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1 Introduction

You should call it entropy [...] nobody

knows what entropy really is, so in a

debate you will always have the

advantage.

John von Neumann

to Claude Shannon

Entropy has proved itself to be a key concept in the development of modern physics.
Though having been under thorough investigation for 150 years, the use of entropy
and its implications provide still a vivid field of research spreading over a wide area of
approaches from philosophy over physics up to mathematics.
The origin of the term entropy can be traced back to the mid 19th century, where, as
a thermodynamic quantity, entropy first appears in the works of Rudolf Clausius [1].
Inspired by engineering, he concerned himself with the question of how to optimally
transform heat into useful work. Dealing with cyclic processes in thermodynamic
state space, he showed that the exchanged amount of heat between a cool and a warm
reservoir divided by their respective temperatures are equal to one another. He defined
this variable as entropy, from the Greek word for change. In this ntext, entropy is a state
variable only defined for thermodynamic equilibrium. With his definition, Clausius
showed what is now know as the Second Law of Thermodynamics, namely that the
change in entropy equals zero for a reversible process and that entropy can only increase
in an irreversible process.
Thermodynamics is a theoretical framework initially derived for equilibrium systems.
For non-equilibrium conditions, one can therefore not expect to arrive at valid predic-
tions beyond local equilibrium, a condition that we take for granted in the following [2].
With the development of statistical physics, a first approach to entropy by taking into
account the relation betweeen the microscopic and macroscopic dynamics of a system
was undertaken by Ludwig Boltzmann [3]. Known as Boltzmann’s principle, entropy is
a matter of counting microstates that lead to the same macrostate. This concept does not
require an equilibrium system, since counting is an observational definition of entropy
that can be applied to an arbitrary system state. The postulates of thermodynamics
require that entropy is a non-decreasing function that is maximized in equilibrium
and that is additive [4]. With Boltzmann’s idea, the first postulate leads to functional
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1 Introduction

dependence on the number of microstates yielding one macrostate and the second
postulate entails a logarithmic dependence [3].
Towards the end of the 19th century, equilibrium statistical physics prospered with the
works of Josiah W. Gibbs. In the Gibbs picture of equilibrium statistical physics the
concept of entropy is based on an ensemble average over the phase space in contrast to
observations of a single system. Thereby, the term equilibrium becomes embedded in a
stochastic framework: though the systems of the ensemble might still evolve in time,
the probability to find a particular state within the ensemble is time invariant. Naturally,
an entropy definition that is associated to the ensemble concept becomes a function of
the ensemble probabilities [3].
During the 20th century, the idea of entropy was applied in mathematical statistics and
information theory utilizing its inherent feature as measure of uncertainty or lack of
information. Furthermore, within physics the concept of entropy transferred from statis-
tical physics to other branches such as dynamical systems theory, where the amount of
information produced by a system is measured by the Komogorov-Sinai entropy [5].
In the first decade of this century, the term stochastic thermodynamics has been coined
[6, 7]. Here, one deals with open systems that are subject to strong fluctuations. This
opposes the thermodynamic theory that is interested in performing the thermodynamic
limit for large particle numbers. This novel approach discloses the statistical nature
of thermodynamic principles such as the Second Law, since they are only valid on
average. In the context of stochastic thermodynamics, thermodynamic quantities can
be assigned to single trajectories and an ensemle is constructed out of all possible paths.
All averages are then taken with respect to this trajectory ensemble. Being accompanied
by experimental advances in the resolution and construction of ever finer structures,
this development is catalized by a pratical interest. Recent examples can especially be
found in biophysics [6].
By the maximum entropy postulate, in equilibrium states the different ideas are expected
to make the same predictions. However, the more general case of non-equilibrium

plays the dominant role in most physical systems, a realm that cannot yet be explained
in a self-consistent theory, though offers an interesting setup to investigate different
notions of entropy. The idea behind entropy is based on a few principles, but on the
contrary has a wide variety of applications. This gap leaves room for interpretation
and misconception forcing a cautious approach to the use of the term entropy. By
investigation of different entropy concepts the basic principles become evident leading
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to a better understanding of where to apply which notion.

3



2 A Markov chain as a physical model

2 A Markov chain as a physical model

Many stochastic physical systems can be described in terms of Markov processes, i.e.
are formulated in the language of probability theory [8]. In this thesis, we examine a
discrete time Markov chain as a representant for a class of transport processes.
First, we introduce a transport model for which we divide the phase space Γ of some
underlying dynamics into M different cells with mesoscopic length a. For simplicity
just one spatial dimension is taken into account, which corresponds to translational
invariance in all but one direction. From the mesoscopic point of view this coarse-

graining is neccessary because of our insufficient knowledge of the states (x(t), p(t))
in phase space.
We now impose a transport theory on that system in a sense that we only consider the
particle exchange between these cells, where Nm,m+1(t)/τ is the number of particles
per unit time that flow from cell m to cell m + 1, and we neglect any small-scale
dynamics.
In this thermodynamic approach, in the spirit of [2], the particle current jm(t) over a
time τ from cell m to cell m+ 1 at a given time instant t can be defined as

jm(t) = 1
τ

[Nm,m+1(t)−Nm+1,m(t)] . (2.1)

This system can also be considered from a stochastic point of view with simple stochas-
tic dynamics between the coarse-grained states.
We begin by introducing a general Markov chain. We consider M states [M ] :=
{1, ...,M} and construct a jump process. We imagine an ensemble of systems and as-
sign an initial probability distribution pm(0), m ∈ [M ] over the discrete state space.The
state of a randomly chosen system is then a random variable X(t) and its time evolution
becomes a stochastic process.
The evolution of the probability pi(t) of finding a system in state i at time t is governed
by the master equation [8]

∂tpi(t) =
∑

i,j∈[M ]
wji pj(t)− wij pi(t). (2.2)

Here, wij is the transition rate from state i to state j with
∑
j∈[M ]wij = 1. One defines
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the probability current from state j to state i as

Kji(t) = wji pj(t)− wij pi(t). (2.3)

In equilibrium, the system fulfills the condition of detailed balance, i.e. Keq
ji = 0 ∀i, j ∈

[M ]. A more general non-equilibrium steady state (NESS) is reached, when its currents
K∗ji obey

∑
j∈[M ]K

∗
ji = 0 ∀i ∈ [M ] [9].

A Markov chain is said to be ergodic if every state can be reached from every other one
(not necessarily with one step). An ergodic system has a unique stationary state [9].

In this thesis, we study the master equation Eq. (2.2) in discrete time. We use pe-
riodic boundary conditions for the states and to model the above transport process
allow only nearest neighbor interaction by introducing a right transition rate r, a left
transistion rate l and a stay probability s with the probability constraint l + r + s = 1.
For this model the master equation takes the form

pm(ν + 1) = r pm−1(ν) + l pm+1(ν) + s pm(ν). (2.4)

In the language of linear algebra the evolution of the probability distribution of a Markov
chain can be described by the equation

pm(ν) = pm(0)W ν , (2.5)

where pm(ν) = (p1(ν), . . . , pM(ν)) is the probability vector andW := (wij)i,j∈[M ]

is the M × M transition matrix with its elements denoting the one-step transition
probabilities from state i to state j. For our transport model,W becomes the circulant
matrix

W =



s r 0 . . . 0 0 l

l s r 0 . . . 0 0
0 l s r 0 . . . 0

...
r 0 0 . . . 0 l s


(2.6)

We study this system as a minimal non-equilibrium model. We therefore define the
transition probabilites as rm = lm = g, sm = s for all m ∈ {2, . . . ,M}. For a given
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2 A Markov chain as a physical model

ε with min{r, l} ≥ ε ≥ 0 we let state 1 have the transition probabilities s1 = s, r1 =
g + ε, l1 = g − ε, such that the one step transiton matrix W = (wij)i,j∈[M ] of the
Markov chain takes the form (perturbed Markov chain)

W =



s (g + ε) 0 . . . 0 0 (g − ε)
g s g 0 . . . 0 0
0 g s g 0 . . . 0

...
g 0 0 . . . 0 g s


(2.7)

In a physical context, our system is at one point coupled to an external field that induces
a clockwise small drive of the probability current depending on the perturbation param-
eter ε. In the language of thermodynamics, we have thereby a clear understanding of
the heat dissipation into the medium.
To enforce non-steady state conditions, we use the uniform distribution pm(0) =
1/M ∀m ∈ [M ] as our initial distribution. In the corresponding physical setting, the
system is in equilibrium for all times ν < 0 and at ν = 0 the external force is abruptly
activated. For ν ≥ 0, the system then relaxes to its new steady state, the distribution of
which depends on ε.

The same physical system can thus be investigated by a thermodynamic and by a
stochastic approach. They correspond to two levels of coarse-graining. Whereas the
former approach neglects small scale dynamics by assuming a homogeneous particle

density, the latter is based on a completely stochastic theory using a probability density
to approximate the dynamics.
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3 Notions of entropy

The model system outlined in Sec. 2 enables us to study entropy concepts that are
defined on different levels of coarse-graining. Following the historical development of
ideas concerning the term entropy, we introduce notions of entropy that can be evaluated
using the model.

