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1. Motivation

A multitude of physical processes contribute to the formation and growth of rain
droplets [6]. Among these, we will be particularly interested in the nucleation and
formation of rain droplets by collision and coalescence in a supersaturated environ-
ment [8, 9]. The driving processes are the temperature change and the turbulent
mixing of water vapor, resulting in moisture. When droplets reach a certain size
they start feeling gravity and leave the cloud as rain. In a specially designed lab
experiment this precipitation removes the moisture, and the rain formation starts
all over [4, 10]. In recent experiments it became possible to measure the evolution
of the size distribution of the droplets in the course of this process [4].

Figure 1.1.: Measured distribution of droplet sizes as a function of time. Colours
indicate the density of particles in the lower layer on a logarithmic
scale. The turbidity varies periodically (with a decreasing period), and
when the turbidity is high there is a wide range of droplet sizes. Figure
reproduced from [7].

A long-standing question in modeling this feature is in how far Ostwald ripening [3]
plays a role in its evolution. Assuming the supersaturation in a system is low and
initiated by a quench experiment and afterwards kept at a constant temperature,
the birth of new droplets is insignificant. In Lifshitz-Slyozov-theory (LS-theory) the
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1. Motivation

diffusive process in a solid solution of spherical droplets without elastic stresses is
surveyed [5]. With means of classical nucleation theory they derived a differential
equation for the growth of droplets in a system and proved that the associated
droplet size distribution assumes a time-invariant scaling form. One of the objec-
tives of this thesis will be to explore in how far this model must be revised due
to the fact that the temperature, and hence also the ambient supersaturation, is
constantly changing in clouds.

Following LS-theory we will adopt a scaling ansatz for the droplet size distribu-
tion. We will work out a model that reproduces the scaling distribution and can be
adapted to different processes in a cloud. Applying a constant heating rate lets us
review the processes in a cloud without paying attention to the spatial temperature
differences. Then, if the droplets are big enough and fall due to gravitation through
the cloud, they sweep up smaller droplets that will not form new rain droplets but
leave the system.
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2. Theory

2.1. Growth of Individual Droplets

In this section we revisit basics on the growth of individual droplets in a supersat-
urated steam, as presented by Landau and Lifshitz [3].

Given a metastable state, i.e., a supersaturated solution, liquid droplets form due
to fluctuations. Then the drops need to compensate inter-phase surface tension and
there is a critical size ac where they neither shrink nor grow. Droplets that have
a radius a > ac are stable and persist. We consider the growth of macroscopic
droplets, i.e. metastable states far away from phase instabilities, assuming them to
be spherical.
The critical droplet size ac can be determined by maximizing the change in free
energy. It depends on the surface tension α, the difference of the chemical potentials
∆µ of the two phases and the volume per droplet v′. Given the free energy per
volume ∆f , the radius a of a droplet and its surface Ad, the change in free energy
with respect to the spatially uniform state is

∆F (a) = −v′∆f + Adα = −4π
3 a3∆f + 4πa2α.

Assuming that the droplet is big enough to consider the surface and volume to be
described by thermodynamic bulk quantities, ∆f and α do not depend on a. Hence,
the critical radius ac 6= 0 that arises at a maximum of ∆F is

ac = 2α
∆f ⇔ 0 = −4πa2

c∆f + 8πacα.

Moreover, with N the number and Vtot the volume of all droplets, due to the Gibbs
relation df = d F

Vtot
= N

Vtot
dµ the free energy difference per unit volume amounts to
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2. Theory

∆f = ∆µ
v′

. So we find an expression for the critical radius:

ac = 2αv′
∆µ .

Let c be the mean concentration of the solution, c0∞ the concentration of the satu-
rated solution on a plane surface, ∆ := c− c0∞ and T the temperature. Then for a
diluted solution we can express the chemical potential difference as

∆µ = T ln c

c0∞
≈ T (c− c0∞)

c0∞
= T∆
c0∞

This leads to a critical radius

ac = 2αv′c0∞

T∆ (2.1)

and determines the equilibrium concentration c0a at the surface of a droplet

c0a = c0∞ + ac
a

∆. (2.2)

Introducing the variable σ := 2αv′c0∞/T and inserting (2.1) into (2.2) we find

c0a = c0∞

(
1 + 2αv′

Ta

)
= c0∞ + σ

a
.

Since drops grow due to diffusion, the concentration change by growing or shrinking
droplets is described by the diffusion equation. Assuming that the concentration
quasistatically adapts to the droplet size we find a stationary solution c(r) to the
diffusion equation in spherical coordinates,

D
1
r

∂2

∂r2 rc(r) = ∂c(r)
∂t

= 0⇒ c(r) = c− (c− c0a)
a

r

where D is the diffusion coefficient and t the time. The concentration change drives
a diffusive current

ȧ = −j(a) = D
∂c

∂r

∣∣∣∣∣
r=a

= D

a

(
∆− σ

a

)
= Dσ

a2

(
a∆
σ
− 1

)
.

According to previous explanations the critical radius is determined by j(ac) = 0
such that ac(t) = σ/∆(t).

4



2.2. Scaling Theory for the Droplet Size Distribution

Now we will consider a system of N droplets with radii ai, i = 1, . . . , N . Measuring
time in units of a3

c(0)/Dσ and the radius in units of ac(0) := 1 we get for every
droplet i the equation

ȧi = 1
a2
i

(
ai
ac
− 1

)
. (2.3)

Consequently, for a quench experiment where the overall droplet volume1 Vtot is fixed
by the Maxwell phase rule [2] the critical radius ac amounts to the mean droplet
radius a := N−1∑

i
ai:

Vtot =
∑
i

a3
i = const.⇒ 0 =

∑
i

a2
i ȧi =

∑
i ai
ac
−N = N

(
a

ac
− 1

)
⇒ a = ac.

