of the distribution for yielding
droplets which remain spherical caps (green line). The exponent for s � 103 is θg = 0.81.
Fig. 5.8(b) shows this for a selection of different shape factors, κ̂. Changing κ̂ appears to move
the crossover.

5.2.1 Numerical Parameters

As with section 5.1, the system studied has periodic boundary conditions, with a period

of L = 500, and the largest droplet sizes where S = 10000.

In keeping with Eq. (2.3.27), we simulated systems with κ̂ ranging from 5·10−4 to 2·10−3

in steps of 5 · 10−4. This corresponds to a significant deviation from the spherical cap

behavior for sizes s & 103.

5.2.2 Results

Fig. 5.8 shows the size distribution if the shape factor, κ̂ was chosen to be 0.001. We can

see that the steady-state distribution has 2 clear power-law regimes with a fairly sharp

cross-over. This crossover occurs at approximately 103. This is sensible, for r3 dominates

κ̂r5 in Eq. (2.3.27) for values of s = r3 smaller than κ. The 5th order guarantees that

the crossover is fairly sharp.

We can see from Fig. 5.8 that the distribution is largely unaffected for sizes much smaller

than the crossover. In fact, the exponent of 1.45 is statistically indistinguishable from the

exponent of 1.45 for the case of spherical droplets yielding at 10000. This indicates that

droplet’s deviating from spherical caps does not affect the distribution of the population
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much smaller than the crossover size. However, once droplets reach a critical size, their

distribution flattens out, still being power-law distributed but with an exponent of 0.81.

That the distribution ought to flatten out once droplets deviate from the spherical cap

shape is sensible, as droplets become deeper. This means that a deep droplet may have

a larger volume for a given wetted radius than a shallow droplet, and so more larger

droplets may “fit” onto the substrate.

Since scaling arguments rely entirely on there not being a yielding size, we cannot offer

a theoretical means for determining the exponent for non-spherical droplets.

However, Fig. 5.8(b) inspires us to conjecture that there exists a universal distribution

onto which all distributions with a specific crossover may be scaled. We may estimate

the crossover length as follows:

s(r) = r3 + κ̂r5 = r3
(
1 + κ̂r2

)
(5.2.3)

hence we expect deviation from the spherical cap shape once the quantity in the brackets

starts to significantly deviate from 1. Hence we may estimate the crossover length, rc,

to be:

κ̂r2
c = 1⇒ rc =

1√
κ̂

(5.2.4)

Ergo we postulate that the steady-state size distribution of droplets that are distorted

by gravity flows:

n(s, rc) = s (rc)
θn nc

(
s

s (rc)

)
(5.2.5)

where θn is the exponent of the size distribution for yielding by not distorted droplets

and nc is a universal function.

Interestingly though, we found this not to be the case. Instead the rather peculiar

scaling shown in Fig. 5.9 was found. Hence, once droplets are distorted by gravity, (as

modeled by Eq. (2.3.27)), the size distribution follows the scaling:

n(s, rc) = rθnc nc

(
s

rc

)
(5.2.6)

with the universal function nc having form:

nc

(
s

rc

)
=


(
s
rc

)−θn
for s < 20rc(

s
rc

)−θg
for s > 20rc

(5.2.7)

Where θn = 1.45 is the exponent for the case of just yielding and θg = 0.81 is a measured

exponent possibly depending on yielding size but independent of rc. Eq. (5.2.7) is plotted

in Fig. 5.9 by rescaling the curves from Fig. 5.8(b). We cannot offer an explanation for

the strange units of s/rc or why the crossover takes place when s/rc ∼ 20.

We find that altering the shape factor, κ̂ does not appear to significantly alter the

exponent of the distribution for either regime.
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Figure 5.9: The distribution of droplets for different shape factors (κ̂) having been rescaled.
These appear to all lie on one universal curve.

5.3 Master Equation Arguments

As detailed at the beginning of this chapter, scaling theories of the same kind as the

one proposed by Family and Meakin are incompatible with systems that have some

form of yielding. This is essentially due to the scale invariance breaking caused by an

upper-size, that does not scale with time. Ergo, the time and size scales are no longer

related simply by rescaling.

However, since the system evolved by a simple surface contact dynamics, we may make

the assumption that droplets largely interact via pairwise mergers, and thus the dynam-

ics of our system will be given by the master equation:

dn(s, t)

dt
=

s−1∑
k=1

Π(s− k, k, t)−
∞∑
k=1

Π(s, k, t) (5.3.8)

where Π(s, k, t) is the likelyhood that 2 droplets with sizes s and k with merge at time

t to give a droplet of size s+ k.

