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We investigate the phase separation of a binary fluid which is driven
by a slow temperature ramp. Via a Galerkin approximation we explore
the onset of convective and diffusive instabilities. We give explicit ana-
lytic expressions for the critical parameters and their onset. Beyond the
threshold we identify a third class of solutions: oscillatory behaviour of
composition which is also observed in experiments.
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1 Introduction

1.1 Motivation

The dynamics and behaviour of phase transitions is of longstanding interest for
diverse areas of reasearch like the classical transitions in liquids and gases, super-
fluidity or liquid crystals and can even be applied in less obvious situations like for
swarm behaviour of animals, rock formation in magma chambers and the dynamics
of clouds. It all started when the first scientists noted the jump-like transitions be-
tween solid, gas and liquid phases. These could be well explained since the advent
of rigorous thermodynamics. However, not all phase transitions appear as abrupt
changes in the symmetries of the solutions of a system. Some even show exotic,
or rather, unexpected behaviour. Of a special importance and an example of an
unexpected transition is the λ-transition to superfluidic Helium. Here, the viscosity
disappears completely while the thermal conductivity becomes infinite. This dis-
covery led Ehrenfest to thoroughly classify phase transitions in the early 40s [4].
He proposed a model that distinguishes transitions by discontinuities of the ther-
modynamic response functions. Pioneering work in this regard was also performed
by Landau who proposed a model for the free energy of a system that undergoes
phase separation by focusing on the symmetries present. Of those, especially the
Landau-φ4 model was successfully applied to a broad case of phase separations [8].
In out later analysis we will turn to it to describe the thermodynamics and demixing
properties of a binary liquid. Later, a major revision occurred with the appearance
of field theories, as it became possible to describe the coupling of a scalar quantity
to its surrounding in a consistent manner. This approach, also called the renormal-
ization group approach, made it possible to study systems near their critical points.
Additionally the introduction of Feynman’s path integral formalism and Feynman
graphs allowed for the analysis of order parameters and their scaling properties near
regions of criticality (see e.g. [5]). From hereon Hohenberg and Halperin classified a
large class of real world phase separating models according to conserved quantities,
critical parameters and influence of noise [9]. Of special interest for our work is their
classification of how a mixture of two fluids behaves near its critical point, i.e. the
model H. It is commonly used for the analysis of systems that are rapidly quenched
into demixing. In this work we will use it to describe the binary fluid model.
Our aim is to provide a model that describes a broad class of demixing fluids that
undergo slow heating and give insight into the generic porperties of such a phase
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separation.
We consider a binary mixture of two miscible fluids with different densities that
undergo a slow ramp of temperature until they demix. We will only look at systems
that are heated slowly and can be considered isothermal. This means there is no
need to include the diffusion of temperature. Therefore, our system can be described
as a simple diffusion in concentration advected by the hydrodynamics.
Since we will also assume that the fluid viscosities are the same, the demixing is ini-
tially driven by gravitational separation of coarsened phase structures due to density
differences. It is supported by an external ramp rate of temperature. Additionally,
there is also the inherent possibility to demix via spinodal decomposition or nucle-
ation if the supersaturation becomes large. To model this behaviour we have to look
at the equations governing fluid motion and advection-diffusion of the phase com-
position. To account for the demixing we use a mean-field model for the free energy.
With this approach we can describe our system and make a stability analysis based
on a Galerkin approximation for both, slowly and rapidly driven heating around the
stable, diffusive solution of the governing equations of motion.
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2 Modelling a Binary Fluid

2.1 Thermodynamics

We will first give a thermodynamic description of our model system, i.e., we will
describe the time evolution of the phase composition. In a second step we will
describe how this composition is then advected by the flow.
As our model we consider a fluid consisting of two phases in a box of side length Λ,
which we will also refer to as a binary fluid. Additionally a slow heating rate to the
system is applied in the sense that we can neglect the diffusion of temperature and
also, by adiabatic elimination, any local fluctuations. This allows us to concentrate
on the diffusion of composition φ only. For simplicity we furthermore assume that
both phases occupy the same volume so that we only need to model one phase and
know by symmetry the behaviour of the other.
To start the derivation of the equations of motion we look at the time dependence
of the composition φ. A local change occurs because of a flux jφ via an continuity
equation:

dφ
dt = −∇jφ. (2.1)

This flux occurs because of a spatial difference in the chemical potential µ times
some mobility constant M

jφ = −M∇µ. (2.2)

The chemical potential on the other hand can be obtained by looking at the free
energy F of the fluid. The composition will minimise this free energy if we let it go
into equilibrium and can be obtained by the functional derivative

µ = δF

δφ
(2.3)

Here, the operator δ
δφ

is given as

δ

δφ
= ∂

∂φ
−∇ ∂

∂(∇φ) . (2.4)

In a continuum description of a scalar field that is coarse grained according to mean-
field theory the free energy is a functional of the order parameter, i.e., in our case
of the composition. A model satisfying the symmetry requirements of rotational
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Figure 1: The free energy as a double well potential. It has two minima describing
stable composition profiles at ±

√
a
b
if a,b > 0. If a,b ≤ 0 then the free

energy is just a parabola with one minimum at 0 and no phase separation
occurs. In this graph we chose b = 2 and a = 1,2,4,8 resulting in less
distinctive minima if a increases.

invariance and the demand of being simple whilst simultaneously being capable of
capturing the phase separation dynamics is the Landau free-energy

F [φ(r,t)] =
∫
V

dV
[
F0[φ(r,t) + K

2 .(∇φ(r,t))2
]
, (2.5)

where F0 is a double-well potential and K
2 .(∇φ(r,t))2 penalises steep gradients in

compositions. This resembles interfacial or surface tension1. Usually the double well
potential is chosen to have the order of 4 with constants a,b as

F0[φ] = 1
4bφ

4 − 1
2aφ

2. (2.6)

This equation has the aforementioned form only if a,b are positive. Then it possesses
a local minimum at φ = 0 and two global minima at φ0 = ±

√
a
b
which are the

equilibrium values of φ (cf. Fig.1).
This double well potential gives rise to a phase diagram with simple miscibility gap
shown in Fig. 2. Note, that in a phase diagram the stable composition φ0 becomes

1A short revision of mean-field theory and the derivation of the φ4 model is also included in the
appendix A
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Figure 2: In this picture a simple miscibility gap for a symmetric binary fluid is
shown. The spinodal is depicted as the inner dark-blue line and the binodal
as the outer and light-blue line. In between the binodal and spinodal the
system is metastable. If the binary fluid is cooled inside the gap along the
green arrow the composition φ demixes into two coexisting phases with an
equilibrium at ±φ0 on the binodal. The new composition in the respective
phases is indicated by the horizontal line. When the cooling is sustained
the system again demixes and thereby follows the wavy, solid line while
undergoing cyclic repetitions of demixing. [12]

a function of temperature with a spinodal where φ0(T ) ≈ αT 2 + βT 4 and a binodal
where φ0(T ) grows like a power law φ0(T ) ∝ T

1
2 . For simplicity we will always

assume that the critical point lies at TC = 0. The stable composition is indicated by
φ = ±φ0(T ) and does only depend on time via the temperature and not explicitly.
If we now insert the chemical potential from Eqn. 2.4 into the diffusion equation
Eqn. 2.3 we obtain

dφ
dt = ∇M∇δF

δφ
. (2.7)

in the generic case and by eliminating one parameter b by the equilibrium value of
composition φ0 with replacing b→ a

φ2
0
for the Landau-free-energy

dφ
dt = ∇M∇(bφ3 − aφ−K∇2φ)

