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Abstract

We analyze the size distribution for a system of three dimensional droplets on a one dimen-

sional substrate and its dynamical evolution. This is done by the means of scaling theory

which allows an almost exclusive use of dimensionless units. The droplets micro-dynamics

are varied as well as the dimension of the volume flux onto the substrate. We then com-

pare the resulting influences on the systems main observables: the porosity, the number of

droplets and the droplet size distribution. Hence a connection between the micro-dynamics

and the growth of the smallest droplets is developed.
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Nomenclature

Variable Meaning

δ Threshold value for merging with both neighbouring

droplets.

ε Scaling exponent attained by fractal packing ansatz.

γ Surface tension.

I Interaction range of a droplet.

λ Proportionality factor for radii dependent interaction

range.

L, l(τ) Relative amount of covered substrate [per unit length].

µ Weighting of the strings surface.

n(s, S) Droplet size distribution.

N, n(τ) Number of droplets [per unit length].

P, p(τ) Relative amount of free substrate [per unit length].

ρ Thickness of the string.

σ Effective droplet size regarding the flux dimensionality

(general case for L).

θ Scaling exponent attained by classical scaling theory.

τ Dimensionless time.
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1. Introduction

1.1. Breath figures

The condensation of water vapor on surfaces in form of droplets is a phenomenon we en-

counter on a daily basis. Examples are various and widespread: The condensation of vapor

on the lid of a pan, the formation of dew on leaves (figure 1.1) or on spiderwebs (figure 1.2).

The first scientific descriptions of the droplet distributions formed by breathing onto a cold

glass plate, originally used to determine the cleanliness of the glass, established the term

breath figure for this phenomenon [1].

Figure 1.1.: Breath Figures in nature:
Dew droplets on a leaf.

source: Jon Sullivan, CC BY-SA-3.0

Also in industry the condensation of vapor is

a recent field of interest. For instance it is ap-

plied for humidifiers or heat exchangers, where

high heat transfer coefficients are achieved by

condensation [2]. In these cases it is desirable to

maximize the wetted surface. In contrast, there

are also fields of application where one wants

to achieve the opposite: a reduction of covered

area, if condensation is inevitable. An example

are greenhouses, where the condensation on the

windows leads to reduced light transmission [3].

Furthermore, the creation of breath figures

also finds an important application in the so

called fog harvesting. It is used in arid regions

to collect drinking water out of foggy air. For

that purpose, a finely woven net is spanned vertically at some height above the ground so

that the wind can blow through its meshes. That way a large amount of droplets in the

air is deposited on the ribbon (theoretically 75 to 95 %, experimentally up to 66 %). Those

droplets coalesce until they are big enough to drip off or slip down into some collection tank

[4, 5]. The main difference of those two effects is the type of the flux: For the deposition by

airflow the flux is nearly homogeneous onto the surface of the substrate. Condensation, on

the other hand, is rather homogeneous onto the surface of the whole system, which addition-

ally takes into account the surface of the already present droplets. Therefore one question

1



1. Introduction

of this work is: What effects do those different kinds of fluxes have on the size distribution

of droplets growing on one dimensional substrates.

Figure 1.2.: Breath Figures in nature:
Dew droplets on a spider web.

source: USFWS Photo, CC BY-SA-3.0

Typically breath figures evolve to a vastly

polydisperse distribution of droplet sizes in which

self-similarity can be observed. The shape of the

breath figures droplet size distribution and also

the behaviour of the droplets themselves is de-

termined by a variety of external and internal

influences, such as the wetting properties of the

substrate, the saturation of the environment or

the van-der-Vaals forces between the molecules

of the (condensed) liquid. After all, there are

multiple phenomena observed in the evolution

of the droplets: Besides the condensation/depo-

sition they can evaporate again, coalesce with

other droplets or be deformed because of the surface or gravity.

The main growth-processes of droplets in breath figures have been analyzed in the 1980s

[6, 7]. In contrast, the microscopic processes and droplet interactions are still not completely

understood.

2



1.2. Experimental setups

1.2. Experimental setups

There is a wide range of every day phenomena giving an idea of the basic features needed

to design an experiment to analyze three dimensional droplets on a surface of arbitrary

dimension. For example, think of the lid of a cooking pan or a spiderweb covered with dew.

1. There has to be a supersaturated system tending to a phase-separation because of

some gradient of temperature, concentration or similar.

2. The temperature or concentration gradient has to point in the direction of some struc-

ture of the desired dimensionality, for example, a string when considering a one dimen-

sional surface or a glass plate for a two dimensional one.

3. The condensation on the substrate should not involve a substantial decline of this

gradient.

For a specific experiment where water vapor is supersaturated in air and shall condensate on

a substrate this implies a basic condition: The structure has to be cooler than its environment

and has to be maintained as such or else it must be extremely hydrophilic with roughness

or surface heterogeneities providing sufficient pinning of three phase contact lines to prevent

the creation of a wetting film.

1.2.1. Droplets on a plate

(a) Coarse resolution. (b) Fine resolution.

Figure 1.3.: Water condensing in form of droplets on a polyethylene film shown in [8].

In the past various experiments on breath figures, three dimensional droplets on two

dimensional substrates, has been carried out. The two panels shown in figure 1.3 are taken

from an experiment performed by Tobias Lapp [8]. He heated a small amount of water at

3



1. Introduction

the bottom of a closed cell to produce a constant saturation level. The upper end of the cell

was closed by a glass plate which was kept at a constant, much lower temperature causing

the vapor to condensate on it. More precisely, the vapor was not condensing directly on

the glass plate but on cling foil which provides an easy way for getting a clean hydrophobic

surface.

With this experiment and additional simulations by J. Blaschke [9], the group of J. Vollmer

was able to point out an interesting relation between the growth of the droplets and their

size distribution.

1. They confirmed that the typical radius R grows linearly in time as shown by Family

and Meakin [10].

2. They were also able to show that the size distribution of droplets follows a power law

which is rescaleable for different time steps by the typical droplet size S(t).

3. They determined a coalescence kernel and showed that...

a) this kernel does not not factorize.

b) the radius distribution is independent of the contact angle, at least for spherical

caps.

c) the exponent z′ describing the asymptotic behaviour of the porosity, predicted to

have a value of z′th. = 0.25 by Blackman and Brochard [11] does not fit to the

values Blaschke et al. measured in their numerical simulations (z′num. = 0.30) and

experimental data (z′exp. = 0.16). One of the main reasons for this disagreement,

is the incorrect assumption of a factorizing coalescence kernel used by [11].

d) the results for the scaling exponent of the porosity and the size distribution of the

smallest droplets in the system are not completely tractable by theory. Porosity

is the expression for the not wetted area of the substrate.

4. They presented a theory for the lower cut-off of the droplet size distribution which

provides qualitative predictions for the data. Since this cut-off is related to the growth

rate of the smallest droplets this gives rise to a more profound analysis of the dynamics

of those droplets.

For a more detailed exposition of the results mentioned in this section see [8] and [9].

So far very little numerical and experimental work specifically addressing one dimensional

substrates was carried out. Besides the growing importance of breath figures in general, the

one dimensional breath figures provide an easy tractable system. Especially for numerical

simulations the one dimensional system offers the possibility for much faster algorithms. It

also is the only other arrangement included by Blackman and Brochard that can be observed

in an experiment. Therefore this work will address a numerical model of droplets growing

on a string.

4



1.2. Experimental setups

1.2.2. Droplets on a string

Parallel to the simulations underlying this work, an experiment was designed to produce

comparative experimental data for the the size distributions and growth processes of droplets

condensing on a string.

vapor

aluminium housing

waterweight

80°C
heating
water

wire or
spider thread

glass plates

camera

light source

glass plates

Figure 1.4.: Sketch of the setup developed for an experimental analysis of droplets on a line.

The basic concept of the experiment is sketched in figure 1.4. A string is stretched through

a chamber filled with enough water to establish an supersaturated environment when heated.