We may write the master equation in terms of the conditional probabilities K(s, k), the

probability that 2 droplets of size s and size k merge, given that these droplets exist in
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the system.

dn(s, t)

dt
=

s−1∑
k=1

K(s− k, k)n(s− k, t)n(k, t)−
∞∑
k=1

K(s, k)n(s, t)n(k, t) (5.3.9)

where the assumption that K is independent of time has been made. This assumption

is not unreasonable, and has also been proposed by Family and Meakin.

Consider now the steady state, dn(s,t)
dt

= 0. Its distribution n(s) satisfies:

0 =
s−1∑
k=1

K(s− k, k)n(s− k)n(k)−
∞∑
k=1

K(s, k)n(s)n(k) (5.3.10)

which may be simplified to:

n(s)F [n](s) =
s−1∑
k=1

K(s− k, k)n(s− k)n(k) (5.3.11)

with the functional F defined as F [n](s) ≡
∑∞

k=1K(s, k)n(k). This equation is of

quite the intuitive form: the number of droplets that have size s ought to be a linear

combination of all droplets whose sizes add up to s. This is because a droplet of size s

could have formed from a droplet of size s − 1 and 1, or s − 2 and 2, and so on. The

intuition is that this combinatoric form is described by Catalan numbers (see Fig. 5.10)

which can have a power-law distribution (depending on initial conditions) with exponent

1.5. These numbers are well known in combinatorics and form the starting point of this

investigation.

We shall provide only a beginnings of a theory here, to at least proof that the steady-

state master equation can yield a power-law distribution. This is by no means intended

to be a complete picture. Such an analysis falls within the future scope of this research.4

5.3.1 Trivial Correlation

If the functional F [n](s) has the trivial form F [n](s) = s2λ with K(s, k) = (sk)λ, then

Eq. (5.3.11) may be written as:

µ(s) =
s−1∑
k=1

µ(s− k)µ(k) (5.3.12)

where µ(s) ≡ sλn(s)

Then the Eq. (5.3.12) has the solution according to Vardi [15]:

µ(s) = µ(1)s
1

n+ 1

(
2n

n

)
' (4µ(1))s√

πs3/2
(5.3.13)

4Since it could not be completed in time for the submission of this thesis
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Figure 5.10: Demonstrating the philosophy of Catalan numbers and their connection with the
combinatorics of droplet coalescence. The topmost binary trees represent the combinations 3
droplets may merge to form a single droplet of size 3, there are 2 possible ways. The second
(from the top) shows 4 droplets merging to give a droplet of size 4, there are 5 combinations.
The next set represent 5 droplets merging, there are 14 possible combinations. Finally the lowest
set shows the 42 combinations 6 droplets can merge using only pairwise mergers.

the final expression containing the power law is the asymptotic limit which is reached

quickly. Consequently, for such correlations, one may observe exponential tails for the

initial condition µ(1) 6= 1/4. It is of course entirely unrealistic to have divergent distri-

butions for Eq. (5.3.13), and thus we may restrict the initial condition µ(1) ≤ 1/4. In

the case of µ(1) < 1/4 Eq. (5.3.13) takes the form of a power law with exponent -1.5

but with an exponential cutoff.

Hence, depending on the trivial correlation function’s exponent λ, this theory predicts

a power-law exponent for the steady state size distribution of −1.5 + λ.

5.3.2 Expected Correlations

Having examined the solution to Eq. (5.3.11) for a conceivable correlation function, we

might ask ourselves, if there are no preferential pairs of droplet sizes in our system, what

would be the “geometric” mean field correlation? In other words, if we placed random

droplets onto our substrate what droplets ought to be adjacent merely from considering

how many droplets fit within their vicinity such that after a short time interval they

would overlap.

Fig. 5.11 shows one such possible state: two adjacent droplets of radii r and r′ initially
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Figure 5.11: A prediction for the correlation function for the geometric mean field: i.e., the
number of droplets of radius r′ that can fit beside a droplet of radius r such that it is in a position
to merge. As an approximation: both droplets might grow in radius by about l/2 per short time
interval. Thus we want to determine the probability of finding a droplet in such a position that
it does not yet overlap, however it will overlap after a very short time. This would constitute
the droplets centers of mass falling within a distance of r′ + r to r′ + r + l.

do not touch. Making the approximation that both droplets grow in radius by about l/2

for a given short time interval, then the droplet’s centers of mass must be closer than

r′+r+ l to coalesce within this short time interval. Yet, they must also be further apart

than r′ + r otherwise they would already overlap. This means, if we hold the droplet of

radius r fixed, then a droplet of radius r′ must have its center of mass within a strip of

area approximately 2πl
(
r′ + r + 1

2

)
.