= ∇Maφ0∇
(
φ3

φ3
0
− φ

φ0
− K

a
∇2 φ

φ0

)
(2.8)

This diffusion equation is also called the Cahn-Hilliard-Equation. Stable solutions
of this equations have the form of bubbles or kink-antikink-pairs, i.e., a layering of
stable phases (e.g. for phases A,B the layering would be ABAB and the thickness
would correspond to a fraction of the system size). To get a feeling of how this
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Figure 3: The stable solution plotted for
√

a
K

= {1,10,100}. It starts of as a linear
deviation and approaches a steep meniscus with decreasing K.

stable solutions look and how we should interpret K, we take the limit of small
K and set the left hand side of Eqn. 2.7 equal to zero, consider the problem as
homogeneous in y direction (where the meniscus forms at z=0) and imply no-flux
boundary conditions at z = ±∞. Integrating once, we get the flow jφ which also
has to vanish in equilibrium. And, by integrating a second time, we arrive at:

− γ =
(
φ

φ0
+ φ3 − K

a

d2

dz2φ

)
, (2.9)

where γ := (K
a

d2

dz2φ) at z=0. If we set γ = 0 and take the limit of K → 0 this
equation allows a very simple solution in the form of

φS
φ0

= tanh
(√

a

K
z

)
. (2.10)

It resembles two domains in which the composition takes on either of its equilibrium
values and exhibits a sharp meniscus close to z = 0 (cf. Fig 3).
This also allows us to gain additional insight on how to interpret K:
If K decreases the region where most of the change near the meniscus decreases in
width. If we therefore want to compute a characteristic interface width δ where p
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percent of the change in composition occurs we can look at the equation∫ δ

−δ
∂z tanh

(√
a

K
z

)
dz = p (2.11)

and solve for δ. We obtain

δ = tanh−1
(p

2

)√K

a
. (2.12)

We can now note that K
a
is proportional to the square of width δ2.

Also, since the order parameter is conserved, phase separation in later times is
mainly described by crossing of composition through the aforementioned interface.
One way to look at the stable and long-term behaviour is by linearizing around
the Cahn-Hilliard-Equation around the minimum at φ0 and noting that ∇4 - which
scales as an inverse length scale 1

Λ4 - can be neglected. This leads to

∂φ

∂t
= Ma

(
∇2φ

)
. (2.13)

This is just the limit of ordinary diffusion.
At this point, we could already start to look at the time evolution and evaluate the
total derivative d

dt . However, if we first rewrite the diffusion equation 2.8 as

φ̇

φ0
= ∇Ma∇

(
φ3

φ3
0
− φ

φ0
− K

a
∇2 φ

φ0

)
(2.14)

it is compelling to introduce a new variable, the supersaturation ϕ, such that

ϕ = φ

φ0
. (2.15)

This is important since the equilibrium composition φ0 is a function of temperature
and thus depends on time if a heating rate is applied. With this substitution the
time dependency of the coefficients in the transport equation is absorbed into ϕ.
We can now work out the rhs of Eqn.2.14. We have to include that the composition
gets advected by the velocity field u of the fluid’s flow. This leads to an additional
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advective derivative such that

1
φ0

dφ
dt = 1

φ0

d
dt (ϕφ0)

= ξ(t)ϕ+ dϕ
dt

with a heating rate
ξ(t) = 1

φ0

dφ0

dt . (2.16)

This ξ(t) depends on time via

ξ(t) = 1
φ0

(
∂φ0

∂t
+ ∂φ0

∂T

∂T

∂t

)
and becomes negligible if we, for example, choose a constant heating rate ∂tT =
const., since ∂Tφ0 grows fast. To observe the system for an extended period of time
at similar amplitudes of ϕ we instead want to have a driving rate which is constant.
Therefore we choose our heating rate ξ to be

ξ = 1
φ0

dφ0

dt = const. (2.17)

When the width of the two-phase region grows like a power law φ0 =
(
T−Tc
Tc

)
the

appropriate temperature profile, i.e., one that amounts to a constant ξ takes the
form

T (t) = Tc +
( c
A

) 1
α
e
ξ
α
t, (2.18)

which was used by Auernhammer and Vollmer successfully in experiments [2].
If we now define a diffusion constandD that we assume to be independent of position
by

D = 2Ma (2.19)

we obtain a diffusion equation in supersaturation

∂ϕ

∂t
+ (u∇)ϕ = ∇D3ϕ− 1

2 ∇ϕ+ DK

a
∇4ϕ. (2.20)

For the description of how the composition is advected we also have to de-
scribe how to evolve the flow. Hohenberg classified dynamical models treated
with renormalisation-group methods of mean field theory according to universal
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properties[9]. These properties are the dimension of the order parameter, the con-
served quantities and constants of motion. His classification ranges from the Ising
model to Heisenberg antiferromagnets and luckily also includes the critical behaviour
of binary fluids, referred to as model H. In this model the composition as well as
the fluid volume are conserved quantities, that means, there is a continuity equation
described by the fluids flow u and the diffusion current j. The time evolution in
this model is described by the Navier-Stokes-Equations and the diffusion equation,
where the sound modes are ignored and the pressure acting on the fluid assumed to
be constant. In this case we get with α = 1

ρ
dρdφ

∂u
∂t

+ u .∇u = ν∇2u + αgφez −
1
ρ
∇p− K

ρ
∇2φ∇φ. (2.21)

The buoyancy term αgφez arises from the Boussinesq approximation of gravity
fg = ρg ≈ g∆ρ which is valid if the difference in density of the two phases ∆ρ is small
compared to the background density of the respective fluids. The term accounting
for surface tension −K∇2φ∇φ derives from the transport of a fluid volume φδµ over
the chemical potential difference δµ. Altogether, this leads to a driving force of φ∇µ
and

φ∇µ = φ
δF

δφ
= φ

δ2F

δφ2∇φ = K∇2φ∇φ. (2.22)

2.2 Dimensionless Units

We can now combine the Navier-Stokes and diffusion equation. To give it a suitable
form for further analysis, we nondimenzionalize the equations

∂u
∂t

+ u .∇u = ν∇2u + αgφez −
1
ρ
∇p− K

ρ
∇2φ∇φ (2.23)

and

dϕ
dt = 1

φ2
0
∇.M∇δ

2F

δϕ2∇ϕ (2.24)

= ∇2Ma

[
3ϕ2 − 1

2 + K

a
∇3ϕ

]
∇ϕ (2.25)
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Choosing the following units for length, time and mass

r = Λr∗ (2.26)

t = Λ2

D
t∗ (2.27)

m = ρΛ3m∗ (2.28)

and defining

N0 = αgφ0Λ3

Dν
, (2.29)

N1 = ν

D
, (2.30)

N2 = ξΛ2

D
, (2.31)

S = Kφ2
0

ρΛ3 (2.32)

M = K

aΛ2 . (2.33)

we can nondimensionalize both equations of motion:

∂u
∂t

+ u.∇u = N1[∇2u +N0ϕez −∇p− S∇2ϕ∇ϕ] (2.34)
∂ϕ

∂t
+ u.∇ϕ = ∇.[f(ϕ)∇ϕ]−N2ϕ−M∇4ϕ, (2.35)

In these equations the constants appear in the following way: N0 is interpreted
as corresponding to the strength of gravity acting on a fluid volume, N1 as some
material constant also known as Schmidt number, and N2 as a heating rate applied
to the system. The additional constants S and M both define how surface tension
acts on a fluid volume and on composition
A peculiar point in this nondimensionalization is the following: Since the heating
rate ξ is kept constant Eqn. 2.17 dictates that φ0 is a function of time, i.e., φ0(t) =
φ0(t = 0)eξt and thus N0 is not a constant, but does depend on time explicitly. In
dimensionless units we have

