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1 Introduction

1.1 Motivation

Formation of clouds and rain, yet an everyday phenomenon, is governed by complex
processes on the microscale that are not completely understood. Performing mea-
surements in real clouds is, however, a difficult task. Fortunately, demixing of binary
fluids strongly resembles the formation of rain droplets in so called warm clouds1.
Consider an uprising air parcel in the atmosphere that contains water vapour. It
expands as pressure releases, and adiabatic cooling leads to condensation of rain
droplets. Similar to cloud formation in the atmosphere, condensation of droplets
in a binary fluid is induced by changes in temperature. Therefore it can be used
as a model system to study precipitation in the laboratory under well controlled
conditions.
Until now, experiments have focussed on a constant thermodynamic driving,

i. e. temperature ramps where the volume flux onto the droplets is kept constant
[2, 4, 8, 9, 15]. By this means it was possible to derive a prediction for the time
interval of precipitation [8]. Despite its benefits this approach captures conditions in
real clouds only to some extent. In particular, two important aspects in atmospheric
clouds were not covered: the effect of flow and of fluctuations of the ramp rate due
to turbulence on different length scales [14, p. 253].
In this thesis I will present experimental results on precipitation in a binary

mixture of iso-butoxyethanol and water. Two different approaches were used to
explore the effects of turbulence. First, we performed experiments where the sample
was moderately stirred during phase separation. In another series of measurements
a time-dependent driving of the system was used. The idea behind this was to
model overturns in an uprising parcel of air. A constant thermodynamic driving

1In warm clouds the temperature is always so high that ice particles need not to be taken into
account to describe droplet growth. In contrast, at mid latitudes one typically encounters cold
clouds where freezing of droplets and ice play an essential role for the dynamics of rain initiation
(see [7, pp. 94-95]).

1



1 Introduction

corresponds to air that is monotonically carried upwards. In clouds we assume to
have circulations [7]. We assessed their effect by superimposing the ramp rate with
oscillations on a smaller time scale than the precipitation period.

1.2 Schematic View on Oscillatory Phase Separation
In this section I will sketch the dynamics of phase separation in binary systems. The
principles I discuss here are universal and apply for binary fluids as well as for clouds
in the atmosphere. The processes can be illustrated with the help of a phase diagram
like the one in Fig. 1.1. It illustrates the qualitative behaviour of a two component
mixture depending on temperature T and composition φ. The composition φ can be
either volume or mass fraction of one of the components. In this example a phase
diagram with an upper critical point is shown, which means that the phases will
separate when the system is cooled (which is the case of rain droplets precipitating
in air). The opposite case which is less common applies to the mixture used in our
experiments: It has a lower critical point and thus demixes upon heating.

T

Φ

one phase

two phases

critical point

T1

Φl Φr

Figure 1.1: Schematic phase diagram for a
binary mixture with upper critical
point.

The curve in the diagram is the coex-
istence curve (binodal). For values of T
and φ that are above the curve the sys-
tem is miscible. On the contrary it will
demix into two separate phases in the
region below the coexistence curve (also
referred to as miscibility gap). The equi-
librium compositions of the two phases
are then those of the left (φl) and the
right (φr) branch on the binodal for a
given temperature T1.

Now consider the system being within
the miscibility gap with two macroscopic
phases in equilibrium. For moderate tem-
perature changes the dynamics of phase
separation can be descibed as follows:

1. The system first enters a state of supersaturation: even though the temperature
has been changed the composition of the phases does not change considerably
because diffusion is not fast enough on the length scales of the macroscopic
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1.3 Basics of Synchronization

domain size of the system. The mismatch between the observed composition
and the thermodynamic equilibrium composition is called supersaturation.

2. For large supersaturation droplets of the one phase nucleate within the other,
hence relaxing the supersaturation.

3. Next, the supersaturation is further decreased by diffusion towards droplets.
It is a fast process now due to the dramatically reduced distance to the next
phase boundary.

4. When the droplets grow bigger they start to feel gravity and sediment in the
direction of the interface between the layers. The growth is then dominated by
coalescence with other droplets at the price of a decrease in droplet number and
a growing diffusion path. Thus supersaturation can not be relaxed effectively.

In the end all droplets are removed and the composition of the system can again not
keep pace with ramp. When the temperature is slowly ramped the cycle is repeated.
This leads to oscillations in the precipitation (see Fig. 1.2).

create supersaturation
by heating

nucleation of droplets

growth by diffusion

sedimentation
(growth by coalescence)

slowly
ramped 

temperature

Figure 1.2: Schematic cycle of precipitation.

1.3 Basics of Synchronization

We model overturns in uprising clouds by oscillations in the heating rate. Since we
also expect oscillations in the precipitation we consider the theoretical basics of a

3



1 Introduction

weakly forced oscillator. A detailed description can be found in [11, pp. 49-53, 65-66].
Here, a summery of the main concepts that are relevant for our case is given.

Let us denote the frequency of the undisturbed oscillator by ω0, which corresponds
to the frequency of the precipitation cycle in Fig. 1.2 The external force on the
oscillator also is periodic and characterized by its frequency ω (in our case the
frequency of cloud convection) and its amplitude A. For a fixed amplitude one finds
that up to a certain mismatch in frequencies ω and ωo the oscillator is synchronized
with the external force, i. e. the observed frequency of the oscillator Ω equals the
driving frequency ω. For a smaller amplitude synchronization is only possible when
the difference of ω and ω0 is smaller. The synchronization region within the (ω,A)
plane is called Arnold tongue. For synchronized oscillations a constant phase shift
between the external force and the driven oscillator is observed. For this reason one
also speaks of phase locking.

In general the frequency of the driven oscillator Ω does not necessarily have to be
equal to ω. One can, for example, easily imagine a synchronized state where two
periods of the driven oscillator lie within one period of the driving force. This would
be a synchronization of the order 2:1 (2ω = 1Ω). In general synchronization can
be found for any order n : m, where n and m are integer, and the frequencies fulfill
nω = mΩ. This gives rise to a large amount of Arnold tongues that are schematically
drawn in Fig. 1.3. Typically the 1:1 synchronization is dominant and Arnold tongues
of higher orders are narrower. The actual shapes of the Arnold tongues depend on
the form of the driving force.