In the experiment of Lapp et al.2 a constant heating rate is applied which is chosen
such that the volume changes linearly in time. To account for the change of T we
adapt equation (2.3) to take the form

ȧi = 1
a2
i

(
ai
a
− k

)
where k ∈ R. (2.4)

Consequently, the parameter k describes an increasing volume for k < 1 and a
decreasing volume for k > 1. After all,

V̇tot =
N∑
i=1

da3
i

dt = 3
N∑
i=1

a2
i ȧi = 3

N∑
i=1

(
ai
a
− k

)
= 3N(1− k) (2.5a)

if N = const.⇒ Vtot = V0 + 3N(1− k) t where V0 = V (0) = const. (2.5b)

2.2. Scaling Theory for the Droplet Size Distribution

2.2.1. Deriving the Size Distribution

In order to work out an expression for the droplet size distribution we start from a
scaling ansatz for the droplet density n(a, t) of droplets of radius a per volume at a
certain time t. Firstly, the density decreases in time. We assume decay according to

1In our considerations we suppress constant coefficients, like 4
3π, because they do not change the

physics of the scaling laws which we explore in the present thesis.
2T. Lapp, M. Rohloff, J. Vollmer, M. Wilkinson and B. Hof. Test-tube model for rainfall, in

preparation
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2. Theory

a power law so that we can isolate the time dependence. Secondly, we assume that
apart from the given time scaling the distribution just depends on the combination
of a and t,

n(a, t) = t−βn̂
(
a

tα

)
, where α, β ∈ R. (2.6)

Starting from the density we calculate the total volume Vtot of all droplets in the
considered system, the number N of droplets, and the average radius a of droplets

Vtot =
∑
i

a3
i =

∫ ∞
0

a3n(a)da

N =
∑
i

=
∫ ∞

0
n(a)da

a =
∑
i

ai
N

= 1
N

∫ ∞
0

an(a)da

Taking into account (2.5a) we write for a constant cv

Vtot(t) = cvt
λ != t4α−β

∫ ∞
0

(
a

tα

)3
n̂
(
a

tα

)
d
(
a

tα

)
︸ ︷︷ ︸

cv

(2.7a)

⇒ λ = 4α− β (2.7b)

where λ = 0 for a quench experiment and λ = 1 for constant flux heating. This
provides a first relation between the parameters α, β and λ.
In the same way, inserting the ansatz, we rewrite the number of droplets

N = tα−β
∫ ∞

0
n̂(x) dx. (2.8)

Then we calculate the average radius a using above formulas and observe

a =
t2α−β

∞∫
0

a

tα
n̂
(
a

tα

)
d
(
a

tα

)
tα−β

∞∫
0
n̂
(
a

tα

)
d
(
a

tα

)

= cat
α (2.9)

with a constant ca.
The average droplet size grows according to a power law with exponent α. We define
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2.2. Scaling Theory for the Droplet Size Distribution

x := a

tα
, and can hence write

a

tα
= ca =

∫
x n̂(x)dx∫
n̂(x)dx =: x

As a final step we check under which conditions the scaling ansatz (2.6) is consistent
with the time evolution (2.4). To this end we observe that droplets disappear from
the system only by shrinking to zero size. Consequently, n(a, t) evolves according
to an advection-diffusion equation with an absorbing boundary condition at a = 0.

ṅ(a, t) = −∂aja,

where − ∂aja = −∂a(ȧn) = −t−βȧt−α n̂′ − t−β n̂
(
− a

a3a
+ 2k
a3

)

= −t−β−α 1
a2

(
a

a
− k

)
n̂′ + t−β

a3

(
a

a
− 2k

)
n̂,

and ṅ(a, t) != −βt−β−1n̂− αt−β−α−1a n̂′ using (2.6).

⇔ −t−β−α 1
a2

(
a

a
− k

)
n̂′ + t−β

a3

(
a

a
− 2k

)
n̂ = −αt−β−α−1a n̂′ − βt−β−1 n̂

⇔ −t
1−α

a2

(
a

a
− k

)
n̂′ + t

a3

(
a

a
− 2k

)
n̂ = −α a

tα
n̂′ − β n̂ (2.10)

Since n̂ does not depend on t or a independently, but only via x = a
tα

consistency
requires that the coefficients must be functions of x. This requires

t1−α

a2 =
(
tα

a

)2
= 1
x2 ,

t

a3 =
(
tα

a

)3
= 1
x3 ⇒ α = 1

3

Without an assumption on λ, i.e. on the volume growth, we find that α = 1/3. β
is determined by (2.7b) to be β = 4/3 for the case λ = 0 (LS-theory) and β = 1/3
for the case λ = 1 (constant heating). We examine the latter case and insert these
findings and (2.9) into (2.10)

αx n̂′ − 1
x2

(
a

a
− k

)
n̂′ + 1

x3

(
a

a
− 2k

)
n̂+ β n̂ = 0

⇔
[
αx− 1

x2

(
x

ca
− k

)]
n̂′ +

[ 1
x3

(
x

ca
− 2k

)
+ β

]
n̂ = 0

7



2. Theory

⇔ d n̂
dx = −

βx3 + x

ca
− 2k

αx3 − x

ca
+ k

n̂

x
(2.11)