φ0(t) = φ0(t = 0)eN2t. (2.36)
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This, though, does not play a large role for the stability thresholds discussed in this
work since for the onset of convectional instabilities we can consider small values of
t so that N2t stays small and eN2t ≈ 1.
In the subsequent two sections of this work we will show how these equations lead
to diffusive and convective instabilities in the binary fluid.
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3 Slow Temperature Ramp

3.1 The Stable Diffusion Profile

First we look at a slowly driven system with small N2 and use a stability analysis
around the stable diffusive solution2. In this case the time derivatives as well as the
fluid velocity vanish. Therefore, we have

∂ϕ

∂t
= 0 and u = 0. (3.1)

We also assume the solutions to be homogeneous in horizontal direction, such that
we may only regard the two dimensional case without neglecting a substantial part
of physics. This leads to a simplified version of Eqns. 2.34 and 2.35

N0ϕ0ez − ∂zp0 = 0 (3.2)

∂z[f(ϕ0)∂zϕ0]−N2ϕ0 = 0, (3.3)

with f(ϕ) = 3ϕ2−1
2 . We can further simplify this due to the fact that f varies slowly

with ϕ. For slow heating, i.e., N2 < N2,cr we may use the approximation

f(ϕ0(0)) = 1. (3.4)

In first order we arrive at an ordinary differential equation for the saturation profile

(∂2
z −N2)ϕ0 = 0 (3.5)

The solution of this ODE depends on our boundary conditions. Since we do not
have interfacial effects these are

ϕ0(z = 0) = 1 (3.6)

2 Using dimensional analysis we can get an estimate on how small a critical value of N2 should be
and what velocity scale of the ramping we may consider as slow. In the paper [12] it was shown
that the velocity scale v̂ = ∂tT = N2,cr

(
Λ2

D ∂T
1
φ0

)−1
takes values in the order of K/h [12] near

a critical value of N2 for a system size in the order of a few cm and also that N2,cr ≈ O(1).
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Figure 4: The stable supersaturation profile for different values of N2. The graph is
displayed for (x ∈ [0,0.5]) and N2 = 0.1,0.2,0.4,0.5 and has to be continued
anti-symmetrically in negative z-direction. The system is in equilibrium
at the meniscus, where z=0 (This is actually enforced by the choice of our
boundary conditions). The solution deviates more from the stable profile
if the heating rate N2 increases. Also it can be seen that the slope at z = 1

2
equals zero, since there is no flux through the walls of the container.

at the phase boundary, where the phase composition takes its equilibrium value and

∂ϕ0

∂z

(
z = 1

2

)
= 0 (3.7)

at the system’s physical boundaries since there is no flux through the surrounding
box. This leads to a solution (cf. Fig 4)

ϕ0 =
cosh

[√
N2(z −

1
2)
]

cosh
[√

N2

2

] (3.8)

that describes the stable diffusive profile of the supersaturation. It has to be con-
tinued anti-symmetrically to obtain the profile for negative values of z.
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3.2 Stability Analysis

To analyse when instabilities kick in we vary the stable profile with small variations

u = δu(r,t) (3.9)

ϕ = ϕ0(z) + δϕ(r,t) (3.10)

p = p0(z) + δp(r,t). (3.11)

Furthermore, we consider all variations of second order, e.g., δϕδu as small and
neglect them. Inserting these into our equations of motion 2.34 and 2.35 for f(ϕ) = 1
and no surface tension we get

∂δu
∂t

= N1
[
∇2δu +N0(δϕ)ez −∇(δp)

]
(3.12)

∂δϕ

∂t
+ δu.∇ϕ0 = ∇2δϕ−N2(δϕ). (3.13)

These equations can further be simplified with taking the double curl ∇ × ∇× of
Eqn. 3.12

∂∇2δu
∂t

= N1
[
∇4δu +N0

(
∇∂z − ez∇2) (δϕ)

]
(3.14)

∂δϕ

∂t
= −∂ϕ0

∂z
ez.δu +

(
∇2 −N2

)
(δϕ). (3.15)

To continue the analysis we make an ansatz of a planar wave in horizontal x direction
with a complex time dependence for the variations(

δu(t)
δϕ(t)

)
= eγteikx

(
δu
δϕ

)
. (3.16)

Plugging this into Eqns. 3.14 and 3.15 and using the cylindrical symmetry of the
setting we can sort the equation according to the order of derivatives in z-direction:

[
−∂4

z +
(
γ

N1
+ 2k2

)
∂2
z −

γ

N1
k2 − k4

]
δu = N0

ik∂z0
k2

 (δϕ) (3.17)

[
∂2
z − k2 −N2 − γ

]
(δϕ) = ∂zϕ0ez.δu. (3.18)
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Thanks to the symmetry we may retrieve the whole velocity profile u solely from its
z component w allowing us to combine the above equations into a single 6th order
ODE by multiplying Eqn. 3.18 with N0k

2 and inserting it into Eqn. 3.17

[
∂2
z − k2 −N2 − γ

] [
−∂4

z +
(
γ

N1
+ 2k2

)
∂2
z −

γk2

N1
− k4

]
w = N0k

2(∂zϕ0)w

(3.19)
In order to continue our stability analysis we expand the saturation ∂zϕ0 and velocity
profile w in Fourier series that satisfy the no-flux boundary conditions and that the
solution is asymmetric at z = 0

ϕ =
∞∑

k=−∞

ϕk sin(2kπz) (3.20)

(3.21)

This choice of summation from −∞ to∞ facilitates the shifting of indices, since we
do not have to worry about the summation boundaries.
The Fourier expansion of the stable profile satisfies

N0
∂ϕ0

∂z
= am cos(2πmz) (3.22)

where
∂ϕ0

∂z
=

√
N2

cosh
(√

N2
2

) sinh
[√

N2

(
z − 1

2

)]
(3.23)

and therefore

am = − 2N2N0

N2 + (2πm)2

1− (−1)m

cosh
(√

N2
2

)
 (3.24)

Inserting the expansion into the equations of motions we arrive at

N0∂zϕ0 = −2N0N2

∞∑
n=−∞

1− (−1)n

cosh
(√

N2
2

)
 cos(2πnz)
N2 + (2πn)2 (3.25)
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constitute a nearly linear slope and separate the stable region at the left
from the convective unstable region to the right.

so that Eqn 3.19 becomes

N0k
2∂ϕ0

∂z
w = −8π2N0N2k

2
∞∑
l=∞

sin(2πlz)
∞∑

m=∞

lm
1− (−1)l−m

cosh [
√
N2/2]

[N2 + (2π)2(l2 +m2)]2 − 64π4l2m2wm.