Hence the likelyhood that two droplets merge, Π(s, k, t), can be approximated provided

no preferential “pairing up”:

Kmft(s, k) ≈ 2πl

(
s

2
3 + k

2
3 +

l

2

)
(5.3.14)

Unfortunately, this is nothing like the “trivial” pair correlation needed to solve the

problem exactly. Instead Eq. (5.3.11) needs to be solved numerically. These numerical

solutions, and their comparison to the simulated data will be the focus of future work.

5.3.3 Correlations from Simulations

Fig. 5.12 shows the pair correlation of the simulated data. For these graphs, l = 0.25

(as defined in Eq. (5.3.14)). These graphs were generated by the Lapp’s code used to

also analyze the experimental data.

We can clearly see that the simulations agree with the assessment that the correlation

function K, is not of the trivial nature that is necessary for the analytical solution
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(a) K(s, k) measured from the simulated
data

(b) The deviation from the geometric mean
field theory: K(s, k)/Kmft(s, k)

Figure 5.12: The conditional probability function K “measured” from simulated data using the
analysis program developed by Lapp for the experimental data. The axes show the logarithm of
droplet radii normalized to the yielding size. The color scale represents the conditional probability
K, the values on the scale have not been normalized for droplet number. Fig. 5.12(a) shows K
as measured by considering all neighbors for l = 0.25 (in units of the smallest droplet size as
defined in Eq. (5.3.14)). Fig. 5.12(b) shows K as measured from the simulated data divided by
the mean field theory (Eq. (5.3.14)). Here the deviation from the mean field theory defined in
Eq. (5.3.14) is clear: droplets have preferential neighbors of similar size. The white stripes are
caused by the discrete droplet sizes.

derived in section 5.3.1. Droplet sizes in our simulated breath figures appear to be

correlated such that droplets of similar sizes are more likely to be adjacent to each other

than droplets of different sizes.

While there is no conclusive evidence for what exactly causes this kind of correlation

in neighbor size, we can offer an argument which demonstrates that the observed cor-

relations are consistent with the existence of local domains in which all droplets had

nucleated at approximately the same time.

When area on the substrate is freed due to coalescence and yielding, it is usually very

quickly filled up with new droplets. When this area is freed due to yielding, it is usually

very large and is ultimately seeded with droplets that initially do not touch. This can

be observed in Fig. 5.1 and from the different droplet growth rates (pre-merging and

merging) reported by Beysens et al [3].

Hence it is reasonable to assume that the breath figure has local regions of droplets of a

similar age (and thus size) which have nucleated in the same area. For droplets in these

local regions, their most immediate neighbors would be of a similar size. Even though

this effect would not be present at the edge of such a region, such local inhomogeneity

can have an effect on the correlation function if these regions are large enough. Since
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droplets in such a region would also yield at approximately the same time, these regions

could persist in the steady state.

Alternatively this observed preferential size for neighboring droplets can be thought of

as indicating that local regions with a characteristic size (similarly to the bump the

Family and Meakin theory) exist in steady state.

Running through the full set of frames, some of which are displayed as Fig. 5.1, show

local regions nucleating, coarsening and then yielding.

Exponent of Size Distribution in Gravity

Assuming trivial correlations, one ought to expect an exponent of −1.5− λ for the size

distribution for droplets that do not change their shape and yield at some maximal

size. However, it is clear from this chapter that the exponent for yielding droplets is

much smaller. The fact that the theory assuming trivial correlations does not agree

with the observed exponents is to be expected as our study of the correlation revealed

a non-trivial correlation far from the mean-field.

5.4 Conclusion

We have studied the effect of gravity on the evolution of breath figures in the context of

droplets hanging from a horizontal planar surface with periodic boundary conditions.

To this end we have introduced a yielding mechanism which removes droplets from the

substrate once they reach a particular critical size. In this work the effect of 2 maximum

droplet sizes was studied, 1000 and 10000 (in units of smallest droplet size).

