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1. Introduction

To observe flow through porous materials like sand or soil, we can go to small scales
and watch water pour out of a flower pot, as well as large scales and analyze the
water-level of rivers depending on the precipitation in the catchment area [6]. If we
observe a small scale sample, the flower pot, then we see the water flowing quickly
out of the pot for dry soil, whereas the water flows slowly for wet soil. So even by
watering plants we can determine a nonlinear permeability and a high dependence
of the flux on the initial state of a system.
On large scales the behaviour of fluid in soil can be considered as being different.
For little water we can assume capillarity to have the greatest impact on flux, whilst
for a larger amount of water gravity starts to dominate.
It is quite easy to determine the influx and the resulting outflux, whereas the in-
termediate evolution of the fluid is tricky. After all, the behaviour of fluid in soil
depends on the spatial distribution of fluid content. But how exactly does the flow
depend on the initial condition? And also, how does fluid itself evolve?
The transport mechanism of water can be attributed to a diffusive and an advec-
tive flux, the latter being in general a function of the spatial distribution of water
content. The one-dimensional Burgers equation [7] could therefore be considered
the simplest nonlinear continuum-scale model to describe the spatial and temporal
evolution of water content in soil. Analytical solutions to the Burgers equation
with deterministic boundary conditions were derived in a number of works [7],[1],
in particular by Arthur Wachtel in his bachelors thesis preceding the present work
[5]. Still, precipitation patterns [3] and the initial distribution of water content [2]
themselves are affected by uncertainty. So how do random fluctuations change the
behaviour of a system compared to deterministic conditions?

In the present work, we numerically analyze the impact of noise in the boundary
terms and uncertainty of initial conditions on the water content distribution. To
this end we model the flow by a biased random walk which represents the spatial
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1. Introduction

and temporal evolution of water density. The soil is modeled as a one-dimensional
lattice where the jumping probabilities depend on the local density.
In section 2, we introduce the random walk to model the transport processes and
point out that its continuum limit corresponds to the Burgers equation. In section
3, the transients of certain initial distributions are analyzed in order to learn about
how the fluid evolves over time. Also the impact of random noise in the influx on
the evolution is discussed. In section 4 we take a look at the steady states and their
stability for systems with constant influx. Analysis and discussion of phase spaces
are presented in section 5, where we focus on determining the parameters which lead
to certain evolution of density distributions.
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2. The discrete model and its
continuum limit

Since soil is considered a porous material, there exist small hollows which can rea-
sonably be described as a network of interconnected cells. In idealizing the flow
through soil as a quasi-one-dimensional process we model this transport process as
a biased random walk on a one-dimensional lattice with cells connected by state-
dependent jump probabilities. In our model, we consider only jumps to adjacent
cells.

2.1. Biased random walk model
The soil is modeled as a one-dimensional lattice with m+1 cells with lattice constant
a (see Fig. 2.1). At time-step t, each cell i with i ∈ {0, ...,m} contains an amount
of fluid ρi,t.

Figure 2.1.: Sketch of an m+ 1 cell model of a soil column.

After each discrete time-step τ a certain amount of fluid moves to the neighboring
cells and the rest stays. Consequently, the equation describing the time evolution
of the density ρi,t at node i is given by

ρi,t+1 = ri−1,t · ρi−1,t︸ ︷︷ ︸
right

+ li+1,t · ρi+1,t︸ ︷︷ ︸
left

+ si,t · ρi,t︸ ︷︷ ︸
stay

, with t ∈ N , i ∈ {0, ..,m} (2.1)

where ri−1,t, li+1,t and si,t are the probabilities to jump to the right (from i−1 to i),
to the left (from i+1 to i) and to stay at node i, respectively. Conservation of mass,
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2. The discrete model and its continuum limit

is expressed by the condition si,t + ri,t + li,t = 1. It imposes that si,t is constant and
equal to

si,t = 1− ri,t − li,t . (2.2)

Using Eqs. (2.1) and (2.2) we can now conclude:

ρi,t+1 =ri−1,tρi−1,t + li+1,t · ρi+1,t + (1− ri,t − li,t) · ρi,t (2.3)
=ρi,t + (ri−1,tρi−1,t − li,tρi,t)− (ri,tρi,t − li+1,tρi+1,t) (2.4)

⇔ ρi,t+1 − ρi,t
τ

=
a
τ
(ri−1,tρi−1,t − li,tρi,t)− a

τ
(ri,tρi,t − li+1,tρi+1,t)

a
. (2.5)

where we introduce the current

ji+ 1
2 ,t

= a

τ
(ri,tρi,t − li+1,tρi+1,t) (2.6)

in order to obtain

ρi,t+1 − ρi,t
τ

= −
ji− 1

2 ,t
− ji+ 1

2 ,t

a
. (2.7)

Note that a temporal and spatial dependence of the jump probabilities does not
affect these expressions. For soil, the probabilities are in general functions of ρi,t. In
the simplest setting they may be defined as follows1:

ri,t =g + α · ρi,t , (2.9)
li,t =g − α · ρi,t , (2.10)

si,t =1− ri,t − li,t = 1− 2g != s , (2.11)

with constant average transfer probability g and a coefficient α characterizing the ρ-
dependent asymmetry of the flow. In general we choose g and α such that g � α in
order to obtain a small asymmetry and therefore small advection. The asymmetric

1 The definition of li,t comprises a cut-off condition to ensure the non-negativity of the jump
probabilities:

0 ≤ α · ρi,t ≤ g ≤ 0.5 ∀ i, t . (2.8)

If αρi,t > g, i.e. li < 0, the cut-off condition resets li = 0, thus preventing that the transfer
probabilities obtain negative values. In this case ri,t = 2g and si,t is still given by Eq. (2.11).
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2.1. Biased random walk model

jump probabilities provide a net advective flux. For α = 0 the process will be purely
diffusive, whereas increasing values of α correspond to higher advective velocities to
the right. In Fig. 2.2 we see a sketch with denoted jump probabilities.

Figure 2.2.: Sketch of the density transfer with denoted densities, jump probabilities
and currents.

The equation of motion (2.1) is supplemented by the following initial and boundary
conditions:

• The initial condition

ρi,0 = Q(xi) , (2.12)

where Q(xi) is the initial density distribution.

• The inlet boundary condition

ρ0,t = A+ γW (t) , (2.13)

with a constant amplitude A, W (t) a white noise of amplitude 1, and γ a
parameter defining the actual amplitude of the white noise. Beside constant
influx for γ = 0 it also allows us to take into account fluctuations of the influx
around an average value A.
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2. The discrete model and its continuum limit

• The outlet boundary condition

ρm,t = 0 , (2.14)

simulates matter flowing out of the soil. After all, on the time scale of the
diffusive fluxes the effect of a sink at site m will be to instantaneously leading
away all water arriving at that point.

2.2. Continuum limit: Burgers equation

We show now that the biased random walk model introduced in the previous sec-
tion corresponds to the Burgers equation in the continuum limit. Equation (2.7)
becomes the continuity equation

∂ρ(x, t′)
∂t′

= −∇ · j(x, t′), (2.15)

with t′ = t · τ and x = (i + 1
2)a as temporal and spatial variables, respectively.