The temperature of the system is controlled via an external thermostat which pumps water

of some constant temperature in a loop around the chamber. At first the water goes along

the top of the chamber, then along its bottom and in the end back to the thermostat. This

way the top of the chamber is slightly warmer than its bottom which prevents condensa-

tion on any other surface than the string. Still, if the system is analyzed for continuously

changing saturation levels and therefore continuously changing temperatures, lowering the

temperature should happen carefully. Otherwise condensation on the top of the chamber

could occur. That could corrupt the measurements by droplets dripping onto the string, or

by blurring the vision onto the string, lowering the precision of the image detection. Besides

controlling the temperature of the system it is also possible to vary the physical and chemical

properties of the string.
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1. Introduction

1.3. Phenomenology

This section introduces the basic physics used for the modeling of breath figures and it

introduces the main regimes of droplet growth, as observed in experiments [8, 12].

1.3.1. Wetting of the substrate

Figure 1.5.: Sketch of a liquid drop (spheri-
cal cap, radius of curvature r) showing surface
tensions between the three involved phases
solid, S, liquid, L, and gas, G respectively.

Besides the droplet distribution on a surface

another quantity which controls the surface

coverage is the contact angle formed between

a droplet and the surface. It reflects the dif-

ferent surface tensions γ between the liquid,

the medium that contains the vapor (which

is air in most cases) and the surface. The

contact angle θC, which minimizes the free

energy of the system, can be calculated via

Young’s equation [13]:

γLG · cos(θC) = γGS − γLS (1.1)

For droplets on a string one can derive a dimensionless equation for the shape f(x) of the

droplet [14] (see sec. A.2): √
1 + f ′2 +M · f =

d

dx

[
f · f ′√
1 + f ′‘2

]
.

This equation only depends on the dimensionless variable M = ς·E
γLG

, which is the product of

the elongation E of the droplet and the chemical potential ς divided by the surface tension

γLG between the liquid phase and the gas phase. Due to the surface tension the droplet

will form a rotational ellipsoid, so f = α ·
√

1− x2. The variable α determines the vertical

extension of the droplet and therefore influences M :

M = − 1

α
− 1.

For a realistic string we also need to consider its thickness ρ. Using eq. 1.1 in the limit of

ρ→ 0 and α ' 2 leads to an explicit equation for the contact angle θC :

θC =
π

2
− ρ

2 · E
. (1.2)

So large droplets form a contact angle π
2

whereas small droplet form a flatter one making

them grow relatively faster.
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1.3. Phenomenology

1.3.2. Growth regimes

For the growth of droplets on an initially free surface there are four characteristic stages for

which the main growth processes follow different laws [12]:

1. Nucleation and growth of new droplets on the free surface. These droplets are

so small and are separated so far away from each other, that they do not influence

their neighbours. Consequently, the growth rate depends only on the flux of vapor.

If that flux is constant over time we get a direct time dependence of the droplet size

which can be written as

r ∼ tν .

The constant ν depends on the microphysics of droplet growth in our system. If the

growth rate is limited by diffusion then ν = 1/4 and if it is limited by the flux then

ν = 1/3 [15].

2. As the droplets grow they eventually come into contact and merge. This is the co-

alescence regime where the mono-disperse distribution starts to change but still is

mostly uniform. The reason is the small amount of space on the substrate released

when two neighbouring droplets merge. It is too small for new droplets to nucleate. So

there is no nucleation of new droplets [8, 10]. This leads to a roughly mono-disperse

size distribution:

n(s, t) ∼ s−θf ∗
(

s

S(t)

)
where f ∗ denotes a characteristic asymptotic shape of the distribution and S(t) is the

typical droplet size.

3. With the size of the droplets also the area that is released when two droplets merge

grows bigger. If this area is big enough new droplets start to nucleate there as seen

in fig. 1.3(b). A self-similar pattern of droplet emerges. This leads to a new

characteristic shape of the distribution n(s, t) with a power-law tail of f(x) towards

small droplet sizes [8, 9, 11]:

n(s, t) ∼ s−θf

(
s

S(t)

)
with S(t) ∼ tz.

4. The last regime is reached when the first droplets start to feel gravity. Then they

drip off, when suspended from a horizontal substrate. Otherwise they either flow down

and take smaller droplets with them or just deform so that they no longer have the

same shape as the smaller droplets (see fig. 1.3(a)). This rather complicated case has

7



1. Introduction

also been observed [16, 17] but is of minor interest for the present work, where no

droplet dripping will be considered.

The present work will mainly analyze the self-similar droplet distribution and related

observables like the covered area or the droplet density.

1.4. Outline

The present work will analyze the size distribution of three dimensional droplets on a one

dimensional substrate using data obtained by a numerical modeled system. Therefore we

will discuss the theoretical background in chapter 2. This includes mainly an approach using

scaling theory with an additional fractal packings ansatz. These are used to derive theoretical

expectations for the main observables of the system, including the porosity, the number of

droplets and the droplet size distribution. Here we especially focus on the distribution

of small sized droplets and the influence of different interaction mechanisms and volume

fluxes. Chapter 3 then will lay down the basic concepts of the simulations algorithms.

Furthermore the changes to achieve different dynamics are explicitly discussed. A main part

is the introduction of the droplet interaction range I.

In the last part we then analyze the data obtained from the simulations. In chapter 4 the

time evolutions of the porosity and the number of droplets are compared for different micro-

dynamics. Using results for the scaling exponents obtained by the theoretical treatment and

the data for the porosity we rescale the droplet size distribution in chapter 5 to present a

uniform description for all data.

8



2. Revisiting the scaling theory

In the following the theoretical basis for this work will be laid. The whole section is based

upon work from and discussions with my supervisor Prof. Dr. Jürgen Vollmer [14].

2.1. Dimensionless units

1e-7

1e-5

1e-3

1e-1

1e1

1e3

1e-4 1e-2 1 1e2

d
is

tr
ib

u
ti

on
n

(s
)

size s

τ ≈ 2.5e5

τ ≈ 5e5

τ ≈ 9e5

slope = −1.05

Figure 2.1.: Droplet size distribution at different times τ in regime 3.

From the power-law distribution of small sized droplets we observe in fig. 2.1 we deduce a

self-similar droplet distribution in regime three. To analyze this distribution we use dimen-

sionless quantities. The quantities of interest are the time t, the total volume V deposited

on the surface, the number of droplets occurring N , which already is dimensionless, and the

total covered length L. To measure the quantities we use the fact that there is a smallest

droplet size s0 of droplet sizes appearing in the system. The length is measured by the diam-

eter d0 of those smallest droplets, so that L′ = L/d0 is the dimensionless length scale. The

volume is measured in units of the smallest droplets, so that V ′ = V/s0. Our model describes

the volume flux Φ onto the surface as independent of the surface state (more precisely: on

9



2. Revisiting the scaling theory

the number of droplets and their size), and that it is constant over time. Let t0 be the time

needed to deposit a droplet of size s0 on an area of size c · d0 = c · 2 · r0. Then s0 = c r30 and

Φ · t0 =
s0

c · 2 · r0
=
r20
2
.

Adopting t0 as our time unit we arrive at the dimensionless time scale

τ =
t

t0
.

2.2. Scaling ansatz

Now, we observe that the evolution of the self-similar distribution is completely characterized

by the characteristic size S(τ) of the biggest droplets in the system. This should be growing

in time, so we assume:

S(t) ∼ τ z ⇔ r(τ) ∼ τ z/D, (2.1)

whereD is the dimension of the drop, D = 3. Analogously d is the dimension of the substrate,

d = 1. Moreover, when the droplets grow larger the number n(τ) per unit substrate area

decreases in time:

N(τ) =

∫
dsn(s, τ) ∼ τ−z

′
. (2.2)

To get an expression for n(s, τ) we use the scaling ansatz from Family and Meakin

[10, 18] which is a consequence of the Buckingham-π-theorem:

n(s, τ) = s−θ · f
(

s

S(τ)

)
(2.3)

In fig. 2.1 we see, that the only time dependent part is the distribution of the largest droplets.