(3.26)
The system becomes unstable if small variations are no longer damped (γ > 0), i.e.,
the bifurcation occurs at the smallest N2 that admits a solution with (γ = 0).
Inserting γ = 0 and rewriting the equation in matrix form Tlmwl = 0 with

Tlm =
4kN0π

2 (1− (−1)l−msech
[√
N2
])
lm

(π2 (l2 +m2) +N2)2 − 4l2m2π4
−[

−(πl)6 − (3k2 +N2)(πl)4 + (−k4 + (N2 + k2)2k2)(πl)2 − (N2 + k2)k4] δlm

(3.27)

The non-trivial solutions of this system obey

det(T ) = 0. (3.28)

Solving this equation for different modes gives us the result shown in Figs. 5, 6 and
7. Note that the onset of instabilities is independent of the parameter N1, which
describes the material properties of the mixture. We will show later on that this is
indeed a generic property of such systems.
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Figure 6: Double logarithmic graph of N2 over N0N2. The left side constitutes a
stable diffusive solution whereas the side right to the finger is unstable. In
the case of small N2 the graph approaches the critical number of N0N2 =
1670 asymptotically.
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Figure 7: Plot of the wave-number k
π
(the additional factor of 1

π
results from our eikx

ansatz to accommodate the actual system size) vs. log(N0N2). Apparently
the onset of convection is due to convection rolls with the aspect ratio
slightly smaller than k

π
= 1 at smallest N0N2. This is just what is expected

for the onset of convection and resembles large, elliptic convection cells.
At roughly N0N2 = 2 · 104 new modes come into existence. These are not
circular, but tend to become more elliptic if N0 increases.
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Furthermore, we can obtain the minimum value at which the system becomes un-
stable:

(N0N2)Cr ≈ 1670. (3.29)

This number coincides neatly with that obtained in the Rayleigh-Benard problem
in which we have for convection near a free wall

Ra = gβ

νᾱ
∆TΛ3, (3.30)

where β is the thermal expansion coefficient and ᾱ is the thermal diffusivity. Now
if we want to compare the Rayleigh number to our system we have to identify the
corresponding terms in

N0N2 = αgφ0Λ5

D2ν
ξ. (3.31)

The strength of gravity βg corresponds to αgφ0, the thermal diffusivity ᾱ to the
diffusion constant D and the maximal temperature difference ∆T is equal to ξΛ2.
Therefore it is reasonable to assume that N0N2 ≈ Ra.
Now the approximation is remarkably close since we have

Rac ≈ 1700 ≈ (N0N2)Cr ≈ 1670 (3.32)

as a critical Rayleigh number that describes the onset of convection rolls in this
setup.
With this results we can determine the onset of convection cells if N2 < N2,cr, i.e., we
pinpointed the threshold where the system loses stability against the first convection
if the system is still diffusively stable. We can add this piece to a phase diagram
of instabilities and will now consider faster heating rates to determine the onset of
diffusive instabilities and to see what happens if both instabilities are present.
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4 Fast Temperature Ramp

4.1 Equations of Motion

We now want to look at a system where the heating rate ξ is not nearly negligible and
the assumption f(ϕ) = 1 remains no longer valid. We start with the Navier-Stokes-
Equation 2.34 and the advection-diffusion equation 2.35 where we again dropped
the term responsible for surface tension

∂ϕ

∂t
+ u.∇ϕ = ∇.[f(ϕ)∇ϕ]−N2ϕ (4.1)

with f(ϕ) = 3ϕ2−1
2 . We again assume that gravity acts in z direction and that the

convection rolls are oriented along the y axis allowing. Consequently we focus our
attention on the spatial coordinates x,z and the time dependence.
To simplify the Navier-Stokes-Equation we introduce a stream function Ψ defined
by

u = ∇×Ψ (4.2)

For a flow in the (x,z)-plane Ψ has a very simple form,

Ψ =

0
ψ

0

 (4.3)

such that

ux = −∂zψ (4.4)

uz = ∂xψ (4.5)

Inserting this into the equations of motion and taking the curl we arrive at

(∂t + (∂xψ)∂z − (∂zψ)∂x −N1∇2)∇2ψ = N1N0∂xϕez (4.6)

(∂t +N2 + (∂xψ)∂z − (∂zψ)∂x)ϕ = ∇.
(

3ϕ2 − 1
2 ∇ϕ

)
. (4.7)

We can use a Galerkin approximation to solve the equation. In practise this means
we have to expand ϕ in a series and truncate it at a suitable order that still captures
the part of physics we want to look at. Since we can assume that the fluid will behave
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symmetrically around the interface, it is practical to exploit this in the choice of basis
for our expansion. We therefore choose the Fourier expansion. This will allow us
to transform the partial differential equations into a system of ordinary differential
equations, since the differential operators correspond to multiplications in Fourier
space. There are two possibilities of continuing from here on. Either we substitute ez
by a Heaviside functional Θ(z) to introduce a simple model for simulating a smooth
phase boundary or we use the ansatz of an asymmetric ϕ around the interface. A
problem in the first strategy is that the step function is not continuous at z = 0
and the Fourier expansion at such a place does not converges uniformly. Especially
the Gibbs phenomenon will produce unphysical behaviour near the meniscus. We
will hence concentrate on the phase field approach and use the stationary diffusive
solution. Our aim is to expand the supersaturation and the stream function in a
Fourier series. A suitable choice for the calculations ahead is

ϕ =
∞∑

k=∞

∞∑
l=−∞

ϕkle
iπ(kz+lx) (4.8)

ψ =
∞∑

k=∞

∞∑
l=−∞

ψkle
iπ(kz+lx), (4.9)

since convolution becomes notably easier if no trigonometric identities need to be
used and no care has to be taken for the domain of summation 3.
Additionally, we can exploit the symmetries inherent to our system to get rid of
some of the modes. After all, ϕ has to be asymmetric around the interface at z = 0
(and therefore expanded in sin functions) and needs to posses a maximum at the
boundary (because of the no-flux boundary conditions). Therefore only ϕkl modes
with odd indices k have non-zero amplitudes. In the case of ψ, there is only the
restriction that there is no flow through the boundaries of the container and no
global rotation. We therefore place the origin of our coordinate system such that
we have

ψ = sin(πkz) sin(πkx) (4.10)

with odd modes in l and even modes in k. Then the coefficients ψkl will be real for
all modes. This dictates

φ = sin(πkz) cos(πlx), (4.11)

3From here on we will use the Einstein-summation-convention so that ϕkl sin(kx) =∑∞
k=−∞ ϕkl sin(kx)
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where k is always odd and l always odd but for the first, zeroth mode l = 0. Thus
the amplitudes ϕkl are imaginary for all modes.
We start with the Navier-Stokes Equation 4.6. The first term becomes

∂t∇2ψkl = −π2(k2 + l2)ψ̇kl,

the second after substituting (k +m→ k,l + n→ l)4 5

(∂xψ)∂z∇2ψ = kn(k2 + l2)π4ψklψmn

= (k −m)n((k −m)2 + (l − n)2)π4ψ(k−m)(l−n)ψmn,

the third with the same method

−(∂zψ)∂x∇2ψ = −m(l − n)((k −m)2 + (l − n)2)π4ψ(k−m)(l−n)ψmn,

and finally

−N1∇4ψ = −(k2 + l2)2π4ψ.

Moreover, fot the RHS we obtain

N1N0∂xϕ = iN1N0πlϕ

Here, one eventually has to adjust the direction of gravity in every second copy of
the system in order to make sure that supersaturation leads to density inversion in
each copy of the system. To this end we multiply N0 by a square-wave so that it is
symmetric with respect to z = 0 and has a period of 2. This yields

−π2(k2 + l2)ψ̇kl + (m− k)l((m− k)2 + (n− l)2)π4ψ(m−k)(n−l)ψkl

−k(n− l)((m− k)2 + (n− l)2)π4ψ(m−k)(n−l)ψkl

−(k2 + l2)2π4ψkl = −N1N0πl
2

2n+ 1ϕ(k−2n−1)l.