3.1 Irreversible Thermodynamics (Transport Theory)

In order to construct a thermodynamic theory of our model system we require local

equilibrium, i.e. a uniform particle density ρm in each cell. In the continuum limit of
this transport process, particle conservation is expressed by the continuity equation for
the particle density ρ(N)(x, t) and the particle current j(N)(x, t) at position x = ma

and time t = τ ν,
∂tρ

(N)(x, t) = −∂x j(N)(x, t). (3.1)

For simplicity, we consider an isothermal system. The particle current is proportional
to the concentration gradient, which itself is proportional to the change in the chemical
potential difference µ of a binary mixture, such that the relation

j(N) = −κµ ∂xµ (3.2)

holds true, combining the Gibbs-Duhem relation with the continuity equations for
energy and particle number. The Second Law of Thermodynamics for the entropy
density s with respect to volume can also be stated in form of a continuity equation [2]

∂s

∂t
= −∂xj(S) + σirr, (3.3)

with σirr ≥ 0 being the irreversible entropy production rate and j(S) being the entropy
current. The change in entropy density s under the assumption of a constant internal
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3 Notions of entropy

energy is given by the Gibbs relation [2]

ds
dt

= −µ dρ(N)

dt
= µ ∂xj

(N)

= −∂x
[
−µ j(N)

]
− j(N)∂x µ . (3.4)

This expression is valid in the moving reference frame with its origin at the center
of mass, as can be seen by the use of the total derivative (cf. hydrodynamics). From
comparison with Eq. (3.3) it follows that σirr is proportional to the square of the diffusive
particle current.

σirr = 1
κ

(j(N))2, j(S) = −µ j(N) (3.5)

Thermodynamics is a theory of averages, such as currents, and second moments, such
as heat capacities, and is not formulated in a stochastic language. It uses vocabulary
present in hydrodynamic transport theory such as flows of heat and entropy.

3.2 Boltzmann’s line of thought

The Boltzmann entropy is an observable of a system with the entropy of a macrostate be-
ing proportional to the logarithm of the number microstates that compose this macrostate.
A macroscopic state with Ω microscopic realizations has the entropy (kB is Boltzmann’s
constant)

SBoltzmann = kB log(Ω) (3.6)

In analogy,we now consider an assembly of particles. We fix the number N of particles
with the state occupation numbers Nm for m ∈ [M ] := {1, . . . ,M}. These are
random variables with an average occupation number Nm(t) = 〈Nm(t)〉ΩN at time t,
where ΩN = {0, . . . , N} is the sample space of all possible occupation numbers. An
associated entropy per particle yields

SA(t) = −
M∑
m=1

Nm(t)
N

ln
(
Nm(t)
N

)
. (3.7)
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3.3 Gibbs’ line of thought

As for the Boltzmann entropy, this entropy concept is traced back to observing and
counting the occupation of states of a single system. Note that since Nm(t) are random

variables, so is SA(t). Considering the set {Nm(t)}m∈[M ] of occupation numbers as a
system state, the time evolution can be described via a Markov process, since the particle
occupation is only dependent on the previous time step. The average then has to be
taken with respect to the joint probability density P

(
N1(t) = n1, . . . ,NM(t) = nM

)
,

which, because of the independence of the particles can be traced back to the one
particle evolution, i.e. the solution of Eq. (2.2).

P
(
N1(t) = n1, . . . ,NM(t) = nM ; t

)
=

M∏
m=1

pnmm (t) (3.8)

Thus the average value of Eq. (3.7) is obtained as1

SA(t) = 〈SA(t)〉 =
∑

n1,...,nM∑
m
nm=N

N !∏
m∈[M ]

nm!

(
M∏
m=1

pnmm (t)
)

M∑
m=1

nm
N

ln
(
nm
N

)
, (3.9)

where the combinatorial prefactor accounts for our dealing with identical particles, such
that two particles in the same state are indistinguishable.

3.3 Gibbs’ line of thought

In equilibrium statistical physics, the Gibbs entropy of some dynamics in phase space Γ
with a density %(x, p) is expressed as [10]

SG = −
∫
Γ

dx dp %(x, p) ln
(
%(x, p)
%∗

)
. (3.10)

In this equation, %∗ is a constant leading to a dimensionless argument of the logarithm.
In our stochastic model system, we do not consider a phase space, but are only concerned
with the state space of the stochastic process. By analogy, one can define the Gibbs

entropy of the system as the state space average of the quantity − ln(pm(t)), where

1Here and in the remainder of this thesis, we use a calligraphy font (S) for random variables and the
usual math font for the average of these variables (S = 〈S〉).
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3 Notions of entropy

pm(t) as the solution of Eq. (2.2) is the probability measure of the ensemble of systems:

SG(t) = −
M∑
m=1

pm(t) ln (pm(t)) . (3.11)

This equation is not and observable of one single system, but based on the ensemble
notion and therefore by construction described by probability theory. Analogous
to Eq. (3.10) this entropy expression is maximized for an equilibrium probability
distribution [10]. In constrast to Eq. (3.10), Eq. (3.11) is a valid definition for an
arbitrary probability distribution and is not restricted to (local) equilibrium.
The relation of the assembly entropy defined by Eq. (3.7) and the Gibbs entropy is
explained in detail in Sec. ??.

3.4 Coarse-grained thermodynamic entropy

We consider the coarse-grained thermodynamic system introduced in Sec. 2. For each
cell, the Gibbs entropy can be obtained by integrating over the phase space element Γm
with density %(x, p) as introduced in Eq. (3.10):

S(G)
m = −

∫
Γm

dx dp %(x, p) ln
(
%(x, p)
%∗

)
. (3.12)

Let ρm be the particle density of cell m, i.e. ρm = (1/a)
∫
Γm dxdp %(x, p). An extensive

coarse-grained thermodynamic entropy can be introduced as [11]

S(cg)
m = a ρm ln

(
ρm
ρ∗

)
, (3.13)

where a is the spatial extension of the cells and ρ∗ is a constant such that the argument of
the logarithm is dimensionless. This notion combines the thermodynamic approach of
transport processes (cf. Sec. 3.1) and statistical physics (phase space).We will address
the relation between Eqs. (3.12) and (3.13) in Sec. 9.1 when dealing with the entropy
production.
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3.5 Stochastic Thermodynamics

3.5 Stochastic Thermodynamics

In the framework of stochastic thermodynamics, one can introduce a trajectory ensemble

instead of a particle ensemble. In this context it makes sense to talk about an entropy
of a single trajectory. The system entropy is afterwards attained by averaging over the
trajectory sample space ΩT . An entropy definition for a single trajectory ω(t = ντ) =
(ω0, ω1, . . . , ων) up to ν discrete time steps of length τ has been postulated in [12] as

sT (ν) = − ln(pων (ν)), (3.14)

where ων is the endpoint of a the trajectory ω evaluated at time t = ντ and p(ων)
is the solution of the master equation evaluated along the trajectory and gives the
probability to find the particle in state ων at discrete time ν. This defines a random
variable depending on the realization of a trajectory in the sample space ΩT . For now,
this definition appears arbitrary, but it is justified after taking the trajectory ensemble
average (cf. Sec. 7), which is then computed as

ST (ν) = −〈sT (ν)〉ΩT = −
∑
ω∈ΩT

p̃(ω) ln(pων (ν)), (3.15)

where p̃(ω) is the probability measure on ΩT and 〈·〉ΩT is the average taken with respect
to that measure. Note that the trajectory entropy Eq. (3.14) is only described by the
probability of a state. The assignment to a single trajectory becomes evident by looking
at the entropy production, which we will explain in Sec. 7.2.

4 Aspects of non-equilibrium statistical physics

Characteristic for non-equilibrium is a non-vanishing probability current leading to a
non-zero total entropy production. During the relaxation process, one wants to talk
about thermodynamically relevant quantities, such as heat dissipation, and wants to
recover important laws, such as the Second Law of Thermodynamics. This section
introduces how thermodynamic ideas are implemented in stochastic systems.
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4 Aspects of non-equilibrium statistical physics

4.1 Splitting of the Gibbs entropy production

When dealing with non-equilibrium systems, we want to investigate the non-zero total
entropy production as implied by the Second Law of Thermodynamics. The time
derivative Ṡsys(t) of the Gibbs entropy, Eq. (3.11), can be written as the difference
of two physically meaningful terms, the total entropy production rate Ṡtot(t) and an
external entropy flow into the medium Ṡmed(t). With this splitting, each term can be
investigated separately. In a NESS, the change of the system entropy, Ṡsys, vanishes and
the total entropy production is balanced by the medium flow [9].
The derivative of Eq. (3.11) gives the system entropy production in terms of the proba-
bility current Kji(t) = wji pj(t)− wij pi(t),

Ṡsys(t) = ṠG(t)

= −
M∑
i=1

∂tpi(t) ln(pi(t))−
M∑
i=1

pi(t)∂t ln(pi(t))︸ ︷︷ ︸
0

= −
∑

i,j∈[M ]
wjipj(t) ln(pj(t))

= −1
2

∑
i,j∈[M ]

Kji(t) ln
(
pj(t)
pi(t)

)
. (4.1)

The decomposition can be written as

Ṡtot(t) = 1
2

∑
i,j∈[M ]

Kji(t) ln
(
wji pj(t)
wij pi(t)

)

= 1
2

∑
i,j∈[M ]

Kji(t)
[
ln
(
wji
wij

)
− ln

(
pj(t)
pi(t)

)]

= Ṡmed(t) + Ṡsys(t). (4.2)
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4.2 Statistical nature of the Second Law of Thermodynamics

We can also see that Ṡtot(t) fulfills the Second Law, since

Ṡtot(t) =
∑

i,j∈[M ]
wji pj(t) ln

(
wji pj(t)
wij pi(t)

)

≥
∑

i,j∈[M ]
wji pj(t)

(
1− wij pi(t)

wji pj(t)

)

=
∑

i,j∈[M ]
Kji(t)

= 0 , (4.3)

where the sum over the currents vanishes due to probability conservation (closed
system). Equality holds if and only if the system is in equilibrium and therefore fulfills
detailed balance, Kji = 0 ∀i, j ∈ [M ].
The Second Law arises here as a statistical principle for an ensemble. The next
subsection treats the stochasticity for an observable quantitity defined on single system
instead of an ensemble.

4.2 Statistical nature of the Second Law of Thermodynamics

The statistical nature of the Second Law has been widely discussed for various special
cases and as a general concept [13, 14]. To illustrate the idea, we cite the results for the
special case of the entropy production along a trajectory as in Eq. (3.14).