We have found that there are large differences in the droplet size distribution when

compared to the case of sessile droplets that are not distorted by gravity. There is

no “bump” present in the steady state. Rather we observe a pure power law over all

droplet sizes. Furthermore, the exponent of this power law is very different for the

case of yielding droplets than in the case of sessile droplets where the exponent is also

dependent on the yielding size. For a yielding size of 1000, the exponent was measured

to be 1.38 and for a yielding size of 10000 the exponent was measured to be 1.45.

Furthermore, we used our work on the shape of hanging droplets to determine the effect

of gravitational distortion on the droplet size distribution. We have found that shape

distortions introduce a novel crossover from one particular power law (with the same

exponent than the case of just yielding) to a power law with exponent 0.81 for droplets

greater than a specific crossover size. Furthermore, there exists a universal distribution

which is simply rescaled by the crossover length when the magnitude of the gravitational
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distortion is changed (this corresponds to changing the contact angle or the magnitude

of the gravitational forces).

In order to better understand this system, a simple theory based on a steady state master

equation was formulated. For non-correlated droplets this theory predicts an exponent

of 1.5 which is close for the system with a large yielding size. In order to understand this

theory better, the pair correlation function was measured from our data. We found that

this correlation is not trivial and deviates from the mean field. While not being explored

any further, it is our suspicion that this correlation is responsible for the deviation in

the exponent of the size distribution. We have proposed arguments based on the similar

age of neighboring droplets in order to account for this non-mean field correlation of

droplets.
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Conclusion

Still round the corner
there may wait

A new road or a secret gate.

J. R. R. Tolkien, Lord of the Rings

Since the theory available at the beginning of this study could not give satisfactory

answers to questions posed by recent experiments of Lapp, sophisticated code was

constructed in order to advance theory.

Using this, we where able to determine that the bump observed close to the largest

droplet sizes is caused by neighboring droplets having a very similar age. Hence droplet

ages are very important, and the initial state of the system persists for a long time.

Yielding causes this state to eventually be deleted and consequently the bump disap-

pears.

Furthermore, we have been able to show that the minimum size of droplets due to

nucleation (or rain) is important and has consequences on the exponent of the size

distribution. This has allowed us to explain the deviation from the theoretical value

of 5/3 for the power-law exponent which was observed by Family and Meakin and

reproduced by our simulations.

Investigations into the effect of gravity on the distribution of hanging droplet sizes

yielded two important observations: 1) the yielding size of droplets has an effect on

the exponent of the size distribution, with the larger yielding size producing a larger

exponent, and 2) shape distortion of the droplets results in a novel crossover from one

power law to another. This scales onto a universal distribution consisting of two power-

law regimes. The regime for small droplets is unchanged compared to the system where

we have just yielding. The regime of droplets larger than the crossover length has a

universal exponent of 0.81 irrespective of crossover length.
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Outlook

We have found that breath figures are a very fruitful system to examine. There are

many stones that we have had to leave unturned due to time constraints. Here we will

give a short outline of what is on the horizon.

Droplet Selection Algorithm

After having implemented the algorithm discussed in chapter 3, a potential improvement

of speed came to mind. When selecting a voronoi cell which to add a droplet too, we

go through the list of all droplets until the random number which we picked is less than

the sum of the areas of the preceding voronoi cells. Initially one might think that this

algorithm ought to scale as O(N/2) with N being the number of droplets. This is not

entirely true. The list of droplets is appended to by new droplets, and so the youngest

(and thus smallest droplets) are at the back resulting in the droplets which are oldest

and thus are most likely to have the largest voronoi cell areas being tested first. And so

this algorithm is faster than O(N/2).

However, this problem has been readily solved by using binary tree searching algorithms

instead: we ought to construct a binary tree and fill it completely with the droplets in

the system. Then at each node with place the sum of the voronoi cell areas of its

children. Then we may select a voronoi cell by using a binary tree search which scales

as O(log n). Of course this is far less trivial as described here because all changes in the

triangulation would result in updates to each node and the tree structure would change

(potentially considerably) whenever droplets are deleted or merge. This has prevented

us from implementing this improved algorithm already.

However new evidence has come to light that this might be the slowest step for extremely

large systems, motivating us to redoubling our efforts to implement this change.

Shape of Sessile Droplets

As yielding provided us with an interesting theoretical question, we had focused our

attention on the shape of hanging droplets. However, in principle Wente’s equations

can also be applied to sessile droplets in gravity (with some small modifications). Hence,

our method for fixing the contact angle should also be applicable there.