(4.12)

4For ϕ · ϕ can be easily described as a discrete convolution in Fourier space, where ϕ · ϕ =
ϕklϕmn exp{−iπ[(k + m)z + (l + n)x]} = ϕ(k−m)(n−l)ϕmn exp{−iπ[(k + m]z + (l + n)x]} =
ϕ(k,l) ∗ ϕ(m,n) = ϕ(k −m,l − n)ϕ(m,n)

5Caveat: We implicitly assume that the derivative and the series expansion ∂
∑∞
−∞ =

∑∞
−∞ ∂

commutes. Though this is true for finite sums, we need uniform convergence in the relevant
functions and their derivatives if the sum is an infinite series. However this Galerkin method
provides good results nonetheless when we are careful with pathological functions.
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We now turn to the diffusion Equation 4.7 in which we have

(∂t +N2)ϕ = N2ϕ+ ϕ̇

as well as

(∂xψ)∂zϕ = −(k −m)nπ2ψmnϕ(k−m)(l−n)

and

−(∂zψ)∂xϕ = m(l − n)π2ψmnϕ(k−m)(l−n).

Moreover, for the cubic nonlinearity we obtain

∇
(

3ϕ2 − 1
2 ∇ϕ

)
= 3

2∂x(ϕ
2∂xϕ)− 1

2∂
2
xϕ+ 3

2∂z(ϕ
2∂zϕ)− 1

2∂
2
zϕ

= 3ϕ(∂xϕ)2 + 3
2ϕ

2∂2
xϕ−

1
2∂

2
xϕ+ 3ϕ(∂zϕ)2 + 3

2ϕ
2∂2
zϕ−

1
2∂

2
zϕ

= (−3π2nq − 3
2π

2q2)ϕ(k−p−m)(l−n−q)ϕmnϕpq + π2(l)2ϕkl+

(−3π2mp− 3
2π

2p2)ϕ(k−p−m)(l−n−q)ϕmnϕpq + π2(k)2ϕkl.

This leads eventually to the Galerkin representation

ϕ̇kl +N2ϕkl + π2(m(l − n)− (k −m)n)ψmnϕ(k−m)(l−n)

= −π2
[
3(nq +mp) + 3

2(p2 + q2)
]
ϕ(k−p−m)(l−n−q)ϕmnϕpq+

1
2π

2 [l2 + k2]ϕkl.
(4.13)

The full system of equations can at best be handled in an approximation. To gain
insight in the dynamics we rather concentrate on a heavily truncated system of
equations that we can explicitly solve for the stationary modes of composition and
velocity.
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4.2 A Three Mode Model

4.2.1 Equations and Linearization

To begin our analysis of the discretized system of equations we first look at a minimal
set of modes. An initial approach is to choose the minimal modes analog to the
important ones for Rayleigh convection. This means we take the ϕ10 mode into
account to describe the vertical deviation from the stable solution, the ϕ11 as the
horizontal deviation and the ψ21 stream mode which describes a simple fluid motion
in terms of the first convection mode . For this approach we get the following system
of equations:

dϕ10

dt = −ϕ10N2 + ϕ10π
2 + 4ψ21ϕ10π

2 − 3
2ϕ

3
10π

2 + 9ϕ10ϕ
2
11π

2 (4.14)

dϕ11

dt = −ϕ11N2 + 2ϕ11π
2 + 4ψ21ϕ11π

2 − 9ϕ2
10ϕ11π

2 + 9ϕ3
11π

2 (4.15)

dψ21

dt = 4
15N0N1ϕ11 − 5N1π

3ψ21. (4.16)

To analyse this system we linearize it and follow the stable solutions in dependence
of the parameters N0 and N1

6. Subsequently, we linearize the system around the
stable solutions to be able to decide what kind of stability or bifurcations occur. We
choose

ϕ10 = ϕ̄10 + δϕ10 (4.17)

ϕ11 = ϕ̄11 + δϕ11 (4.18)

ψ21 = ψ̄21 + δψ21, (4.19)

and define

δ =

 δϕ10

δϕ11

δψ21

 , (4.20)

6The stable solutions can be obtained by looking at the intersection of the ϕ10, ϕ11 and ψ21
nullclines, i.e., by letting all time derivatives vanish.
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so that we can write the linearized system as

δ = Aδ + b. (4.21)

Here

b =

 −
N2
π2 ϕ̄10 + ϕ̄10 − 3

2 ϕ̄
3
10 + 9ϕ̄10ϕ̄

2
11 + 3

2 ϕ̄
2
10ϕ̄30 − 3ϕ̄10ϕ̄

2
30 + 4ϕ̄10ψ̄21

−N2
π2 ϕ̄11 + 2ϕ̄11 − 9ϕ̄2

10ϕ̄11 + 9ϕ̄3
11 + 4ϕ̄11ψ̄21

− 4
15N0N1ϕ̄11 + 5N1π

3ψ̄21

 (4.22)

and

A =

−N2 + 2π2 + 9ϕ̄2
10π

2 + 9ϕ̄2
11π

2 + 4π2ψ̄21 18π2ϕ̄10ϕ̄11 4π2ϕ̄10

−18π2ϕ̄10ϕ̄11 −N2 + 2π2 − 9π2ϕ̄10 + 27π2ϕ̄2
114π2ψ̄21 0

5π3N1 − 36
75N1π

2 375
75 N0N1


(4.23)

4.2.2 Discussion of Solutions

Solving for the stationary solutions by setting the derivatives equal to zero gives
the equilibrium values for ϕ and ψ. We begin with the limit of N0 → 0 where no
convection should exist. From Eqn. 4.16 we see that

ψ21 = 4
75π3N0ϕ11. (4.24)

In the case of N0 ≈ 0 the stream mode ψ21 is negligibly small, since for all interesting
cases ϕkl remains bounded between zero and one. Turning to Eqns. 4.14 and 4.15
we obviously have the trivial solutions (ϕ̄10,ϕ̄11) = (0,0) and can divide by one of
the respective variables to obtain

0 = −N2

π2 + 2 − 3
2 ϕ̄

2
10 + 9ϕ̄2

11 + 16
75N0ϕ11 (4.25)

0 = −N2

π2 + 1 + 9ϕ̄2
11 − 9ϕ̄2

10 + 16
75N0ϕ11 (4.26)

which has non-trivial solutions

ϕ̄10 = ±
√

2
15 and ϕ̄11 = ±

√
5N2 − 4π2
√

35π
. (4.27)
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We can then perform a bifurcation analysis, the diagram of which is presented in
Fig.8. Of special interest is the case where coming from small N2 and non-vanishing
ϕ10 the stable solution has bifurcation which creates attracting focus. To analyse
this behaviour we insert our solution for constant ϕ 6= 0 into the matrix A and
compute the eigenvalues in dependence of the parameter N2. We obtain

λ1 = −24π2

5 (4.28)

λ2 = −1
5

(
5N2 − 5π2 −

√
5
√

5N2
2 − 30N2π2 + 21π4

)
(4.29)

λ3 = −1
5

(
5N2 − 5π2 +

√
5
√

5N2
2 − 30N2π2 + 21π4

)
(4.30)

If we follow the real and complex part of the eigenvalues depicted in Fig. 9 we see
that the discriminant of both eigenvalues equals zero if

N2,Hopf = 3− 2
√

6
5π

2 ≈ 7.985 (4.31)

From thereon two complex eigenvalues exist. Now it is also important to analyse if
the Hopf bifurcation lies on a stable branch. Therefore, we check at when the real
part of the eigenvalue λ3 crosses zero. This happens at

N2 = 4π2

5 ≈ 7.895 (4.32)

where both eigenvalues are below zero so that the oscillations are decaying to the
stable solution. However at N2 = π2 the solution branch becomes unstable again.
From this we can deduce that there indeed is a critical N2 from which on only the
origin is a stable fix point. Furthermore, the stable solutions decay not solely to an
unstable solution which ends at the x-axis, but are also continued via a bifurcation
in ϕ10 and ϕ11. This bifurcation exists even when we do not have the stream mode
ψ11 present and vanishes at N2 = π2. To see if this rather exotic branch corresponds
to physical reality, we take a closer look at the phase space to understand what is
happening.