Following [12], we define the quantity R as

R[ω;p(0),p(t)] := ln
P
(
ων |ω0

)
p(ω0)

P
(
ωrν |ωr0

)
p(ωr0)

= ∆smed + ln p(ω0)
p(ωt)

, (4.4)

where ων is the position of a trajectory ω after ν time steps, p = (pm)m∈[M ] is the
probability vector and the time reversed trajectory ωr is defined as ωrν := ωt−ν . The
random variable R depends on the initial and final distributions p(0) and p(t) over the
discrete state space and the chosen trajectory ω. ∆smed is the entropy flow over the time
interval [0, t]. R can be identified with the total entropy production rate [14], R = ∆stot,
in accordance with the splitting introduced in the previous section. Therefore, entropy
production can be viewed as the measure for microscopic breaking of the symmetry
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5 Analytical solution of the model system

along a single trajectory2. Let P be the probability distribution of ∆stot. Then in a
staedy state the following fluctuation theorem holds true [14]:

P (−R)
P (R) = P (−∆stot)

P (∆stot)
= e−∆stot , (4.5)

and in general, R fulfills the relation

〈e−R〉 = 1. (4.6)

This can be verified by directly calculating the average of definition (4.4) over the
trajectory ensemble. For R = ∆stot this result is valid arbitrarily far from equilibrium.
Hence, applying Jensen’s inequality, 〈expx〉 ≥ exp〈x〉, we recover the Second Law,

− 〈∆stot〉 = 〈−∆stot〉 = ln (exp(〈−∆stot〉)) ≤ ln(〈exp(−∆stot)〉) = ln(1) = 0 ,

as a statement on the ensemble average of ∆stot. This result emphasises the statistical
nature of the Second Law: there might be entropy annihilating trajectories, but on
average the Second Law is valid.

5 Analytical solution of the model system

In this section we find an analytical solution of the discrete time master equation,
Eq. (2.4), that corresponds to the model introduced in Sec. 2. The solution allows for
an insight into the effect the perturbation parameter ε has on the system dynamics.

5.1 Algebraic solution of the Master equation

We start our analysis by giving the solution to the general nearest neighbor jump process
with all states having equivalent jump probabilities and periodic boundary conditions,
which is governed by the equation

pm(ν + 1) = r pm−1(ν) + l pm+1(ν) + s pm(ν). (5.1)

2A more detailed discussion of this idea is given in Sec. 7.2, when we come back to this point.
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5.2 Solution of the perturbed non-steady state model

For the solution, the elements w(ν)
ij of the ν-step transition matrixW are needed, since

then for a given inititial distribution {pm(0)}m∈[M ] we get

pm(ν) =
M∑
i=1

w
(ν)
im · pi(0). (5.2)

For general transition matrices, Feller [15] outlines a solution relying on their eigen-
system3. For circulant matrices, the eigenvalue problem has a particularly handy
solution [16].
Let Θ := e2πi/M be the M th root of unity. Then the eigenvalues ofW are given by

λk = s+ rΘk + lΘ−k (5.3)

and the normalized eigenvectors are

vk = 1√
M

(1,Θk,Θ2k, . . . ,Θ(M−1)k). (5.4)

The matrix elements ofW can then be expressed in the closed form

w
(ν)
ij = 1

M

M∑
k=1

Θ(i−j)k
(
rΘk + lΘ−k + s

)ν
. (5.5)

5.2 Solution of the perturbed non-steady state model

We now solve the perturbed model, as described in Sec. 2, with the transition matrix

W =



s (g + ε) 0 . . . 0 0 (g − ε)
g s g 0 . . . 0 0
0 g s g 0 . . . 0

...
g 0 0 . . . 0 g s


(5.6)

Feller’s method is not applicable to this matrix to obtain a closed formula, sinceW
does not have a simple eigenvalue problem. We therefore developed a different strategy
to get an expression for wij .

3Feller assumes pairwise distinct and non-zero eigenvalues, which is valid for our following consider-
ations.
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5 Analytical solution of the model system

The matrixW can be decomposed asW = T +N into the matrices:

T =



s g 0 . . . 0 0 g

g s g 0 . . . 0 0
0 g s g 0 . . . 0

...
g 0 0 . . . 0 g s


N =



0 ε 0 . . . 0 0 −ε
0 0 0 0 . . . 0 0
0 0 0 0 0 . . . 0

...
0 0 0 . . . 0 0 0


(5.7)

The circulant matrix T = (tij)i,j∈[M ] resembles the unperturbed Markov process and
N is nilpotent of order 2, i.e. N 2 = 0. Using induction, we start by proving that the
ν-step transition matrixW ν can be written as

(T +N )ν = T ν
ν−1∏
µ=0

(11 + T−ν+µNT ν−1−µ). (5.8)

Let ν = 1. Then we have

T (11 + T−1N ) = (T +N ). (5.9)

Assuming this holds true for all 1 ≤ k ≤ ν, we perform the induction step ν → ν + 1:

T ν+1
ν∏

µ=0
(11 + T−ν−1+µNT ν−µ) = T ν+1

ν∏
µ=0
T−1(T T−1 + T−ν+µNT ν−µ−1)T

(5.10)

(TT−1 between factors) = T ν+1T−1

 ν∏
µ=0

(11 + T−ν+µNT ν−µ−1)
T

(5.11)

=
T ν ν−1∏

µ=0
(11 + T−ν+µNT ν−µ−1)

 (11 +NT−1)T

(5.12)

(induction hypothesis) = (T +N )ν (11 +NT−1)T (5.13)

= (T +N )ν+1 (5.14)

We recognize that by factoring out the product in Eq. (5.8), we are left with a non-
negative power of the matrix T between every two matrices of typeN , because for
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5.2 Solution of the perturbed non-steady state model

µ2 > µ1 we have products of the form

T−ν+µ2T ν−µ1−1 = T µ2−µ1−1, (5.15)

where µ2 − µ1 − 1 ≥ 0.
We now want to prove the following identity, which will simplify Eq. (5.8):

NT nN = 0 ∀n ∈ N0. (5.16)

For n = 0, the expression givesN 2 = 0. For n > 0, we define the matrixA :=NT n

and write the matrix product explicitly.

Aij =
M∑
k=1

nikt
(n)
kj (5.17)

=
M∑
k=1

δi,1ε(δk,2 − δk,M)t(n)
kj (5.18)

= εδi,1(t(n)
2j − t

(n)
Mj) (5.19)

(AN )ij =
M∑
k=1

aiknkj (5.20)

=
M∑
k=1

εδi,1(t(n)
2k − t

(n)
Mk)nkj (5.21)

=
M∑
k=1

εδi,1(t(n)
2k − t

(n)
Mk)δk,1ε(δj,2 − δj,M) (5.22)

= ε2δi,1(t(n)
21 − t

(n)
M1)(δj,2 − δj,M) (5.23)

The elements t(n)
21 and t(n)

M1 are known from the unperturbed system as [15]

t
(n)
ij = 1

M

M∑
k=1

Θk(i−j)
(
gΘk + gΘ−k + s

)n
. (5.24)

17



5 Analytical solution of the model system

Hence, the difference between the two expressions becomes

t
(n)
21 − t

(n)
M1 = 1

M

M∑
k=1

[
s (Θk −Θ−k) + g (Θ2k −Θ−2k)

] (
gΘk + gΘ−k + s

)n−1

(5.25)

= 1
M

2i
M∑
k=1

[
s sin

(
2π k
M

)
+ g sin

(
4π k
M

)] [
s+ 2g cos

(
2πk
M

)]n−1

(5.26)

= 0, (5.27)

The sum vanishes since it gives an imaginary value, though we know that the difference
between the jump probabilities has to be real.

We define κ := ν−µ andNκ := T−κNT κ−1, such that with the above result, Eq. (5.8)
can be rewritten as

(T +N )ν = T ν [11 +Nν +Nν−1 + · · ·+N1] (5.28)

= T ν +
ν−1∑
µ=0
T µNT ν−µ−1 (5.29)

To obtain an analtical solution for the elements of this matrix, we are left with the
derivation of the matrixelements of TmNT n ∀m,n ∈ N. Writing out the matrix
product as before, we have

(TmN )ij = t
(m)
i1 ε(δj,2 − δj,M) (5.30)

and consequently

(TmNT n)ij = t
(m)
i1 ε(t(n)

2j − t
(n)
Mj)

= ε

M2

M∑
k,l=1

Θ(i−1)k−jl
(
Θ2l − 1

)(
s+ 2g cos

(
2 π k

M

))m (
s+ 2g cos

(
2 π l

M

))n
(5.31)
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5.2 Solution of the perturbed non-steady state model

The elements ofW ν can then be computed as

w
(ν)
ij = t

(ν)
ij +

ν−1∑
µ=0

(T µNT ν−µ−1)ij. (5.32)

As discussed in Sec. 2, we use a uniform initial distribution, pm(0) = 1/M ∀m ∈ [M ].
Since in Eq. (5.32) t(ν)ij is the matrix element of the unperturbed system whose steady
state distribution is the uniform, the underlying distribution of the unperturbed system
remains unchanged for all times, i.e. tm(ν) = ∑

i∈[M ](1/M) tim(ν) = 1/M ∀ν ≥ 0.
The summation has therefore only to be carried out over the perturbation contribution
such that the probability to find the system in state m after ν time steps is given by

pm(ν) = 1
M

+ 1
M3

M∑
k,l,n=1

εΘ(n−1)k−ml(Θ2l − 1)

·
ν−1∑
µ=0

s+ 2g cos
(
2π k

M

)
s+ 2g cos

(
2π l

M

)
µ (s+ 2g cos

(
2π l

M

))ν−1

(5.33)

By evaluation of the finite geometric sum over µ, we arrive at

pm(ν) = 1
M

+ 1
M3

M∑
k,l,n=1

εΘ(n−1)k−ml(Θ2l − 1)

·

(
s+ 2g cos

(
2π l

M

))ν
−
(
s+ 2g cos

(
2π k

M

))ν(
s+ 2g cos

(
2π l

M

))
−
(
s+ 2g cos

(
2π k

M

)) . (5.34)

Notice that n is only present in one factor, so that we can perform this summation
independently.