Master Equation Theory for Hanging Droplets

In order for us to understand the data for hanging droplets, we put forwards a master

equation approach which copes with yielding and shape distortion. So far, a theory for
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yielding droplets was started. Which already provides a faint glimpse into what such a

theory might look like.

We were able to commence the analysis of the correlations of droplet sizes (and their

ages). In the near future, we will complete our analysis of the correlation of droplets

by examining which droplets actually do merge (rather then merely being very close

together).

Furthermore we will devote significantly more time to solving the master equation for

the case of non-trivial correlations.

Modifications to the Scaling Theory for Sessile Droplets

It is not clear from our data, whether the evolution of breath figures will ultimately yield

a system whose wetted area is constant with time. However, this does seem unlikely

since having a lower bound for the droplet size ought to also change the wetted area

under rescaling (since rescaling effectively reduces this lower bound, allowing smaller

voids to be filled and this increasing the wetted area). Our simulations have not been

running for long enough in order to verify this hypothesis. Simulations of bigger systems

are under way and should reach longer times in some weeks time. The analysis of this

data is one of our most immediate goals once said data becomes available. This would

allow us to check the asymptotic behavior of sessile breath figures and consequently

would shed some light onto the extremely long term behavior.

The formation and evolution of breath figures turns out to be a fruitful subject to

analyze. The present thesis describes advances in the area of the growth of breath

figures on the underside of a substrate. From this investigation, it is clear that the

distribution of droplet sizes changes considerably when introducing gravitational effects

such as yielding and droplet shapes that are no longer spherical caps. Yet, we have

only glimpsed the full extend of these phenomena. We envision for the future that the

development of a theory to be based on the pair correlation function will produce many

more and interesting extensions to this work.
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Appendix A

Calculating circumscribing circles

for Triangulations

The fundamental property that every triangulation relies upon is that for any 3 points,

one may circumscribe the triangle spanned by the points by 1 unique circle. Due to this

fact, for any collection of N points, one may find a unique set of triangles1 with the

property that all points either lie on or outside any circumcircle. This has the wonderful

property that we may reduce any triangulation to a set of centers (of circumcircles) for

which there are 3 points which are equidistant to these centers, and all others are further

away.

A.1 Pedoe’s Method for Finding Circumcircles

Pedoe [11] (pp. xii-xiii) gives a simple geometric construction for the circumcircle of the

triangle whose vertexes is given by Cartesian coordinates: {(x1, y1), (x2, y2), (x3, y3)},
then the circumcircle is the set of all Cartesian points {(x, y)} satisfying2:

∣∣∣∣∣∣∣∣∣
x2 + y2 x y 1

x2
1 + y2

1 x1 y1 1

x2
2 + y2

2 x2 y2 1

x2
3 + y2

3 x3 y3 1

∣∣∣∣∣∣∣∣∣ = 0 (1.1.1)

this may be expanded to give:

a

(
x+

bx
2a

)2

+ a

(
y +

by
2a

)2

− b2
x

4a
−
b2
y

4a
+ c = 0 (1.1.2)

1up to degeneracy incurred due to equidistant points
2and the three points lie on this circle since the row vectors are trivially linearly dependent when

(x, y) is an element of this set
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APPENDIX A. CALCULATING CIRCUMSCRIBING CIRCLES FOR

TRIANGULATIONS

with:

a =

∣∣∣∣∣∣∣
x1 y1 1

x2 y2 1

x3 y3 1

∣∣∣∣∣∣∣
and:

bx = −

∣∣∣∣∣∣∣
x2

1 + y2
1 y1 1

x2
2 + y2

2 y2 1

x2
3 + y2

3 y3 1

∣∣∣∣∣∣∣
and:

by =

∣∣∣∣∣∣∣
x2

1 + y2
1 x1 1

x2
2 + y2

2 x2 1

x2
3 + y2

3 x3 1

∣∣∣∣∣∣∣
and:

c = −

∣∣∣∣∣∣∣
x2

1 + y2
1 x1 y1

x2
2 + y2

2 x2 y2

x2
3 + y2

3 x3 y3

∣∣∣∣∣∣∣
Thus Eq. (1.1.2) describes a circle with center at

(
x0 = − bx

2a
, y0 = − by

2a

)
and radius:

r =

√
b2x+b2y−4ac

2|a| .

A.2 Triangulations

Any set of points, may be partitioned into subsets each of 3 points and for which there

exists a “center point” such that said 3 points are equidistant and closest to their cir-

cumcenter. This is the defining property of a triangulation. This kind of triangulations

is called a Delaunay triangulation.