The appropriate continuum limit is that for which ρi,t − ρi+1,t

a
may be written as a

derivative of a sufficiently smooth2 function ρ(x, t′) as detailed in [4]. We therefore
want to express j(x, t′) as a function of ∂xρ(x, t′). Hence we rewrite Eq. (2.6) in
terms of averages and differences,

ji+1/2,t = a

τ
(riρi,t − li+1ρi+1,t)

= a

τ
(ri − li+1) ρi,t + ρi+1,t

2 + a2

τ

(
ri + li+1

2

)
ρi,t − ρi+1,t

a
. (2.17)

Combining Eq. (2.17) with (2.9) and (2.10) we obtain

ji+1/2,t = 2αa
τ

(
ρi,t + ρi+1,t

2

)(
ρi,t + ρi+1,t

2

)
− a2

τ
g

(
ρi+1,t − ρi,t

a

)
+ a3

2τ α
(
ρi+1,t − ρi,t

a

)2

.

2 The condition ρi+1,t − ρi,t

a
→ ∂xρ(x, t′) requires sufficiently smooth functions. Here we use

ρ(n)(x, t′)� aρ(n+1)(x,t′) , ∀n ∈ N0 (2.16)

and an analogues condition for j(x, t′).
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2.2. Continuum limit: Burgers equation

More formally, in the continuum limit ji+1/2,t → j(x, t′) and ρi,t + ρi+1,t

2 → ρ(x, t′),

furthermore, ρi+1,t − ρi,t
a

→ ∂xρ(x, t′) . Thus, we obtain

j(x) = 2αa
τ︸︷︷︸

=:C

(
ρi,t + ρi+1,t

2

)
︸ ︷︷ ︸

→ρ(x,t′)

(
ρi,t + ρi+1,t

2

)
︸ ︷︷ ︸

→ρ(x,t′)

− ga
2

τ︸︷︷︸
=:D

(
ρi+1,t − ρi,t

a

)
︸ ︷︷ ︸
→∂xρ(x,t′)

+ a3

2τ α︸︷︷︸
=C·a2

4

(
ρi+1,t − ρi,t

a

)2

︸ ︷︷ ︸
→(∂xρ(x,t′))2

(2.18)

=Cρ2(x, t′)−D∂xρ(x, t′) + a2C

4 (∂xρ(x, t′))2 . (2.19)

Eq. (2.16) guarantees

a · ∂xρ(x, t′)� ρ(x, t′) (2.20)

⇔ ρi+1 − ρi �
ρi+1 + ρi

2 . (2.21)

This holds for all i except right at the absorbing boundary. Thus the last part of
Eq. (2.19) becomes

a2C

4 (∂xρ(x, t′))2 = C

4 (a∂xρ(x, t′))2 � C

4 (ρ(x, t′))2 (2.22)

which is in turn dominated by the first term in Eq. (2.19). For j(x, t′) we now have

j(x, t′) ≈ Cρ2(x, t′)−D∂xρ(x, t′) . (2.23)

Combined with Eq. (2.15) this leads to the Burgers equation

∂ρ(x, t′)
∂t′

= −∇ · j(x, t′) = − ∂

∂x

[
Cρ2(x, t′)−D∂xρ(x, t′)

]
, (2.24)

with C = 2αa/τ and D = ga2/τ .

It is worthy of note, that the criterion expressed in Eq. (2.16) is not commensurate
with the absorbing boundary condition at the outlet. We would therefore expect
deviations from the Burgers equation solution near the outlet, whose error can be
estimated by a2C

4 (∂xρ(x, t′))2. We shall see in later sections, that the solutions to
the Burgers equation are mostly flat for the bulk, and therefore, this error will be
of non-negligible magnitude only near the outlet.
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2. The discrete model and its continuum limit

Furthermore, we have not incorporated the cut-off (Eq. (2.8)) into the proof above.
It therefore stands to reason that the Burgers equation only applies to those
regimes, where the cut-off has no effect.
Given the two limitations detailed above, the most reasonable regime where the
Burgers equation is expected to hold, is the diffusive decay regime. We shall
discuss this regime in the upcoming sections.
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3. Transients

In this section we address the question of how a given initial density distribution
evolves in soil, and to which scale, flower pot or river, our model corresponds. Also
we analyze the impact of uncertain precipitation patterns simulated by a random
noise in the influx.
We first investigate the transients associated with the solution of the proposed model
for deterministic flux boundary conditions at the inlet using γ = 0 (section 3.1). We
take a look at systems with different values of α and g in order to understand their
influence on the evolution of the density distribution. Then we change the average
density in the system ρ and explore the evolution of different initial conditions for a
given constant influx ρ0,t. By doing this, we will identify five different regimes. At
last we analyze the influence of random influx at the evolution by setting γ > 0 in
section 3.2. We assume that precipitation can be modeled as white noise, especially
on a very short time scale (hourly or daily), i.e. when seasonal variations can be
neglected.

3.1. Constant influx

3.1.1. Diffusive decay regime

We first investigate the impact of α and g on the system’s behaviour. Figure 3.1
shows the time evolution of the density from an initial Gaussian distribution for three
different values of α ∈ {0, 0.025, 0.05} and a constant g = 0.4. The left boundary
condition is constant influx, i.e. ρ0,t = 0.2.
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3. Transients
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Figure 3.1.: A Gaussian density distribution dissolves, with α ∈ {0, 0.025, 0.05} and
ρ0,t = 0.2, g = 0.4.

Higher values of α correspond to an increased advective effect. This is demonstrated
by the location of the density distribution: For α = 0 the peak of the curve stays
at the same cell whereas for greater values of α the peak propagates to the right.
This is consistent with the continuum limit of the biased random walk where the
advective coefficient, C, in the Burgers equation is directly proportional to α.

Figure 3.2 shows the spatial density distribution at four instances in time and three
different values of g ∈ {0.2, 0.3, 0.4}.
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3.1. Constant influx

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100

de
ns

ity
ρ

cell i

t = 7 :
g = 0.2
g = 0.3
g = 0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100

de
ns

ity
ρ

cell i

t = 20 :
g = 0.2
g = 0.3
g = 0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100

de
ns

ity
ρ

cell i

t = 100 :
g = 0.2
g = 0.3
g = 0.4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 20 40 60 80 100

de
ns

ity
ρ

cell i

t = 200 :
g = 0.2
g = 0.3
g = 0.4

Figure 3.2.: A Gaussian density distribution dissolves, with g ∈ {0.2, 0.3, 0.4} and
ρ0,t = 0.2, α = 0.025.

Again the numerical results are consistent with the theoretical prediction that g is
related to the diffusion coefficient D in the continuum limit: the greater g, the more
diffusive the system becomes. As expected, the peak of the distribution only mildly
moves to the right as the advective contribution is small (α = 0.025) compared
to the diffusive part. For g = 0 nothing would happen, since the probability for a
fluid particle to stay at a particular cell i would be s = 1 by definition (see Eq. 2.11).

In natural systems, the initial distribution of fluid in the soil is usually unknown
or affected by great uncertainty (due to, say, measurement errors or limited sets
of data). High fluctuations in initial water content may also be associated with
highly heterogeneous materials on a very small spatial scale. We therefore choose
a randomly spatially distributed initial density and a random flux density as a
boundary condition to the inlet. More specifically, the initial density at each cell is
given by a random value, uniformly distributed in an interval centered around an
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3. Transients

average density.