All other aspects of the distribution can be described by a power law and cut-offs for small

and big droplet sizes.

2.3. Volume

The total volume V (τ) is obtained by a summation of all droplets multiplied with their size.

Since we sum over a large system it can be approximated by an integral, starting from the

size of the smallest drops:

V ′(τ) =

∫ ∞
s0

ds · s · n(s, τ). (2.4)

10



2.4. Covered length

Using eq. 2.1 and 2.3 the integral transforms to

V ′(τ) ≈ τ (2−θ)z ·
∫ ∞

s0
S(τ)

dx · x1−θ · f(x).

Where x = s
τz

. With the assumption, that for limx→0
f(x)
xθ−1 = 0 the integral becomes a time

independent constant. Since we have a constant volume flux, V ′ is proportional to τ . Hence,

eq. 2.4 provides the condition:

1 = (2− θ)z. (2.5)

2.4. Covered length

Another relation between the exponents is obtained by observing the over-all covered length

L′, which should approach a constant in time for the asymptotic regime. It is given by the

integral over the surface space as covered by each droplet. Using as = c · s dD : we can write

down an expression for L′:

L′(τ) = c ·
∫ ∞
s0

ds · sd/D · n(s, τ)

= c · τ (
D+d
D
−θ)z ·

∫ 1

s0
S

dx x
d
D
−θ · f(x). (2.6)

Where again x = s
tz

. Assuming now, that for limx→0 f(x) · x
d
D
−θ = 0 the integral becomes a

time independent constant, the requirement leads to another equation for z and θ:

0 = (
D + d

D
− θ)z,

Using eq. 2.5 and d = 1, D = 3 we find

θ =
4

3
and z =

3

2
. (2.7)

2.5. Number density

Fig. 2.2 shows, how the droplet size distribution looks like if it is rescaled with the ansatz

of eq. 2.3, using the derived values for θ and z. We observe a data collapse for all but the

smallest droplets. The resulting characteristic shape can be approximated by some new

power law plus a lower and an upper cut-off, depending only on the size of the smallest

droplets and of the biggest ones. By that means, we have to drop the function f( s
S(τ)

) from

11



2. Revisiting the scaling theory

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1
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s
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(s
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3
2
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Figure 2.2.: Rescaled droplet size distribution at different times τ in regime 3. Here θ = 4
3

and z = 3
2

were used to plot sθn(s, τ) over s/S(τ), with S(τ) ∼ τ z.

eq. 2.3 and redefine it by considering distribution of droplets on the substrate as a fractal

packing of discs [9]:

f(s, S(τ), s0) =
(

s
S(τ)

)ε
f̂
(

s
S(τ)

)
ĝ
(
s
s0

)
, (2.8)

whereby ε is the new power-law exponent describing the systems fractal dimension. The

function f̂(x) ∼ 1 for x < 1 and is zero for x & 1. Hence it provides a cut-off for the large

droplets. In a similar way ĝ(x) provides a cut-off for the small droplets. It is one for x > 1

and it is zero for x < 1 after s0 is the size of the smallest existing droplets in the system.

To determine the new exponent ε we consider the time evolution of the total number of

droplets. In the self-similar regime, this should decrease according to N(τ) ∼ τ−z
′
, with a

positive contact z′. Using eq. 2.8 leads to:

τ−z
′ ∼ N(τ) =

∫ ∞
0

ds s−θ ·
( s
τα

)ε
f̂
( s
τα

)
ĝ
(
s
s0

)
= τ z(1−θ) ·

∫ 1

sN/τz
dx xε−θ f̂0

=
τ z(1−θ)f̂0
θ − 1− ε

·

[(
N0

τ z

)ε−θ+1

− 1

]

=
sε−θ+1
N f̂0
θ − 1− ε

· τ−zε for ε > d/D and τ � 1. (2.9)

Here sN characterizes the upper boundary for the influence of ĝ(s/s0). So we get a connection

12



2.6. Porosity

between z′ and the scaling exponent ε:

z′ = zε =
3

2
ε. (2.10)

2.6. Porosity

Another observable that will be used to analyze the system is the fraction of non-wetted

area, the porosity p(τ). It can be determined via the number of droplets per unit area n(τ).

Introducing the mean gap size β per droplet, which is considered to be constant in time

at least in the asymptotic regime, and the interaction range I, determining the minimal

distance between two droplets; we find

P (τ) = 1− A(τ)

= 1−
∫ ∞
0

ds (I + 2sd/D)s−θ f
( s
S

)
' 1− I N −

[
1− I N −

∫ sN
S

0

dx x−1f̂0 x
ε

]
) for τ � 1

=
f̂0
ε

(sN
S

)ε
∼ τ−z

′
(2.11)

= β · n(τ)

2.7. Lower cut-off function

To determine the lower cut-off ĝ of the scaling function we have to focus on the distribution

of the small sized droplets. The following derivation stays closely to the derivation of Vollmer

et al. [9] for a system of three dimensional droplets on a two dimensional substrate.

The total volume V of all droplets is the most stable observable. By construction of our

algorithm it grows linear in time. Consequently, we rewrite eq. 2.3 and 2.8 in form of a

volume:

s n(s, τ) = S−
1
3

( s
S

)ε− 1
3
f̂(s/S) ĝ(s/s0)

Based on the work on two dimensional breath figures [9] we expect that the scaling exponent

ε and the cut-off function ĝ are not universal. Rather ĝ depends on the rules of local droplet

growth. To establish that relation we follow the evolution of droplets smaller than s∗ over a

time interval [t : t+ dt] whereby the infinitesimal element dt and the considered section are

chosen such that no merging of drops larger than s∗ will occur. Choosing s∗ � S we may

assume that f̂(s∗/S) → f̂0 = constant. The volume for this part of the distribution then
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2. Revisiting the scaling theory

amounts to:

V (s∗) =

∫ s∗

s0

s n(s, τ) ds =
f̂0

S
1
3

∫ s∗

s0

( s
S

)ε− 1
3
ĝ(s/s0) ds.

An infinitesimal increase of s∗ simply means increasing the upper limit of the integral to

s∗ + (ṡ dt):

dV

dt
=
V (s∗ + ṡ dt)− V (s∗)

dt
=

f̂0

S
1
3

(s∗
S

)ε− 1
3
ĝ(s/s0) ṡ

We also know that the volume can only change due to the flux onto the considered section

of size Σ which solely depends on s∗ and S. We approximated Σ using the fractal packings

approach from eq. 2.8:

dV

dt
= Σ(s∗, S) Φ ∼

(s∗
S

)ε
Φ.

Dropping for convenience the ∗ in s∗ we hence find

ĝ(s/s0) ∼
Φ

f̂0

s1/3

ṡ
. (2.12)

As mentioned in sec. 1.3.2 the growth of large droplets follows the equation ṡ ∼ Φ s1/3. For

smaller droplets a sub-dominant contribution involving the size of the smallest occurring

droplets, s
1/3
0 becomes noticeable,

ṡ ' Φ
[
s1/3 + s

1/3
0

]
= Φ s1/3

[
1 +

(s0
s

)1/3]
. (2.13)

Here also those newly added droplets are included in the growth of another droplet that are

placed close enough to this droplet to get directly absorbed. So we find an explicit expression

for the function ĝ:

ĝ

(
s

s0

)
=

f̂−10

1 + a( s
s0

)−b
. (2.14)

where α = 1 and b ' 1
3

according to eq. 2.13, and deviations from these values can account

for non-trivial correlations arising from the influence of neighbouring droplets.

2.8. Varying droplet growth laws

Up to this point the theory was tailored to reflect a specific scheme to grow the droplet

volume. The dynamics of coalescence followed the rule merge upon impact or alternatively,

14



2.8. Varying droplet growth laws

when the distance falls below some constant value called interaction range I. Another

option is to choose I to be proportional to the radius of a droplet or to choose the volume

flux to be homogeneously distributed over the surface of the substrate. The following section

concentrates on the expected changes in the systems behaviour if those changes are adopted.