M∑
n=1

Θ(n−1)k = Θ−k 1−ΘkM

1−Θk
= 1− e2πi k

Θk (1−Θk) (5.35)

This sum vanishes for all values of k other than M . For k = M the sum equals M .
Now we are only left with one sum over l,

pm(ν) = 1
M

+ εM

M3

M∑
l=1

Θ−ml(Θ2l − 1)

(
s+ 2g cos

(
2π l

M

))ν
− (s+ 2g)ν(

s+ 2g cos
(
2π l

M

))
− (s+ 2g)

. (5.36)

At first sight the last term in the sum, l = M , is indeterminate, since the second factor
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5 Analytical solution of the model system

equals 0/0. In the first term though there is a factor (Θ2l−1) = 0 forcing the expression
to vanish. Since we know that the probabilities are real numbers, we can take the real
part of Eq. (5.36) to express the solution in terms of trigonometric functions as

pm(ν) = 1
M

+ ε

M2

M∑
l=1

[
cos

(
2π (2−m)l

M

)
− cos

(
2πml
M

)] (
s+ 2g cos

(
2 π l

M

))ν
− 1(

s+ 2g cos
(
2 π l

M

))
− 1

.

(5.37)

5.3 Steady state distribution

The time evolution Eq. (5.37) of the probability distribution for a ring with M = 20
states with g = 0.4, s = 0.2, ε = 0.1 is visualized in Fig. 1.
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Figure 1: Time evolution of the probability distribution; M = 20 and g = 0.4, s =
0.2, ε = 0.1 for the uniform initial distribution.

The distribution converges to a linear saw tooth profile with a maximum at m = 2,
a minimum at m = M and an invariant probability p1 = 1/M . For r = l, between
all states other than m = 1, 2,M , there is the same steady state probability current.
One therefore expects this linear slope, with a maximum and a minimum. In the
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5.3 Steady state distribution

limit ν →∞ the system relaxes to a steady state distribution. Let p = (pm)m∈[M ] be
the distribution vector. Then the steady state distribution can be determined as a left
eigenvalue problem p∗ = p∗W , whereW = (wij)i,j∈[M ] is the transition matrix of
the Markov chain. With our analytical solution Eq. (5.37), we can carry out the limit
ν → ∞. Since the sum over l is finite, we can perform the limit ν → ∞ prior to
summation. To evaluate this limit, we note that∣∣∣∣∣

(
s+ 2g cos

(
2 π l

M

))∣∣∣∣∣ ≤ 1. (5.38)

For s > 0, equalitiy holds if and only if l = M . Therefore

lim
ν→∞

(
s+ 2g cos

(
2 π l

M

))ν
=

0, l ∈ {1, . . . ,M − 1}

1, l = M
(5.39)

Since we have excluded the case l = M in the summation in Eq. (5.37), the long-time
limit ∀m ∈ [M ] in terms of trigonometric functions is given by

p∗m = 1
M

+ ε

M2

M−1∑
l=1

cos
(
2π (2−m)l

M

)
− cos

(
2πml

M

)
2g
(
1− cos

(
2π l

M

)) (5.40)

This steady state distribution is plotted in Fig. 1.
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Figure 2: Steady state distribution for the system with M = 20 and l = r = 0.4, s =
0.2, ε = 0.1.

Instead of dealing with the trigonometric functions in Eq. (5.40), we choose a different
approach to finding a descriptive functional dependence for the p∗m. Solving a system of
linear equations based on the steady state condition for the master equation describing
a stochastic system with periodic boundary conditions, a general solution for the steady
state distribution for arbitrary jump rates is outlined in [17].4 Defining

rm = 1
wm,m+1

1 +
M−1∑
i=1

i∏
j=1

(
wm+j,m+j−1

wm+j,m+j+1

) , (5.41)

the steady state probabilities are given by

p∗m = rm∑M
m=1 rm

. (5.42)

Most factors in Eq. (5.41) are equal to 1 because of the symmetry of our model system.
The sum can therefore be expressed by considering the position of every summand

4Publication [17] deals with the case of zero stay probability. The proof though does not require this
assumption and remains valid for our case. It is physically reasonable that the steady state distribution
does only depend on the ratio of the jump probabilities.
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5.4 Transport coefficients

relative to m = 1, which leads to

rm = 1
g + ε δm1

[
1 + (M −m) + g − ε

g + ε
(m− 1)

]
, (5.43)

M∑
m=1

rm = M2

g + ε
. (5.44)

After some algebraic manipulations, we hence recover the curve depicted in Fig. 2.

p∗m =


(g+ε)
M g

+ (1−m) 2 ε
M2 g

,m ∈ {2, . . . ,M}
1
M

,m = 1
(5.45)

We can also classify the perturbation in terms of the steady state probability distribution
and define ∆p∗ := p2 − pM as the difference between the maximum and the minimum
probability and p̄∗ = 1/M as the average probability, such that the relative steady state
dispersion,

∆p∗
p̄∗

= 2 (M − 2) ε
M g

, (5.46)

is a characteristic system property describing the perturbation.

5.4 Transport coefficients

With Eq. (5.37), we have found a mathematical solution to the master equation of
our model system. In the Gibbs picture of the one-particle ensemble, let XZ(ν) be
the stochastic process describing the position of the particle at discrete time ν with
the integers Z as the state space. We denote the probability to find a particle in state
k ∈ Z at time ν by pZ

k (ν) and let X(ν) be the stochastic process of our model with the
probabilities pm(ν) = ∑

j∈Z p
Z
(m+j M)(ν) as the solution of the master equation we have

derived in Sec. 5.2. In order to assign a physical meaning to the stochastic transport
process, we have to define the transport coefficients,

v = lim
ν→∞
〈∆XZ(ν)〉 (5.47)

D = lim
ν→∞

1
2
(
〈(∆XZ)2(ν)〉 − 〈∆XZ(ν)〉2

)
. (5.48)
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5 Analytical solution of the model system

where the discrete time difference is ∆XZ(ν) = XZ(ν+ 1)−XZ(ν). The drift velocity
v and the diffusion coefficient D characterize the asymptotic evolution of a sharp initial
distribution. The drift velocity is the derivative of the average position and the diffusion
coefficient is given by the change in time of the variance of the stochastic process
XZ(ν), thereby describing the dispersion of the particle location.
We eventually want to characterize our model with periodic boundary conditions and
uniform initial distribution. The above definition then describes how the center of
mass of the initial distribution moves over Z and how the distribution disperses. The
coefficients cannot be directly defined on X itself, since the average values describing
the motion of the probability distribution are not meaningful quantitie due to periodic
boundary conditions. Still, the coefficients derived via XZ characterise X .
The drift velocity can be derived as

〈∆XZ(ν)〉 =
∑
k∈Z

k (pZ
k (ν + 1)− pZ

k (ν))

=
∑
k∈Z

k[pZ
k+1(ν)wk+1,k + pZ

k−1(ν)wk−1,k − (wk,k+1 + wk,k−1)pZ
k (ν)]

=
∑
k∈Z

(k − 1)wk,k−1 p
Z
k (ν) + (k + 1)wk,k+1 p

Z
k (ν)− k(wk,k+1 + wk,k−1) pZ

k (ν)

=
∑

m∈[M ]
(wm,m+1 − wm,m−1)

∑
j∈Z

pZ
(m+j M)(ν) (5.49)

=
∑

m∈[M ]
(wm,m+1 − wm,m−1)pm(ν) (5.50)

Since wm,m+1 − wm,m−1 = 0 ∀m 6= 1, and since p1 = 1/M ∀ν ≥ 0, this result is
independent of time, and we get for the drift velocity:

v = 2 ε
M

(5.51)

Using 〈(∆XZ)2(ν)〉 = ∑
k∈Z k

2 (pZ
k (ν + 1)− pZ

k (ν)), the same approach can be taken
for the diffusion coefficient, though step (5.49) cannot be done. A derivation of a closed
formula for the diffusion coefficient for general jump rates can be found in [17]. We
cite an algebraically manipulated version of this expression, which will prove itself to
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5.4 Transport coefficients

be more convenient in our calculation.

D = 1
(∑m∈[M ] rm)2

v ∑
m∈[M ]

um

 M∑
k=m+1

(k −m)rk +
m∑
j=1

(M −m+ j)rj


+ vM

M∑
m=1

wm,m+1 um rm

)

− v(M + 2)
2 − v2

2 (5.52)

In this expression, rm are the coefficients (5.41) already discussed in the previous
section, and the um are given by

um = 1
wm,m+1

1 +
M−1∑
i=1

i∏
j=1

(
wm−j+1,m−j

wm−j,m−j+1

) . (5.53)

For our system they can be calculated yielding

um = 1
g

[
gM − (1− 2m+M)ε

g + ε

]
. (5.54)

With these expression we derive the diffusion coefficient:

D = g − (M2 + 6 g − 1)
3 gM2 ε2 . (5.55)
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6 Gibbs entropy

6 Gibbs entropy

In this section we discuss in detail the Gibbs entropy, Eq. (3.11), in discrete time
t = ν τ . It is not obbvious how to discretize the continuous time derivative, which is
why evaluate the different discretization concepts.

6.1 Discretization and entropy production splitting

We analyze the discretization of the continuous time Gibbs entropy,

SG(t) = −
M∑
m=1

pm(t) ln (pm(t)) . (6.1)

For our discussion, we want to postulate two axioms for the discretization of the
derivative of this equation.