1:12:1 2:3 1:2

ω/ω0

A

1/2 1 3/2 2

Figure 1.3: Sketch of Arnold tongues in the plane defined by driving frequency ω
and driving amplitude A. Reproduced from [11].
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1.4 Outline

1.4 Outline
This thesis is organized as follows: In chapter 2 I present the model system that
we use to study oscillatory phase separation. It is recapitulated how a constant
thermodynamic driving is achieved and a prediction for the oscillation period is
derived. On the basis of this temperature ramps for an oscillatory driving are
designed. Chapter 3 adresses the experimental techniques. The setup is described
as well as the experimental procedure. Also, space-time plots are introduced as
an important method of data analysis. In the subsequent chapters I present the
experimental results. Chapter 4 focusses on the stirring experiments, while the
experiments with a time-dependent driving are analyzed in chapter 5. The thesis
ends with conclusions in chapter 6.
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2 The Model System

Previous experiments on oscillations in binary demixing have been carried out with
different systems such as microemulsions [19], polymer solutions [2], mixtures of
methanol and hexane [2] and water and 2-butoxyethanol [20]. I study demixing in
a system of iso-butoxyethanol (i-BE) and water which has previously been used in
experiments by Tobias Lapp and Martin Rohloff [8, 9, 15].

2.1 Properties of the System
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Figure 2.1: Phase diagram of the iso-butoxyethanol/water system showing the co-
existence curve. The system demixes in the region above the curve. Measured
datapoints (blue) and polynomial fit (red). Reprinted from [15].

A special feature of the iso-butoxyethanol-water system is a lower critical point
at about Tc = 25 ℃ and mass fraction φc = 0.3 of iso-butoxyethanol. The binodal
encountered at higher temperature is shown in Fig. 2.1. The system is miscible for
temperatures below the binodal, and it demixes into two phases when heated. We
can prepare samples at room temperature which is a major advantage of this system.
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2 The Model System

Experiments can be run in a temperature range between 25℃ and 50℃ which is
convinient as the water that is used to control temperature will not evaporate too
much. The coexistence curve (binodal) in the phase diagram was measured1 by
Martin Rohloff [15]. A fourth order polynomial was fitted to the right branch of
the binodal and a sixth order polynomial to the left branch (see Fig. 2.1). Results
from the fit were used to determine compositions for a given temperature. Material
parameters depend on composition and temperature and are given in the appendix.
This includes density, viscosity, diffusion coefficient, interfacial tension and molar
volume.

2.2 Thermodynamic Driving

2.2.1 Constant Driving Revisited

As shown in Sec. 1.2 phase separation can be driven by a change in temperature. When
it comes to quantitative analysis of the demixing process the choice of temperature
ramps is an important matter. In this section I will present temperature ramps
that are developed for a constant driving. The derivation is based on theoretical
considerations of Auernhammer et al. [2].
For a deeper understanding of what drives the phase separation it is worth to

consider the time evolution of composition φ(~x, t). It can be described by a diffusion
equation [2, 4]:

dφ

dt
= ∇[D(φ, T )∇φ] . (2.1)

Here D is a diffusion coefficient. In general it depends on composition φ and
temperature T . The supersaturation σ of the system can be characterized by the
difference of the actual composition from equilibrium composition:

σ = φ− φ̄
φ0

, (2.2)

where φ̄(T ) is the average composition of the coexisting phases, and 2φ0(T ) is the
width of the miscibility gap. In terms of the difference of the compositions φr(T )
and φl(T ) of the coexisting phases for the right and the left branch of the binodal

1See Sec. 3.2 for a description the phase transition measurements.
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2.2 Thermodynamic Driving

they are given by:

φ0(T ) = φr(T )− φl(T )
2 , (2.3)

φ̄(T ) = φr(T ) + φl(T )
2 . (2.4)

The supersaturation σ takes the values ±1 if the system is at equilibrium, and smaller
absolute values if it is supersaturated. It turns out that D(φ, T ) ∼ D̃(σ). Therefore
solving (2.2) for φ and inserting it in (2.1) gives

dσ

dt
= ∇[D̃(σ)∇σ]− (ζ + σξ) . (2.5)

The first term on the right side is again a diffusion term while the second term
denotes a source strength for supersaturation. In the source term two parameters
are introduced:

ζ = 1
φ0
· ∂φ̄
∂t

, (2.6)

ξ = 1
φ0
· ∂φ0

∂t
. (2.7)

The latter, ξ, contains the contribution that follows from a changing width of the
miscibility gap 2φ0, and ζ accounts for the change in average composition φ̄.

Oscillations in the demixing of a binary fluid were first found in experiments on
microemulsions that were performed with linear temperature ramps [19]. In contrast
to microemulsions such a driving produces only a few oscillations in binary mixtures.
In [2] this rapid decay for constant heating rates was connected to a decreasing of the
source strength ξ + σζ in Eq. (2.5) in time due to a steeper slope of the coexistence
curve. A constant thermodynamic driving throughout the entire heating process is
achieved by a constant production of supersaturation that is characterized by ξ and
ζ.

Based on these ideas the driving of the system was further developed. In their
experiments Tobias Lapp and Martin Rohloff [8, 9, 15] used driving parameters that
provide a constant driving for the individual top or bottom layer of the demixing
fluid. The following derivation is adapted from [15].

Consider one layer (either top or bottom) with volume V and composition φb of
the bulk phase. The composition of droplets in the bulk is given by φd. At time

9



2 The Model System

t the system has a temperature T1 and the compositions φb(T1) and φd(T1) of the
two phases are the equilibrium compositions at the coexistence curve. At t + δt

temperature is shifted to T2 = T1 + δT and the new equilibrium compositions would
be φb(T2) = φb(T1) + δφb and φd(T2) = φd(T1) + δφd. For a small time step δt the
diffusion of the components between the two layers can be neglected. If one assumes
that supersaturation is instantly removed by diffusion to droplets which grow by δVd
the conservation of volume requires:

V · (φb(T2)− δφb) = δVd · φd(T2) + (V − δVd) · φb(T2) . (2.8)

This can be rearranged to

δvd = δVd
V

= δφb
φd − φb

. (2.9)

Next, both sides are divided by δt. For infinitesimal small time steps δt this gives

v̇d = 1
2φ0
· dφb
dt

, (2.10)

which is the change in droplet volume fraction for one specific layer. Here equation
(2.3) has been used to replace the composition of bulk and droplets by the width of
miscibility gap.

For the iso-butoxyethanol-water system v̇d denotes the supersaturation in the
water-rich bottom layer if the composition of the left branch φl is used for φb. In this
thesis I write ξl for v̇d in the bottom layer to be consistent with notation previously
used in publications [8, 9, 15]. A similar parameter ξr can be found for droplet
growth in the top layer using the right branch of the phase diagram.