Figure 3.3 shows the impact of uncertain initial distribution on the system’s evo-
lution. While such uncertainty can lead to unphysical initial distributions of the
density (as we face narrow spikes whose occurrence in nature is improbable), how-
ever after only few time-steps the spikes smooth out. Also, sharp peaks smooth out
much faster compared to more uniformly distributed regions. Large gradients in
water content induce a high outgoing flux to neighbouring cells, while experiencing
only limited influx. Therefore the greater the gradient, the faster the density differ-
ences smooth out. As soon as the density profile is uniform, the influx and outflux
at each location tend to counterbalance and density changes slow down.
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Figure 3.3.: A random density distribution (range 0.5 around average at ρ = 0.5)
dissolves, with g = 0.4, ρ0,t = 0.5, α = 0.05.
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3.1. Constant influx

3.1.2. Advectively unstable regime

Increasing the average value of the initial distribution changes drastically the sys-
tem’s response. Figure 3.4 shows the spatial density distribution at four different
instances in time for a random initial distribution with average value ρ = 5.5.
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Figure 3.4.: A random density distribution (range 0.5 around average at ρ = 5.5)
dissolves, with g = 0.4 and ρ0,t = 5.5, α = 0.05.

Instead of smoothing out, the density distribution develops a spiky shape with val-
ues varying between ρmin ≈ 2 to ρmax ≈ 12. Compared to Fig. 3.3 the system
is also more advective and a flat line appears on the left hand side of the domain.
Since the advective term αρ in Eqs. (2.9) and (2.10) is proportional to the density,
increasing the average value of the overall initial distribution translates to increased
advection. This leads to a constant inlet signal that propagates undisturbed.

The lower cut-off around ρ ≈ 2 results from a constant probability to stay si = 0.2
(see Eq. (2.11)). Since the density at a peak is around ρpeak ≈ 12, the probability
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3. Transients

for its matter to jump right is around its maximum at ri = 0.8. So when the fluid of
a peak jumps right, the fluid left over is around ρleftover = s · ρpeak ≈ 0.2 · 12 = 2.4.
To better understand the evolution of such peaks, we take a look at a single peak
in an otherwise uniform distribution with average density of ρ = 4.8. Without the
peak, the density distribution in that system would be constant in time.
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Figure 3.5.: A triangular peak of height 1 above the average density ρ = 4.8 and
width of 5 cells evolving with g = 0.4, ρ0,t = 4.8, α = 0.05.

The peak is moving to the right, growing up to a height of ρ ≈ 12 and growing
constantly in width. At the same time at the left hand side of the peak a depression
appears. Its bottom is at ρ ≈ 2 and it is also constantly growing in width. Also a
small hump arises at the left side of the depression.
Due to a higher density, the peak is advecting faster than the unperturbed system
around it. This causes the peak to absorb the fluid downstream and thereby it
grows. On the other hand the peak leaves behind a depression. The fluid behind
the peak advects not fast enough to keep up, thereby allowing the depression to
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3.1. Constant influx

grow.
The hump emerges from the fluid coming from the inlet summing up with the slower
advecting fluid in the depression.
After increasing our average density up to ρ = ρ0,t = 5.5, another change in the
behaviour appears.
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Figure 3.6.: A triangular peak of height 1 above the average density ρ = 5.5 and
width of 5 cells evolving with g = 0.4, ρ0,t = 5.5, α = 0.05.

At the left hand side of the depression spikes appear while otherwise pretty much
the same is happening as at the average density ρ = ρ0,t = 4.8 in Fig. 3.5, only now
the system is unstable enough to produce spikes out of the hump left hand side from
the depression. The spikes generally show the same behaviour as a single peak, only
they do not develop a depression but more spikes instead. Therefore it takes the
distribution more time to vanish in the outlet.
We now analyze the connection between the height of the system and the occurrence
of these spikes. The following figure shows the same initial distribution as in Fig. 3.5
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3. Transients

and 3.6 at different heights of the system right before vanishing in the outlet:

0

2

4

6

8

10

12

14

0 20 40 60 80 100

de
ns

ity
ρ

cell i

ρ = 5.2 :
t=90

0

2

4

6

8

10

12

14

0 20 40 60 80 100

de
ns

ity
ρ

cell i

ρ = 5.5 :
t=90

0

2

4

6

8

10

12

14

0 20 40 60 80 100

de
ns

ity
ρ

cell i

ρ = 5.8 :
t=90

0

2

4

6

8

10

12

14

0 20 40 60 80 100

de
ns

ity
ρ

cell i

ρ = 6.1 :
t=90

Figure 3.7.: A triangular peak of height 1 above the average density ρ = ρ0,t

and width of 5 cells at time t = 90 right before vanishing for ρ0,t ∈
{5.2, 5.5, 5.8, 6.1} and g = 0.4, α = 0.05.

For each value of ρ the peak reached the outlet at the same time t = 90, but for higher
values, more spikes appear at the left hand side of the depression. For ρ0,t = 5.2
and ρ0,t = 5.5 these spikes look quite random, but for ρ0,t = 5.8 and ρ0,t = 6.1 we
recognize an oscillation-like shape. Thus for larger height of the system, more spikes
appear and the time until the initial distribution vanishes in the outlet is larger.
At a critical ρ spikes actually start moving to the left like shown in the following
section.

3.1.3. Purely unstable regime

So far, spikes only arose from existing irregularities in the density distribution. For
example as shown in Fig. 3.7, for sufficiently large times the initial distribution

16



3.1. Constant influx

always vanished, leaving a uniform distribution with a sink at the outlet. Once
spiky structures evolve upstream, no steady, uniform distribution will ever appear.
In this regime a random initial distribution would simply look like Fig. 3.4 without
the flat line, so without ever vanishing in the outlet. In order to observe spikes
evolving upstream we now have a look at a uniform initial distribution at height
ρ = 7.5 in the following figure.
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Figure 3.8.: A constant initial distribution at height ρconst = 7.5 building up spikes
for g = 0.4, ρ0,t = 7.5, α = 0.05.

First some fluctuations at the outlet are visible which then slowly evolve into spikes.
The spiky domain spreads out, moving upstream showing an oscillatory structure
already observed in Fig. 3.7. What is not clearly visible in this figure, is that the
spikes still advect downstream, only the domain containing spikes moves upstream.
While spikes still advect downstream, they create small fluctuations to the left from
them. These fluctuations grow, advecting downstream also creating fluctuations
to the left. In this way, after sufficient time, the whole system is populated with
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3. Transients

spikes. Obviously the distribution will never be “washed away” and also never reach
an equilibrium state, since the spikes continue moving downstream.

3.1.4. Unstable ballistic regime

Increasing the average value of the initial distribution leads to yet another type of
behaviour. We now consider a random initial distribution with average ρ = 9. The
system evolution at four different times is shown in Figure 3.9.
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Figure 3.9.: A random density distribution (range 1.0 around average at ρ = 9.0)
dissolves, with g = 0.4 and ρ0,t = 9.0, α = 0.05.

The random initial distribution smooths out in a similar fashion to the one in Fig.
3.3 with the only difference now that the system is more advective. At the same
time few single spikes arise, propagating to the right without producing more spikes.
This time the depression is on the right of each spike. The whole system is moving
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3.1. Constant influx

downstream finally vanishing at the outlet. Due to a higher average density and
thereby stronger advection (compared to the systems in the previous figures), no
more spikes are generated by other spikes. They simply advect quickly downstream.
Still some are growing, but different than before, as now the depression is at the
right of the peak (for comparison see Fig. 3.5). An area with initially very low
density is advecting slightly slower than the fluid left from it and thereby dams up a
peak. However, the rest of the distribution is simply diffusing while advecting very
quickly to the outlet.