To solve this equation it is worthwhile to get rid of the singularity at x = 0 by
introducing f(x) = n̂

x2 . This transforms the differential equation to

df
dx = d n̂

dx x
−2 − 2f

x
=

−βx
3 − x

ca
+ 2k

αx3 − x

ca
+ k

− 2

 f

x

=
−(2α + β)x2 + 1

ca

αx3 − x

ca
+ k

f (2.12)

According to (2.7b) the expression becomes 2α + β = 1 and the equation is solved
by

f(x) = C

x3

3 −
x

ca
+ k

with a constant C ∈ R. As the distribution is just defined up to a normalization
constant, we choose C = 1 without loss of generality. To analyze the distribution n̂,
again we have to transform this solution back using n̂ = x2 f(x) leading to

n̂(x) = x2

x3

3 −
x

ca
+ k

. (2.13)

It is now difficult to solve this equation directly because ca depends on k, cf. equation
(2.9). Therefore, we work out the explicit dependence defining z = √ca x such that

n̂(z) = √ca
z2

z3/3− z + κ
where κ = c3/2

a k

and thus it is worthwhile to introduce the function

Zi(κ) =
∫ z2+i

z3/3− z + κ
dz.
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2.2. Scaling Theory for the Droplet Size Distribution

2.2.2. Determining the Parameters

Also, we calculate using this explicit n̂(x) the volume Vtot and the number of droplets
N , see equations (2.8) and (2.7a):

N =
∫
n̂(x) dx =

∫ x2

x3/3− x/ca + k
dx =

∫
n̂(z) dz = Z0(κ) (2.14)

Vtot = t
∫ x5

x3/3− x/ca + k
dx = t c−3/2

a Z3(κ) (2.15)

Moreover, we insert N using equation (2.14) in the formula for the overall droplet
volume (2.5b). This expression for Vtot has to be the same as in (2.15), i.e.

t c−3/2
a Z3(κ) != 3Z0(κ) (1− k) t

⇔ 3 (1− k) c−3/2
a = Z3(κ)

Z0(κ)

⇔
ca

k

=
(
Z3(κ)
3Z0(κ) + κ

)2/3

= κ c−3/2
a

(2.16)

This means for a given κ we can calculate k and ca, in figure 2.1 we show the just
calculated dependence (2.16).

0.7

0.75

0.8

0.85

0.9

0.95

1

0 0.1 0.2 0.3 0.4 0.5 0.6

k

κ

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6

c a

κ

Figure 2.1.: Dependence of k and ca on κ.
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2. Theory

2.2.3. Domain of the Distribution

Firstly, we are interested in the domain of n̂(z) that determines the limits of the
integration in Zi(κ). Analyzing the denominator of n̂(z)

Dκ(z) := z3/3− z + κ

one sees that depending on κ the polynomial has only real zeros if
∣∣∣32κ∣∣∣ ≤ 1 which

is the case we investigate. These zeros are determined by

ẑi = 2 cos
(1

3 arccos
(
−3κ

2

)
− i2π3

)
for i = 0, 1, 2 .

Defining S(κ) := ẑ0 one can inspect by symmetry arguments that ẑ2 = −S(−κ) and
ẑ1 = −ẑ0 − ẑ2 [11]. As z is always positive the value of the smallest positive zero ẑ1

locates the singularity zm of n̂(z):

zm = 2
[
cos

(1
3 arccos

(3κ
2

))
− cos

(1
3 arccos

(
−3κ

2

))]
. (2.17)

So the considered domain of n̂(z) is D = {z ∈ R | 0 ≤ z ≤ zm} and thus the limits
of the integral are zero and zm. Consequently, Zi(κ) diverges and we encounter
a problem regarding equation (2.16), ca seems to diverge. Therefore, we expand
Z0(κ) and Z3(κ) in a Laurent series in zeroth order since this part diverges. Thus,
to calculate ca we need

Z3(κ)
Z0(κ) =

z5
m

zm∫
0
Dκ(z)−1 dz

z2
m

zm∫
0
Dκ(z)−1 dz

= z3
m ⇒ ca =

(
z3
m

3 + κ

)2/3

.

2.3. Numerical Solution
Now that we reduced the dependence of n̂(z) to one parameter κ we choose some
κ ∈ [0, 2/3] and calculate the distribution n̂(x) knowing k(κ), ca(κ). Then we pick
certain k and show the corresponding distribution on figure 2.2, rescaling x to x/a
and defining u := a/a.
We observe, that the location and amplitude of the maximum depend on k.
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2.3. Numerical Solution
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PDF
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Figure 2.2.: Numerical solution for the theoretic droplet size distribution. We obtain
the distribution by a scaling ansatz and choose certain values for a
parameter κ that determines the k(κ) from the surveyed differential
equation. On the left, we see the distribution (PDF), on the right the
cumulative distribution (CDF) is shown.
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3. Time Dependence

The droplet size distributions obtained in section 2.2 appear very different from the
form suggested by Lifshitz and Slyozov. In order to verify that the approximations
used in the derivation hold, and to explore the transient dynamics, we employ nu-
merical simulations. To that end, we evolve (2.4) for N0 = N(0) = 2000 droplets (cf.
chapter A). In the end, as both distributions describe the same physics, we expect
them to be very much alike.