ξl = 1
2φ0
· dφl
dt

, (2.11)

ξr = − 1
2φ0
· dφr
dt

. (2.12)

These parameters are connected to (2.7) and (2.6) as ξ = ξr + ξl and ζ = ξl − ξr. In
experiments one can keep either ξl or ξr constant, but not both at the same time.
We decided to drive phase separation by controlling the parameter ξl and focus on
precipitation oscillations in the bottom phase.

Temperature ramps can be calculated numerically for a fixed ξ. Equation (2.11) is

10



2.2 Thermodynamic Driving

solved for the heating rate dT/dt:

ξl(t) = 1
2φ0
· ∂φl
∂T
· ∂T
∂t

, (2.13)

⇔ dT

dt
= 2ξl(t)φ0(T )

∂φl
∂T

. (2.14)

Integration of equation (2.14) is performed with the Euler method using time steps
δt. This gives

T (t+ δt) = T (t) + 2 · ξl(t) · φ0(T )
∂φl
∂T
|T (t)

· δt . (2.15)

Values for φ0(T ) and dφl/dT |T can be obtained from the measured binodal in the
phase diagram in Fig. 2.1. The starting temperature T0 is set to 25.8℃. Temperature
ramps are calculated until the temperature T = 50 ℃ is reached. A representative
example is shown in Fig. 2.2

In the experiments where we study the influence of stirring we used temperature
ramps with the constant value of ξl = 2.5 · 10−5 s−1 (see Fig. 2.2). For the sake of
less cluttered equations I will always write ξ for ξl in the following.
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x 10
4

25

30

35

40

45

50

time [s]

te
m

p
e
ra

tu
re

 [
°
C

]

Figure 2.2: Temperature ramp for a value of ξl = 2.5 · 10−5 s−1 that was used in
the stirring experiments. It was calculated with equation (2.15).
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2 The Model System

2.2.2 Prediction of the Oscillation Period

For a constant driving the period of oscillations can be predicted as follows [8].
Growth of droplets is supposed to be governed by two mechanisms: diffusion and
coalescence. During diffusive growth ξ denotes the change in droplet volume fraction.
It can be expressed in terms of droplet radius r and number density n0:

ξ = d

dt

(4
3π n0r

3
)

= 4πn0r
2ṙ , (2.16)

⇔ ṙ = ξ

4πn0r2 . (2.17)

For the growth by coalescence we consider the vertical velocity u of the droplet due
to buoyancy forces:

u = κr2 with κ = 2
9

∆ρ · g
η

. (2.18)

Here, ∆ρ is the density difference of the two phases, g is the gravitation acceleration
and η is the viscosity of the bulk phase. A sedimenting droplet with radius r passes
the volume πr2 · ut within the time t. The volume fraction of small droplets within
this volume is given by ξt. We introduce a collision efficiency ε because not all
droplets in the path will merge with the large droplet. Thus the change in volume v̇
of the falling droplet is determined by

v̇ = ε · ξt · πr2u . (2.19)

Using v̇ = 4πr2ṙ, we get

ṙ = 1
4εκξtr

2 . (2.20)

We now combine (2.17) and (2.20) which yields:

ṙ = ξ

4πn0

1
r2 + εκξt

4 r2 . (2.21)

Droplets first grow by r−2 until a minimum in ṙ is reached, also referred to as the
bottleneck in droplet growth. When the bottleneck is passed r diverges in finite time.
The time until the droplets grow to infinity was taken for the oscillation period ∆t.

12



2.2 Thermodynamic Driving

Under reference to [8, pp 117-119] we may write:

∆t = α
(
Dσκ3

)−1/7
ξ−3/7 . (2.22)

Here, D is the diffusion coefficient and σ is a length scale depending on interfacial
tension γ, molar volume Vm, equilibrium concentration of the minority component
φe, the universal gas constant R and the absolute temperature T :

σ = 2γVm
RT

φe . (2.23)

A proportionality between droplet density n0 and ξ was assumed for the derivation:

ξ

n0
= β ·Dσ , (2.24)

with β being a proportionality factor. All material constants are functions of the
temperature T and therefore ∆t = ∆t(T ). One finds that ∆t decreases in time (see
e.g. Fig. 4.2). The prefactor α is gained from a fit to the data of measurements with
constant ξ:

α = 0.68± 0.20 . (2.25)

2.2.3 Time-Dependent Driving

In my second series of measurements I looked at the response of the system to a
time-dependent driving. Equation (2.15) can also be applied in the general case
where ξ is a function of time.

I used temperature ramps where ξ(t) is a square-wave with alternating values
ξmin and ξmax. It has the advantage that the theory which was derived for constant
ξ can still be applied piecewise. These ramps are classified by an average value ξ̄,
a relative amplitude A = (ξmax − ξ̄)/ξ̄, and a period ∆tξ for the oscillation in ξ.
However, even for a constant ξ the period ∆t of oscillations in precipitation decreases
in time due to the temperature dependence of the material parameters (cf. Eq. (2.22)
with time-dependent material parameters provided in the appendix). This means
that if ∆tξ is the same for the entire temperature ramp the ratio of the two periods
changes. Similar to the constant ramp rate ξ, I wanted to fix the driving conditions
for the oscillatory ξ throughout the measurement. Thus I decided to keep the ratio
p := ∆t/∆tξ a fixed value. This means that ∆tξ has to decrease with proceeding time.

13



2 The Model System

Based on the prediction (2.22) for the period of precipitation ∆t(T ) we hence modify
the calculation of temperature ramps. As an input for the nummerical integration ξ̄,
A, and p are needed. Because ξ is chosen to be a square wave the calculation of T (t)
can be performed as before using either ξmax or ξmin in equation (2.15). The period
∆tξ(t) is calculated at the start of one ξ period:

∆tξ(t) = ∆t[T (t), ξ(t)]
p

. (2.26)

After the time interval ∆tξ/2 the value of ξ is changed and the period is recalculated
for the new value. This is repeated until the final temperature of 50℃ is reached. A
typical ramp with time-dependent driving is shown in Fig. 2.3 for ξ̄ = 2.5 · 10−5 s−1,
A = 0.2 and p = 0.5. The physical meaning of p = 0.5 is that a full period of
precipitation is expected in half a period of ξ(t) which is an interval of constant ξ.
It should be noted that as a consequence the time intervals for ξmax are in average
shorter than for ξmin, because the driving is more effective for higher ξ.
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Figure 2.3: Temperature ramp for time-dependent driving. T (t) (blue) and ξ(t)
(green). Parameters are ξ̄ = 2.5 · 10−5 s−1, A = 0.2, and p = 0.5.
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3 Experimental Techniques

I studied the demixing of water and iso-butoxyethanol by measuring the turbidity of
the system, that is the intensity of light scattered at droplets. Turbidity measurements
can be performed with a simple optical setup and require little effort in image
processing. Unfortunately, though, a connection between the intensity of scattered
light and the droplet size and number is not trivial for polydisperse droplets [18].