2.8.1. Radius dependent interaction range

To understand the behaviour of a system with a droplet interaction range proportional to the

radius of a droplet, where λ defines the proportionality, we redefine porosity of the system:

p̃ = 1− (1 + λ) a = 1− (1 + λ) · (1− p)

= (1 + λ) p− λ (2.15)

Since the porosity is calculated via an integral over the radius distribution the prefactor

(1 + λ) can be interpreted as a deformation of the droplet in horizontal direction. The

constant term −λ contributes to a constant minimal distance between two neighbouring

droplets. We see that a system with an interaction range depending on the radius of a

droplet is the same as a system with a constant interaction range I but with deformed

droplets. Meaning that we no longer look at droplets with a spherical shape but rather at

droplets in form of rotational ellipsoids. So p̃ should provide the same results as for a system

with zero interaction range for arbitrary values of λ.

2.8.2. Surface-dependent flux

To deal with surface depending flux the surface of all droplets has to be considered. To cover

different growth scenarios in a unified framework, we consider a situation where sufficiently

large droplets grow like

3R2 Ṙ ' ΦRd̃ ⇒ 3RD−1−d̃ Ṙ = Φ ⇒ RD−d̃ = τ

S ' RD ' τ
D
D−d̃

⇒ R ∼

τ 1 ⇒ S ∼ τD if d̃ = 2 (flux ∼ surface area),

τ 1/2 ⇒ S ∼ τD/2 if d̃ = 1 (flux ∼ substrate length).

Then the effective surface area σ =
∫
ds s

d̃
D · n(s, τ) of the droplet follows out of eq. 2.3.

Analogously to sec. 2.4 the result is

σ ∼ S1+ d̃
D
−(1+ d

D
) = S

d̃−d
D =

 S1/D if d̃ = 2,

S0 if d̃ = 1.
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2. Revisiting the scaling theory

Again we use, that the change of volume is equal to the flux onto the droplets effective size

as long as we do not consider any merging events:

V̇ = Φσ = ΦS
d̃−d
D = Φ τ

D−d
D−d̃

−1 ⇒ V ∼ τ
D−d
D−d̃

 ⇒ V ∼ τ 2 if d̃ = 2,

⇒ V ∼ τ if d̃ = 1.

We see that as long as we treat the system in terms of V or S we expect no differences

(except for ε and ĝ). As far as the scaling relations are concerned the only apparent difference

lies in the time dependence of the droplet growth — it scales linear and quadratic respectively.

To give a specific example we reconsider the systems porosity:

Porosity p = 1− a = 1−
∫

ds s−θ sd/D f(
s

S
)

= 1−

[
1−

∫ s0
S

0

dx xε+
d
D
−θ

]
∼ (

s0
S

)ε ∼ S−ε ∼ V −ε
D
D−d .
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Figure 2.3.: Comparing the asymptotic growth laws for the two different flux types. If
plotted against time the surface dependent flux provides an exponent twice as big but plotted
against the systems total volume both growth laws are asymptotically the same. µ defines
the ratio between the surface of a droplet with unit diameter and a thread of string of unit
length and therefore defines the thickness of the string.
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3. Simulations

Figure 3.1.: Flow chart for the basic concept
of the algorithm.

We showed that all quantities are fully de-

scribed by a set of three exponents θ, z and

ε or z′ and two cut-off functions f̂(x) and

ĝ(x). Hence it does not matter whether we

observe p(τ), n(τ) or n(s, τ) sθ in the asymp-

totic regime. The quest now is to find ε using

data attained by a numerical model of three

dimensional droplets on a one dimensional

surface. The next section 3.1 describes a

program provided by J. Vollmer. The fol-

lowing parts specify the modifications added

to it.

3.1. Basic concept

The substantial assumption for the numer-

ics is that there is no difference between the

processes of new droplets nucleating on the

substrate and the growth of already exist-

ing droplets. This simplification allows us to

use a volume flux which is constant over the

whole system and does not differ for wetted

and free areas. Together with the already

mentioned dimensionless units this enables

a relatively simple, event driven algorithm.

The basic process of the algorithm is to

idealize the flux by adding a new droplet to the system in every time step (see fig. 3.1). The

volume s0 of those droplets is defined as 1. It is the smallest possible volume of droplets

in the system. This implies, that the total volume V ′ is equal to the dimensionless time τ

which counts the number of droplets added to the system. The radius r0 of the smallest

droplets is defined as 0.5, according to 1.2, so that the length of the system can simply be

measured in diameters d0 of the smallest droplets.
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3. Simulations

To add a new droplet to the system a random point on the surface is chosen as the

position of its center and the creation time of the drop is saved. Now it has to be checked if

this new drop overlaps with already existing droplets. Since the system is one-dimensional

each droplet has exactly two neighbours (because of periodic boundaries) and could only

overlap with these two. To keep track of which droplets are adjacent, each droplet contains

the information about its neighbours. To achieve these informations for a newly added

droplet faster than by going through the system from one side to the other, each one is

assigned a node in a binary tree when added. So every time this happens, it is placed in

the tree according to its center. To check whether these drops merge the distance of their

centers is calculated and their radii and the interaction range are subtracted. If there is

merging the procedure is as follows: The older one of the merging droplets is assigned to

be kept, since statistically it is the bigger one and its volume is set to the sum of the two

old volumes. Its new center is set to the former center of mass and its radius is calculated

via rnew = (r3old,1 + r3old,2)
1
3 . The node for the other drop is removed from the binary tree

and the memory is released. Since time is measured by the total volume of the system, such

a merging event is instantaneous. This is a reasonable approximation, considering previous

experiments [8].

The program divides its output into four streams. The units for all outputs are the same:

Volume is measured via s0, length via d0 and time via τ .

1. The first stream provides status informations while the program is running and sends

them to the standard output. At the beginning it displays the set of given parameters

like the system size and how long it shall run and also the seed for the random number

generator. After that, it provides progress informations for logarithmically growing

time steps. Since the program also performs a self-consistency check on that time

scale there will also be output of these informations if the deviations are bigger than

specified threshold values.

2. The second stream saves informations for each droplet in the system on the same

logarithmic time scale. These informations are, besides a sequential number and the

current time, the time of creation of the given droplet, its volume and the position of

its center. This is one of the two most important files the program produces.

3. The third stream records data about the moments of the droplet size distribution: The

current time, the total number of droplets, the over all droplet volume (which should

be and always is equal to the time) and the total length of wetted area.

4. The fourth channel saves the creation time and center position for each added droplet.

For each coalescence the age, position and size of the two contributors and of the

merged droplet is recorded. Since this information is not always of interest and since

they need a lot of disc space the program provides the possibility to turn off the log-file.
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3.2. Introducing the interaction range

Figure 3.2.: Sketch of the principle for the interaction range.

3.2. Introducing the interaction range

The first change to the algorithm is to introduce an interaction range I for the droplets. It

is defined in the way, that as soon as the distance between two adjacent droplets becomes

smaller than the interaction range these droplets will merge as shown in 3.2.

Implementation in the code is simply accomplished by subtracting the interaction range

from the value used to determine the distance of two droplets.

Another interaction mechanism is already presented in sec. 2.8.1. Instead of a constant

interaction range that is the same for all droplets, we introduce an interaction range that is

proportional to the radius of a droplet. So it is neither the same for all droplets nor constant

in time. Instead it allows larger droplets to grow even faster than smaller droplets compared

to the former mechanism since they have a higher merging rate.

The implementation is analogous to the case with constant I. A constant factor λ is

introduced that defines the ratio between the radius and the interaction range. As the

distance between two adjacent droplets is calculated not the radii of both are taken into

account but each radius times 1 + λ.