3.1.5. Ballistic regime

The same random distribution with average density at ρ = 10.0 shows no more
spikes (see Fig. 3.10).
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Figure 3.10.: A random density distribution (range 1.0 around average at ρ = 10.0)
dissolves, with g = 0.4 and ρ0,t = 10.0, α = 0.05.

The random initial distribution smooths out and flows quickly to the right, vanishing
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3. Transients

at the outlet. Now the advection is so strong that no spikes can build up and
the whole distribution just flows out. The density at every cell is so large that
αρ ≥ 0.4 = g and thus the cut-off condition from Eq. (2.8) kicks in. In this case
there is no jumping to the left possible anymore and everything is rushing through
the system. Hence, the behaviour of a distribution does not change for higher levels
of density, like shown in Fig. 3.11.
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Figure 3.11.: Three random density distribution (range 1.0 around average at
ρ ∈ {10.0, 12.5, 15.0} dissolving with g = 0.4, ρ0,t = ρ, α = 0.05.

We see three identical density distributions at time t = 35. Due to the cut-off
condition and thereby a fixed probability to jump, the behaviour for different dis-
tributions higher than ρ ≈ 10 is identical.
In the following figure we examine the evolution of a single peak in order to analyze
the behaviour and compare it to some analytical considerations.
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Figure 3.12.: A constant density distribution with a triangular peak of height 2 above
the average density and initial width of 5 cells. The peak moves quickly
to the outlet at maximum speed of v = 0.8a

τ
due to the probability

to jump constantly at ri = 0.8. Parameters: ρ0,t = 10.0, g = 0.4,
α = 0.05

The signal with its peak at cell i = 7 rushes through the system, diffusing at the
same time. Around time t = 115 the peak of the distribution is at the last cell
i = 100. Also it is not dissolving symmetrical. The left slope is longer than the
right one. Since we are at such a high density, the peak is moving with maximum
speed of v = 0.8a

τ
since the probability to jump right is constantly ri = 0.8. The

peak starts at i = 7, t = 0 and should have covered a distance of d = 93 cells after
t93cells = d

v
= 93

0.8 = 116.25 which fits our observed time.
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3. Transients

3.1.6. Discussion

Increasing the average value of the initial density distribution ρ leads to five different
regimes. We used g = 0.4, α = 0.05 and ρ0,t = ρ. Please keep in mind that different
sets of parameters would lead to different regimes for constant ρ. The five regimes
are summarized below.

1. ρ . 3.0: The diffusive decay regime shows a diffusive and slightly advective
behaviour of the system (see Fig. 3.3).

2. 3.0 . ρ . 6.5: In the advectively unstable regime spikes appear. The
density distribution does not smooth out. Such spikes grow and advect down-
stream to the outlet where they vanish, leaving a flat stable density distribution
as shown in Fig. 3.4.

3. 6.5 . ρ . 8.0: In the purely unstable regime, spikes are formed and advect
upstream (to the left). In this regime, no steady state can ever be reached
since the gradient at the outlet grows to a spike which moves upstream like in
Fig. 3.8.

4. 8.0 . ρ . 9.5: The unstable ballistic regime involves growing peaks as
well, but due to a different mechanism. In general the cut-off condition from
Eq. (2.8) corresponds to a maximum probability of jumping to the right
(downstream) and forbids jumping to the left (upstream). If the density at
a cell is small enough for the cut-off condition to not apply, the depression is
moving slower than the surrounding. The fluid in the cells downstream of the
depression advects faster than the depression itself which therefore broadens.
The fluid in the depression jumps partially to the left, creating a peak at the
left side like shown in Fig. 3.9.

5. 9.5 . ρ: In the ballistic regime the cut-off condition applies at every cell.
The whole system advects downstream at maximum speed while diffusing (see
Fig. 3.11).

Also we were able to identify the impact of some parameters of the evolution.

• α in general affects the advection of a system. The greater α, the faster the
system flows downstream whereas for α = 0 the behaviour is purely diffusive
(see Fig. 3.1).
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3.1. Constant influx

• g determines the diffusive behaviour of a system (Fig. 3.2). After all, the

diffusion coefficient D = g
a2

τ
grows with g.

• The initial condition and the influx ρ0,t determine the advective behaviour
as well as the regime of the system. For higher density we deal with higher
advection since the asymmetric term in the jump probabilities ±αρ grows with
the density (see Eqs. (2.9), (2.10)).

Since, with higher density we observe higher advection, we could interpret the asym-
metric part of the jump probabilities as gravitational force. Thereby our model
qualitatively fits the evolution of water flowing from a catchment area to a river
corresponding with large scale soil mentioned in the introduction. We also have an
impression of how the evolution of water in soil could look like.
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3. Transients

3.2. Noisy influx

We now focus on random boundary conditions at the inlet and its development in
different regimes. Specifically, we consider the boundary condition (2.13) to be a
fluctuating influx with average A and a white noise of amplitude γ around the aver-
age value. Also we will analyze the pace at which a peak builds up from a fluctuation.

3.2.1. Impact on transients

First we have a look at the influence of a white noise on a random initial distribution
in the diffusive decay regime. Figure 3.13 shows such a system compared to the same
system with constant inlet signal.
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Figure 3.13.: A random initial distribution dissolving with (green curve) and without
(red curve) white noise γ = 0.5, γ = 0.0 and g = 0.4, ρ0,t = 3.0+γW (t),
α = 0.05.
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3.2. Noisy influx

At first the distributions are identical. For larger times, more differences arise. The
distribution without white noise settles into a constant line at the inlet whereas
the one with white noise shows random spikes dissolving to a curve similar to the
dissolving initial distribution.
The evolution of a constant initial distribution in the advectively unstable regime is
shown in the following figure:
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Figure 3.14.: A constant initial distribution with density ρconst = 5.0 evolves with
white noise γ = 0.5, g = 0.4, ρ0,t = 5.0 + γW (t), α = 0.05.

First, some few fluctuations are visible, quickly growing into spikes between ρ ≈ 2
an ρ ≈ 12. The random noise produces gradients large enough to grow and show a
spiky distribution like in Fig. 3.4.
Concerning the ballistic regime, the white noise has no influence on the initial dis-
tribution, since everything is advecting at maximum speed.
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3. Transients

3.2.2. Growth of peaks

Since the white noise is a source of random fluctuations in a certain range γ, we
can use it to learn about the pace at which a peak grows. The following figure
shows a constant initial distribution in the advectively unstable regime with a noisy
influx ρ0,t = 5.0 + 0.1W (t). Visible are the densities at each cell for each step over
a time-span of T = 5000τ .
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Figure 3.15.: The density of each cell and time-step for a constant initial distribution
ρconst = 5.0 with white noise of amplitude γ = 0.1 during 5000 time-
steps. Parameters: g = 0.4, α = 0.05, ρ0,t = 5.0 + γW (t).