We start with N2 = 0 and obtain the phase portrait found in Fig. 10. The
nullclines cross at three different singular points. The first point for ϕ11 = 0 and
negative −ϕ10 is a stable knot with two distinctive negative eigenvalues; the point
where ϕ11 = ϕ10 = 0 is an saddle point and possesses two distinctive but positive
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Figure 8: Shown are the unstable solutions with the dashed line and the stable ones
with a solid line. Here we have N0 = 0. Looking from N2 = 0 three
solutions for ϕ10 exists, where the solutions starting from N2 ≈ ±0.8 are
stable solutions that describes a physical solution. They loose stability
when at the Hopf bifurcation a new stable solution with two complex
eigenvalues emerges. This oscillatory solution on the other hand becomes
again unstable in the vicinity of N2 ≈ 10.
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Figure 9: The real and imaginary parts of the eigenvalues of the matrix A for the

non-trivial solution ϕ̄10 = ±
√

2
15 and ϕ̄11 = ±

√
5N2−4π2
√

35π . The oscillatory
solutions emerge where the pair of imaginary eigenvalues appears. It is
stable as long as the real part is smaller than zero. The crossing to an
unstable solution happens exactly at the point where the ϕ10 mode decays
to possessing only an unstable solution.
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Figure 10: The nullclines for ϕ11 depicted as red line and ϕ10 depicted as green line
intersect at singular points forN0 = 0 andN2 = 10−5. The phase diagram
is highly symmetric as has to be expected for the purely diffusional case,
since the diffusion equation is invariant under rotations. There exist
three points of special interest. The leftmost point were both nullclines
intersect is a stable node as is the rightmost. The trivial solution ϕ10 =
ϕ11 = 0 that is not physical is a repelling node.
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Figure 11: The nullclines for ϕ11 depicted as red line and ϕ10 depicted as green
line intersect at singular points for N0 = 0 and N2 = 9. There are now 7
singular points. On the left part of the phase diagram there are two stable
foci for one of which a spiralling trajectory is included. The attracting
foci from Fig. 10 became repelling ones whereas the repelling node at
the trivial solution remained unstable
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Figure 12: The nullclines for ϕ11 depicted as red line and ϕ10 depicted as green line
intersect at singular points for N0 = 0 and N2 = 100. There are again
7 singular points. The stable foci lost their stability and now became
repellent foci for which spiralling out trajectories are shown. The two
nontrivial solutions for ϕ11 = 0 and ϕ10 = ±ϕ̄10 turned into hyperbolic
nodes with ϕ10 = 0 and ϕ11 = ±ϕ̄11. Additionally the unstable source in
the middle became a sink.
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Figure 13: Shown are the unstable solutions with the dashed line and the stable
ones with a solid line for the ϕ10 for N0 = 104. The oscillatory solution
also found for N0 = 0 persists longer, because the ψ21 helps carrying away
supersaturation.

eigenvalues. The third point with positive ϕ10 equals that of the first because of
symmetry. Here, the fix point ψ21 = ϕ11 = 0 and ϕ10 6= 0 represent the stable
diffusive profiles
If N2 is now increased to N2 = 9 there are 7 singular points (cf. Fig. ??). Since
the phase space is highly symmetric we focus on the left side. Here two stable foci
with complex conjugated complex parts and negative real part emerged from the
stable knot that itself possesses now one positive and one negative real eigenvalue
and became an unstable knot. The point for ϕ10 = ϕ11 = 0 still is unstable.
If N2 is increased even further to N2 = 100 we have still 7 singular points. The
stable foci lost their stability and now have equal complex conjugated and positive
real eigenvalues. The two nontrivial solutions for ϕ11 = 0 and ϕ10 = ±ϕ̄10 remained
hyperbolic points with ϕ10 = 0 and ϕ11 = ±ϕ̄11. On the other hand the solution
ϕ10 = ϕ30 is now a stable attractor. This resembles a diffusively unstable system,
since ϕij = 0 for all modes would imply an infinite φ or zero φ0. Both are unphysical
or uninteresting solutions. Clearly, the 3 mode model does not faithfully describe
the dynamics for such high heating rates.
These oscillations around the stable solutions are however problematic. In reality
an oscillation in only the ϕ10 and ϕ11 mode would be highly unstable to gravity and
can be considered an artifact in the three mode model.
We can now summarize the findings for the three mode model in a phase diagram of
distinctive solutions in Fig 14. It can be divided into the following different areas:
In the lower left region the heating rate and gravity is too weak to cause any insta-
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Figure 14: Plotted is the maximum combination of N2 and N0 for which stable,
oscillatory solutions exist. Here, the onset of instability depends contin-
uously on the parameter N0 in such a way that an increase in strength of
convection also increases the critical threshold N2,cr. The reason for this
is that, with convection, the supersaturation can be carried away more
rapidly and therefore the system does not need to nucleate droplets or
form a different kind of stable layering (e.g. a layering with Λ

3 ) in higher
modes.
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bilities, thus the system behaves in a stable way. If the rate of heating is increased
while the gravitation stays constant, the system enters the region where the system
shows oscillatory behaviour and then becomes diffusively unstable. What happens
when the system enters this region can not be satisfyingly described with a 3 mode
approximation, since addition of more modes will probably provide a decay channel
for this solution.
Further, if the system is diffusively stable but N0 is increased, e.g. by increasing
the density difference between the fluids, the system should become convectively
unstable and convection cells should start to form. This solution is missing in the 3
mode model. To get reasonable results we therefore have to incorporate additional
modes.

4.3 The Five Mode Model

To investigate whether the model improves if more modes of supersaturation are
taken into account we add the ϕ30 mode. At least this will allow for density inversion.
Additionally, the ϕ31 must be incorporated, since it couples ψ21 to ϕ10. These modes
also allows us to compare our approach to the model of diffusive instability in[12] if
we perform a stability analysis for stable ϕ10 and ϕ30.
Computing the equations of motion yields:

2dϕ10

dt = −2ϕ10N2 + 2ϕ10π
2 + 8ψ21ϕ10π

2 − 3ϕ3
10π

2 + 18ϕ10ϕ
2
11π

2+

3ϕ2
10ϕ30π

2 − 6ϕ2
11ϕ30π

2 − 6ϕ10ϕ
2
30π

2 − 12ϕ10ϕ11ϕ31π
2+

24ϕ11ϕ30ϕ31π
2 + 12ϕ10ϕ

2
31π

2

(4.33)

dϕ11

dt = −(ϕ11N2) + 2ϕ11π
2 + 4ψ21ϕ11π

2 + 9ϕ2
10ϕ11π

2 + 9ϕ3
11π

2+

6ϕ10ϕ11ϕ30π
2 − 6ϕ11ϕ

2
30π

2 + 3ϕ2
10ϕ31π

2 − 9ϕ2
11ϕ31π

2−

12ϕ10ϕ30ϕ31π
2 + 18ϕ11ϕ

2
31π

2

(4.34)

2dϕ30

dt = −2ϕ30N2 + 9ϕ3
10π

2 − 54ϕ10ϕ
2
11π

2 + 18ϕ30π
2 + 12ψ21ϕ30π

2+

54ϕ2
10ϕ30π

2 + 108ϕ2
11ϕ30π

2 − 27ϕ3
30π

2+

216ϕ10ϕ11ϕ31π
2 + 162ϕ30ϕ

2
31π

2

(4.35)
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dϕ31

dt = −(ϕ31N2) + 15ϕ2
10ϕ11π

2 − 15ϕ3
11π

2 − 60ϕ10ϕ11ϕ30π
2+

10ϕ31π
2 + 6ψ21ϕ31π

2 + 30ϕ2
10ϕ31π

2 + 90ϕ2
11ϕ31π

2−

45ϕ2
30ϕ31π

2 + 45ϕ3
31π

2

(4.36)