3.3. Changing the collision rules

The next change of the droplets dynamics does not vary their range but the amount of

merging events that can happen in one time step. The original algorithm only allowed for

binary events. The first occurs always when a newly added droplet is set inside the range

of an older one. If this older droplet thereby becomes large enough to get in contact with

a neighbour the second event occurs. However, there are cases where the growing droplet

overlaps with both its neighbours. The previous algorithm was designed in the way, that

the larger overlap determines the merging partner, since for a non-instantaneous growing of

the droplets this one would have been reached first. But then it is also reasonable to assume
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3. Simulations

that it takes some time after one side of the droplet makes contact until the expansion of the

other side is stopped. Therefore a threshold value δ is introduced which allows coalescence

with both neighbours as long as the difference in overlap is smaller than δ.

Similarly to the interaction mechanism the model for the flux is varied in two different

ways. The first modification keeps the implementation of a homogeneous flux onto the string

and just applies when a newly added droplet directly merges. It is now assumed that this is

not an event where some small droplet is added to the surface, but where a mass flux onto

the surface of the droplet makes it grow. The difference being that for the first case the

grown droplet is located in the center of mass of the merging partners. But for the second

case the location of the old droplet stays unchanged.

To achieve this change a small section is added to the merging algorithm. It checks whether

one of the merging partners was just added. In that case the center of the merged droplet

is set equal to the center of the older merging parter (which will be the kept droplet). In

every other case the center of mass of the two droplets is calculated and set as the center of

the grown droplet.

3.4. Changing the flux

The second modification changes the entire type of the flux. As discussed in sec. 2.8.2

it is made homogeneously distributed over the whole surface of the system, consisting of

the surface of all droplets and the surface of the free sections of the substrate. Therefore

this surface is mapped onto a line so that the basic concept for adding new droplets remains

unchanged: A random point in some given interval is chosen as the center of the new droplet.

Hence each droplet needs a new attribute stating the cumulative value of surface area up to

its position (measured from the left side of the system). At least if the new droplet should

still get added by using the binary tree. This is highly recommended for systems with a

huge amount of droplets. The challenge then is to keep the event driven algorithm and also

to keep the attribute for the cumulative surface area correct for all droplets since a local

change of a droplets’ surface effects more droplets than just its neighbours. Therefore not

the absolute cumulative surface up to a droplet is stored but the difference to its father in

the tree. Hence a local change of surface area only affects the path in the binary tree leading

to this point on the surface rather than all droplets to the right of this position.

This is an easy task when adding a droplet since in that case the droplets path in the

binary tree is followed anyway. Thus, every time the path changes its direction (left or right

child node) the cumulative value of the current drop has to be updated. It becomes more

complicated when two droplets are merging: Now two different paths have to be updated.

Since both paths can contain an intersecting set of droplets we have to distinguish between

the path of the droplet which is kept and growing and the path of the droplet to be removed.
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3.4. Changing the flux

For the first one we just calculate the difference in surface area and then follow the tree up to

its top, updating every time the path changes its direction. The second case is the troubling

one: When a droplet is removed its node has to be taken out of the tree to keep it effective.

If the tree already contains a lot of nodes this procedure often involves the restructuring of

a subsection of the tree. Then the cumulative value for all involved nodes has to be updated

correctly.

Additionally, every time a droplet is added or a merging event takes place the surface area

of the whole system is updated too. This provides a straightforward control mechanism to

check whether the corrections were calculated properly: Each time the systems moments

are calculated also the overall surface area is determined via each droplets surface and the

distance between all droplets. Both results are then compared.

Since the thickness of the substrate is important for the total surface of the system we

introduce the variable µ. It defines the relation between the surface area for a section of

substrate with unit length to the surface of droplet with unit diameter d0.
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4. Porosity and the number of droplets

4.1. Zero interaction range

We first set the value for the interaction range to zero, and see how the system size and

the simulation time influence the droplet size distribution. To that end the first simulations

were done for different system sizes, in the range of 103 to 5 · 104, and different maximal

running times, in the range of 102 to 104.
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Figure 4.1.: Influence of the systems length onto the porosity and the number of droplets.
The lengths of the shown systems are from bottom to top: 1e3, 5e3, 1e4, 5e4. The upper
curves are plotted equidistant on a logarithmic scale, in fact the data collapses. The curves
below show the data rescaled with an estimated exponent z′ ≈ 1

3
.

Fig. 4.1 shows the time evolution of the total number of droplets and the porosity. Since

time is normalized by the unit surface an increase of the system length corresponds to a

reduction of the initial value of τ . The noise of the data becomes bigger the longer the

program runs and the smaller the system is. Knowing that, the noise in the reduced plots

can be explained by the higher accuracies of the bigger systems.

Furthermore, we can well observe the previously introduced growth regimes:

1. regime — At first the number increases linearly with a slope of 1, which corresponds

to the regime where the droplets not yet interact.

2. regime — As τ goes to one, the growth decreases and passes over into a maximum
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4. Porosity and the number of droplets

after which the droplet number starts to decrease. The droplet collisions become no-

ticeable but no new nucleation is observed. Analogously the porosity starts decreasing

rapidly until it changes to some flatter decrease.

3. regime — Finally an asymptotic behaviour with a different power law evolves.

This transition happens due to the fact, that nucleation is again possible.

As a final result of these first series of measurement we find a mean slope of z′ = εz = 0.33:

ε =
2

3
· 0.33 = 0.22.

4.2. Different interaction mechanisms
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Figure 4.2.: Influence of a radius dependent interaction range I onto the time evolution of
the porosity and the droplet number density. λ is the proportionality factor between the
radius and the interaction range: I = λ · R. Left below: Redefined porosity, rescaled with
z′ = 1

3
. Right: Droplet number density rescaled with z′ = 1

3
.

At first we analyze the radius dependent interaction range. As shown in the upper half

of fig. 4.2(a) the porosity p does no longer approach the power-law behaviour for the large

τ asymptotics. However, if we use the redefined porosity as suggested in eq. 2.15 we find a

perfect collapse of data (black line) for all values of the proportionality factor λ. This curve is

identical to the one observed for a system without interaction range. So the exponent for its

asymptotics is roughly 1
3
. Therefore the lower half of fig. 4.2(a) shows the porosity rescaled

with a factor of τ 1/3 and with a non logarithmic y-axis. We observe, that the redefined

porosities do not collapse perfectly but that there are some slightly differences in magnitude

which follow the variation of λ. The same observation is made for the total number of

droplets n (fig. 4.2(b)). It is also rescaled with τ 1/3 and plotted on a non-logarithmic y-axis.

Yet the effect of λ onto the magnitude of n seem to be slightly stronger than for p.
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4.2. Different interaction mechanisms

Both plots also suggest that 1
3

is no accurate approximation for z′ but that it is rather

slightly smaller. On a first glance there also seems to be a transition in the power-law

exponent between τ = 103 and τ = 104. However, a closer examination suggest that it is

rather due to a damped oscillation around the final asymptotic value.
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Figure 4.3.: Influence of a constant interaction range I onto the time evolution of the
porosity and the number of droplets.

Even more pronounced shifts for both, the porosity and the droplet number, are presented

in fig. 4.3 for a system with constant interaction range I for all droplets. Reconsidering

eq. 2.15 explains this connection. Taking into account the interaction range in the porosity

there is a constant offset of −λ, irrespective of the droplets radii. This not only explains

the different directions of the shift in the porosity plots when comparing the lower curve of

fig. 4.2(a) to fig. 4.3(a), but also the differences in magnitude. The reason is that we only

considered 0 < λ ≤ 0.1 but I ∈ [0, 24]. More striking is the huge effect onto the intermediate

time regime. Especially for n which changes barely for a time interval that is growing with

increased I.

This transient region is also the only point indicated by a rough estimation of the differ-

ences between the former system, where a droplet was only capable of two merging events

per time step, and a system where also merging with both neighbours at the same time is

possible.

A more precise comparison reveals a more drastic effect of the modified interaction mech-

anism. Figures 4.4(b) and 4.5(b) show that a major change occurs in the exponent z′. It is

even debatable whether or not the system approaches a power law at all on the considered

time scales. Especially for higher values of I the curves are obviously bent.