We see a cone-shaped distribution of dots which is sharp at the first 20 cells and
gets more and more blurry after that. At the last 30 cells it is quite sharp again. We
can see in this figure how fast peaks are able to grow in general. In the beginning,
all dots are close to each other. Then they grow depending on the initial size of a
peak. Since every size of peaks appears with equal likelihood, maximum values are
rarely produced. This explains the blurry border from cell i = 20 to i = 80 where
few very large peaks are visible. For the last cells, the maximum is reached since
the ballistic regime sets a limit to the growth of peaks.
Obviously, the growing rate of peaks in this model is nonlinear. For peaks with
density smaller than ρ < 10 we can say for certain, the larger the peak, the faster it
grows.
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3.2. Noisy influx

3.2.3. Discussion

In general the transients with white noise in the influx show no conceptionally new
aspects of behaviour compared to the deterministic transients. In the diffusive de-
cay regime, peaks due to white noise dissolve very quick. Therefore its influence on
the distribution is very small after some time. In the advectively unstable regime
it prevents the system from becoming stable while in the purely unstable system
it would prevent an oscillatory or generally regular behaviour like the one seen in
Fig. 3.8. In the unstable ballistic regime it would constantly create few spikes essen-
tially providing the system with an initial distribution like in Fig. 3.9 at the inlet.
In the ballistic regime it just flows through the systems without any effect on the
initial distributions.
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4. Steady state regimes

A different way to deal with unknown initial distributions of fluid in soil is to concen-
trate on the boundary signal and wait for the initial distribution to be washed out.
Beyond that time the current distribution is determined by the known boundary
signals and a known behaviour of the fluid. For a constant inlet signal we will take
a look at deterministic systems after a long time, that is to say, at the shape of the
equilibrium distributions. First we confirm the independence of an equilibrium dis-
tribution on the initial density distribution. After comparing the equilibrium states
of each regime, we analytically determine the equilibrium state of the diffusive decay
regime and compare it with numerical results.

4.1. Deterministic influx

For a constant inlet signal generally every distribution converges to a steady state
if we wait a sufficiently long time. The following figure shows three different initial
distributions in the diffusive decay regime with the same constant inlet boundary
condition ρ0,t = 0.5:
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Figure 4.1.: Three different initial distributions (constant distribution with density
ρconst = 0.5 (red), Gaussian distribution on influx level ρ = 0.2 (green),
random distribution with range 0.5 around average ρ = 0.5(blue)) con-
verge to the same equilibrium state with g = 0.4, ρ0,t = 0.5, α = 0.05.

The three initial distributions converge to the same distribution, a steady state. The
equilibrium states for the other four regimes look like the following:
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(c) g = 0.4, α = 0.05, ρ0,t = 9.0, t = 250
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Figure 4.2.: Distributions after a sufficient time for the four regimes advectively
unstable, purely unstable, unstable ballistic and ballistic, respectively.
Except for the purely unstable regime, all distributions are in steady
states

For the advectively unstable regime Fig. 4.2 (a) we observe a slight increase of the
density right before the dip. The purely unstable regime in (b) does not reach an
equilibrium state like the one seen in Fig. 3.8. The unstable ballistic regime in (c)
and the ballistic regime in (d) look essentially the same, a uniformly distributed
density right before a very steep, straight dip. This is obvious, since at this point
they are in the same regime. The unstable ballistic regime only exists for nonuni-
form distributions with some cells containing a density small enough for the cut-off
condition not to kick in. The mechanism how unstable behaviour appears in these
circumstances is explained in section 3.1.4.
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4. Steady state regimes

The transition between the diffusive decay and advectively unstable regime is smooth,
meaning a definite threshold could not be identified. First we face mostly diffusive
behaviour in the diffusive decay regime (see Fig. 4.1). For increasing values of αρ
the dip at the outlet becomes steeper until at some point even a little stationary
peak arises right before the outlet (see Fig. 4.2 (a)).
Entering the purely unstable regime, the peak at the outlet starts to grow and
produces fluctuations left from it (see Fig. 3.8).

4.2. Analytical approach to equilibrium states of the
diffusive decay regime

The steady state density distribution can be calculated analytically by solving the
Burgers equation (2.24) for ∂ρ(x, t)

∂t
= 0. Therefore we start from

j(x) = Cρ2(x)−Ddρ(x)
dx (4.1)

and perform a separation of variables

D
dρ
dx = Cρ2(x)− j (4.2)

⇔
∫ L

x

1
D

dx =
∫ 0

ρ

1
Cρ2(x)− jdρ(x) (4.3)

1
D

(L− x) =
∫ 0

ρ

1
Cρ2(x)− jdρ(x) , (4.4)

where L = m · a is the size of our system while we choose D 6= 0 6= Cρ2(x)− j. Now
we substitute

z :=ρ(x)

√
C

j
(4.5)

⇒ ρ(x) =z
√
j

C
(4.6)

dρ =
√
j

C
dz (4.7)
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and get

1
D

(L− x) =
∫ 0

√
j
C
z

1
z2 − 1

√
1
jC

dz (4.8)

= tanh−1

(√
j

C
z

)
. (4.9)

Solving for ρ(x) and resubstituting z, we obtain

ρ(x) = tanh
(√

jC

(
L− x
D

))
. (4.10)

To include the inlet boundary condition we divide ρ(x) by the density ρ(x = 0) =: ρ0

at the inlet and get

ρ(x)
ρ0

=
tanh

(√
jC
(
x−L
D

))
tanh

(√
jC
(
L
D

)) . (4.11)

We define
√
jCL2

D2 =: k and obtain

ρ(x)
ρ0

=
tanh(k(1− x

L
))

tanh(k) . (4.12)

The Fig. 4.3 plots ρ(x)
ρ0

as a function of k and x.
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Figure 4.3.: The analytical solution of steady states in the diffusive decay regime
like shown in Eq. (4.12).
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4. Steady state regimes

To compare the solution with numerical results we rewrite Eq. (4.11) as

ρ(x) =
tanh

(√
jC
(
x−L
D

))
tanh

(√
jC
(
L
D

)) · ρ0 (4.13)

and use the values for C and D defined in Eq. (2.18). In order to find the value
of j of a system we wait until the system has reached a steady state and compute
the flux at the outlet (outflux). The steady state flux is constant in space and time
and therefore equals the outflux. Then for a given inlet boundary condition ρ0,t, we
use (4.13) to derive the corresponding theoretical curve. In Fig. 4.4 we plot both
the theoretical prediction and the numerical solution. Given the perfect overlap, we
also plot their difference in the inset of Fig. 4.4.
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Figure 4.4.: A steady state for g = 0.4, ρ0,t = 0.5, α = 0.05 and its analytical solution
for a = 1, τ = 1 and therefore C = 2α = 0.1, D = g = 0.4, m = 100,
j = 0.025, ρ0 = ρ0,t = 0.5. Inset figure: A plot of the difference in the
density ρnumerical − ρtheoretical versus the cells i.

The fit between the two curves is very good except for the absorbing boundary.
As shown in Fig. 4.2, at the outlet a small increase of the density arises when
entering the advectively unstable regime. At this point, the analytical solution stops
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4.3. Discussion

applying. Therefore, we can say that it is in good agreement with the simulated
data for the diffusive decay regime. The mismatch of the analytical solution and
the numerical data at the absorbing edge was to be expected, since the Burgers
equation does not include absorbing boundaries.
Also the analytical solution does not incorporate any instabilities. Therefore it will
not match the numerical data the closer we are to the purely unstable regime.