3.1 Setup

A mixture of water and iso-butoxyethanol with a composition close to the critical
composition is filled into measurement cells (10mm × 10mm × 35mm) made by
Hellma GmbH. The cells are sealed with teflon tape and mounted into a water bath.
Water temperature is controlled by a combination of a Haake EK20 immersion cooler
and a Huber CC-E immersion thermostat. Additionally the temperature is measured
with a PT100 temperature sensor. The sample is illuminated by a cold light source
(KL 2500 LCD, Schott) at an angle of 20◦ to the view axis as illustrated in Fig. 3.1(b).
A CCD camera (BM-500CL) with a zoom lense is used for image acquisition. The
water bath is partially covered with black sheet on the outside in order to reduce
stray light.
A stirring bar inside the cell can be controlled by a magnetic stirrer (IKAMAG

RET control-visc C) under the water bath (see Fig. 3.1(a)) which can be operated at
stirring rates in a range between 50 rpm and 1500 rpm. Stirring bars of two different
sizes were used in the experiments: A small stirring bar (diameter: 2mm, lenght:
2mm) was used to study the influence of moderate stirring to the demixing process.
It was however too small to mix the two phases completely. Thus the sample had
to be shaken by hand before each measurement in order to homogenize it. For
temperature ramps where no stirring was applied we replaced the stirring bar with a
bigger one (diameter: 3mm, length: 6mm). Mixing at 1500 rpm for one hour is then
sufficient to homogenize the sample.
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3 Experimental Techniques

(a) (b)

Figure 3.1: (a) Front view of the experimental setup with a close-up of the mea-
surement cell and (b) schematic top view.

The temperature control, the camera, and the magnetic stirrer are connected to a
computer. A LabVIEW program enables fully automated measurements.

3.2 Measurement of the Transition Temperature

The temperature at which the transition from one homogeneous phase into two
separated phases takes place can be obtained from the phase diagram in Fig. 2.1 for
a given composition φ. However, the position of the critical point might be slightly
shifted due to impurities. Thus the transition temperature is measured everytime a
new sample is prepared. The measurement is repeated for samples that have been in
use for a longer time.

Measurements of the transition temperature are performed with linear temperature
ramps that start below the expected transition temperature. The camera objective
is used to zoom in on the measurement cell. From the taken images the mean grey
value is calculated (blue curve in Fig. 3.2). Two lines are fitted to the turbidity curve:
one in the region of moderate increase in the beginning and one in the region of
strong increase (red lines in Fig. 3.2). Each line is defined by manually selecting two
points on the turbidity curve. The transition temperature is the temperature that
corresponds to the intersection point of the lines (vertical black line in Fig. 3.2).
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3.3 Measurement of Turbidity Oscillations
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Figure 3.2: Turbidity of the sample (blue) and temperature measured by the
thermostat (green) are plotted against time. Straight lines (red) fitted to the
turbidity curve determine the transition temperature.

3.3 Measurement of Turbidity Oscillations

For oscillation measurements the zoom lense is tuned such that the whole measure-
ment cell is pictured. The sample is homogenized below the transition temperature
either by the use of a magnetic stirrer or by hand. Subsequently, the sample is
heated 0.2◦C above the transition temperature which leads to a first separation into
two phases. For 180 minutes the sample is relaxed so that it approaches equilib-
rium again with a defined interface between the water-rich bottom layer and the
iso-butoxyethanol-rich top layer. Then a temperature ramp as described in Sec. 2.2 is
run. While the heating is applied pictures are taken at a constant frame rate. After
reaching the final temperature of 50◦C the sample is cooled down to 25◦C again.

3.4 Data Analysis

A set of pictures (Fig. 3.3) obtained from turbidity measurements shows a typicial
precipitation event in the water-rich phase of the sample. Dark regions in the pictures
indicate that the fluid is transparent and brighter regions indicate turbidity resulting
from droplets. At the start the liquid mixture consists of two spatially separated
phases (Fig. 3.3(a)). The bottom phase can be indicated as the water-rich phase of
higher density while the less dense iso-butoxyethanol-rich phase is on top. Due to a
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3 Experimental Techniques

temperature-induced supersaturation droplets of the iso-butoxyethanol-rich phase
nucleate within the water-rich phase. This gives rise to an increasing turbidity in the
bottom layer (Figs. 3.3(b)-3.3(d)). As the droplets grow bigger gravitation becomes
more important and finally causes the droplets to sediment towards the interface
(Figs. 3.3(e)-3.3(f)). At the end of one precipitation cycle the bottom layer is almost
transparent again (Fig. 3.3(g)). A similar process can be observed in the upper layer
of the sample. However, in general the oscillation period is different for the top and
bottom layer.

(a) 2648 s (b) 2680 s (c) 2710 s (d) 2747 s (e) 2835 s (f) 2880 s (g) 2919 s

Figure 3.3: One oscillation in detail: (a) Start of oscillation. The bottom phase is
not turbid. (b-d) turbidity increases due to droplet growth. (e-f) Sedimenta-
tion sets in and the turbidity decreases. (g) The system is again not turbid as
it was in (a). Note that the interface has slightly shifted. The images cover
a time interval of about 30 minutes and temperatures between 26.6◦C and
27.8◦C. The measurement was performed with a mixture of iso-butoxyethanol
and water (composition φ = 0.28) for a driving rate of ξ = 2.5 · 10−5 s−1. A
stirring bar is located in the bottom right corner but not activated.

During one temperature ramp there are usually 4000 images taken. The important
information that has to be drawn out of these data is the evolution of turbidity. For
this aim space-time plots as described by Auernhammer et al. [2] are constructed.
They are obtained in the following way: gray values of every image are averaged
horizontally. Thus one image is reduced to a vertical line of pixels. All these lines
are put together into a new image with time proceeding from the left to the right.
One point in the space-time plot indicates the average turbidity at a given height of
the sample and at a given instant of time. An examplary space-time plot is shown
in Fig. 3.4.