Another notable observation in fig. 4.4(b) and 4.5(b) is the remarkable similarity of the

data for the two different threshold values δ = {0.01, 0.1} that determine the maximal

difference in overlap up to which still merging with both neighbours takes place. The reason
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probably lies in discrete increase of the droplet size1.
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Figure 4.4.: Influence of a constant interaction range I onto the time evolution of the
porosity if a droplet is allowed to merge with both neighbours at the same time.
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Figure 4.5.: Influence of a constant interaction range I onto the time evolution of the number
of droplets if a droplet is allowed to merge with both neighbours at the same time.

1In a rough analysis for a series of different δ values we found a series of discrete changes.
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4.3. Changing the flux

4.3. Changing the flux

When newly added droplets do not shift the center of mass when directly added to existing

droplets it has no major impact onto the porosity and the droplet number density as we see

in fig. 4.6. Both the small and the large time asymptotic behaviour is not influenced. The

only deviations are small shifts in magnitude in the second regime of growth.
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Figure 4.6.: Changes in the porosity and the droplet number density when newly added
drops no longer shift existing drops on if they immediately merge. Comparing data for two
different constant values of I.

The most drastic differences occur when the flux is changed from substrate length to sur-

face dependency. Although there is no difference in the systems behaviour for early timesteps

fig. 4.7 shows that for the large τ asymptotics a completely different scaling exponent z′ is

observed. Compared to that change and the influences the previously discussed modifications

had the differences in the transient region are kind of small.
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Figure 4.7.: Influence of a constant interaction range onto the porosity and number of
droplets for a system with homogeneous flux onto the total surface.
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It is observed, that the shift in the magnitude when varying I seem to depend on the

weighting factor µ which determines the surface area of substrate section with unit length

compared to the surface of a droplet with unit diameter d0. The smaller µ the smaller are the

shifts. A probable explanation lies in the fact, that with lesser weighting of the substrates’

surface also the amount of empty substrate due to the interaction range of the droplets is

weighted less and therefore has a reduced influence.

4.4. Influences on the scaling exponents

In sec. 1.2 the theoretical derivations from Blackman and Brochard [11] concerning the

scaling exponent θ−ε were stated, which claimed that it is only depending on the dimensions

of the droplets and the substrate but not on any other system properties. However, the

results of Blaschke et al. [9] do not fit Blackmans prediction for two dimensional substrates.

Therefore we examine the behaviour of θ − ε in the discussed systems and whether it fits

Blackmans results of θ − ε = 1.17.
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Figure 4.8.: Scaling exponent θ − ε obtained for different constant values of I and by
fitting the slope to data averaged over 20 simulations. The fitting range for all graphs is
1e4 < τ < 1e6.

Analyzing the porosity and the droplet number not only gives more insight into the systems

dynamics. Regarding eq. 2.10 it also provides a method to determine the scaling exponent

ε out of the asymptotically approached power-law exponent z′. Fig. 4.8 shows the results

attained by fitting a power law to the last to decades (τ = 104 to τ = 106) of the porosity

data for systems with different, constant interaction ranges. All systems have the same

substrate length (105) and the data is averaged out of simulations for 20 different seeds for

the random number generator. It shows a clear trend that larger values of I give rise to

increasing values of θ − ε. In particular for larger values of I the relation is nearly linear
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4.4. Influences on the scaling exponents

(cf. fig. 4.8)2. In contrast, for small I the relation is non-trivial. The black dots in fig. 4.8

represent a finite-size scaling analysis of z′ in form of z′(I, τ) = z′∞(I) − α · τβ which was

motivated by fig. 4.4. There a declining curvature is visible for the data of the self-similar

region, assuming that it tends towards some limit value τ∞. Expecting the same behaviour

for the system with binary merging but with less magnitude we see that this ansatz does

not lead to more precise results but rather enlarges the uncertainties. This may result out

of ongoing oscillations of the exponent.

For the triple merging system the I dependence of the exponent is even more pronounced.

Although it is not completely certain whether the exponents would converge further for later

time steps it strengthens the assumptions of a linear connection to the interaction range.

And we also observe that there is no overlap in the range of the exponents covered by the

binary and the triple merge system. However, the slopes for the linear approximation are

nearly the same (≈ 1
75

) for the triple mering system as well as for the binary merging one.

The results for the system with a surface dependent flux (fig. 4.9) deviate even further

from the original system. But again the exponents for different interaction ranges show a

similar trend. This trend now also shows up for small I, at least for the system with a

smaller substrate surface.

1.185

1.19

1.195

0 1 2

θ
−
ε

interaction range I

µ=0.01
µ=0.1

Figure 4.9.: Scaling exponent θ− ε obtained for different constant values of I and by fitting
the slope to data averaged over 20 simulations of a system with homogeneous flux onto the
total surface. The fitting range for all graphs is 1e4 < τ < 1e6.

We find, that our results do not find Blackmans prediction of θ − τ = 1.17. They are not

only relatively far away from 1.17 but they are also directly dependent on the micro-dynamics

of the system.

The calculated values of z′ (see tab. A.1 to A.3) are now used to rescale the droplet size

distribution.

2However, a clear linear dependence between ε and I is unlikeable because ε has to be larger than 0.
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5. Scaling of the size distribution

5.1. Different interaction mechanisms
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(b) I = 24.

Figure 5.1.: Evolution of the droplet size distribution over time for two different interaction
ranges.

Figure 5.1(a) shows, how the self-similar distribution develops over time, and that it stays

more or less constant after a certain amount of time. Also the origin of the ’bump’ is shown

pretty strikingly. It originates at the very beginning of the evolution and therefore seems to

reflect the starting distribution of droplets when the first merging events occur in regime 2.

Apparently the influence of this build up of the distribution does not decline over time. In

contrast to that, fig. 5.1(b) shows the effect on the evolution of an increased interaction

range: The system needs much longer to develop its characteristic droplet distribution, and

there are very pronounced new features for smaller droplets for which the simple scaling

approach of eq. 2.3 does not account.

Those tails are presented in more detail in fig. 5.2(a). The data for these plots was

generated in the same way as for p and n but additionally averaged over half a decade in

time (τ ∈ [5 · 105, 1 · 106]) since in the asymptotic regime changes in the size distribution

mainly occur due to fluctuations.

We observe that for higher values of I the deviations of the small droplets from the
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5. Scaling of the size distribution
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Figure 5.2.: Influence of different constant interaction ranges I onto the size distribution
of droplets. On the right side it is rescaled using the scaling exponent ε determined via the
porosity.

power-law behaviour grow stronger. Reconsidering eq. 2.12 states an inverse proportionality

between ĝ and the growth rate ṡ. This way we find, that by increasing the interaction

range the growth rate of the smaller droplets in the system is increased although the growth

rate of the large droplets remains unchanged. Eq. 2.13 explains this behaviour: For small

droplet also the interaction range has to be taken into account for ṡ; for larger droplets this

correction becomes more and more negligible just as the s0-term.
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Figure 5.3.: Using the cut-off function ĝ to rescale the droplet size distribution for a system
with different constant values of I. The size of the system is 105.
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5.2. Surface dependent flux

In fig. 5.2(b) the size distribution is rescaled with ε, determined from the porosity (for

the exact values see tab. A.1). Thereby the deviations of the small droplets are even more

pronounced. And also another feature of the large size cut-off function f̂ appears. It is not

only accounting for the dip and the bump in the distribution of large sized droplet (see

fig. 6.1) but also for a second, lower bump for the droplets slightly smaller than the size the

dip appears for. So the actual scaling regime spans only over one to three decades of the

size distribution, depending on I.

When we fit the data for the tails with the function for ĝ given in eq. 2.14 and also use

our results on z′ obtained in sec. 4, we can plot the cut-off function f̂ = n · sθ−ε/ĝ. For this

function we obtain a perfect data collapse as demonstrated in fig. 5.3. The fitted values

for a and b are given in tab. A.4, f̂0 is the same for all different values of I which allows

the assumption, that the systems micro-dynamics have no impact on the large scale cut-off

f̂(s/S).

