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1 Introduction

In the present study we address general features of the interplay of the chaotic
particle motion produced by hydrodynamics and active processes occuring in the
blood. We focus in particular on the problem of thrombus formation.

A thrombus or blood clot is the final product of blood coagulation. Coagulation
is an important part of hemostasis, which refers to the complex process of keeping
blood within a damaged blood vessel.

The thrombus is a plug formed at the site of the vessel injury, its main role is
the maintenance of the blood vessel integrity and the rapid cessation of bleeding.
Figure [I.1] shows the formation of a blood clot, the details will be discussed further

in later parts of this work.
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Figure 1.1: a) Quiescent platelets in the blood stream b) are activated and form a
blood clot. Images by Sarah Koster.

While rapid thrombus formation is vital for survival in the event of a vascular
injury, it is pathological in instances of atherosclerosis. Atherosclerosis refers to
a hardening of the artery walls as a result of build-up of fatty materials. The
formation of this so-called atherosclerotic plaque is based on the same processes as
the thrombus formation involved in hemostasis. The plaques can gradually narrow
the arteries, decreasing blood flow and resulting in pain or limited function as in

angina, congestive heart failure or peripheral vascular disease. Of greater clinical



1 Introduction

importance, plaques can also suddenly rupture, resulting in vessel occlusion that
leads to death of the tissues fed by the artery in approximately 5 minutes. These
events often manifest in form of a heart attack (occlusion of a coronary artery) or
stroke (occlusion of a brain artery), which together are responsible for approximately

half of the mortality in developed nations [2, [16].
The vascular physiology in adults is controlled by shear and pressure of the blood

flow. Atherosclerosis, for instance, occurs mainly in regions of arteries that experi-
ence disturbances of fluid flow, namely in places where the arteries branch or turn
sharply. In straight regions of the arteries, the rate of blood flow changes during
the cardiac cycle, but flow is always in the same direction, and the patterns are
laminar. In regions where arteries divide or curve sharply, complex flow patterns
develop and the flow can reverse direction during the cardiac cycle — this is a so-
called oscillatory flow. These sites show a low level of chronic inflammation, even in
healthy individuals and newborn babies, that can progress to atherosclerotic plaques
in older humans, if additional risk factors, such as diabetes, obesity, lack of exercise,

smoking, are present [11].

Even though the risk factors play important roles in the incidence and progression
of atherosclerosis, they are relatively uniform throughout the vasculature, whereas
atherosclerosis is initially highly focal and occurs mainly in regions that exhibit
nontrivial flow patterns. Therefore, it is the chronic exposure to disturbed flow that

leads to vessel dysfunction and disease.

The aim of the present work is to investigate from a hydrodynamical point of view,
how the disturbances of the flow can influence the formation of plaques and thrombi.
Of particular importance are the regions of the arteries where the blood flow exhibits
chaotic motion. Chaotic motion can occur in points where the vessel has a localized
anomaly in its diameter. This anomaly can be either a constriction (stenosis, a
partial blocking of the vessel), or a sudden enlargement (aneurysm). At these sites,
the chaotic advection can have far-reaching consequences on the biological dynamics,
a fact which was not taken into account in the traditional study of physiological and

biochemical phenomena taking place in blood [27].

One of the most striking consequences of the underlying chaos is that the spatial
distribution of the advected particles (chemical substances, cell fragments) is neither
uniform nor smooth, and it is not stationary in time. Chaotic advection leads to
a pattern formation of a new type: the particles are distributed around a filamen-

tary fractal — like the streched thin filaments of cream in a cup of stirred coffee —,



which moves in a rhythm corresponding to the time dependence of the flow [34].
Subsequently, the chemical and biological reactions take place along this complex
geometrical structure, whose characteristics can strongly influence the productivity
of the reaction [33].

Examples of reactions that take place on a fractal support can be found in many
natural and industrial applications, ranging from atmospheric chemistry to plank-
ton population dynamics in oceans, and from chemical engineering to microfluidics.
Some fractal images of advected particles as they appear in experiments or nature

are shown in Fig.