3.1. Evolution at Constant Temperature

We recall the results from section 2.2, and state that for an evolution at constant
temperature the overall droplet volume stays constant, and it follows λ = 0 and
α = 1/3, β = 4/3.

3.1.1. The LS-Approximation for the Droplet Size Distribution

To find the droplet size distribution for drops that behave according to (2.3), Landau
and Lifshitz worked out an analytic expression under certain assumptions [3]. Let
g(t, a) be such a distribution describing the density of droplets per volume. Since
we look at a quench experiment, the solution is supersaturated in the beginning and
afterwards no further drops are added, g obeys a continuity equation

ġ + ∂(g va)
∂a

= 0.

Since we know the solution to the homogeneous continuity equation we obtain an
explicit expression for the distribution. Adjusting length and time scales and using
Taylor expansion up to second order, we can write, with the transformations u =

13



3. Time Dependence

a/ac(t) and τ = 3 ln(ac(t)/ac(0)), the differential equation as

u̇ = − 1
3u2

(
u− 3

2

)2
(u+ 3).

Similarly, we have a continuity equation for the rescaled distribution φ(τ, u)du =
g(t, a)da, φ = g ac. This equation is solved by φ(τ, u) = Ae−τP (u) where A is
a constant such that P (u) is normed to 1. Thus, we obtain the time invariant
distribution

LS(u) := P (u) =


34e

25/3
u2 exp[−1/(1− 2u/3)]
(u+ 3)7/3(3/2− u)11/3 , u < 3

2

0, u > 3
2

. (3.1)

Given this distribution, the number of droplets N and the volume Vtot of the system
can be expressed as

a3

t
= 4

9 , N = t−1
∫ ∞

0
n̂(x) dx, (3.2)

V̇tot =
N∑
i=1

da3
i

dt = 3
N∑
i=1

a2
i ȧi = 3

N∑
i=1

(
ai
a
− 1

)
= 3N(1− 1) = 0. (3.3)

3.1.2. Consistency checks

In order to find out whether the results of the simulations are consistent with the
LS-theory we performed a number of consistency checks. An important assumption
of the LS-theory is the volume conservation. In our numerical treatment we expect
the volume fraction of droplets ∑i a

3
i /Vsys to be constant, where Vsys is the system

volume. Apart from tiny discontinuities where the system size is changed1 this value
is indeed constant, cf. figure 3.1. Moreover, the theory predicts that a3 ∝ t, see
(3.2). This is also captured in the simulation, cf. figure 3.2.

1This is due to the way we change the system size, see A.
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3.1. Evolution at Constant Temperature

2118
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3 i/
V
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t

Figure 3.1.: Time dependence of ∑i a
3
i /Vsys. After a crossover time, when the system

is assimilated and the initial conditions play no role anymore, we see
that apart from small discontinuities the volume is indeed constant.

10−1

100

101

102

10−2 10−1 100 101 102 103 104 105

a
3 /
t

t

a3/t
4/9

Figure 3.2.: Time dependence of average over all droplets. After the system assimi-
lated the quantity a3/t is constant as predicted.
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3. Time Dependence

Furthermore, in LS-theory the number of droplets N depends on t like N ∝ t−1

which is observed in figure 3.3.

10−4

10−3

10−2

10−1

100

101

102

10−2 10−1 100 101 102 103 104 105

1/
N

(t
)

t

Figure 3.3.: Time dependence of number of droplets. When the crossover time is
reached we verify the dependence N ∝ t−1.

3.1.3. Convergence to a Scaling Solution

The droplets evolve according to (2.3) and we will obtain the discrete droplet size
distribution by our simulation. Resulting from the previous considerations we ex-
pect a time-invariant scaling distribution.
First of all, we may ask whether the initial radii affect the asymptotic size distribu-
tion in the simulation. So we choose two vastly different initial conditions:

A) Firstly, we investigate uniformly distributed radii around 1,

ai(0) = 0.75 + i

N0 − 1 · 0.5, i = 0, . . . , N0 − 1. (3.4a)

The time evolution of the resulting droplet size distribution for this uniform
initial distribution is shown on figure 3.4. For t > 103 the PDF converges to
a constant shape. The characteristic cut-off at an asymptotic value ua can
be seen, although it differs a lot from LS(u), where no sharp maximum is
observed.
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Figure 3.4.: Size distribution for a system with constant temperature after time t
for uniformly distributed initial radii (3.4a). On the left panel we see a
distribution (PDF) that we obtained by binning the values for u with a
bin width of 0.01. However, as the shape close to the sharp maximum is
strongly affected by the chosen bin width, it is more convenient to study
the cumulative distributions. The right panel shows the cumulative
distribution (CDF).

B) Secondly, we choose as initial distribution a tanh-distribution with the same
initial average as before, i.e.

ai(0) = 1 + tanh
(2i−N + 1

N − 1

)
/4, i = 0, . . . , N0 − 1 (3.4b)

which gives us insight into the fate of initial bimodal distributions, as they have
been observed in clouds [8]. Figure 3.5 shows the evolution of this distribution.

The rate of convergence to a steady scaling solution apparently does not differ
for both distributions.