Next the changing height of the interface is identified in the space-time plots. This
is done by manually selecting points on the curve that represent the interface and
connecting them smoothly. For each time step grey values of 10 pixels at a distance
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3.4 Data Analysis

Figure 3.4: Exemplary space-time plot for a measurement of turbidity (gray scale)
as a function of height and time. The sample is not stirred and heated with
constant ξ = 2.5 · 10−5 s−1. The bright band at the bottom is caused by
the presence of the stirring bar. Images in Fig. 3.3 can be assigned based
on times in their respective captions (sixth period of oscillation in bottom
phase).
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Figure 3.5: Time evolution of turbidity in the bottom phase obtained from space-
time plot in Fig. 3.4. Grey values 50 pixels (≈ 0.5mm) below the meniscus
are plotted against time. Minima (red) and maxima (green) are identified.
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3 Experimental Techniques

of 50 pixels above and below the determined meniscus are averaged. By plotting
these values against time, one gets a quantitative time evolution of turbidity for the
top phase and the bottom phase, respectively (see Fig. 3.5 for exemplary turbidity
curve in the bottom phase). In the turbidity graph minima are manually detected
and the maxima are determined as the absolute maxima between two minima.
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4 The Influence of Stirring

Experiments [21] and simulations [3] suggest that the background flow does not
influence the period of oscillations in binary phase separation. We systematically
tested this prediction in a series of measurements We vary the flow in the sample by
stirring at different rates. The period of oscillation is measured and compared to the
prediction given by Eq. (2.22).
For experimental realization we add a small magnetic stirrer (diameter: 2mm,

length: 2mm) to the measurement cell. Stirring is applied throughout the tempera-
ture ramp at a constant stirring rate. We use a temperature protocol that is designed
for a constant driving in the bottom layer of the system (see Sec. 2.2) because the
stirring bar is located at the bottom of the cell. For all measurements the same
driving parameter ξ = 2.5 · 10−5 s−1 is chosen.
We take measurements with stirring rates of 60, 90, 120 and 180 revolutions per

minute. As a reference some measurement are also carried out without stirring. One
temperature ramp takes about 7 hours and additionally the sample is relaxed 3 hours
before a ramp starts. We can not run more than one ramp consecutively because the
sample has to be remixed by hand after each measurement. As each measurement
was repeated at least once, it took several weeks to collect the data. In between we
replaced the sample with a new one. Fig. 4.1 shows representative turbidity curves
for measurements with 120 rpm and without stirring.
Data analysis as described in Sec. 3.4 is applied to determine the maxima and

minima in turbidity. The period of oscillation ∆t is calculated as the time between
two consecutive minima in turbidity. Here it is implied that a precipitation event is
finished when the fluid layer is cleared again. It is also possible to use the maxima
in turbidity for the calculation of ∆t.
In Fig. 4.2 the measured periods for different stirring rates are shown. All mea-

surements that are run with stirring rates between 60 rpm and 180 rpm are included
which means that data points for one stirring rate represent up to three temperature
ramps. A prediction for the oscillation period is obtained from (2.22) and also plotted
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4 The Influence of Stirring
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Figure 4.1: Turbidity in the bottom layer for a measurement with 120 rpm and
for a measurement without stirring. For the stirring rate 120 rpm the first
oscillations are observed at time 2 · 104 s.

in Fig. 4.2. One can see that the data points roughly follow the prediction. (A larger
derivation for early times is also observed in experiments without stirring). The
experimental data suggest that the dependency of ∆t is not influenced by moderate
stirring.
On the other hand there is a nontrivial trend in the data: oscillations start at

later times when the sample is stirred. Instead of oscillations a general increase in
turbidity is observed at early times (see t < 2 · 104 s for a stirring rate of 120 rpm
in Fig. 4.1). Presently, however, it is difficult to make a quantitative statement
about this trend. The times for which the first minimum appear in the turbidity
are compared for different measurements (blue stars in Fig. 4.3). Our results do not
confirm a clear relation between start of oscillations and stirring rates. Moreover, if
the third minima are taken into account (green squares in Fig. 4.3) one finds that
there is a substantial variability of the instance when the first oscillation is observed
in different experiments at a given stirring rate of 60 rpm, 90 rpm and 120 rpm.
For the same stirring rate the starting time of oscillations can vary in a range of
three oscillations. This is in some cases a larger variation as for measurements with
different stirring rates (for example 120 rpm and 180 rpm). To some extent this
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Figure 4.2: Oscillation period ∆t in the bottom layer is plotted against time for
a constant driving parameter ξl = 2.5 · 10−5 s−1. Different stirring rates are
specified in the legend, and additionally the theoretical prediction for ∆t is
given by a solid line.

may be due to the fact that it is not always possible to clearly identify minima
and maxima of turbidity. However, we expect that the trend might be more clearly
accessible in experimentally realizing even smaller stirring rates, and combining
turbidity measurements with particle tracking. More experiments will be needed to
clearly address this dependence.
Finally we note that the oscillations disappear for higher stirring rates. Thus we

run experiments with 600 rpm. Indeed no oscillations are visible under this condition.
In Fig. 4.4 a space-time plot and the corresponding turbidity curve for a stirring rate
of 600 rpm are shown.
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4 The Influence of Stirring
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Figure 4.3: Start of oscillations for different stirring rates. The times for which a
first minimum in turbidity was observed are plotted. For a better comparison
the third minimum is also shown. Each data point represents one temperature
ramp.
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Figure 4.4: (a) Space-time plot and (b) turbidity for a measurement with 600 rpm
stirring. No oscillations can be observed in the stirred bottom layer which
is permanently turbid (red curve in (b)). The top layer is less turbid (in
the space-time plot it appears nearly black). Still one can observe small
oscillations (blue curve in (b)) because the stirring only affects the bottom
layer.
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5 Time-Dependent Driving

In this section I will present results from measurements with a time-dependent
driving parameter ξ. I used a square wave function with an average value ξ̄ and a
relative amplitude A, as described in Sec. 2.2.3. To allow for a better comparison
I used the same value for average driving ξ̄ = 2.5 · 10−5 s−1 in all experiments and
varied the parameters A and p.