Considering now the triple merge system (see fig. 5.4(a)) we observe a oscillatory behaviour

for the small droplets. When rescaled with ε a qualitative change in the growth rate for small

droplets of different size becomes visible (fig. 5.4(b)). Hence the tail of the distribution is

not directly describable by eq. 2.14.
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Figure 5.4.: Influence of different constant interaction ranges I onto the size distribution of
droplets for a system with the possibility of triple merging events. The size of the system is
105.

5.2. Surface dependent flux

For the system with the surface dependent flux we observe a distribution very similar to the

original system. One interesting difference occurs when rescaled with ε (fig. 5.5(b)): The

second bump observed in the binary merging system (see fig. 5.2) does not occur here. Again

the influence of different values of I are smaller for smaller values of µ. And a collapse of
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5. Scaling of the size distribution
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Figure 5.5.: Scaling of the droplet size distribution for different surface depending fluxes.
On the right side it is rescaled using the scaling exponent ε determined via the porosity.

the data is achieved by fitting eq. 2.14 to the tails and replotting the size distribution using

the fitted functions (fig. 5.6). The only new feature is, that here f̂0 is not the same for all

different values of I and µ. Instead f̂0 ∈ [545, 650].
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Figure 5.6.: Using the cut-off function ĝ to rescale the droplet size distribution for a system
with different constant values of I and a flux which is homogeneous on the total surface of
the system. The linear size of the system is 105.
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6. Conclusion & Outlook

In the present work we showed, that the classical theories describing droplet growth processes

for breath figures of droplets on a two dimensional substrate also describe the growth of three

dimensional droplets on a one dimensional substrate. In the figures 4.1 to 4.7 we identified

three growth regimes in the time evolution of the considered systems: adding droplets to

an empty surface, the evolution of a mono-disperse distribution, and the emergence and

evolution of a self-similar droplet size distribution. For different interaction mechanisms

our simulation data verified the predicted data collapse for constant and radius-dependent

interaction ranges (fig. 4.2). It also led to a non-trivial shift in the magnitude of the main

observable porosity and the number of droplets (fig. 4.3). This effect becomes particularly

visible when allowing the droplets to merge with both neighbours at the same time (fig. 4.4).

The different micro-dynamics enter into the scaling description for the droplet size distri-

bution. The distribution is divided into three parts (see figures 5.2 to 5.6):

1. The distribution of large droplets is given by the function f̂(s/S). It involves a bump

with large droplets, separated by a gap from a broad tail describing intermediate-sized

droplets. We found that the micro-dynamics have no impact on the growth of the

largest droplets in the systems. Hence the scaling function f̂ is independent of I.

However, there still are deviations for the two analyzed types of flux: For homogeneous

flux onto the system surface the gap is much broader than for the homogeneous flux

onto the one dimensional substrate (fig. 6.1). So although the surface flux system

has the same asymptotic growth law for large droplets it still has an effect on the

distribution of large droplets.

2. The behaviour of the small droplets is completely different to the large ones. A

change of I strongly affects their growth rate. We provided a theoretical function for

the tail of the distribution that captures all data for binary collisions with both types of

volume flux. Furthermore we showed for the surface dependent flux that the diameter

of the string causes notable changes in the tails, although it did not influence the larger

droplets. A very surprising result we obtained for systems with triple merging. Even

though we clearly distinguished a scaling regime for s
S
∈ [1e− 4 : 1e− 1], we found an

oscillatory behaviour for the growth of the smallest droplets. the function ĝ becomes

some new, non-trivial function for this case.
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6. Conclusion & Outlook

100

1000

1e-06 0.0001 0.01 1

c
·s

θ
−
2 3
z
·n

(s
,τ

)
/
ĝ
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Figure 6.1.: Comparison of the distribution of large droplets for the three types of dynam-
ics. The distribution for binary merging was additionally rescaled with c = 6.6 and the
distribution for triple merging was rescaled with c = 5. In the latter case the tails could not
be removed (we used here ĝ( s

s0
= 1) due to lack of a theoretical model.

3. The size distribution of medium sized droplets follows to a very good approximation

a power law involving a non-trivial scaling exponent z′. We showed that the fractal

packings ansatz, assuming a fractal dimension df = 2
3
z′, is fitting the data for one

dimensional substrates. This result further substantiates the finding of [9], that the

derivation of Blackman and Brochard [11] for z′ must be based on some false or over-

simplified assumptions. In contrast to their prediction, that the scaling exponent z′

is just depending on the dimension of the droplets and the substrate, we showed,

that the microscopic dynamics of the droplet interaction also has to be included in a

comprehensive model. Instead of the predicted constant value of z′ = 0.25, we observe

values for z′ in a wide range between 0.23 and 0.33 for flux proportional to the thread

length, and z′ in the quite different range 0.19 to 0.22 for surface dependent flux. All

analyzed systems show similar dependences between z′ and the droplets interaction

range I. Especially for 1 < I ≤ 6 a linear trend was observed (see fig. 4.8).
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In summary we showed, that the micro-dynamics have a non-negligible influence onto the

droplet growth laws and the droplet size distribution. There, naturally, remain many open

questions.

One topic rather slightly touched in this work is the specific form of the cut-off function f̂

for large droplets. We saw that different interaction rules have a great impact on the porosity

and the droplet number density for τ ≈ 1 (fig. 4.3 to 4.7). Since this is the growth regime

where the distribution of large droplets evolves, deeper understanding of this transition

should provide a method for deriving the specific form for f̂ .

Another aspect that remains open to investigation is the explicit connection between ε

and I. Although we observed a somehow linear dependence it is obvious that this can only

be a low order approximation since ε cannot become less than zero and we also saw some

different behaviour for small values of I.

Finally, the experiment presented in sec. 1.2.2 should be mentioned. It would be desirable

to use this experiment to check in how far the different systems discussed in this work give

knowledge about a real system. Especially for investigating the influence of the thickness of

the string this experiment should fit well.
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A. Appendix

A.1. Values of fitted parameters

The following tables present all values that were obtained by fitting the data and that were

later used to rescale the droplet size distribution. The fits were performed with gnuplot,

which uses the nonlinear least-squares Levenberg-Marquadt algorithm.

I z′ σz′ θ − ε σθ−ε

0.0 0.3281 0.0009 1.1146 0.0006
0.5 0.3288 0.0006 1.1141 0.0004
1.0 0.3277 0.0006 1.1149 0.0004
2.0 0.3268 0.0005 1.1155 0.0004
3.0 0.3254 0.0005 1.1164 0.0004
4.0 0.3233 0.0005 1.1178 0.0004
5.0 0.3218 0.0005 1.1188 0.0004
6.0 0.3198 0.0006 1.1201 0.0004
8.0 0.3176 0.0007 1.1216 0.0005
12.0 0.3121 0.0007 1.1253 0.0005
16.0 0.3086 0.0006 1.1276 0.0004
24.0 0.3029 0.0007 1.1314 0.0005

Table A.1.: Exponent z′ for system with different constant I and flux proportional to the
substrates length determined via fit to the porosity over time interval [1e4:1e6].

I z′ σz′ θ − ε σθ−ε

0.0 0.3058 0.0008 1.1295 0.0006
0.5 0.3055 0.0007 1.1297 0.0005
1.0 0.3043 0.0006 1.1305 0.0004
2.0 0.3029 0.0006 1.1314 0.0004
3.0 0.3009 0.0006 1.1327 0.0004
4.0 0.2991 0.0006 1.1339 0.0004
5.0 0.2973 0.0006 1.1351 0.0004
6.0 0.2952 0.0007 1.1365 0.0005

Table A.2.: Exponent z′ for system with different constant I, the flux proportional to the
substrates length and the possibility of three merging events at one time step determined
via fit to the porosity over time interval [1e4:1e7].
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A. Appendix

I δ z′ σz′ θ − ε σθ−ε

0
0.01 0.217 0.005 1.189 0.004
0.1 0.22 0.003 1.187 0.002

1
0.01 0.213 0.004 1.191 0.003
0.1 0.22 0.003 1.187 0.002

2
0.01 0.209 0.005 1.194 0.004
0.1 0.214 0.004 1.191 0.003

Table A.3.: Exponent z′ for system with different constant I and surface dependent flux,
with different weights for the surface of the string, determined via fit to the porosity over
time interval [1e4:1e6].