75dψ21

dt = N0N1(36ϕ31 + 20ϕ11)− 375N1π
3ψ21 (4.37)

To linearize it in the sense of [12] we make an ansatz of small variations around the
stable diffusion profile

ϕ10 = ϕ̄10 + δϕ10 (4.38)

ϕ30 = ϕ̄30 + δϕ30 (4.39)

ϕ11 = δϕ11 (4.40)

ϕ31 = δϕ31 (4.41)

ψ21 = δψ21 (4.42)

(4.43)

and define a vector of deviations as

δ =


δϕ10

δϕ30

δϕ11

δϕ31

δψ21

 . (4.44)

With this we can write the system as seven linear ordinary differential equations in
matrix form

δ̇ = Aδ + b, (4.45)

where

b =


−N2ϕ̄10 + 1

2π
2 (−2ϕ̄10 + 3ϕ̄3

10 − 3ϕ̄2
10ϕ̄30 + 6ϕ̄10ϕ̄30)

−N2ϕ̄30 + 3
2π

2 (3ϕ̄3
10 + 6ϕ̄30 − 18ϕ̄2

10ϕ̄30 − 9ϕ̄3
30)

0
0
0

 (4.46)
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and

A =

0BBBBBBBBBBBBBBBBBBBB@

−N2 − 1
2 (−2 +

9ϕ̄2
10 − 6ϕ̄10ϕ̄30 +

6ϕ̄2
30)

3
2π

2(ϕ̄10 − 4ϕ̄30) 0 0 4π2ϕ̄10

27
2 π

2ϕ̄2
10−4ϕ̄10ϕ̄30 −N2 − 9

2π
2(−2 +

6ϕ̄2
10 + 9ϕ̄2

30)
0 0 6π2ϕ̄30

0 0 (−N2 − π2(−2 +
9ϕ̄2

10 − 6ϕ̄10ϕ̄30 +
6ϕ̄2

30))

3π2(ϕ̄2
10 − 4ϕ̄30) 0

0 0 −15π2(ϕ̄2
10 −

4ϕ̄30ϕ̄10)
N2 + 5π2(−2 +
6ϕ̄2

10 + 9ϕ̄2
30)

0

0 0 375
75 N0N1

20
75N0N1 − 36

75N1π2

1CCCCCCCCCCCCCCCCCCCCA
(4.47)

Thereby we obtained the same b aside from a numerical factor π2 as in [12] for a
one-dimensional model without stream function.
However, since the present set of equations hard to solve analytically and we thus
have to use numerical means in any case, we can also perform a bifurcation analysis
of the full system, allowing also for stable ϕ11,ϕ31 and ψ21 solutions. The bifurcation
diagram in Fig. 15 resembles the one from the three mode model in the sense that
the ϕ10 solutions that appeared for small N2 as stable solutions are still part of the
diagram. However, these solutions are now unstable and are absorbed by stable pairs
of ϕ10 and ϕ30. This is reasonable, since one would expect that a vertical 2 mode
approximation will be a much better description of a stable profile than one based
on only one mode. Also, there are no more stable ϕ11 and no ϕ31 solutions. This
as well depicts reality far better, since the layering with e.g. ϕ11 is susceptible to
small deviations and should loose stability if nudged slightly. The exotic oscillations
in only ϕ10, ϕ11 without stream function do not exist any longer and there are new
asymptotically-stable solutions for ψ21, that still oscillate and help to carry away
supersaturation, but do not decay to ψ21. These solutions emerge from the stable
ϕ10 solutions near N2 ≈ 4.8. A sample plot for N2 = 10, N0 = 104 can be found in
Fig. 16. Now since we have a stable convection cell, we can look for the onset of
stable ψ21 solution in dependence of N0 and N2. Also we can look at how long there
exists oscillatory solutions in dependence of N2 and N0.
The corresponding phase diagram can be found in Fig 17. The oscillatory solutions
behave much like they did for the three mode model, with the exception that now,
since ϕ11 and ϕ31 are unstable, no oscillations in the limit of vanishing N0 exists.
They exist for larger N2 if the convection can act stronger with larger N0.
The threshold for the onset of convective resembles the one found in section 3. They
are compared in Fig. 18 and they converge for small N2 as is expected. In conclusion,
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Figure 15: Shown are the unstable solutions with the dashed line and the stable
ones with a solid line for N0 = 104.
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Figure 16: After a transient the maximum φ10 − φ30 shows oscillations that decay
into the stable solutions. It is aided by the stream mode ψ21 which also
tends to a stable solution.
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Figure 17: The phase diagram consists of mainly five different regimes in which
solutions differ topologically. In the lower left part both the heating
rate and the gravitation is weak enough to keep the system stable. If
the heating rate is increased the system can enter the upper left part
in which it loses stability to nucleation. If the gravity parameter N0 is
increased the system may enter the lower right side in which convection
cells form and the system becomes convectively unstable. If both, gravity
and heating rate are chosen in a suitable manner, the system may enter
a oscillatory region in the centre or the upper right hand side in which
the solutions oscillate around a stable diffusive solution.
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Figure 18: The red line gives the threshold for a stable convection cell in the Landau
five mode model. The blue line gives the reference threshold computing
in section 3. The lack of coverage for the red line approaching N2 = 0 is
due to numeric artifacts when the slope becomes too large for reasonable
computing times. Of particular importance is that they resemble each
other in the limit of N2 → 0.

we can say that the 5 mode model provides a fair picture of the behaviour of the
demixing. It would be highly desirable, however, to see in how far these results keep
changing when more modes are added.
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5 Discussion and Conclusion

5.1 Summary

In this work we have explored the emergence of convective instabilities in the demix-
ing of binary fluids being subjected to a small temperature drift. It shares certain
aspects with the Rayleigh-Benard-Problem but it appears to have its own, very rich
set of bifurcations for larger heating rates..
We considered a symmetric binary fluid whose thermodynamics is governed by a
free energy that was chosen according to a expansion in the critical parameter, the
composition φ, as a polynomial of degree four in φ. This corresponds to the well
known φ4-ansatz of Landau to describe demixing. The composition is advected by
a flow described by the Navier-Stokes-Equations in Boussinesq approximation. The
two main parameters which govern the dynamics are the heating rate N2 and the
strength of gravitation N0.
First, we approximated the diffusion equation for small values of N2 in a Taylor
expansion and computed the critical number of N0N2 for the onset of convection
cells. We provided them furthermore in dependence of the heating rate N2 and thus
obtained one piece of a phase diagram of instabilities of the system
We then proceeded and used a full Landau-φ4-ansatz for computing the onset of
diffusive instability in a Galerkin expansion. For some values of N2 there exist oscil-
latory solutions in the five mode model with a non-vanishing convection mode whose
solutions remain stable for larger N2 when N0 is increased because the convection
helps carrying away supersaturation. We provided the critical values for the onset of
convection based on an explicit expression for the steady-state concentration field,
which holds for N2 � 1, and is a five mode model where the composition is ex-
panded to 2nd order in a Fourier series. The latter model also allowed us to explore
how the stable diffusive profile becomes unstable with increasing heating rate. In
that case a limit cycle is born where convection periodically kicks in to remove the
supersaturation.