5.1 Consistency Check

At the beginning I tested the time-dependent driving for p = 0.5 and a small
amplitude. By the way that we constructed the temperature ramps, we expected to
observe one precipitation event in each period of constant ξ for this set of parameters.
For analysis of the measurement both the turbidity and ξ are plotted against time in
Fig. 5.1. It can be seen that for the first part of the temperature ramp the turbidity
period is exactly as we expected. At the end though there is one turbidity oscillation
in a full oscillation of ξ. On the one hand this gives evidence that the calculation of
temperature ramps was carried out correctly. On the other hand it points to the
possibility of interesting phase locking effects as a function of p, A and t.

5.2 Observation of 1:1 Phase Locking

The oscillating ξ can be understood as a periodic external force on the precipitation
oscillations. The undisturbed ‘oscillator’ would be the system with a constant driving.
However, this term should be handled with care as its period and amplitude are not
constant but changing in time. As mentioned in Sec. 2.2.3 the time dependence of the
period ∆t (see e. g. Fig. 4.2) is taken into account in the calculation of temperature
protocols. Synchronization theory then predicts a phase locking scenario if the
external force has a frequency close to the frequency of the undisturbed oscillator.
The periods of precipitation and the external force should be the same for p = 1.
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5 Time-Dependent Driving
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Figure 5.1: Turbidity and ξ for a measurement with A = 0.1 and p = 0.5. In most
cases one precipitation event occurs within each interval of constant ξ which
provides a consistency check for the construction of the temperature ramps.

Thus we ran experiments with p = 1 and varied the amplitude A to check for this
prediction of a 1:1 phase locking.

5.2.1 Fixed Amplitude A = 0.2

First we will discuss results from experiments with an amplitude A = 0.2. Here we
observe oscillations in turbidity that perfectly match with the oscillations in ξ. In
Fig. 5.2 we demonstrate that the period of oscillation follows the prediction for ξ̄
quite well. This is expected since it was used to calculate the period of ξ oscillations.
The plot indicates period of turbidity oscillation ∆t as a function of the time t
where the minimum of oscillation is observed. One can see that the data points are
clustered for t > 2 · 104 s which means that the positions of minima are similar for
independent measurements. This points to a phase locking scenario.

A phase locking for p = 1 and A = 0.2 can clearly be seen in Figs. 5.3: We plotted
the turbidity curve for subsequent time intervals of ξ periods. The time axis was
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5.2 Observation of 1:1 Phase Locking

rescaled so that values between 0 and 0.5 represent driving with ξmax and values
between 0.5 and 1 represent driving with ξmin. If one takes a closer look at the
characteristics of turbidity oscillation in Fig. 5.3(c) it becomes obvious that the
minima of turbidity appear in the regime of high ξ while maxima are observed in the
other regime. We first noticed this for temperature ramps that start with a period
of high ξ. It was then checked for temperature ramps that start with the opposite
phase (see Fig. 5.3(d)). Here the first maxima were found in the ξmax phase but for
later times they shift to the ξmin phase as well. This provides strong evidence for
phase locking.
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Figure 5.2: Oscillation period ∆t for measurements with A = 0.2 and p = 1. Data
points with the same color belong to one temperature ramp. Especially for
later times the measured data points follow the period of external driving
which is the prediction for average ξ (green line) very well. For comparison
the prediction for maximum and minimum values of the oscillating ξ are also
shown.

27



5 Time-Dependent Driving

5.2.2 Variation of Amplitude

Next we wanted to know, if the phase locking can also be observed for other
amplitudes. We checked for two smaller amplitudes: For a measurement with
A = 0.1 (see Fig. 5.4(b))eleven out of twelve observed maxima are located in the
low ξ phase and for a measurement with A = 0.05 (see Fig. 5.4(a))it is only ten out
of twelve maxima. A closer look reveals that this is due to a small mismatch of
the period and to resulting phase slips in the precipitation oscillations. One could
therefore argue that for smaller amplitudes we are not yet in the synchronization
region but at the border. We also ran experiments with a high amplitude of A = 0.5
(see Fig. 5.4(d)). For this amplitude phase locking is clearly observed.

5.2.3 Slight Variation of p

It might be worth to test if there is still a 1:1 phase locking for a driving period that
is different from 1. For a classical oscillator with periodic external forcing one would
expect to see synchronization in the region of an Arnold tongue. We indeed observe
phase locking for the parameters A = 0.1 and p = 0.89 (see Fig. 5.5). It takes some
oscillations though to reach the synchronized state.
If we move further away from p = 1 the synchronization seems to vanish. For

p = 0.81 and A = 0.2 (see Fig. 5.6) the frequencies seem to be in phase for the first
five periods but a closer look reveals that the phase is shifted for later times. This
indicates that the system is outside the synchronization region. However, we consider
an oscillator with changing amplitude, and thus, the theory for a classical driven
oscillator might not apply. There is more theoretical work needed to resolve this.
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Figure 5.3: (a) and (b): Turbidity and ξ oscillations for two measurements with
A = 0.2 and p = 1. The ramp in (a) starts with ξmax and the ramp in (b)
with ξmin.
(c) and (d): Turbidity of one temperature ramp is rescaled for the time
intervals of one period in ξ. Values of 0 < τ < 0.5 on the time axis represent
periods of driving with ξmax and values in the range 0.5 < τ < 1 represent
periods of ξmin. The colors encode subsequent time intervals. Plots in (c)
and (d) are obtained from (a) and (b), respectively. For both scenarios one
observes a clear 1:1 phase locking although the first peak (red curve) appears
in different regimes.
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Figure 5.4: Turbidity curves for different ramp parameters. From (a) to (d) the
amplitude increases, but ξ̄ = 2.5 · 10−5 s−1 and p = 1 are kept constant. In
(a) and (b) driving starts with ξmax and contrary with ξmin in (c) and (d).
The expected 1:1 phase locking can be observed for a high amplitude. For
smaller amplitudes there are phase slips in the turbidity oscillations. In (c)
the second period is skipped completely while in (a) the phase slip appears
over more than one period.
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Figure 5.5: Turbidity and ξ for a small amplitude A = 0.1 and a driving period
that is slightly different from 1. One still observes a 1:1 phase locking, but it
takes four periods until the synchronization is observed.
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Figure 5.6: Turbidity and ξ for an intermediate amplitude A = 0.2 and a driving
period of p = 0.81. The turbidity oscillations do not synchronize, the
oscillations are in phase only for the first periods.
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5 Time-Dependent Driving

5.2.4 Selection of the Phase: A Theoretical Approach

Still the question remains why exactly we see maxima in the region of low driving
and minima in the region of strong driving. This can be answered by considering
the model for droplet growth described in Sec. 2.2.2. Inserting (2.24) into (2.21) and
multiplying with 4πr2 yields:

4πr2ṙ = βDσ + πεκξtr4, (5.1)

with the change of droplet volume v̇ = 4πr2ṙ on the left-hand side. The growth
for early times is governed by the term βDσ. It is reasonable to assume that all
parameters are approximately constant over one period of precipitation. Thus in the
beginning the volume change is constant and independent of ξ. For later times the
term πεκξtr4 is dominant, and the growth is strongly affected by ξ. Using this we can
qualitatively analyze the phase shift for a 1:1 driving assuming that synchronization
is given.