However, eventually the asymptotic shape of the distributions is the same, cf. fig-
ure 3.6. Unfortunately, the asymptotic distribution differs substantially from both,
the prediction of LS and the solution obtained in section 2.3. The origin of this
discrepancy is unclear as yet.
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3. Time Dependence
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Figure 3.5.: Size distribution for a system with constant temperature after the time
t for tanh-distributed initial radii (3.4b). On the left the binned values
with bin width 0.01 are shown, on the right we see the cumulative
distribution. The characteristic cut-off is recognizable.
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Figure 3.6.: Comparing both initial conditions at time t = 104. The PDF is binned
with bin width 0.01. The distributions converge and have the same
asymptotic shape.
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3.2. Evolution with Constant Change of Overall Droplet Volume

3.2. Evolution with Constant Change of Overall
Droplet Volume

We argued in 2.2 that the volume depends linearly on time for k 6= 1. In that
situation equation (2.4) refers to a system where a constant heating or cooling rate
is applied, the overall droplet volume is not conserved. This is reproduced by figure
3.7, showing the evolution of the droplet volume fraction ∑i a

3
i /Vsys.
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Figure 3.7.: The volume fraction ∑
i a

3
i /Vsys = Vtot/Vsys for every k. For k < 1 this

value increases and for k > 1 it decreases, as predicted by (2.5a).

We saw that in the scaling regime N = const. is valid, see equation 2.8 with α =
β = 1/3. Thus, in view of equation (2.5a) it holds

∑
i

a3
i ·

1
3N(1− k)t = const.

what we also obtain from the simulation, see figure 3.8. For k = 1 we already
discussed in 3.1.2 that the volume is constant. If simulation and theory worked
right, for arbitrary k the value ∑i a

3
i · 1

3N(1−k)t should be constant.
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3. Time Dependence
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Figure 3.8.: Rescaled volume for constant change of temperature. According to
(2.5a) we see that the total volume of the system goes as Vtot ∝
3N(1 − k)t, motivating the division of the volume of droplets in the
whole simulated system by |Vtot| in order to use a log scale because for
k > 1 for the volume holds Vtot < 0. We observe that the asymptotic
value is indeed constant for k 6= 1.

We observe that the values before t = 102 are not constant because the system ap-
proaches the LS-regime, the steady state is seen after a crossover time tcr and thus
simulation and theory agree. For some k > 1 we observe that the simulation stops
before the integration time passed. So in these cases the volume decreased to zero.
This happens abruptly from one time step to another as we choose a fixed step size.

The convergence of N to a constant value can be studied relating the volume to
the number of droplets using equation (2.5b) by analyzing the time dependence of

V (t)− V0

3(1− k)Nt . (3.5)

This analysis is shown in figure 3.9.
The expectation is fulfilled, after the crossover time N is constant.
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3.2. Evolution with Constant Change of Overall Droplet Volume
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Figure 3.9.: Rescaled volume evolution. Regarding (3.5) we rescale the volume and
observe a constant asymptotic value. This covers that N is constant.

Besides the evolution of the droplet number density, we are also interested in the
size distributions (cf. figure 3.10).
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Figure 3.10.: The k-dependence of the asymptotic droplet size distribution for con-
stant driving at time t = 104. Again, the distributions P (u) are binned
with a bin width of 0.01. The case k = 1 is inserted to provide a com-
parison of the results. The position and height of the maximum depend
strongly on k.
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3. Time Dependence

For every k we observe that the maximum is located somewhere else, but the sharp
cut-off stays the same. For increasing k it moves to the right and takes smaller
values. As for k = 1 we observe a sharp cut-off of the distribution for droplet sizes
of a few percent (k = 0.8) up to 20% (k = 1.2) larger than a.

Finally, we explore the evolution of a3/t, for different k the value a3/t is asymp-
totically constant in accordance with the prediction obtained in section 2.2 (cf.
figure 3.11).
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Figure 3.11.: Value of a3/t for several k. After the crossover time this value is
constant for each k, derived in (2.9) with α = 1/3 independent on
the choice of k. Again, for k > 1 some curves are not defined until
tend = 104 because the volume decreased to zero.

Regarding this, we state that the asymptotic values of the curves are different.

We summarize the dependence of a3/t on k in figure 3.12 with tend = 104, defining

Dr(t) := a3

t

and a discrete crossover function A(k) that contains the k-dependence of a3/t. We
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3.2. Evolution with Constant Change of Overall Droplet Volume

obtain A(k) by a fitted curve

a3/t = A(k) + const.
t

.

This curve shape arises from figure 3.11 where we see

a3/t ∝ 1/t for small t and a3/t = const. for t > tcr.
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Figure 3.12.: Summing up the dependence of asymptotic value of k after tend = 104.
The star at (1, 4/9) marks the prediction of LS-theory. The asymptotic
values from the simulation is shown for two different calculations. The
asymptotic value of a fitted curve at tend is defined as A(k).

We compare the theoretic value derived by Lifshitz and Slyozov with the values we
obtain from figure 3.11 depending on whether we choose the value a3/tend or a value
A(k) from a fitted curve and state, that they differ. As the end value oscillates due
to numerical errors, the results from the fitted curve are more reliable.

Using the calculated A(k) we can shift the curves from figure 3.11 to lie on ap-
proximately one curve by rescaling the time to t′ = t · A(k) for every considered k.
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3. Time Dependence

So the transformed asymptotic value is

Dr(t′) = Dr(t · A(k)) = a3/(t · A(k)). (3.6)

Thus, every asymptotic value of Dr(t′) is close to one and the curves join. Figure
3.13 shows the result.
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Figure 3.13.: Rescaling the time t to t′ = t · A(k). A(k) is obtained from the fit-
ted curve. The curves for different k thus result in one curve due to
Dr(t′) ≈ 1.