Figure 1.2: Examples of fractal structures in experiments and nature. The left image
shows the shape of a dye droplet (of initial diameter about 1cm) after
stirring. A number of parallel cuts is made by a rod through the fluid
in two directions in an alternating manner. [33] The right image shows
sea-ice distribution close to Kamchatka (photograph by NASA).

In general, the fractal skeleton acts as a catalyst on the reactions, resulting in a
singular enhancement of the chemical or biological activity. This enhancement was
pointed out to have crucial effects on phenomena like ozone-depletion, the green-
house effect or biodiversity [31], just to mention a few examples of major importance.
A similar enhancement of the biological activity in the context of thrombus forma-
tion and progression of atherosclerosis can lead to fatalities, thus it is important
to study the influence of chaotic motion. For this purpose we construct a minimal
chaotic advection model that also incorporates the biological reactions involved in
thrombus formation, and we identify the basic factors influencing the productivity

of the reactions.
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2 Basic concepts

2.1 The advection problem

The transport of a substance or a scalar quantity (such as concentration or temper-
ature) by a fluid flow with a velocity field (7, t) is called advection. The theory of
dynamical systems provides the proper tools for the description of advection dynam-
ics [21,130]. In the advection problem advected particles are called tracers. Pointlike,
massless tracers, that take on the velocity of the flow immediately, are called passive
tracers. Particles that participate in chemical or biological reactions, or influence
the flow field, are considered active tracers. A scalar quantity advected by a flow is
usually referred to as passive scalar.

Its motion from an initial position 7(t) is described by a set of ordinary differential

equations
dr(t)
dt

An appealing property of hydrodynamical systems [35] is that the phase space

= (7 1), (2.1)

of the particle dynamics coincides with the configuration space and thus the phase

space structures are directly observable.

2.2 Chaotic advection

Even in simple two-dimensional, time periodic flows the advection dynamics can be
very complex and is often chaotic [6].

Chaotic motion appears due to the presence of hyperbolic fixed points in phase
space [22]. Fixed points appear in stroboscopic maps of the flow, which are series
of snapshots taken at integer multiples of the period of the flow. In this map fixed
points represent periodic orbits, i.e., closed particle trajectories along which the
motion is repeated periodically in time. Due to the incompressibility of the flow

fixed points can be stable (elliptic) or unstable (hyperbolic) [30]. If the fixed point
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is hyperbolic or unstable, a small perturbation moves off particles from it. If the

fixed point is elliptic, perturbations lead to trajectories that remain close to it.

y K<0 y K=0 K>0

v
/N

Figure 2.1: Trajectories in a flow field given by uw, = Gy, u, = GKx, with the
constants G, K € R [22]. Elliptic fixed point (left panel), hyperbolic
fixed point (right panel).

Hyperbolic points have saddle point structure: we can associate a stable and
unstable direction to each of them (see the right panel of Fig. [2.1). The stable
direction points towards the fixed point, the unstable direction points away from
the fixed point. Particles situated close to the stable direction can approach the
fixed point for possibly a very long time. However, eventually they also leave the
vicinity of the fixed point along the unstable direction (see the outer arrows in
Fig. [2.1)).

The chaotic motion is caused by a set of unstable fixed points [3] that form the
so-called chaotic set or chaotic saddle. The unstable directions of these individual
points form the unstable manifold, the stable directions form the stable manifold.
Manifolds of the same type cannot have intersections and self-intersections, but
stable and unstable manifolds belonging to the same point or to different points in-
tersect each other in infinitely many points [I, [§]. These intersections are responsible

for the complex behavior of chaotic flows [7].