4.3. Discussion
We observed, that equilibrium distributions depend only on the boundary condi-
tions, as far as there exist equilibrium distributions. For the purely unstable regime
we observed a spiky distribution instead.
The analytical determination of the equilibrium distribution in the diffusive decay
regime and its comparison with numerical results was originally supposed to verify
our model, but it also provides valuable results. As shown in Fig. 4.4 over the first 70
cells the theory is in excellent agreement with our numerical data. Although we see
differences at the last 30 cells, the consistency is still amazing since the differences
are small.
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5. Non-equilibrium phase transitions

In this section we analyze the location of each regime dependent on the parameters
α, g, ρ0,t and γ and then creating phase diagrams. With this we will determine
the location of the transitions, try to analytically predict them and explain their
existence.
To this end we will first introduce cumulative density functions (cdfs) as well as
explain how we can use them to determine the regime in which a certain system lives.
Then we introduce cdfwidth plots which essentially are phase diagrams showing
the location of regimes. Phase diagrams created with constant influx allow us to
determine the parameters leading to the purely unstable regime in section 5.3. For
noisy influx in section 5.4 we then are able to identify the other regimes as well.

5.1. Introduction of cdfs

Our main interest is to determine the location of each regime. Therefore we inves-
tigate the dependence of the fluid moving from cell i = m − 1 to cell i = m and
therefore leaving the system ρout as a function of ρ0,t, α, g and γ.
To prevent influence of the initial density distribution, we wait until the system
reaches a steady state. We then construct the cdf of the outflux. A sketch of the
following steps:

1. Pick fixed values for ρ0,t, α, g , m and γ.

2. Run the simulation until the density distribution reaches steady state.

3. Calculate the fluid jumping from cell i = m − 1 to i = m at each
time step, i.e. the amount of fluid leaving the system per time-step.
We usually collect 5000 values between t = 10000 and t = 20000.

4. Sort the values in increasing order and number them. Then normalize
to 1.
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5. Non-equilibrium phase transitions

5. Plot the normalized numbers versus the fluid density leaving the system
ρout.

Figure 5.1 (a) shows the cdf for the diffusive decay regime with white noise of
amplitude γ = 1.0.
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Figure 5.1.: (a) shows a cdf for the diffusive decay regime. We used n = 5000 values,
every second value starting from time-step t = 10000. (b) shows how
to measure the 90% width of such cdf. Parameters: α = 0.05, g = 0.4,
ρ0,t = 3.0, γ = 1.0.

The cdf describes the probability that the amount of fluid leaving the system per
time-step is less than or equal to ρout. For instance when we look at the outflux
ρout = 0.9, the corresponding value on the y-axis is ≈ 0.3. Thus we can assume that
around 30% of all matter flowing out per time-step is smaller than ρout = 0.9.
Furthermore we can identify the area which contains 90% of all ρout values. This
corresponds to a 1.64σ deviation of the average as shown in Fig. 5.1 (b).

For now we only consider deterministic systems, so we will have no noise in the
influx if not explicitly mentioned. The cdf for the same set of parameters and no
noise is given in Fig. 5.2.
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Figure 5.2.: A cdf for the diffusive decay regime. We used n = 5000 values, every
second value starting from time-step t = 10000 with α = 0.05, g = 0.4,
ρ0,t = 3.0,γ = 0.

The step function observed in Fig. 5.2 is what we expected: in the steady state
diffusive regime since the influx is constant, the outflux is constant and there are no
fluctuations in the density. This leads to a step function cdf.
The behaviour drastically changes when the purely unstable regime is reached as
shown in Fig. 3.8. There, spikes grow at the outlet and no equilibrium state is
reached. Therefore the spectrum of the amount of fluid leaving the system is obvi-
ously very broad. The following figure shows a cdf for such a regime:
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Figure 5.3.: A cdf for the purely unstable regime. We used n = 5000 values, every
second value starting from time-step t = 10000 with α = 0.05, g = 0.4,
ρ0,t = 7.5, no noise(γ = 0).

The outflux explores values from around ρout ≈ 0.5 to ρout ≈ 9.5 leading to a very
broad cdf. Since every regime except the purely unstable regime ends up in a steady
state after large times, their cdfs then look like the one in the diffusive decay regime
in Fig. 5.2, only with the appropriate value for the average of outflux. However,
since there is no such steady state for the purely unstable regime, its cdf will never
be step-function-like.

5.2. Introduction to cdfwidth plots

Section 5.1 leads us to make the assumption that the regime in which the system
develops can be fully identified by the width of its cdf which we will refer to as
cdfwidth. Our cdfwidth is chosen to correspond to the 90% interval:

cdfwidth := quantile95% − quantile5% . (5.1)

A quantilex% marks the outflux ρout,x for which x% of the values ρout are smaller
than or equal to ρout,x.
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5.2. Introduction to cdfwidth plots

A plot of the cdfwidth as a function of ρ0,t and α (with constant g = 0.4 and no
noise(γ = 0)) looks as follows:
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Figure 5.4.: A plot of the 90% width of a cdf versus its parameters ρ0,t and α for
constant g = 0.4 and no noise(γ = 0). (a) shows it as 3d plots whereas
(b) shows a 2d false color plot.

In (a) we see most values for the cdfwidth are equal to zero, except one curve
whose height reaches cdfwidth ≈ 20 for low values of α and large values of ρ0,t, and
cdfwidth ≈ 1 for large values of α and small values of ρ. We can identify the curve
as the purely unstable regime due to our previous observation of Fig. 5.2. In (b)
a two-dimensional false color plot is given where we see the top view of (a) with
the cdfwidth determined by color. Our observations in section 3.1 imply, that the
violet and black area in the bottom left corner contains the diffusive decay as well as
the advectively unstable regimes. Also the observations imply the black area in the
top right contain the unstable ballistic and the ballistic regimes. The yellow area
contains the purely unstable regime, since we face cdfs with certain width6= 0.
The purple area (larger view in Fig. 5.5) originates from initial density fluctuations
left in the system. In this area t = 10000 time-steps are not enough time for
the initial density distribution to vanish completely. The minimum time required
for the system to reach steady state is controlled by the slower transport process
(i.e. diffusion or advection). Therefore, the steady state is reached after a time
t ≥ max{TD, Tv}, where TD = m2

D
and Tv = m

v
= m

Cρ
are the typical timescales

associated with diffusive or advective transport, respectively. C and D are given by
Eq. (2.18).
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5. Non-equilibrium phase transitions

The time for a distribution to vanish completely by diffusion or advection, is shown
in Fig. 5.6.
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Figure 5.5.: A plot of the 90% width of a cdf versus its parameters ρ0,t and α for
constant g = 0.4 and no noise(γ = 0) as map. (A blow-up of the purple
area in the bottom left corner of Fig. 5.4 (b))
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Figure 5.6.: (a) shows the time until a system of size m = 100 completely vanishes
by diffusion. (b) shows the values of ρ and α where a system vanishes
purely by advection during 10000τ
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5.3. Phase diagrams for constant influx

In (a), we can see that it takes a distribution at least 20000 time-steps to vanish
purely by diffusion. The curve in (b) shows the values of ρ and α which are necessary
for a distribution to vanish purely by advection during t = 10000 time-steps. The
curve fits approximately the transition area between purple and black in Fig. 5.5.
Thereby we learn, initial distributions for systems with parameters in the purple
area need more than 10000 time-steps in order to reach a steady state. Anyway, the
values of cdfwidth there will turn to cdfwidth = 0 for sufficiently large times.