The fit provides an excellent data collapse for k < 1, where the droplets grow on
the average. On the other hand, the results are not reliable for k > 1, because all
droplets disappear from the system in a finite time when the temperature is moved
towards the single-phase region.

We also modeled an oscillating change of temperature. Due to more parameters
the simulation time is longer, preliminary results are discussed in chapter B.
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4. Effects of Droplet Sedimentation

4.1. Extending the Model

Now we go back to the differential equation (2.3) derived by Lifshitz and Slyozov.
For this differential equation the volume is conserved as no droplets are added or
taken away with size greater than zero. But we are interested in the growth of
droplets by sweeping up smaller ones, i.e. cloud droplets that catch smaller drops
and coalesce with them. When droplets sediment they collide with some efficiency
with smaller droplets [9]. This accelerates the growth of the big droplets. Let the
jth droplet sweep up the ith droplet. We take into account the collision contribution
ε

Vsys
(ai+aj)2 for some ε1, comprising the cross-section (ai+aj)2 and the difference of

the Stokes’ sedimentation velocities2 ∝ a2
i − a2

j . Also, the volume of the jth droplet
∝ a3

j is considered. By this sweeping of the ith drop the volume of the bigger droplet
with radius aj increases at a rate

S(i) = ε

Vsys
a3
j (ai + aj)2

(
a2
i − a2

j

)

where we absorb all constants in ε. This parameter determines whether we reach
the crossover time before the finite time runaway due to the sweeping. A convenient
choice for the simulation is ε = 10−6. The overall volume change for the jth droplet
is then given by the sum over all contributions S(i) by smaller droplets ai < aj.
This leads to differential equations of the form

ȧi =
(
ai
a
− k

)
· 1
a2
i

+ ε

a2
iVsys

i∑
j=1

a3
j (ai + aj)2

(
a2
i − a2

j

)
(4.1)

The collisions enhance the growth of big droplets. Small droplets however disappear

1We will discuss the exact value of ε later.
2The Stokes’ velocity is defined to be vs = 2

9
∆ρ
µ g a

2 with radius a, dynamic viscosity µ, gravita-
tional acceleration g and density difference ∆ρ between particles and fluid.
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4. Effects of Droplet Sedimentation

during this process with the probability Pdie(ai) by being swept up. Similar to the
above considerations we can calculate the probability do die. To that end we account
for the droplets that are bigger than the ith droplet:

Pdie(ai) = 3 ∆t ε

Vsys
· a3

i

N∑
j=i

(ai + aj)2(a2
j − a2

i ) (4.2)

For the parameters ∆t = 10−3, ε = 10−6 in our simulation the Metropolis criterion
[1] is fulfilled, the probability for a transition, i.e. a droplet removal, is always
smaller than 1, even smaller than 2/3. So (4.2) is indeed a probability.

4.2. Evolution at Constant Temperature

In order to look at the case of constant temperature (k = 1) we consider the proba-
bility to die (4.2) by being collected by a bigger droplet and the differential equations

ȧi =
(
ai
a
− 1

)
· 1
a2
i

+ ε

a2
iVsys

i∑
j=1

a3
j (ai + aj)2

(
a2
i − a2

j

)
.

We first prove that for k = 1 the volume is conserved. By equating

d
N∑
i=1

a3
i

dt = 3
N∑
i=1

(
ai
a
− 1

)
+ 3 ε

Vsys

N∑
i=1

i∑
j=1

a3
j (ai + aj)2

(
a2
i − a2

j

)

we find that the first term is zero and the second term is composed of a contribution
of each droplet plus the contributions of smaller droplets. This change represents
diffusive exchange with the environment, which does not affect the volume at a
fixed temperature, and growth by collection of smaller droplets. In addition, we
must consider the probability to die for each droplet, that is composed of the sum
of contributions of bigger droplets:

∆
(

N∑
i=1

a3
i

)
= 3∆t ε

Vsys

N∑
i=1

a3
i

i∑
j=1

(ai + aj)2
(
a2
i − a2

j

)
.

Rearranging the sums one observes that the growth and death contributions bal-
ance each other such that the volume fraction of droplets is conserved. Within the
numerical error margins this is supported by figure 4.1.
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4.2. Evolution at Constant Temperature
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Figure 4.1.: Volume in the system that is driven by droplet sedimentation. Similar
to the Lifshitz-Slyozov theory the volume ∑i a

3
i /Vsys is conserved apart

from the time when the runaway sets in. By applying (2.3) and regard-
ing the efficiency of sedimenting and vanishing droplets in the same way
the volume is conserved.

Another question is what the size distributions look like. In figure 4.2 one can see
that the maximum evolving in time first decreases, then increases again for smaller
values of u and finally leads to a finite time runaway for increasing t, meaning that
after a certain time the number of big droplets and thus also the droplet volume
diverges.

We saw that in LS-theory for the number of droplets holds N(t) ∝ t−1. In the case
of droplet sedimentation and sweeping of smaller droplets the number of droplets
evolves in time like shown in figure 4.3. After the crossover time the predictions of
LS-theory are observed followed by the finite time runaway.