Consider the droplets start to grow at the beginning of an interval with low driving.
At first the growth of droplets is linear in time and not dependent on the driving
force. The actual value of ξ becomes important in the subsequent stage of a high
driving. The droplets grow faster than they would for the average ξ, which leads to
shortened period of precipitation.

On the other hand, if droplet growth starts at the beginning of an interval with
strong driving, the value of ξ will first matter for the subsequent stage of low driving.
In this case the period of precipitation would be longer than that for the average ξ.

Both scenarios lead to a shift of the starting time into the region of strong driving.
This is exactly what we observe in experiments if one assumes that the starting time
of droplet growth corresponds to a minimum in turbidity.

5.3 Phase Locking For Different Driving Periods

Having found synchronization for the trivial case where p ≈ 1 we expand the search
for phase locking in the parameter space defined by amplitude A and period p. For
higher amplitudes it is most likely to find synchronisation. However, it is not clear a
priori how this looks in detail.
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5.3 Phase Locking For Different Driving Periods

5.3.1 Driving Period p = 1.5

To gain further insight in phase locking we ran a measurement with a driving period
of 1.5 and an amplitude of A = 0.5. The result is given in Fig. 5.7. Peaks of turbidity
are located in intervals of ξmin similar to previous findings. On the other hand every
second interval is skipped. Thus we get a 2:1 phase locking.
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Figure 5.7: Measured 2:1 phase locking for a driving period of 1.5 and a high
amplitude.

5.3.2 Driving Period p = 0.5

The result of another measurement is shown in Fig. 5.8. Here again an amplitude of
A = 0.5 was choosen and the driving period was set to p = 0.5. Surprisingly, we find a
1:1 synchronization although we would rather expect a 1:2 locking. Furthermore, one
observes that turbidity peaks are located within the ξmax intervals which is different
from what we have seen so far! If one brings to mind Fig. 5.1 it can be concluded
that there has to be a transition from a 1:2 phase locking for small amplitudes to a
1:1 phase locking for high amplitudes.
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Figure 5.8: Measured 1:1 phase locking for a driving period of p = 0.5 and a high
amplitude. Note that peaks of turbidity are located within intervals of ξmax
driving.
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5.3 Phase Locking For Different Driving Periods

5.3.3 Driving Period p� 1

Until now we studied the case of driving periods that are in the same order of
magnitude as the precipitation period. In Sec. 5.2.4 we showed that the observed
phase locking can be described with the model of Sec. 2.2.2. However it is unlikely
that this is a suitable description of the conditions in a real cloud. There we expect
convective flows on smaller time scales than the precipitation period. Thus we
address measurements with a driving period of p = 5 in this section.
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Figure 5.9: Turbidity for a fast oscillating driving (p = 5) and amplitude A = 0.1.
Turbidity evolution is not much affected by the oscillations in the driving
rate.

Fig. 5.9 shows the turbidity evolution for an amplitude of A = 0.1. We could not
distinguish a big influence on the precipitation period from the turbidity measurement.
It seems that for high driving frequencies there is an effect of averaging. To verify this
statement we plotted the measured turbidity period ∆t for two different amplitudes
and a driving period of p = 5 in Fig. 5.10. It is compared to data we got from
temperature ramps with a constant driving parameter that is consistent with the
average ξ for the time-dependent heating. Additionally the prediction for a constant
ξ is given. Data from time-dependent driving do not differ from the constant driving
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5 Time-Dependent Driving

but lie well within the fluctuations of ∆t for constant driving. Thus, we conclude
that the effect of ξ oscillations on the precipitation period is indeed negligible. Still
there might be an influence on the microscale droplet distribution which can not be
detected in turbidity measurement but requires a more complex setup.
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Figure 5.10: Measured oscillation period ∆t for time-dependent driving with driv-
ing period p = 5. Data for two different amplitudes are compared to ∆t
for a constant driving (green stars: measured data, green line: theoretical
prediction).
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6 Conclusions

We used a binary fluid of iso-butoxyethanol and water as a model system to study
oscillations in precipitation. Previous experiments [2, 8, 9, 15] were run under
idealized conditions, in particular by implementing a constant thermodynamic driving.
We modified these experiments in two ways to gain insight into the validity of this
idealization for the application to formation of warm rain in the atmosphere: The
influence of moderate stirring was studied by inserting a small magnetic stirrer
in the sample, and circulation in uprising clouds was modeled by exploring the
consequences of oscillations in the driving parameter ξ. I developed temperature
ramps for the oscillatory driving and modified the data analysis to illustrate phase
locking (cf. Fig. 5.3).

6.1 Discussion

In the stirring experiments it is shown that stirring has an influence in the sense
that oscillations in precipitation are suppressed for early times. Instead, we observe
a continuous increase in turbidity with oscillations in the end. Regarding the period
of oscillations we do not see a discrepancy to measurements without stirring.

The time-dependent driving is implemented by using a square wave function for
the driving parameter ξ. Our data suggest that in the limit of high ξ frequencies the
driving is dominated by the average value of ξ. Within our experimental errors the
turbidity oscillation periods for a fast oscillatory driving are not different from those
obtained with a constant driving.

On the other hand we find a rich variation of synchronization for driving frequencies
that are close to the precipitation frequency. This includes the trivial case of a 1:1
phase locking for a 1:1 driving (p = 1). It was analysed for different amplitudes in
the driving oscillations. We also give a qualitative explanation for the observation
that minima of turbidity appear within regions of strong driving.
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6 Conclusions

For lower amplitudes of ξ the phase locking is less pronounced and phase slips occure.
To date we only looked at a few points in the parameter space as each measurement
takes several hours. In many experiments we observe a phase locking over a few
periods but not throughout the temperature ramp. As the number of oscillation
in our experiments is limited it is sometimes not clear whether synchronization is
given or not. Still, we obtained promising results and established a basis for future
investigation.