I f̂0 a σa b σb

0.0 100 2.4·10−5 1.8·10−5 0.98 0.08
0.5 100 0.0012 0.0004 0.7 0.04
1.0 100 0.0044 0.0008 0.623 0.017
2.0 100 0.011 0.003 0.6 0.02
3.0 100 0.017 0.003 0.606 0.014
4.0 100 0.024 0.002 0.608 0.007
5.0 100 0.046 0.007 0.567 0.015
6.0 100 0.057 0.009 0.57 0.02

Table A.4.: Numerically determined parameters of ĝ for system with different constant I
and flux proportional to the substrates length determined via fit to the rescaled droplet size
distribution in the interval s

S
∈ [1e-9 : 8e-5].

I µ f̂0 a σa b σb

0
0.01 590 2.7·10−4 1·10−4 0.54 0.02
0.1 650 4·10−7 6·10−7 0.85 0.11

1
0.01 545 1.6·10−4 6·10−5 0.565 0.012
0.1 615 5·10−5 3·10−5 0.63 0.03

2
0.01 545 2.4·10−4 6·10−5 0.587 0.015
0.1 580 5·10−5 3·10−5 0.67 0.03

Table A.5.: Numerically determined parameters of ĝ for system with different constant I
determined and a surface dependent flux via fit to the rescaled droplet size distribution in
the interval s

S
∈ [1e-9 : 8e-5].
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A.2. Shape of droplets on strings

The following derivation has been adopted from notes by [14].

To derive the contact angle that droplets form on a string we firstly consider its surface

area A and volume V depending on its contour, assuming it to have rotational symmetry

around the string:

AL[f(x)] = 2π

∫ L

−L
dx f(x) ·

√
1 + [f ′(x)]2,

VL[f(x)] = π

∫ L

−L
dx f 2(x).

Here f(x) denotes the droplets’ shape and 2L its length on the string. Using eq. 1.1, its

energy E adds up to

E =

∫ L

−L
dx
[
γLG

(
2π f(x) ·

√
1 + f ′2(x)

)
− γSG + γSL + ς · π · f 2(x)

]
=:

∫ L

−L
dx ε(x)

where ς denotes the chemical potential. Using the Lagrangian ∂ε
∂f

= d
dx

∂ε
∂f ′

one finds:

γLG ·
√

1 + f ′2 + ς · f =
d

dx

[
γLG · f · f ′√

1 + f ′2

]
.

Rewriting x→ x
L

, f → f
L

and defining M = ε·L
γLG

this leads to

√
1 + f ′ +M · f =

d

dx

[
f · f ′√
1 + f ′

]
. (A.1)

For a spherical droplet the form f(x) =
√

1− x2 leads to M = −2.Instead considering an

ellipsoid we find

f(x, α ⇒ M = − 1

α
− 1. (A.2)

Repeating the steps for calculating the Lagrangian including α leads to

ε(L)

γLG
=

3VL
α · L

+

(
γSL − γSG

γLG

)
· L = −3ςV

γLG
− 3V

L
− L

cos θ
.

Considering now a string with a finite thickness ρ reduces both limits of the integration by



A. Appendix

ρ
L

. Again repeating the steps we find

εL(ρ)

γLG
= A(ρ) +

γSL − γSG
γLG

· 2πρ · L

=
2 · V (ρ)

α · L ·
(
1− 1

3
· (1− ρ

L
)2
) − 2πρL

cos θ

= − 2ς V

γLG ·
[
1− 1

3
· (1− ρ

L
)2
] − 2V

1− 1
3
· (1− ρ

L
)2
· 1

L
− 2πρ

cos θ
· L.

When taking the limit ρ→ 0 we get:

dεL(ρ)

dL
= 0 ⇔ 2V

L2
' 2πρ

cos θ
(α ' 2, ρ ' 0)

⇔ 2πρ

cos θ
'

3 · 4π
3
L3

L2
= 4π L ⇔ ρ

2L
= cos θ =

π

2
− θ

⇔ θ ' π

2
− ρ

2L
.

42



Bibliography

[1] Rayleigh, Breath figures, Nature 86(2258), 416 (1911)

[2] G. D. Bansal, S. Khandekar, K. Muralidhar, Measurement of heat transfer during drop-

wise condensation of water on polyethylene, Nanoscale and Microscale Thermophysical

Engineering 13(3), 184 (2009)

[3] D. Beysens, Dew nucleation and growth, Comptes Rendus Physique 7(9), 1082 (2006)

[4] O. Klemm, et al., Fog as a fresh-water resource: Overview and perspectives, AMBIO

41(3), 221 (2012)

[5] R. S. Schemenauer, P. I. Joe, The collection efficiency of a massive fog collector, Atmo-

spheric Research 24(1–4), 53 (1989)

[6] J. L. Viovy, D. Beysens, C. M. Knobler, Scaling description for the growth of conden-

sation patterns on surfaces, Physical Review A 37(12), 4965 (1988)

[7] D. Beysens, C. Knobler, Growth of breath figures, Physical review letters 57(12), 1433

(1986)

[8] T. Lapp, Evolution of droplet distributions in hydrodynamic systems, Ph.D. thesis,

Georg-August-University Göttingen (2011)

[9] J. Blaschke, T. Lapp, B. Hof, J. Vollmer, Breath figures: Nucleation, growth, coalescence,

and the size distribution of droplets, arXiv (2012)

[10] F. Family, P. Meakin, Kinetics of droplet growth processes: Simulations, theory, and

experiments, Physical Review A 40(7), 3836 (1989)

[11] J. A. Blackman, S. Brochard, Polydispersity exponent in homogeneous droplet growth,

Phys. Rev. Lett. 84, 4409 (2000)

[12] D. Fritter, C. M. Knobler, D. A. Beysens, Experiments and simulation of the growth of

droplets on a surface (breath figures), Physical Review A 43(6), 2858 (1991)

[13] K. Graf, M. Kappl, et al., Physics and chemistry of interfaces, John Wiley & Sons

(2006)

43



Bibliography

[14] J. Vollmer, Notes and Dicsussions (2013)

[15] T. Rogers, K. Elder, R. C. Desai, Droplet growth and coarsening during heterogeneous

vapor condensation, Physical Review A 38(10), 5303 (1988)

[16] J. Rose, L. Glicksman, Dropwise condensation—the distribution of drop sizes, Interna-

tional Journal of Heat and Mass Transfer 16(2), 411 (1973)

[17] H. Tanaka, Measurements of drop-size distributions during transient dropwise conden-

sation, Journal of Heat Transfer 97(3), 341 (1975)

[18] F. Family, P. Meakin, Scaling of the droplet-size distribution in vapor-deposited thin

films, Physical review letters 61(4), 428 (1988)

44



Acknowledgments

Firstly, I would like to thank my supervisor Jürgen Vollmer for all his support on this project.

All the ideas and inspiring discussions he contributed have been very helpful while creating

this thesis. He always had a sympathetic ear, irrespective of the time of day or his own

workload.

Furthermore I would like to thank all the members of Jürgens and Marcos group for all

help and ideas concerning my research and also for creating such a pleasant and inspiring

environment. In particular I want to thank Johannes, Laura, Martin and Bernhard for

always having profound comments and suggestions for my work and everything else, and

especially Artur for all help with irritating IT problems.

All of them helped me through that likewise challenging and motivating first hurdle of my

academic career.

Also I would like to thank Eleni Katifori for her commitment as a referee at such a short

notice.

45
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Darüberhinaus erkläre ich, dass diese Abschlussarbeit nicht, auch nicht

auszugsweise, im Rahmen einer nichtbestandenen Prüfung an dieser
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