5.3. Phase diagrams for constant influx

We now want to analyze the impact of values of g on the width of a cdf and thus
learn about the impact of g on the location of the purely unstable regime. In the
following figure we show phase diagrams for different values of g:
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(b) g = 0.3
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(c) g = 0.4
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(d) g = 0.5

Figure 5.7.: Phase diagrams for different values of g, no noise(γ = 0).

The general shape of the purely unstable regime area stays the same, but we recog-
nize that the curve is broadening for higher values of g. Also for g = 0.2 we see no
unstable regime at all.

Now we try to analytically approximate the borders of the purely unstable regime.
Since a characteristic of the ballistic regime is to have no probability to jump left
anymore, we can assume the upper boundary of the purely unstable regime is given
by li = g−αρ = 0. Thereby we obtain ρu.b. = g

α
=: gu.b.

α
as a function for the upper

border and compare it to the contours of the purely unstable regime. The following
figure shows the contours of the purely unstable regime from Fig. 5.7 (b) and (d),
each with its analytical upper border:
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Figure 5.8.: The contours of the purely unstable regimes of Fig. 5.7 created with the
values at height cdfwidth = 0.01. In (b) an analytical solution is shown
additionally, for g = 0.5: ρu.b.,g=0.5 = 0.5

α
; for g = 0.3: ρu.b.,g=0.3 = 0.3

α
.

The approximation fits the upper borders quite well. Also, we recognize that the
purely unstable regime not only shrinks for greater values of g, it also moves closer
to the origin. Furthermore we can assume the borders of one purely unstable regime
will collide for a small enough value of g, since in Fig. 5.7 (a) no purely unstable
regime is visible anymore.
Assuming, the lower boundaries follow the same behaviour as the upper borders
ρl.b. = gl.b.

α
, we made a fit of the lower borders of the purely unstable regime in Fig.

5.7 (b) to (d) and obtained values for gl.b.. In Fig. 5.9 the results for 5.7 (b) and (d)
are illustrated.
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Figure 5.9.: The contours of the purely unstable regimes of the phase diagrams 5.7
(b) and (d) and their lower border fits. For (b) with g = 0.3 we obtained
gl.b. = 0.27, for (d) with g = 0.5 we obtained gl.b. = 0.35. The map in
Fig. 5.7 (c) for g = 0.4 is not illustrated but goes with gl.b. = 0.31. The
according functions are of the form ρl.b. = gl.b.

α
.

We can confirm the lower border follows the same type of function as the upper
border.
Now to determine at which point the curves intersect and thereby the unstable
system disappears, we extrapolate the obtained values for gl.b.. The following figure
shows the values of gl.b. versus gu.b. = g:
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Figure 5.10.: The approximated values for gl,b with a fit (red) and our theoretical
function for values of gu.b (green).

We see that the approximated function of gl.b. fits perfectly and crosses the function
of gu.b.. The point in which they cross is given by

gcross =0.4 · gcross + 0.15 (5.2)
⇒ gcross =0.25 . (5.3)

For g = 0.25 the upper border and the lower border are identical and thereby the
purely unstable system does not exist for any value of g ≤ 0.25.

5.4. Phase diagrams for noisy influx

From the previous section we learned how to determine the parameters leading to
a system in the purely unstable regime. But still we can not distinguish between
the unstable ballistic and the ballistic regime. And since the transition from the
diffusive decay to the advectively unstable regime is smooth, we generally cannot
distinguish between them either.
In this section we try to distinguish between regimes which dissolve and regimes
which explode by adding a random noise to the influx. The regimes with growing
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5. Non-equilibrium phase transitions

behaviour will now appear at cdfwidth plots since spikes broaden the cdf of a sys-
tem. The following figure shows a cdfwidth-map for g = 0.4 and a white noise of
amplitude γ = 0.5:
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Figure 5.11.: A plot of the cdfwidth versus its parameters ρ0,t and α for constant
g = 0.4 and γ = 0.5 as map.

We see a yellow area shaped like the unstable area in the plots for deterministic
systems. Also we see no points with cdfwidth = 0 anymore.
The yellow area now contains the unstable regime as well as parts of the advectively
unstable and the unstable ballistic regime, since now spikes can evolve out of the
random influx. In the ballistic regime, the value of the width is close to the value
of the white noise. Since in the ballistic regime the advection is at its maximum,
the fluctuations in the density caused by the white noise have little time to smooth
out. Therefore the density flowing out of the system varies with a magnitude of the
order of the white noise.
In the diffusive decay and the advectively unstable regime (which we can not really
distinguish) we observe a smooth transition in cdfwidth. The advection grows for
higher values of ρ and α as the time for a peak to diffuse shrinks. At some point,
peaks do not dissolve anymore and finally start growing. However, for m→∞ and
t→∞ we would observe sharp transitions.
The small bar of missing data from ρ = 0.0 to ρ = 0.5 is unavoidable, since with a
white noise of amplitude γ = 0.5 we could have negative values of the density for
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any initial density lower than ρ0,t < 0.5.
We now compare cdfwidth maps for different values of γ:
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(b) γ = 0.1
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(c) γ = 0.5
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(d) γ = 1.1

Figure 5.12.: Phase diagrams for different values of γ with constant g = 0.4.

For stronger white noises the unstable regime grows in width and the ballistic regime
has larger cdfwidths. The broader yellow area for larger values of γ has several
reasons. For the advectively unstable regime: In general, the greater a peak, the
faster it grows like seen in Fig. 3.15. So some peaks which normally would not grow
significantly high before leaving the system suddenly do so, as long as the white
noise amplitude and therefore the initial height of a peak is large enough. For the
unstable ballistic regime: With wider distributed densities more spikes reach into
the unstable regime and therefore cause a growth like described in section 3.1.4.
The upper border of the yellow curves in Fig. 5.12 can be easily approximated.
We use the same condition of li = 0 for the transition just like in the deterministic
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case. Only now, since the white noise adds fluctuations which can reach the unstable
regime we simply map ρ→ ρ− γ. Thereby we get

li = 0 = g − α(ρ− γ)

⇔ ρ = g

α
+ γ , (5.4)

which fits the numerical data:
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Figure 5.13.: The contours of a phase diagram with γ = 0.5, g = 0.4, created with
the values at height cdfwidth = 5.0. In (b) an analytical solution is
shown on top of the data.

The contours were created by all values of height cdfwidth = 5.0 and therefore the
lower border is not meaningful since the transition between the diffusive decay and
the advectively unstable regime is smooth.

5.5. Discussion
We now can both determine the purely unstable regime, as well as give a good
approximation of the unstable ballistic and the advectively unstable regime numer-
ically for any parameters. We are even able to analytically determine the borders
of the purely unstable regime. We learned that for g < 0.25 the purely unstable
regime does not exist (see Fig. 5.10). The upper border is determined by ρ(α) = g

α
,

whereas the lower border was determined to be of the same shape. For constant
influx we were able to approximate a function to fit the lower border, while for noisy

50



5.5. Discussion

influx no sharp lower border appeared. For infinite time and an infinite size of the
system we would be able to see one, though.
The unstable ballistic and the ballistic regime are essentially identical, only in the
unstable ballistic regime the density at some cells is small enough to create a proba-
bility to jump left of li > 0. Thus, peaks can arise as described in section 3.1.4. Still,
for a noise with amplitude γ in the influx, we were able to determine the transition
as ρ(α) = g

α
+ γ.