1. For a time t = ν τ , in the limit of a vanishing time step τ , the continuous time
case has to be recovered.

2. The Second Law of Thermodynamics as a fundamental physical law has to be
valid.
As outlined in Sec. 4.1, the change in entropy can be physically split into two parts.
For the Second Law to hold, in any splitting the positive definite contribution

∆Stot(t) =
∑

i,j∈[M ]
wji pj(t) ln

(
wji pj(t)
wij pi(t)

)
(6.2)

has to denote the total irreversible entropy production.

6.1.1 Different discretizations of the time derivative

There are several possible discretizations of the derivative of Eq. (6.1), which we will
evaluate with respect to these two axioms.

System entropy production in variation

26



6.1 Discretization and entropy production splitting

The difference in Gibbs entropy over a time step of length τ can be written as a variation
(var) of the system entropy:5

∆Svar(t) = SG(t+ τ)− SG(t)
τ

= 1
τ

− ∑
m∈[M ]

pm(t+ τ) ln(pm(t+ τ)) +
∑

m∈[M ]
pm(t) ln(pm(t))

 (6.3)

System entropy production in measure difference

By considering pm(t) as a measure of the observable − ln(pm(t)) on the state space
[M ], the entropy difference can be expressed in a measure difference (MD). Regarding
the time domain, two definitions are possible,

∆SMD(t) = −
∑

m∈[M ]

[pm(t+ τ)− pm(t)]
τ

ln(pm(t)) (6.4)

∆SMDτ (t) = −
∑

m∈[M ]

[pm(t+ τ)− pm(t)]
τ

ln(pm(t+ τ)) (6.5)

In the latter equation, the index τ indicates that the observable − ln(pm(t + τ)) is
evaluated at the later time t+ τ .

System entropy production in observable difference

The change in Gibbs entropy can be expressed as a difference in the observable (OD)
over which the average is taken.

∆SOD(t) = −1
τ

∑
m∈[M ]

pm(t) ln
(
pm(t+ τ)
pm(t)

)
(6.6)

∆SODτ (t) = −1
τ

∑
m∈[M ]

pm(t+ τ) ln
(
pm(t+ τ)
pm(t)

)
(6.7)

Here again, the index τ signifies that the measure is taken at the later time.

5Note that ∆Svar(t) is an entropy difference per unit time τ . Here and in the remainder of this chapter
∆ signifies an entropy change per time unit.
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6.1.2 Evaluation of axiom 1: convergence to the continuous time derivative

Axiom 1 holds true for Eqs. (6.3), (6.4) and (6.5). Eq. (6.3) is the definition of the dis-
crete time derivative and therefore naturally converges to the continuous time derivative
of the Gibbs entropy.
We evaluate the time derivative of the continuous time Gibbs entropy using the chain
rule,

dSG
dt

= −
∑

m∈[M ]

∂pm(t)
∂t

ln(pm(t))−
∑

m∈[M ]
pm(t) ∂ ln(pm(t))

∂t
. (6.8)

The latter sum in Eq. (6.8) vanishes because of probability conservation,

−
∑

m∈[M ]
pm(t) ∂ ln(pm(t))

∂t
= −

∑
m∈[M ]

∂pm(t)
∂t

= 0. (6.9)

We now examine the continuous time limit of Eqs. (6.4) and (6.5). By definition of the
discrete time derivative of pm(t) in the limit τ → 0, Eqs. (6.4) and (6.5) both converge
to the derivative of the continuous time Gibbs entropy:

lim
τ→0

∆SMD(t) = lim
τ→0

∆SMDτ (t) = −
∑

m∈[M ]

∂pm(t)
∂t

ln(pm(t)) = dSG
dt

. (6.10)

In order to compare the differences between the entropy change in variation, Eq. (6.3)
and the entropy change in measure difference, Eqs. (6.4) and (6.5),

∆Svar(t)−∆SMD(t) = −1
τ

∑
i∈[M ]

pi(t+ τ) ln
(
pi(t+ τ)
pi(t)

)
(6.11)

∆Svar(t)−∆SMD(t) = −1
τ

∑
i∈[M ]

pi(t) ln
(
pi(t+ τ)
pi(t)

)
. (6.12)

We expand the logarithms to first order which yields for Eq. (6.11)

∆Svar(t)−∆SMD(t) = 1
τ

∑
i∈[M ]

pi(t+ τ)
( pi(t)

pi(t+ τ) − 1
)
−O

(
pi(t)

pi(t+ τ) − 1
)2


≈ 1
τ

∑
i∈[M ]

[pi(t)− pi(t+ τ)] = 0. (6.13)
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The expansion of Eq. (6.12) to first order gives the same behavior with a different sign.
Consequently, the differences vanish because of probability conservation in first order
approximation.

Eqs. (6.6) and (6.7) do have the functional form of Eqs. (6.12) and (6.11), respectively.
Therefore, in the continuum limit τ → 0, both notions tend to zero and do not converge
to the continuous time derivative of the Gibbs entropy and thus violate axiom 1.
As a consequence, the discretization in observable difference, Eqs. (6.6) and (6.7) are
not viable choices for the discretization.

6.1.3 Evaluation of axiom 2: Second Law of Thermodynamics

Eqs. (6.3), (6.4) and (6.5) are in accordance with axiom 1 and we now examine their
behavior with respect to axiom 2 that concerns the splitting of these system entropy
production terms.
Given these equations and ∆Stot(t), the entropy exchange with the medium,∆Smed, is
already determined by the difference of ∆Stot(t) and the respective equation among
Eqs. (6.3), (6.4) and (6.5). Performing these subtractions, we arrive at the expressions
for the entropy flow into the medium:

∆Svar,med(ν) =
∑

i,j∈[M ]
pj(ν)wji ln

(
pi(ν + 1)wji
pi(ν)wij

)
(6.14a)

∆SMD,med(ν) =
∑

i,j∈[M ]
pj(ν)wji ln

(
wji
wij

)
(6.14b)

∆SMDτ ,med(ν) =
∑

i,j∈[M ]
pj(ν)wji ln

(
pi(ν + 1) pj(ν)wji
pi(ν) pj(ν + 1)wij

)
(6.14c)

In a steady state, Eqs. (6.14a)-(6.14c) coincide, but in a non-steady state, they take
different values depending on the probability distribution.
As noted in Sec. 2, many physical systems can be described by discrete-time Markov
chains. Within the theory of Markov chains, the interaction with the environment (field)
is modelled by the structure of the transition matrix. Asymmetries in this matrix give
rise to an external force and therefore drive the system (battery).
In the following, we want to determine which discretization of the Gibbs entropy is
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most suitable to have a thermodynamic interpretation of Markov chains. We consider
the specific case of an isolated system. In this systems there is neither particle nor heat
exchange.
For discrete-time stochastic system to have a thermodynamic interpretation, there has to
be a class of system parameters that corresponds to an isolated system. In this case, the
entropy flow into the medium, ∆SMD,med, has to vanish for all times and irrespectively
of the probability distribution.
Among Eqs. (6.14a)-(6.14c), the only expression which can possibly fullfill the indepen-
dence of the probability distribution and of time is Eq. (6.14b). Eqs. (6.14a) and (6.14c)
on the contrary cannot be made independent of the probability distribution for any
choice of the matrixW , except for the matrix with all elements equal to zero.
Therefore, to have a discretization that provides a physically meaningful interpretation
of the Markov chain, Eqs. (6.14a) and (6.14c) have to be discarded as valid discretiza-
tions and the consistent discretization is acquired based on the measure difference,

∆SMD(ν) = −
∑

m∈[M ]
[pm(ν + 1)− pm(ν)] ln(pm(ν))

= −
∑

m∈[M ]

∑
n∈[M ]

pn(ν)wnm ln(pm(ν)), (6.15)

with the entropy production splitting being

∆Stot(ν) =
∑

i,j∈[M ]
wji pj(ν) ln

(
wji pj(ν)
wij pi(ν)

)
(6.16)

∆SMD,med(ν) =
∑

i,j∈[M ]
pj(ν)wji ln

(
wji
wij

)
. (6.17)

The equations in this splitting are equal to the continuous time expressions, such that
results obtained for continuous time can be easily transferred to the discrete time setup.
Furthermore, our analysis shows that if wij = wji ∀i, j ∈ [M ], then ∆SMD,med =
∀ν, and therefore Markov chains with a symmetric transition matrix correspond to
isolated systems.
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6.2 The perturbed Markov chain as an example for the entropy flow

6.2 The perturbed Markov chain as an example for the entropy
flow

Because of our argument for the discretization choice being based on the expression for
the entropy flow into the medium, ∆SMD,med, we now want to further investigate this
term using our model system in discrete time τ = 1.
A comparison of the discretization in variation and in measure difference for the entropy
exchange with the medium during the relaxation to the steady state is shown in Fig. 3.
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Figure 3: Comparison of the entropy flow discretization in variation, Eq. (6.14a),
and in measure difference, Eq. (6.14b), during the relaxation from the uniform initial
distribution to the steady state for M = 50, s = 0.2, g = 0.4, ε = 0.1.

For all times, the change in entropy Eq. (6.14a) is an upper bound to the change
in entropy measured by the measure difference, Eq. (6.14b). As expected, the two
discretizations conververge to the same entropy change in the steady state, which can
be seen by subtracting Eq. (6.14b) from Eq. (6.14a) to arrive at

∆Svar,med −∆SMD,med =
∑

i,j∈[M ]
pj(ν)wji ln

(
pi(ν + 1)
pi(ν)

)
. (6.18)
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6 Gibbs entropy

The difference between the two expressions is further illustrated in Fig. 4, where the
relative deviation is shown as a function of ν and ε. For all values of ε , this relative
error is smaller than 0.1.
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Figure 4: Relative difference between Gibbs entropy exchange with the medium in
variation (var) and measure difference (MD) for the first 10 time steps over a perturbation
range ε ∈ [0.01, 0.39]; M = 50, ε = 0.1, g = 0.4, s = 0.2.