6.2 Outlook
It was already mentioned that the collecting of data takes a lot of time and we
therefore could only measure a few points in the parameter space of A and p. So far
we have detected 1:1 and 2:1 phase locking, but at this point little can be said about
the actual shape of the assumed Arnold tongues for synchronization. We know that
there has to be a transition from 1:2 to 1:1 phase locking for a driving period of
p = 0.5, but we could not yet specify for what amplitude the transition appears. For
future investigations it might be valuable to scan a larger region in the parameter
space and distinguish individual Arnold tongues. Eq. (5.1) could be used to examine
the phase locking analytically. Furthermore it is reasonable to expand the analysis
of fast oscillatory driving (p� 1), as this is assumed to be a good model for cloud
convection. Only two different amplitudes were tested for this scenario.
For our experiments we used turbidity as a criterium for precipitation. It is not

possible though to gain the droplet size distribution from turbidity. Further insights
into the microphysics of the system could be obtained by a particle tracking method
that has been developed by Lapp et al. [9]. It might be a worthwile approach
to utilize synchronized oscillations for the matching of turbidity and droplet size
distribution.
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Material Constants of Iso-Butoxyethanol and Water

The data for material constants have been collected and measured by T. Lapp, M.
Rohloff, M. Wilkinson and J. Vollmer. This is unpublished work and therefore
reproduced below.
The index i ∈ {IBE,W} will be used to refer to material properties of IBE and water,
respectively, and in accordance with the phase diagram 2.1 the concentration are
always given in terms of φ = φIBE.

Density (based on Doi et al. [5])

The densities of the phases are determined by the composition, thermal expansion
and molar excess volume,

ρ(φm, T ) =
[
φm

ρIBE
+ (1− φm)

ρW
+
(
φm

MIBE
+ (1− φm)

MW

)
V n

E

]−1

. (.1)

where ρi = ρi(T ) are the (temperature-dependent) densities of the pure substances,
Mi their molar masses, and V n

E = V n
E (φn) is the molar excess volume.

The molar masses, Mi are 18.01528 g/mol for water[13] and 118.17416 g/mol for
IBE[12], respectively.

The temperature dependence of the density, ρi(T ), of the pure substances is linearly
approximated around T0 = 25◦C,

ρi(T ) = ρi(T0)− αi · (T − T0) (.2)

with fit parameters for ρi and αi given in table .1.

ρi(T0) [g cm−3] αi [g cm−3 K−1]
water 0.997043 0.2571× 10−3

IBE 0.886255 0.968× 10−3

Table .1: Densities and thermal expansion coefficients for water and IBE [according
to 5].
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Moreover, the molar excess volume is fitted like [5]:

V n
E (φn) = φn (1− φn)

1−G φ̃
·
(
A1 + A2 φ̃+ A3 φ̃

2
)

(.3)

with φ̃ = 1− 2φn

and G = 0.975 ,

A1 = −3.079 cm3/mol ,

A2 = 1.801 cm3/mol ,

A3 = 0.839 cm3/mol .

A slight temperature dependence of these fit parameters was reported by [5]. However,
it is so small that we need not take it into account here.
To get the dependence of the density difference on the reduced temperature the
dependence φ(θ) (coexistance curve) has to be inserted into equation .1.

Viscosity (own measurements augmented by data of Weast [22] and Menzel
et al. [10])

We first provide the data of the pure phases, and then obtain the viscosity of the
mixture by appropriate interpolation.

The viscosity of IBE was measured with an Ubbelohde viscosimeter type 537 10/I
made by Schott. The temperature dependence of the viscosity η is fitted by

ηi(T ) = Ai × 10
Bi·(T0−T )−Ci·(T0−T )2

T+Di (.4)

with T0 = 20◦ C and coefficients given in table .2. The values for water are taken
from [22].

A [kg m−1 s−1] B C [(◦ C)−1] D [◦ C]
water 1.002× 10−3 1.3272 0.001053 105
IBE 3.36× 10−3 1.730 0.001 108

Table .2: Fit coefficients for the viscosity of water and IBE, defined by equation
(.4), the data is taken from [22].

To interpolate the viscosities for a mixed phase of given mass fraction φm we use
the composition-dependent viscosities at 25◦C for a homogeneous mixture in the
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single-phase regime, as provided by Menzel et al. [10]. The data is fitted with a fifth
order polynomial

η(φm, T = 25◦C) = −40.66 (φm)5 + 103.44 (φm)4 − 100.32 (φm)3

+ 39.35 (φm)2 + 0.17φm + 0.91. (.5)

Assuming that the coefficients of interpolation are not changing substantially in the
temperature range of our measurements, a rescaled viscosity η̃(φm) is defined. It
only depends on the composition φm

η(φm, T ) = η̃(φm) · ηIBE(T ) + [1− η̃(φm)] · ηW(T ) . (.6)

To check the strong assumption entering this interpolation, we also measured the
viscosity of the two phases at T = 40◦C. For both phases the prediction of viscosity3
was accurate to within 2%. This is sufficient for our means.

Diffusion coefficient (based on Steinhoff and Woermann [17])

Steinhoff and Woermann [17] provide only data on the diffusion coefficient. The
renormalisation group theory predicts that the diffusion coefficient vanishes when
the critical point is approached. On the other hand mode-coupling theory separates
the diffusion coefficient into a backround and a singular part. According to Sengers
[16] this has to be considered for the interpretation of experimental data. Since the
used temperatures are outside the critical region for the coexistence curve, we expect
not to see a critical exponent. Hence we fitted the data of Steinhoff and Woermann
[17] with the following expression:

Di(θ) = Dc + δi θ (.7)

with Dc = 6.4× 10−12m2/s, δIBE = 2.1× 10−9m2/s and δW = 4.1× 10−9m2/s.

Interfacial tension (based on Aratono et al. [1])

The interfacial tension vanishes at the critical temperature, and its dependence at
higher temperatures can be represented by a power law

γ(θ) = γ0 · θαγ . (.8)
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where a fit to the data of [1] yields γ0 = 7.3× 10−4N/m and αγ = 1.2.

Molar volume (based on Douheret et al. [6])

According to [6] the molar volume V n can be approximated by

V n = φn V n
IBE + (1− φn) V n

W (.9)

with V n
IBE = 124cm3/mol and V n

W = 15.98cm3/mol.
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