5.2 Discussion

The model makes a number of assumptions which might be relaxed in forthcoming
work:

38



1. The diffusion equation is based on a Landau-φ4-ansatz. It is derived as a mean-
field theory and one has to be careful to choose the length scale of smallest
correlation length right and not run into any problems of renormalisation [7].
In our case this is not a problem since we do not directly look at the behaviour
at the critical point.

2. The analysis neglects the effect of surface tension. With the help of AUTO we
performed additional numerical tests to verify that the described scenarios are
robust with respect to explicitly implementing a surface tension. Nevertheless,
the surface tension can also exhibit further tensorial behaviour and is certainly
an interesting point of investigation.

3. We assume the system to be isothermal. This can be problematic if the heating
rate ξ which leads to an exponentially increasing temperature ramp is chosen
too high in a long experimental run. We know that even small gradients in
temperature can lead to convection rolls (see e.g. [1]). However not too far
from the critical point the ramp rate is still slow. This means that the time
evolution may well be changed by a double diffusive system and may also ex-
hibit instabilities (analysed by [11]) but it still remains valid near the critical
point Tc.

4. Another approximation lies in the Boussinesq model for the Navier-Stokes-
Equations together with the continuity condition. Here, the buoyant up-drift
driven by a change in density contradicts the assumption that ∇.ρ = 0. This
model however has been shown to provide faithful results and especially Lücke
et al. discussed when the Boussinesq approximation looses its validity [10],[13].

5. In the first part we constricted our analysis to a two dimensional system. Also
this will in general not alter the description of convection, it may alter the
results obtained by the mean field approximation, for these may depend on
dimension [3]. This should turn out to be a negligible problem, since close to
the threshold cellular convection patterns can be represented as a superposi-
tion of individual cells with different orientation of the axes [6].
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6. The Fourier expansion of the concentration field can not faithfully represent
bubbles. Hence, we are not able to investigate bubble solutions. This is
inherent to the method we chose. There are genuine attempts to tackle the
bubble problem (cf. work by Izabella Benczik [? ] and Tobias Lapp)

5.3 Outlook

The beauty of the present model lies in the fact that it describes interesting and
relevant features of demixing in terms of only very few model parameters. As out-
lined above, it can serve as a starting point of more detailed studies to discover even
more generic properties of the phase separation.
The road ahead is the comparison with experiment and different numeric approaches
to gain further insight into when the different approaches converge and the careful
analysis of the physics we learn to understand along the way.
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Appendix

A Phase Transitions
According to the Ehrenfest classification phase transitions can be categorized de-
pendent on the discontinouities of the free energy of a system. An n’th order phase
transition orginates from a discontinouity in the n’th derivative of the free energy
F or a divergence in one of the parameters F dependens on. Additionally there
are critical or continous phase transitions. In both cases the free energy can be
calculated via statistical mechanics and the Gibbs relation

e
F
kbT = Tre−

H
kbT . (A.1)

In theory a phase diagram can be calculated in dependence of the critical7 parameter
just by considering an optimal Hamiltonian and thus being able to just calculate
the free energy. This, however, is not a trivial problem.
If we want to tackle it, wie look at the observable φ̂ that corresponds to our critical
parameter φ8 that may depend on position and have to average over the system size.
Also we have to give a free energy F.

A.1 Mean Field Approach

Our aim is to describe the critical parameter φ in form of a global observable. For
this we use a mean field approximation. This means that each particle of the fluid
interacts with the average composition of the system or in other words, that each
degree of freedom interacts with the average of the ramainder of degrees of freedom.
The observable φ̂ may also depend on position so that it must be averaged over some
length l which is well in between the system size (otherwise the observable would
not be very useful) and the intermolecular forces (so that fluctuations on this scale
are evened out). This means we have to find out what length l is optimal and also
if there is a good way to compute the free energy of our system.
Luckily, Landau proposed a theory that there exists a Landau free energy density

7We call a parameter critical if the system has a large susceptibility to little changes in it near a
phase transition or some other order to disorder transition. This can also be viewd in the light
of self-simalirity in correlation. A slight fluctuation in a critical parameter near the transition
will induce a cascade of system changes along a multitude of length scales thereby exhibiting a
correlation among those.

8In a binary mixture φ is simply a measure of concentration of one of the phases.
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that depends on the coupling constants that describe the strength of particle inter-
action and on some critical parameter. This Landau free energy should have the
properties that it respects the symmetries of the system, can be exactly expressed
as a polynomial series and that this series is finite9

In the case of our binary fluid the Landau free energy density functional should be
symmetric in φ, have a low order, so that it captures the relavant physics of phase
separation but facilitates calculations and contain a simple coupling term. In the
case of demixing a order of 4 has appeared to be a good choice so that we as well
choose

F0[φ(r,t)] =
∫ (

b

4φ
4 − a

2φ
2 + f(φ,K)

)
dV, (A.2)

where f depends on φ and a coupling constant. Physically this coupling represents
the penalty for crossing adjacent cells in the averaging procedure and may be inter-
preted as surface tension. Let us denote two adjacent blocks with φ(r and φ(r + δ),
then the simplest coupling between them is achieved by(

φ(r)− φ(r + δ)
λ2

)2

(A.3)

where λ is the correlation length l over that we can also average. In the continuum
limit this becomes a gradient and therefore

F0[φ(r,t)] =
∫ (

b

4φ
4 − a

2φ
2 + K

2 (∇φ)2
)
dV (A.4)

. At this point we still have to show that this Landau free energy density corre-
sponds in some limit to the actual free energy, futhermore we need to compute the
correlation length. We start with the first.
In thermodynamic equilibrium the probability distribution for the critical parameter
is given by

P [φ] = e−βF [φ])

Z
(A.5)

9If a series expansion is finite, the taylor series contains only a finite number of derivatives and
therefore incorporates only behaviour in some neighbourhood. To include global behaviour it
would have to be expressed with derivatives up to ∞
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where Z is the partition function. This partition function depends on all possible
values for the critical parameter, that means we have to evaluate a path integral

Z =
∫

Dφe−βF [φ]). (A.6)

Furthermore in a coarse grained system where we have different blocks of φ we
actually integrate

Zi =
∫

Dφe−βF [φ(ri]). (A.7)

This is necessary for that it is now possible to go back with

F = −kbT lnZ (A.8)

this free energy has the same properties as a normal free energy, the most important
being for now that it is convex. Since if we know that F is convex, we can show that
it is minimized by a statistical operator. Then we have shown all the porperties for
the usual free energy and may use it without hindthoughts.
To show this, consider a statistical operator φ̂10 and φ̂′. Then

Tr φ̂′(ln φ̂− ln φ̂′) ≤ 0 (A.9)

We can now define a free energy as a density functional acting on the observable

F [φ̂′] = Tr φ̂′(H + kbT ln φ̂′) (A.10)

If we then find the correspondence to the inner energy in the first term and to the
scaled entropy in the second term on the RHS, we can obtain the partition function

Z = Tr e−βH (A.11)

so that the free energy becomes

F [φ̂′] = Trφ̂′[H − kbT (lnZ + βH)] (A.12)

which equals
F [φ̂′] = −kbT lnZ = F (A.13)

10In general this can be an arbitrary observable but we will stick with the notation for a relavant
variable for this work
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and thus equals the thermodynamic free energy of the system. From the inequality
A.9 we can deduce that

F [φ̂] ≤ F [φ̂′]. (A.14)

This means that in the density functional free energy takes a minimum value and
then equals the thermodynamic free energy. Therefore if we know a free energy in
dependence of φ̂ we now know how to relaxate the system to equilibrium.
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