The entropy flow into the medium, Eq. (6.17) can also be tracked analytically. Since
most elements of the transition matrix (5.6) are symmetric, there are only three con-
tributions left in the double sum. We are looking for a small drive ε/g << 1 and thus
expand the expression to quadratic order in ε/g. For brevity of notation, we drop the
time index ν in the following.
For i = 1, we have a contribution

c1 = pM g ln
(

g

g − ε

)
+ p2 g ln

(
g

g + ε

)

= −pM g ln
(

1− ε

g

)
− p2 g ln

(
1 + ε

g

)
. (6.19)
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6.2 The perturbed Markov chain as an example for the entropy flow

To second order in ε/g, we have6

c1 ≈ g pM

(ε
g

)
+ 1

2

(
ε

g

)2
− g p2

(ε
g

)
− 1

2

(
ε

g

)2
 (6.20)

For i = 2 the contribution to second order gives

c2 = p1 (g + ε) ln
(

1 + ε

g

)

≈ p1 (g + ε)
(ε

g

)
− 1

2

(
ε

g

)2
 (6.21)

and for the state i = M we have

cM = p1 (g − ε) ln
(

1− ε

g

)

≈ p1 (g − ε)
−(ε

g

)
− 1

2

(
ε

g

)2
 . (6.22)

Adding up all contributions, we arrive at the total entropy flow for the system to
quadratic (superscript (2)) approximation in ε:

∆S(2)
MD,med = c1 + c2 + cM = (pM − p2) ε+ ε2

g

(1
2pM + 1

2p2 + p1

)
(6.23)

We now want to evaluate this expression taking into account the explicit structure for
the probabilites, Eq. (5.36). Summing up the probabilities for m = 2 and m = M , we
get

pM + p2 = 2
M

+ ε

M2

M−1∑
l=1

(
s+ 2g cos

(
2 π l

M

))ν
− 1(

s+ 2g cos
(
2 π l

M

))
− 1

(Θ−2l + Θ−Ml)(Θ2l − 1).

(6.24)

The last factor can be rewritten to read (Θ−2l + Θ−Ml)(Θ2l − 1) = 2 i sin(2π (2l)/M).
Knowing that this expression has to yield a real value we conclude that the sum over
l has to vanish, such that pM + p2 = 2/M . To express the difference pM − p2, we
note that (Θ−Ml − Θ−2l)(Θ2l − 1) = 2(cos(2π (2l)/M) − 1). Using s = 1 − 2g and

6The power series expansion of the natural logarithm is ln(1 + x) =
∑∞
n=1

(−1)n+1

n xn.
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6 Gibbs entropy

trigonometric identities, we get

pM − p2 = ε

M2

M−1∑
l=1

[(
s+ 2g cos

(
2π l

M

))ν
− 1

]
(cos(2π (2l)/M)− 1)
g(cos(2π l/M)− 1)

= 2 ε
gM2

M−1∑
l=1

[(
s+ 2g cos

(
2π l

M

))ν
− 1

](
cos

(
2π l

M

)
+ 1

)
. (6.25)

With the value p1 = 1/M , the approximation can hence be written as

∆S(2)
MD,med = 2 ε2

gM3

M−1∑
l=1

[(
s+ 2g cos

(
2 π l

M

))ν (
cos

(
2 π l

M

)
+ 1

)]

+ 4ε2

gM2 (6.26)

In the long-time limit (cf. Sec. 5.3), this equation reduces to

∆S(2),∗
MD,med = 4ε2

gM2 . (6.27)

Since we have derived a second order approximation for a steady state, one can expect
to arrive at this result using transport theory with a time step length τ and a length scale
a = 1/M . In terms of the relative steady state dispersion, Eq. (5.46), the entropy flow
Eq. (6.27) can be rewritten as

∆S(2),∗
MD,med

τ
= g

τ

(
∆p∗/M
p̄∗

)2

= a2 g

τ

(
∂xp

∗

p̄∗

)2

. (6.28)

Comparison with Eq. (5.52) discloses, that (a2 g)/τ is for small ε the diffusion coeffi-
cient. We thus have derived an entropy flow proportional to the square of the probability
current, as predicted by transport theory.

In order to get an idea of the quality of the approximation Eq. (6.26), we look at
the relative error

∆S(2)
MD,med −∆SMD,med

∆SMD,med
. (6.29)
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6.2 The perturbed Markov chain as an example for the entropy flow

We can see numerically that for a given perturbation ε, this error is independent of time.
This allows us to calculate the error only as a function of the perturbation parameter.
Even for a relatively strong perturbation of ε = 0.1, i.e. ∆p∗ = p̄∗/4, Eq. (6.23) can be
used as an adequate approximation with a relative deviation of less than 5%.
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Figure 5: Relative error of the approximation to second order in ε in terms of relative
steady state dispersion as calculated by Eq. (5.46)
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7 Trajectory entropy

7 Trajectory entropy

The trajectory entropy in the framework of stochastic thermodynamics is based on an
ensemble of trajectories as opposed the one particle ensemble for the Gibbs entropy
concept. In this section, we draw a connection between the ensemble averages taken
over those distinct ensembles.

7.1 Relation between trajectory and Gibbs entropy

The following derivation shows for the discrete-time and discrete-state case of our model
system that the average of the one-particle ensemble over the state space, (Eq. (3.11)) is
equivalent to the average taken with respect to the trajectory ensemble (Eq. 3.15). In the
derivation, ωji denotes a possible trajectory from j to i, X(ν) is the stochastic process
describing the one-particle evolution and, P

( )
is the associated probability measure:

ST (ν) = −
∑
ω∈ΩT

p̃(ω) ln(pων (ν))

= −
∑

i,j∈[M ]

∑
ωji

p̃(ωji) ln(pi(ν))

= −
∑

i,j∈[M ]
P
(
X(ν) = i|X(0) = j

)
P
(
X(0) = j

)
ln(pi(ν))

= −
∑
i∈[M ]

pi(ν) ln(pi(ν))

= SG(ν) (7.1)

The continuous-time is derived in [12].

7.2 Entropy splitting

In the following we accept the axiom introduced in Sec. 4.2 (cf. [14]): For single
trajectries, the total entropy production is given by the symmetry breaking of the time
reversal. This statement can be formalized as

∆stot = ln
(

pω0(0)wω0,ω1wω1,ω2 . . . wων−1,ων

pων (ν)wων ,ων−1wων−1,ων−2 . . . wω1,ω0

)
. (7.2)
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7.2 Entropy splitting

The expression can be decomposed into the change of the system entropy, ∆ssys, and
the entropy flow ino the medium, ∆smed, via

∆stot = ln
(
pω0(0)
pων (ν)

)
︸ ︷︷ ︸

∆ssys

+ ln
(

wω0,ω1wω1,ω2 . . . wων−1,ων

wων ,ων−1wων−1,ων−2 . . . wω1,ω0

)
︸ ︷︷ ︸

∆smed

. (7.3)

These changes, which are based on a trajectory of length ν τ , are derived over a time
span [0, ν τ ]. In order to compare the trajectory entropy change with the Gibbs entropy
change, over a time instant τ , the latter has to be integrated over the times {0, . . . , ν}.
For the system entropy, we get

〈∆ssys〉 =
∑
ω

p̃(ω) ln
(
pω0(0)
pων (ν)

)

=
∑

m0∈[M ]
pm0(0)

∑
m1∈[M ]

wm0,m1 · · ·
∑

mν∈[M ]
wmν−1,mν ln

(
pm0(0)
pmν (ν)

)

=
∑

m0∈[M ]
pm0(0) ln(pm0(0))−

∑
m0∈[M ]

pm0(0)
∑

m1∈[M ]
wm0,m1 · · ·

∑
mν∈[M ]

wmν−1,mν ln(pmν (ν))

=
∑

m∈[M ]
pm(0) ln(pm(0))−

∑
m∈[M ]

pm(ν) ln(pm(ν))

= SGibbs
var, sys(ν)− SGibbs

var, sys(0), (7.4)

where we have used for arbitrary indices j, k that

∑
j,k∈[M ]

pj(ν)wjk =
∑
k∈[M ]

pk(ν + 1) and
∑
k∈[M ]wjk = 1. (7.5)
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7 Trajectory entropy

By an analogous calculation, we find the averaged entropy flow to be equal to the
integrated Gibbs entropy flow:

〈∆smed〉 =
∑
ω

p̃(ω)
ν−1∑
µ=0

ln
(
wωµ,ωµ+1

wωµ+1,ωµ

)

=
∑

m0∈[M ]
pm0(0)

∑
m1∈[M ]

wm0,m1 · · ·
∑

mν∈[M ]
wmν−1,mν

ν−1∑
µ=0

ln
(
wmµ,mµ+1

wmµ+1,mµ

)

=
∑

m0∈[M ]
pm0(0)

∑
m1∈[M ]

wm0,m1 ln
(
wm0,m1

wm1,m0

)

+
∑

m1∈[M ]
pm1(1)

∑
m2∈[M ]

wm1,m2 ln
(
wm1,m2

wm2,m1

)
+ . . .