The elliptic points can appear only in conservative systems. When they are
present, they are sourrounded by regular orbits (see the ellipses in the left panel
of Fig. . In a two-dimensional phase space these regular orbits act as transport
barriers separating different chaotic regions. They form the so-called Kolmogorov-
Arnold-Moser (KAM) tori [21].
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2.3 Open chaotic flows

Open flows are characterized by unbounded particle trajectories. We consider flows
that are stationary everywhere but in the mixing region. A particle’s motion is
simple in the inflow and outflow regions, but typically chaotic in the mixing region,
i.e., typical trajectories experience chaotic behavior only for a finite time while they
reside in a finite region in space. Consequently, chaos is of transient type [29].
Transiently chaotic systems are characterized by their non-escaping orbits. These
orbits are the unstable fixed points of the stroboscopic map. They form a fractal set,
which is called the chaotic saddle or chaotic set. The saddle can be reached from a
set of exceptional initial positions. The union of all initial positions that converge to
non-escaping trajectories is the stable manifold of the chaotic saddle [23]. Particles
starting far away from the stable manifold are leaving the mixing region quickly,
but tracers starting close to the stable manifold are advected towards the chaotic
saddle. They follow a non-escaping orbit for a while, then they are trapped by the
stable manifold of another non-escaping orbit and so on, until they leave the chaotic
saddle along its unstable manifold [23].

The unstable manifold can be visualized by a droplet of dye placed into the flow:
the dye particles trace out the permanent fractal pattern of the unstable mani-
fold [32]. The stable manifold of the conservative flow can also easily be found
since it is the image of the unstable manifold with regard to time reversal symme-
try [18, 25].

2.4 Closed chaotic flows

Closed flows are characterized by tracer trajectories confined to a bounded region.
The chaotic motion is due to a set of hyperbolic fixed points also in this case.
In contrast to the open case where the stable and unstable manifolds had fractal
structure, the stable and unstable foliations of closed flows are two-dimensional
objects. After all, chaotic systems are mixing, and according to ergodic theory any
initial tracer distribution weakly approaches the uniform distribution in a mixing
conservative flow.

Accordingly, a droplet of dye will move along the unstable foliation and visualize
some part of it for a while (Fig. . For larger times the dye will be uniformly
distributed in the two-dimensional plane of the flow [22] 30].
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Figure 2.2: Shape of a square droplet (blue) at times ¢t/T = 1,2,3 and 6, advected
by an alternating sinusoidal shear flow (see Section [4.2)).

The main differences between open and closed chaotic flows can be summarized

in the following scheme:

type of chaos | fractal structures

open flow transient permanent

closed flow permanent transient

2.5 Quantifying chaotic motion

The chaotic dynamics is characterized by unpredictable motion in the long term,
and by the appearance of complex, yet ordered geometrical structures in the phase
space [4} 5] 211, [30].

The unpredictability of chaotic motion is due to the sensitivity of chaos to initial
conditions: two initially infinitesimally close trajectories will deviate exponentially

in time.
e The Lyapunov exponent ) is the measure of unpredictablility, that charac-

terizes the divergence of the initially close trajectories [21], [30]:

1
= S . At =1 i m
or(t) = or(0)- e or A= lim lim 2l

(2.2)

where 67(t) represents a vector (much smaller than the system size) connecting
two trajectories belonging to different initial conditions after time t. The
Lyapunov exponent is determined from the scaling regime of a In(67) vs t

plot.

A negative Lyapunov exponent X’ can also be defined characterizing the exponential

contraction along the stable manifold. A phase space volume element (a droplet) is



2.5 Quantifying chaotic motion

stretched by a factor e* along the unstable manifold, and contracted by a factor of
et along the stable manifold.

The chaotic dynamics is associated with the appearance of complex geometrical
objects in phase space. These objects, like the chaotic saddle or its unstable mani-
fold, are sets of measure zero and have a well defined, ordered, and fractal structure.

They can be characterized by the following quantities:

o The fractal dimension D is a statistical quantity indicating how completely

space is filled by a fractal. The boz-counting dimension is defined [21], 30] by

D . InN(e)
N(e) x e or D= lim (/o)

(2.3)

where ¢ is the linear size of the box, and N (¢) is the number of boxes needed
to cover the fractal. In contrast to 1-dimensional lines or 2-dimensional planes,
the dimension is a non-integer value: 1 < D < 2 in case of a fractal embedded

in the 2-dimensional plane.