If we actually choose values for g and α such that g � α (as mentioned in section
2.1), i.e. α ≤ 0.01, we observe the system to be in the diffusive decay regime even
for very large densities (as shown in Fig. 5.11).
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6. Conclusion & Outlook

We have used a biased random walk to numerically model the spatial and temporal
distribution of water density in soil. As shown in section 2.2, in the continuum limit
our model corresponds to the one-dimensional Burgers equation. The probabilities
to jump were defined in section 2.1 as follows:

ri,t =g + αρi,t (6.1)
li,t =g − αρi,t (6.2)
si,t =2g , (6.3)

where we could identify g and α in section 3.1.1 to determine the diffusive and the
advective behaviour of a system, respectively. In section 3 and 4 we were able to
identify five different regimes which differ in behaviour. There we used mostly the
same values for the parameters g, α and m, only the average density of the system
combined with the constant influx ρ0,t = A were increased from very small values,
until the behaviour would not change anymore.

1. The diffusive decay regime provided us with diffusive and slightly advective
behaviour.

2. In the advectively unstable regime, which branched out of the diffusive
decay regime when fluctuations in the density grow instead of diffuse. Still the
whole density distribution advected to the outlet thereby leaving the system
to reach steady state.

3. The purely unstable regime behaved like the advectively unstable regime,
only now no steady state was ever reached. Spikes evolved out of irregularities
in the density distribution and were able to spread out upstream.

4. This behaviour ended in the unstable ballistic regime once the advection
was strong enough to ”wash out“ the spikes. Still spikes showed up but now
by a different mechanism which was described in detail in section 3.1.4.
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6. Conclusion & Outlook

5. No more growing but a highly advective behaviour was observed in the ballis-
tic regime. In this regime, the probability to jump left li,t is zero. For higher
densities the behaviour does not change since the cut-off condition from Eq.
(2.8) keeps the jump probabilities fixed preventing them from taking negative
values.

In order to simulate a daily or hourly variation in precipitation we added a random
noise to the influx. In the diffusive decay regime it only had a small impact on
the outflux and the general evolution since the noise quickly diffused. In the other
regimes however the noise lead to huge differences since either it grew into spikes or
it advected quickly through the system diffusing just a little.
In section 4 we analyzed the equilibrium distributions of each regime and found an
analytical solution for the steady states in the diffusive decay regime. This solution
is in excellent agreement with our numerical results, therefore verifying our model
(see Fig. 4.4).

In order to predict the behaviour of a system with a fixed set of parameters g, α, ρ0,t

and m, in section 5 we constructed phase diagrams which allowed us to determine
the regime for every set of parameters.
We first looked at the amount of fluid leaving the system for a steady state and
deterministic boundary conditions and created a cdf of it. By plotting the width of
the cdf versus α and ρ0,t we were able to determine the values for parameters which
lead to the purely unstable regime. The only system with fluctuations in the outflux
(for constant influx) is the purely unstable regime, which is therefore the only regime
we observe in Fig. 6.1 (a). When we added a random noise to the influx, no steady
state can be reached but still the initial distribution vanishes. With noisy influx also
the advectively unstable, as well as the unstable ballistic regime, became visible in
the phase diagrams. Thereby we could estimate the parameters which correspond
to each system. In Fig. 6.1 two phase diagrams are shown, (a) without and (b) with
random noise in the influx.
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(a) g = 0.4, γ = 0.0
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(b) g = 0.4, γ = 0.5

Figure 6.1.: A phase diagram with and without white noise added to influx. In
(a) we see the purely unstable regime as a yellow area. In (b) we can
determine the rate of disturbances in the density growing. Thereby
we can estimate the area of the advectively unstable and the unstable
ballistic regime. To learn about the approximate location of all five
regimes, we have to look at both plots (a) and (b), since the purely
unstable regime is not explicitly visible in (b).

Some transitions between two regimes were analytically provided in section 5. Since
the transition from diffusive decay to advectively unstable is smooth we were not
able to determine a clear border. Still, for a very large system and very long time
we could determine the border when peaks start growing.
The transition between the advectively unstable and purely unstable regime was
approximated in section 5.3. We found an approximated function by adjusting the
border between the purely unstable and the unstable ballistic regime. We deter-
mined this border by identifying the unstable ballistic regime to generally move at
maximum speed since the cut-off condition from Eq. (2.8) kicks in. Therefore we
determined the border to be ρ(α) = g

α
.

The unstable ballistic and the ballistic regime are essentially the same. When the
density at some cells is low enough to create a probability to jump li > 0, peaks
can grow like described in section 3.1.4. However, for a noisy of amplitude γ in the
influx the border is determined by ρ(α) = g

α
+ γ.
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So, what did we learn? Our model produces higher advection for a larger amount
of fluid. Therefore it could qualitatively describe the evolution of water from a
catchment area to a river, ergo evolution of water in large scale soil. We were
able to observe transients of different initial distributions in section 3 and analyze
the impact of random precipitation patterns simulated by a noisy in the influx. It
turned out, that the noise either diffused quickly in the diffusive decay regime, or
grew into spikes. In the ballistic regime the noise rushed downstream. The only
significant difference was, that the white noise prevented the system from reaching
an equilibrium state in the unstable advective and the purely unstable ballistic
regime.
Unfortunately the flower pot could not be found in any part of our model. How-
ever, to model such system we could choose different probabilities to jump, like for
example

ri,t = g + α exp(−cρi,t) , (6.4)
li,t = g − α exp(−cρi,t) , (6.5)

with constant c. Now, for low densities the advection becomes stronger whereas for
very large densities it becomes purely diffusive.

Future work will also include the study of the impact of oscillatory boundary con-
ditions

• to simulate variations in precipitation on a seasonal scale,

• to determine the impact of the system parameters on the outflux,

• and to derive its cdfs.

This will allow us to establish the impact of each parameter on the occurrence of
rare events, e.g. flooding, for which the full distribution is needed.
Constructing a two-dimensional model will be a natural step to generalize the pro-
posed approach. This will allow modeling more complex systems. Also, subsurface
heterogeneity could be incorporated by inhomogeneous jump probabilities, while
spatially distributed boundary conditions could be used to describe (spatially) in-
homogeneous precipitation patterns.
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A. Numerical algorithm

This algorithm was implemented in C and evaluated with gnuplot. It was verified
by comparing numerical data with an analytical solution in section 4.2.
At time-step t the algorithm can be formulated as follows:

(1) Calculate jump probabilities. For each cell the amount of fluid jumping
to the left, jumping to the right or staying at a particular cell i is calculated
by using Eqs. (2.9)-(2.11).

(2) Calculate new densities. By using the jump probabilities and the density
distribution ρi,t, we calculate the density at time-step t+ 1 from Eq. (2.1).

(3) Apply boundary conditions. Eq. 2.1 needs to be appropriately modified at
the boundaries to account for the missing neighbouring cells. The density of
the first cell is set to a value fixed by the inlet boundary condition (see section
2.1). The last cell density is set to ρm,t+1 = 0.

(4) Apply changes in the density. The new density distribution ρi,t+1 can
now be computed by the values obtained in the previous time-step. (Illustrated
as sketch in Fig. A.1)

Figure A.1.: Marching the density from time-step t to t + 1. The arrows indicate
fluid moving to the particular cell while the density in the first and last
cells is imposed by the boundary conditions.
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