=
ν−1∑
µ=0

∑
mµ,mµ+1∈[M ]

pmµ(µ)wmµ,mµ+1 ln
(
wmµ,mµ+1

wmµ+1,mµ

)

=
ν−1∑
µ=0

∑
i,j∈[M ]

pi(µ)wij ln
(
wij
wji

)

=
ν−1∑
µ=0

SGibbs
MD, med(µ) (7.6)

We arrive at expressions for the change in Gibbs entropy that are equal to the contin-
uous time case. Even though we have a discrete time trajectory, the system entropy
production is the variational difference of the Gibbs entropy, as defined by Eq. (6.3),
the medium entropy flow on the other hand is given by the expression for the measure
difference discretization, Eq. (6.14b). Thus, the continuous time case expressions are
recovered naturally by starting from Eq. (7.2)

Altogether, these findings justify our choice for the entropy production and the concept
of an entropy assigment to a single trajectory, since the expressions for the Gibbs notion
are reproduced after averaging over the trajectory ensemble. Furthermore, this argument
underlines that the trajectory entropy notion does not yield any new information upon
avererging. Its true value lies in the fact that enables to determine the entropy based
on multiple observations of a single trajectories. On the one hand that this notion
compatible with the Gibbs entropy, on the other hand it helps to prove strong results
for systems that are arbitrarily far from equilibrium, such as an integral fluctuation
theorem for the total entropy production, or a flucutation theorem over a finite time (cf.
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Sec. 4.2, [12]).

8 The assembly entropy

As an entropy concept based on a fluctuating random variable

8.1 Change in assembly entropy

For the discretization of the assembly entropy,

SA(ν) = −
M∑
m=1

Nm(ν)
N

ln
(
Nm(ν)
N

)
, (8.1)

we take the average over the difference between the two random variables, ∆SA(ν) :=
SA(ν + 1)− SA(ν) and we get

〈∆SA(ν)〉 = −
∑
{nm}∑
m
nm=N

∑
{n′m}∑
m
n′m=N

P
(
{Nm(ν + 1)} = {n′m}, {Nm(ν)} = {nm}

)

·
M∑
m=1

 N !∏
m∈[M ]

n′m!
n′m
N

ln
(
n′m
N

)
− N !∏

m∈[M ]
nm!

nm
N

ln
(
nm
N

)

= −
M∑
m=1


∑
{n′m}∑
m
n′m=N

N !∏
m∈[M ]

n′m! P
(
{Nm(ν + 1)} = {n′m}

)n′m
N

ln
(
n′m
N

)

−
∑
{nm}∑
m
nm=N

N !∏
m∈[M ]

nm! P
(
{Nm(ν)} = {nm}

)nm
N

ln
(
nm
N

)
= −

∑
{nm}∑
m
nm=N

N !∏
m∈[M ]

nm!

[
P
(
{Nm(ν + 1)} = {nm}

)
− P

(
{Nm(ν)} = {nm}

)]

·
(
nm
N

ln
(
nm
N

))
= 〈SA(ν + 1)〉ν+1 − 〈SA(ν)〉ν , (8.2)
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8 The assembly entropy

where the index for the average emphazises that it depends only on the probability
distribution for one single time step.
In Fig. 6, the average assembly entropy production is plotted.7

-2.5e-06

-2e-06

-1.5e-06

-1e-06

-5e-07

0

5e-07

0 5 10 15 20 25 30 35 40 45 50

〈∆
S A

(5
)〉
,
∆
S

(G
)

M
D
(5

)

system particle number N

assembly entropy production
Gibbs entropy production

Figure 6: Assembly entropy production as a function of particle number for a system
with M = 4 states averaged after ν = 5 time steps; this corresponds to non-steady state
conditions. The jump probabilities are g = 0.4, s = 0.2 with a perturbation ε = 0.1.

We can deduce a convergence to the Gibbs entropy in the long time limit, but this
convergence is not monotone. As a function of the number of particles in the system,
the average change in assembly entropy first drops below the change in the Gibbs
ensemble entropy and then approaches it from below. The Gibbs entropy is based on
the one-particle ensemble and is therefore independent of the number of particles in the
system.
For one particle, the entropy is zero and there is no relaxation in time to expect, since it
remains a sharp distribution. Furthermore, one can divide the particle axis in three parts.
For N < 8 = 2M particles, the assembly system entropy production is smaller than
the Gibbs entropy and relaxes towards the Gibbs entropy production. In this regime,
it is not possible to define a proper particle density, since up to this point, there is no

7To generate all possible occupation numbers for given total particle number N distributed over M
states we have used the lexicographic Algorithm L described on page 358 in [18].
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8.2 Convergence of the assembly entropy to the Gibbs entropy

more than one particle per state. In the second phase, the assembly entropy production
is smaller than the Gibbs entropy but converges towards it from below. In this regime,
a meaningful particle density can be defined though the dynamics do on average not
effect a single particle as the following argument shows:
For the relative maximum of the probability distribution, p2(5)− 1/M = 1/32, gives
the fraction of particles that are affected by the perturbation. We can see that 32 particles
in the system are needed for the stochastic dynamics to have an average effect on the
assembly. Observing Fig. 7 we can see that this is the particle number for which
the assembly system entropy production has converged to the Gibbs system entropy
production.

8.2 Convergence of the assembly entropy to the Gibbs entropy

In this section, we want to discuss the difference between the entropy notions based on
a one-particle ensemble, SG, and an assembly, SA. Conceptually, they differ in the way
how stochasticity is introduced. The Gibbs entropy is a number calculated by ensemble
probabilities, whereas the assembly entropy is a random variable itself. The latter is
only accessible via its probability density function. To investigate this concept, we need
to specify the occupation numbers Nm.
Because we are dealing with non-interacting particles, the occupation numbers can
be written as a sum of independent, identically distributed (i.i.d.) random variables
Y (m)
n (ν), n ∈ {1, . . . , N} that are 1 if particle n is in state m at time ν and 0 otherwise,

i.e. Y (m)
n (ν) ∼ Bernoulli(pm(ν)). Therefore the occupation numbers are binomially

distributed, Nm(ν) ∼ Binomial(N, pm(ν)). We show that the expectation value of
the assembly entropy converges to the Gibbs entropy. This convergence is a direct
implication of the first order delta method that is based on a Taylor expansion of a
function of a random variable around its expectation value [19]. We use the notation
N(µ, σ2) for the normal distribution with mean µ and variance σ2 in the following
theorem:

Theorem. Let ZN be a sequence of random variables that satisfies
√
N(ZN − θ)→

N(0, σ2) in distribution8. For a fiven function g and a specific value of θ, suppose that

g′(θ) exists and is not 0.

8Xn → X in distribution, if P
(
Xn ≤ x

)
→ P

(
X ≤ x

)
as n→∞ [20].
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8 The assembly entropy

Then,

√
N(g(ZN)− g(θ))→ N(0, σ2[g′(θ)]2) in distribution. (8.3)

Since Nm(ν) is binomially distributed with variance Var(Nm(ν)) = N pm(ν)(1 −
pm(ν)) and expectation value E (Nm(ν)) = N pm(ν), we can apply this theorem by
setting ZN := Nm(ν)/N , θ = pm(ν) and g(x) = x ln(x). By the central limit theorem,
we have the convergence

√
N(Nm/N −p)→ N(0, (1−p)/p) in distribution. Together

with the above theorem, this proves

lim
N→∞

E
(
Nm(ν)
N

ln
(
Nm(ν)
N

))
= pm(ν) ln(pm(ν)) (8.4)

Since g(x) = x ln(x) is a convex function, Jensen’s inequality states for every random
variable X that E (−g(X)) ≤ −g(E (X)). Applying this inequality to X = Nm(ν)/N
proves that the Gibbs entropy is an upper bound on the assembly entropy.
The convergence is illustrated in Fig. 7.
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8.3 The Shannon entropy of the assembly entropy
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Figure 7: Convergence of the average assembly entropy to the Gibbs entropy of the
system;M = 6 states after ν = 12 time steps for jump rates g = 0.4, s = 0.2 and a
perturbation ε = 0.1, i.e. ∆p∗/p̄∗ = 1/3. The errorbars indicate the standard deviation
of the random variable SA. The Gibbs ensemble entropy of the system amounts to
SG = 1.79.

8.3 The Shannon entropy of the assembly entropy

We consider the assembly entropy Eq. (8.1). Since here entropy is a random variable,
we can formally calculate the Shannon information entropy of this expression. For a
given particle number N this reads

SSh(SA) = −
∑
{nm}∑
m
nm=N

P
(
{Nm(ν)} = {nm}

)
ln(P

(
{Nm(ν)} = {nm}

)
)

= −
∑
{nm}∑
m
nm=N

pn1
1 . . . pnMM ln (pn1

1 . . . pM)

= −
∑
{nm}∑
m
nm=N

pn1
1 . . . pnMM

M∑
k=1

ln(pk) (8.5)
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8 The assembly entropy

We have demonstrated that in the limit N →∞ the assembly entropy becomes equal
to the Gibbs entropy of the one particle ensemble. Using the Shannon entropy, a
connection between the two notions can be drawn without discourse to this limit.
Swapping the summation order, expression (8.5) can be rewritten to read

SSh(SA) = −
M∑
k=1

N

 ∑
{nm}∑
m
nm=N

pn1
1 . . . pnkk . . . pnMM

nk
N

 ln(pk)

= −N
M∑
k=1

〈nk〉
N

ln(pk)

= −N
M∑
k=1

pk ln(pk)

= N SG (8.6)

Therefore, by adding one particle to the assembly, we loose an amount of information
about the random variable SA equal to the Gibbs entropy of the one particle ensemble.
This physically intuitive result supports the interplay between information theory and
entropy.
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9 Coarse-grained thermodynamic entropy

Hier wird es noch ein paar einleitende Worte geben.