Also, the value of a3/t evolves in time and is shown on figure 4.4. Similar to the
number of droplets the evolution of the value a3/t can be separated in three parts.
The crossover time is needed to overcome initial conditions and is an approach to
LS-theory, while in a small section we observe that a3/t is constant like predicted,
then followed by the finite time runaway.
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4. Effects of Droplet Sedimentation
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Figure 4.2.: Size distributions for droplet sedimentation, taking the survival rate
of small droplets into account. Again, P (u) is binned with bin width
0.01. The finite time runaway is best seen for long tails in CDF beyond
t = 125. For t > 140 a slight shape of a second maximum can be seen,
the existence of the second maximum was measured [8].
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Figure 4.3.: Number of droplets depending on time for the sweeping of small
droplets. After the crossover time in a small area we observe the power
law of N that arose in the Lifshitz-Slyozov theory, stating N ∝ t−1. For
increasing time we observe the finite time runaway.
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4.2. Evolution at Constant Temperature
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Figure 4.4.: Evolution of a3/t for droplet sedimentation including droplet removal.
The value 4/9 from LS-theory is also shown. Until the crossover time is
reached the system approaches the LS-regime, then the constant value of
a3/t is observed and diverges in the end, due to the finite time runaway.
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4. Effects of Droplet Sedimentation

4.3. Evolution with Constant Driving
Concerning the droplet sedimentation we found a model that extends the existing
one presented by Lifshitz and Slyozov. Regarding the previous chapters it is conve-
nient to ask now what happens if we add a driving force to the new model. Again,
we choose k ∈ [0.8, 1.2] to see what happens to the characteristic quantities of the
system, taking the death rate and the volume gain by sweeping into account. So we
now survey (4.1) including the probability to die.
We use the already defined and calculated discrete function A(k) that yields the
asymptotic value of a3/t. Again we rescale the time to be t ·A(k). In section 4.2 we
saw that for ε = 10−6 the time range reproducing LS-theory is very small. Now we
want to support the thesis that the length of the time span of LS-theory depends
on ε. In order to do so, we look for several ε at the rescaled plot of a3/t and obtain
figure 4.5. To compare the value for different ε for a certain k we plot figure 4.6.
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Figure 4.5.: Evolution of a3/(t · A(k)) for different k. We rescale the time to t′ =
t · A(k) and again all curves merge apart from the point where they
reach the regime of the runaway. We included one curve Dr(t′) from
figure 3.13 to compare the evolution to the LS-dominated part.

This shows that the smaller ε is, the bigger is the time span where LS-theory is
valid.
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Figure 4.6.: Evolution of a3/(t · A(k)) for different ε. Rescaling the time, all curves
merge until they reach a singular value due to the finite time runaway.
We included the case ε = 0 from figure 3.13.
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5. Conclusion & Outlook

5.1. Adaption to Real Physics
Starting with a well-known approximation for droplet growth at constant temper-
ature, adapting this model to more general systems that are driven by a certain
change of temperature, we finally ended up with a model that describes the real vol-
ume gain and droplet removal one observes in experiments. The consistency checks
for the quantities in LS-theory went very well. But still we cannot explain the sharp
cut-off in the droplet size distribution from figure 3.4, neither why the distribution
derived in section 2.2 fits neither to the LS-distribution nor to the simulated one.
A Perl script without a system resize algorithm reproduced distributions similar to
those in the discussed simulation, see A, with the same cut-off.
In section 3.2 we found out, that, after the crossover time, the number of droplets
and the total volume evolve like derived in 2.2.
In the excursion we found a simple connection between the droplet growth in a
general system and the adaption to clouds. ???? Whether there will be a constant
slope for the volume evolving in time will then be known.

5.2. Comparing to Measurements
In their experiment Lapp et. al measure the droplet size distribution as the volume
density a3 f(a) where f(a) is the number density, so we reproduce these distributions
for the findings of the preceding section and obtain figure 5.1. We compare this to
the measurements shown in figure 5.2.
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Figure 5.1.: Distribution for droplet sedimentation. To compare the data of the sim-
ulation to the experiments we look at the volume density distribution.

Figure 5.2.: Experimental data from Lapp et. al [7]. In the bottom left corner
the evolution of the droplet size distribution is shown. Certain oscil-
lation periods are now picked and the volume density distribution for
the fourth, the fifth and the sixth oscillation are shown in a, b, c. The
different colors account for a different time in one of these oscillation
periods.
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5.3. Comparing the Variants to Obtain a Distribution

Similar to the experimental data, the maximum evolves in time to bigger droplet
radii and the distribution broadens. But since the volume diverges for increasing
time the simulated data does not correspond to the experimental findings.

5.3. Comparing the Variants to Obtain a Distribution
In the present thesis we encountered several methods to obtain the droplet size
distribution of precipitation. For a constant change of temperature like in the ex-
periments of Lapp et al. we derived a theoretic expression for the distribution, also
the simulation leaded to distributions depending on k. In figure 5.3 we compare
these two methods of obtaining the size distribution.
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Figure 5.3.: Comparing the obtained distributions from section 2.3, we call the cor-
responding parameters ka, and simulation, where ks is the parameter.