Voronoi [16] used this property to ascribe a set of edges to each point for such a collection,

delimit the region closest to the point in question. The center points in the Delaunay

triangulation form the vertexes of the Voronoi polygon, with the Voronoi polygon edges

being orthogonal to the Delaunay triangulation edges. Thus the Delaunay and Voronoi

lattices may be described as being conjugate lattices.

In practice it is very easy to construct the Delaunay lattice, and use this to determine

the Voronoi lattice.

Both delaunay and voronoi lattices are most easily described in Fig. 3.7.
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Appendix B

Fitting Power-Law Data

Clauset et al [6] make an important point regarding the fitting of power-law distributed

data. After collecting power-law distributed data, one may not simply take the logarithm

of the x and y data-points and apply a simple least squares fitting algorithm to the

“linearized” data. On the surface, this results in incorrectly fitted parameters and

estimated errors being too small (in some cases being so severely underestimated that

the true value of the fitted exponent fall outside the one-σ confidence interval!).

The error in the least-squares fitted exponent results from the fact that least squares

fitting algorithms are not constrained by having to produce a result which yields a

normalized distribution: in other words, the fitted cumulative density function does

not have to reach 1! This allows the least-squares fitting algorithm to make a trade-

off between the fitted exponent and lack of a normalized probability density function,

producing a “better” fitted exponent (i.e., one which produces a lower error) at the

cost of loosing normalization.

This ill-advised trade-off is exasperated by an incorrect estimation of the error in each

data-point, as least-squares fitting methods assume independent Gaussian noise.

The log of Gaussian noise, however, is no longer Gaussian! Since the error estimates in

standard regression formula rely on the assumption that the data points have indepen-

dent and Gaussian noise, the estimates for error in the scaling exponents will also be

wrong.

This is exasperated furthermore in the case of fitting the cumulative density function

using least squares; while fitting cumulative density functions sometimes return better

estimates for the exponent, the estimates for the error are in fact worse! This is because

the noise in adjacent bins in the cumulative density function are no longer independent,

nor Gaussian. Yet the noise is reduced!

Also, since the the noise of each data point is no longer Gaussian, the error in the
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96 APPENDIX B. FITTING POWER-LAW DATA

least-squares fitted exponent is usually underestimated.

Clauset et al therefore recommend using the method of greatest likelyhood to fit the

scaling exponent. This method is based on maximizing the probability that a “guess”

value for the exponent is in fact correct while constraining the function to a normalized

form. This method is reportedly extremely successful [6] in determining the exponent of

power-law distributed data yielding very accurate results as the normalization of power-

law distributed data encodes the scaling exponent also. Ergo, fixing the normalization

yields additional information about the scaling exponent.

Sadly though, this method is inappropriate for analyzing the size distribution of our

simulated data. When applying Clauset’s method, we recover a scaling exponent

that can be visually verified as being clearly incorrect. The reason for this is that the

power-law distribution in these simulations has an upper cutoff as well as a lower cutoff,

while Clauset’s method only allows for lower cutoffs. As the position of the respective

cutoffs does influence the normalization, Clauset’s method yields an incorrect result.

Their method assumes the wrong normalization.

Hence a more brute-force method is applied in this research. Having established that

least-squares is indeed an inappropriate method to use when dealing the linearized non-

linear results if this linearization does not preserve the Gaussian-ness of the noise, and

that the simple maximum likelyhood estimator method described by Clauset cannot

be applied to our data either, we resorted to the Levenberg-Marquardt method. This is

a canonical method for performing non-linear fitting without having to first “linearize”

the data [12]. The Levenberg-Marquardt method is a iterative method which minimizes

the χ2 value given a function to fit. In this sense it too is a maximum likely-hood

method, except that it can fit a wide variety of theoretical functions.

The LM method does require an initial estimate for the fitted parameters. This can

usually be made via visual inspection of the plotted data. After estimating the initial

scaling exponent, we varied our initial estimate and observed any change in the fitted

parameter. This was to ensure that the results produced by the fitting procedure that

are stable against error in the initial estimates. Naturally only the results of robust fits

are presented here.

Errors in Fitting

When fitting power laws to our data, we assumed an error of approximately
√
n(s) for

each counted number of droplets n. In this case the error in the fitted exponent typically

was 0.01, and always below 0.02.

In order to verify robustness, the initial parameters of the Levenberg-Marquardt method

were varied. The variation in the fitted exponents also never varied by more than 0.01
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upon varying the initial parameters.
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