9.1 Entropy production

We image our thermodynamic model system as introduced in Sec. 2. Let a be the
length of the cells and τ the time between two consecutive observations of the system.
Following [11], the system entropy production can be split into the total entropy
production and an entropy flow into the medium,

∆S(cg)
m (ν)
aτ

= S(cg)
m (ν + 1)− S(cg)

m (ν)
aτ

= ∆S(cg)
m,tot(ν)
aτ

−
∆S(cg)

m,med(ν)
aτ

, (9.1)

where the entropy flow is the difference in Gibbs entropy of the cell and the total
entropy production is the change in the difference between the Gibbs entropy and the
coarse-grained thermodynamic entropy:

∆S(cg)
m,med(ν) = S(G)

m (ν + 1)− S(G)
m (ν)

∆S(cg)
m,tot(ν) = (S(G)

m (ν)− S(cg)
m (ν))− (S(G)

m (ν + 1)− S(cg)
m (ν + 1)) (9.2)

The idea is that S(cg)
m provides us with less information about the stochastic dynamics

than the Gibbs entropy and tracks back to the difference in information content in
phase space densitiy %(x, p) and particle density ρm [11]. The total entropy production
respects the Second Law of Thermodynamics (cf. [21]).

9.2 Coarse-grained entropy as a fluctuating variable

Instead of dealing with the average particle density ρm, we now want to investigate the
coarse-grained entropy for fluctuating particle numbers (random variables). Let Nm be
the particle number of cell m that has a spatial extension a. Then the coarse-grained

45



9 Coarse-grained thermodynamic entropy

entropy Eq. (3.13) reads9

S(cg)
m = Nm ln

(Nm
a

)
. (9.3)

The total entropy production of the system is calculated as [22]

∆Sm,tot(ν) =−Nm(ν + 1) ln
(
Nm(ν + 1)
Nm(ν)

)

+Nm−1,m(ν) ln
(
Nm−1,m(ν)
Nm,m−1(ν)

)

+Nm+1,m(ν) ln
(
Nm+1,m(ν)
Nm,m+1(ν)

)
(9.4)

Conceptionally, Eq. (9.3) combines two distinct concepts, on the one hand, the for-
mulation in terms of random variables that corresponds to counting particles, on the
other hand a structure for the entropy expression that is based upon the definition
of an ensemble via the Gibbs entropy. Eq. (9.4) does not fulfill the Second Law of
Thermodynamics for an equilibrium state, 〈∆Sm,tot〉 6= 0. Therefore, by combining
both approaches, there is a correction term to the coarse-grained entropy that becomes
dominant in equilibrium (cf. [22]).
We note that all appearing contribrutions are of the form g(X, Y ) = X ln(X/Y ) with
X, Y being random variables. We want to take the average value E (g(X, Y )) and
analyze the fluctuations using the delta method introduced in Sec. 8.2. Here we extend
this method by dealing with a bivariate function and an expansion up to second order
around the expectation values µX := E (X) and µY := E (Y ).

g(X, Y ) ≈µX ln
(
µX
µY

)

+ (X − µX)
(

ln
(
µX
µY

)
+ 1

)

+ (Y − µY )
(
−µX
µY

)

+ 1
2

[
(X − µX)2 1

µX
+ 2(X − µX)(Y − µY )

(
− 1
µY

)
+ (Y − µY )2µX

µ2
Y

]
(9.5)

9This equation is extensive in the particle number and may be normalized by the cell length a.
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Because the expectation value of the terms linear in X and Y vanishes, we get the
following approximation for the mean of the above expression.

E (g(X, Y )) ≈ µX ln
(
µX
µY

)
+ 1

2
Var (X)
µX

+ 1
2

Var (Y )
µY

µX
µY
− Cov(X, Y )

µY
(9.6)

The correction due to fluctuations depends on the relative dispersion of each variable,
as expressed by quotient of the variance and the corresponding mean, on the quotient
of the mean values of X and Y , as well as on the joint dispersion expressed by the
covariance.
In Sec. 8.2 we have found that the occupation numbers are binomially distributed,
Nm(ν) ∼ Binomial(N, pm(ν)). An analogous argument can be put forward for the
exchanged particles. We can express the random variable Nm,m±1 as a sum of i.i.d.
Bernoulli variables, Nm,m±1(ν) = ∑N

n=1 Z
(m,m±1)
n (ν), where Z(m,m±1)

n is 1 if particle
n is in state m at time ν and in state m ± 1 at time ν + 1 and 0 otherwise. Hence,
Z(m,m±1)
n (ν) ∼ Bernoulli(qm(ν)), with qm(ν) = P

(
Xn(ν) = m,Xn(ν + 1) = m± 1

)
=

pm(ν)wm,m±1. Consequently, we get Nm,m±1 ∼ Binomial(N, pm(ν)wm,m±1).
Now, we examine this expansion with respect to the particle number N and the number
of states M . The expectation value and the variance of the binomial distribution both
scale with N/M , since pm(ν) ∼ 1/M , which is why the leading term of the approx-
imation, Eq. (9.6), also has this scaling behavior. The fluctuating terms on the other
hand are of order 1 since the factor N/M cancels. Thus the fluctuations do only give
any notable contribution to a non-vanishing leading term if N/M is of order 1.

We first examine the random variables describing the exchanged particles and choose
X and Y according to the summands in Eq. (9.4). Since these fluctuating quantities are
just weakly correlated (see below) the last term in Eq. (9.6) is negligible. Furthermore,
the statistical dispersion of the exchanged particles is approximately the same for
all random variables. An example for the time ν = 3 is illustrated in Fig. 8. The
correlation matrix of the 3M random variables {Nm,m−1(3),Nm,m(3),Nm,m+1(3)}, in
this sequence for all m, is plottet. We can deduce that they are only weakly correlated
with the correlation coefficient being between −0.2 and 0.2. Also, there is a tendency
towards negative correlation coefficients, which makes sense considering that we require
particle conservation thus forcing the particles flows to be anti-proportionally correlated.
The absolute value of the correlation coefficient is bounded from above by 0.2. This
holds true for all times ν.
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Figure 8: Correlationmatrix for the 3M variables {Nm,m−1(3),Nm,m(3),Nm,m+1(3)};
M = 10 states, N = 500 particles, averaged over 700 simulations. Correlations of a
random variable with itself are set to zero so that this value does not rescale the plot.

Hence, Eq. (9.6) can further be simplified as

E (g(X, Y )) = µX ln
(
µX
µY

)
+ 1

2Var (Y )
[
µ2
Y − µ2

X

µX µ2
Y

]

= µX ln
(
µX
µY

)
+ 1

2Var (Y )

(µY − µX)2

µX µ2
Y︸ ︷︷ ︸

≈ 0

+2µX µY
µX µ2

Y


≈ µX ln

(
µX
µY

)
+ Var (Y )

µY
, (9.7)

where we used that the squared difference of the mean is extremely small compared to
the mean values.
For the particle occupation numbers {Nm}m∈[M ], the correlations and thus the covari-
ance cannot be neglected. Already qualitatively this can be understood by bearing in
mind that the occupation of one state m at a time ν + 1 is comprised of the occupation
numbers of the states m,m ± 1 at time ν. Our previous observation concerning the
approximate equality of their independent fluctuations though holds also true for these
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random variables.
With our argumentation, an approximation of the expectation value of Eq. (9.4) in
equilibrium can be written as

〈∆Sm,tot(ν)〉 ≈ −Nm(ν + 1) ln
(
Nm(ν + 1)
Nm(ν)

)

+Nm−1,m(ν) ln
(
Nm−1,m(ν)
Nm,m−1(ν)

)

+Nm+1,m(ν) ln
(
Nm+1,m(ν)
Nm,m+1(ν)

)

− Var (Nm(ν))
Nm(ν) + Var (Nm,m−1(ν))

Nm,m−1(ν)
+ Var (Nm,m+1(ν))

Nm,m+1(ν)

+ Cov(Nm(ν + 1),Nm(ν))
Nm(ν) , (9.8)

where Nm(ν) = 〈(Nm(ν)〉.
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10 Summary and Outlook

In this thesis, we have exmined and compared different notions of entropy using a
Markov chain as model system for coarse-grained transport processes. It enables us
to clearly identify thermodynamic variables such as the heat exchanged with the sour-
rounding medium, but on the other hand exhibits analytically manageable stochastic
dynamics. We fully characterized the perturbed model system by finding an analytical
solution to the evolution of the probability distribution and by calculating the transport
coefficients, which give the stochastic dynamics a physical classification. The model
permits the study of non-steady state many particle systems with interest in a pertur-
bation parameter that allows to continually change the distance of the system from
equilibrium and that can be interpreted as the coupling to an external medium.
We investigated the Gibbs entropy for this Markov chain in discrete time and showed
that from a physical point of view the discretization of the continuous time deriva-
tive does not include isolated systems, because this would violate the Second Law of
Thermodynamics. Therefore, we discarded the intuitive discretization of taking the
variattion in Gibbs entropy as viable description to establish a general correspondence
between physical systems and Markov chains. Instead, we suggest to take the time
derivative in measure difference, which would allow for a physical interpretation of
isolated systems.
Additionally, the entropy splitting coincides with the time continuous case, which
makes results obtained for these expressions available. We furthermore pointed out that
with this discretization, symmetric transition matrices correspond to isolated systems,
since they imply a vanishing entropy flow into the medium. It would be interesting to
investigate whether one can further classify equivalence classes of transition matrices
that can be identified with a certain type of physical system.
In analogy to Boltzmann’s idea of counting particle occupation numbers, we introduced
the assembly entropy as a fluctuating variable and showed mathematically that it con-
verges to the Gibbs entropy for large particle numbers. This entropy concept might be
interesting to study for systems with interacting particles and small particle numbers.
In our dealing with the coarse-grained thermodynamic entropy, we quantified how the
introduction of fluctutations to a thermodynamic entropy concept yields a correction to
the Second Law of thermodynamics, because positive flucuation contributions in the
particle exchange add up to give a noticeable irreversible entropy production. Using the
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delta method, we showed that fluctuations beome important when the particle number
per state becomes of order 1. A continuation of this work would include an adequate
physical rescaling. In order to not change the physics of the system by adaptation of
the cell size, characterizing quantities such as the transport coefficients have to stay
the same, whereas the transition rates become a function of the time step size and the
number of states.
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