We see a substantial difference in the distributions, so the ansatz does not represent
the distribution in a convenient way. The next step will be to start with another
ansatz n(a, t) that depends on a polynomial of t and not just on t−β.
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A. Numerical Treatment

We assign an initial radius ai(0) to each droplet, i = 0, . . . , N0 − 1, such that the
sequence (an(0))n=0,...,N0−1 is strictly increasing. The differential equations we will
apply do not change the order of the droplets. So the cumulative distribution C(a) is
readily obtained from the function C(ai) = i/N . Thus, no sort algorithm is needed.
The ODE (2.3) or (2.4) that describes the growth of droplets is solved by the Runge-
Kutta method with a fixed step size ∆t = 10−3. Applied to the system of droplets
the radius ai of the ith droplet changes. If the droplet size falls below a predefined
value ρ0 = 10−4 we take the droplet out of the system and decrease the number of
droplets N by 1. This reflects the evaporation of small droplets due to their surface
tension contribution. A finite value for ρ0 is chosen to avoid encountering negative
droplet radii. They occur since the step size is not small enough to get exactly
the value zero for such a droplet. An adaptive Runge-Kutta method is not used as
the step size will fall below the smallest resolvable value following exactly the final
stages of droplet evaporation, and the smallest droplets are not of so much interest
here.
At some point there will be just one big droplet that grew at the expense of the
removed droplets if we continue this way. But the droplet size distribution of this
single droplet is quite trivial, so we rather wish to keep the number of droplets above
a chosen number Nc = 1000. Having reached Nc we double our system size to get
again N = 2000 droplets. This is done by inserting droplets with the size of the
arithmetic mean of every pair of consecutive droplets. This preserves the shape of
the droplet size distribution and has only a small effect on the overall droplet volume
per unit volume. It is important not to forget the average of the smallest and largest
droplet that we insert such that the sequence (an)n stays strictly increasing. The
variable Vsys, the volume of the system where we put the droplets in, is initialized
with 1 and doubled every time the system size is doubled. We use it to rescale the
total droplet volume to the original system size. We do not try to keep the total
volume Vtot =

N∑
i=1

a3
i constant, so after doubling this term is slightly smaller.
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A. Numerical Treatment

For droplet sedimentation the probability of a droplet to die is compared to a random
number generated by Mersenne-Twister and the droplet is removed from the system
if the random number is smaller than the probability.
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B. Excursion: Oscillatory Variation
of the Ambient Temperature

In section 3.2 we considered a differential equation that describes systems with non-
constant temperature. In order to describe clouds we are interested in how this
equation can be adapted to even more general cases. When we look at clouds we see
that apart from the non-constant temperature we have an oscillating temperature
due to air parcels lifted up or descending with decreasing or increasing temperature,
respectively. In convective clouds, a series of ascends and descends is experienced by
air parcels driving rain formation. When air parcels rise and undergo an adiabatic
expansion, T changes according to p

p0
=
(

T
T−∆T

)1−1/γ
, p and p0 being the different

pressures and γ the ratio of specific heats [2]. So even in the absence of nucleation
and droplet growth the temperature in a cloud depends on the height. To gain
insight into these effects we study the effect of a slowly oscillating driving force.
We remember that the parameter k controls whether the temperature increases or
decreases in the system. So the intuitive way is to replace the previously used k by
an oscillating expression also ranging around one, i.e. k = 1− k0 cos(ωt), choosing

k0 ∈ [10−5, 0.9], ω ∈ [0.0001, 100].

The system of differential equations that describes these systems is then

ȧi =
(
ai
a
− 1 + k0 cos(ωt)

)
· 1
a2
i

(B.1)

Now we investigate the droplet volume fraction and a3/t depending on k0 and ω.
Therefore, we calculate the average of ∑i a

3
i /Vsys in each period and pick the last pe-

riod in the time interval [0, 104]. Since for too small ω the duration of an oscillation
period T becomes very large compared to the integration time, using T = 2π/ω, the
crossover time is not reached for all considered k0, ω, thus does not necessary lead
to a reliable result. The same holds for the case that T is not much bigger than the
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B. Excursion: Oscillatory Variation of the Ambient Temperature

time step between the saved values, which is 0.1 here, because the number of values
in one period is small and hence the average calculation has no effect. Thus, if p is
the number of periods that are observed during the integration time 104, we exclude
the values k0 and ω that imply p < 5 or p > 2 · 104, so we have at least five values
to calculate the average.

Firstly, we are interested in the evolution of the droplet volume fraction ∑i a
3
i /Vsys

depending on k0 and ω. The average over the latest observed period is displayed in
figure B.1, using above considerations.
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Figure B.1.: Volume depending on k0 and ω in the last observed oscillation period.
We observe that Vtot ∝ ωq, q > 0, since the contour lines show in this
area a constant volume for a fixed ω and arbitrary k0, except for very
small or very big values of ω. The distance between the straight lines
is nearly the same, so the logarithmic scale suggests a powerlaw with
q = 1.

Still, one can see that at the maximal and minimal values of the parameters the
curve shape changes abruptly. So the requested p does not exclude enough critical
cases. Due to the derivation (2.5a) we expect that Vtot ∝ t, which implies Vtot ∝ ω

since we observe for increasing ω more oscillation periods in the system. A power
law dependence is covered in the simulation for adequate p. We look closer at the

Secondly, similar to the previous cases, we explore the averaged asymptotic value of
a3/t in figure B.2.
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Figure B.2.: The asymptotic value a3/t depending on the parameters k0 and ω. For
very small or very big ω there is a discrepancy in the curve shape.
Apart from this, the asymptotic value a3/t is constant for fixed ω.
Furthermore, due to the logscale we can gather a3/t ∝ ωr, r > 0 and
since the distances between the straight lines are nearly the same it
holds r = 1.

We also checked rectangular oscillations, substituting the cos with a function χ

χ(x) =

1, x ∈
[
−π

2 ,
π
2

]
−1 x ∈

[
π
2 ,

3π
2

] .

A difference in the results is not observed. This is due to the fact that these quantities
change up to their average in one period, which is the same for both oscillating
functions.
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