» The escape rate x is a statistical measure of openness, defined by the expo-
nential decay of the number of tracers in the mixing region [29] 30] as:
1. N(t
N(t) = N(0)e ™, giving k=—-1In L (2.4)
t N(0)
For a closed system k = 0, since N(t) remains constant and equal to N(0) for

all times t.

o The residence time is the time a tracer spends in the mixing region. This
time strongly depends on whether the tracer is close to the stable mani-
fold or not. Since the stable manifold has a complex structure that is non-
differentiable in space, accordingly, the residence time of the particles will also
show strong irregularities in space. 1/ can be considered the average lifetime

of transient chaos [10] or residence time.

The Kaplan-Yorke relation, established for chaotic attractors, explicitly con-
nects the fractal dimension to the Lyapunov exponents [30]. The fractal dimension

of the attractor is given by

D=1- (2.5)

S
AT
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where ) is the average Lyapunov exponent in the expanding direction (along the
unstable manifold) while ) is the average Lyapunov exponent in the contracting
direction (along the stable manifold).

A modified version of Eq. was established for the case of open flows by Kantz
and Grassberger [13, [15]. In this case the Lyapunov exponents are connected to the

dimension of the chaotic saddle by the so-called Kantz-Grassberger formula:
D~1—k/, (2.6)

where k is the escape rate of the chaotic saddle.

10



2.6 Chemical and biological reactions in chaotic flows

2.6 Chemical and biological reactions in chaotic flows

In many applications species advected by a fluid flow participate in chemical re-
actions or biological processes at the same time. Such flows in which some kind
of chemical or biological activity takes place are referred to as reactive or active
flows. Reactive flows play an important role in nature and technology and they are
ubiquitous in the atmosphere and the oceans.

The characteristic features of the interplay between mixing and chemical reactions
depend on the type of chemical reaction dynamics considered. Below we enumerate
some of the most important classes studied in the literature (see [33] and references

therein):

o Autocatalytic reactions: A+ B — 2B. The dynamics of plankton blooms
(nutrient + plankton — more plankton) belong to this category. The complex
interactions of nutrients and plankton species in the oceans are influenced by
stirring due to the mesoscale eddies. Since plankton plays a crucial role in the
carbon exchange between oceans and atmosphere, this problem can influence

the greenhouse effect.

« Decaying chemical reactions. The case of linear (B — 0) and second order
(2B — B) decay was studied in the context of atmospheric ozone chemistry,
where the interaction between transport processes and chemical reactions leads

to the formation of the ozone hole in the polar regions of the stratosphere.

o Acid-base reactions: A+ B — (. In this case a source of both components

is needed.

o Competition of species involves two species B; and By competing for the
same resource (food) A: A+ By — By; A+ By — By. This problem is relevant

to the question of biodiversity in aquatic ecosystems.

« Oscillating reactions like Belousov-Zhabotinsky reactions, or metabolic cy-

cles that involve many species.

As described in Section [2.3] the stirring process typically leads to the formation
of complex filamental distributions of the advected particles: they trace out the
unstable manifold of the chaotic saddle. If chemical or biological reactions are su-
perimposed into the advection dynamics, the products of the reactions will fatten

up the unstable manifold: they cover the filaments of the unstable manifold with a

11
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finite coverage width. The structures formed in this way provide sensitive mecha-

nisms that enhance chemical and biological activity in flows.

The many kinds of cells and organic molecules making up blood participate in a
multitude of chemical reactions and biological interactions. If chaotic advection is
present in the blood flow, it can have strong effects on the rates and other properties
of these processes. On one hand, the distribution along filaments of the advected
substances can influence the productivity of the reactions. On the other hand, chaos
induces a large increase in the average residence time of the advected particles, thus

they will have more time to adhere to the vessel wall.

2.7 Master equations

In cases when the advection dynamics are not chaotic, the flow can be considered
well-mixed, and the spatial distribution of the advected particles is uniform [33]. In
these cases a mean-field approach can be adopted. One of the most significant tools

to describe the dynamics of such a system is the master equation [12].

The master equations are formulated in terms of probabilities of the system to be
in a given state m at time t. The probability to encounter the system in the state
m at time t is increased by transitions from other states m’ to m and is decreased

by transitions leaving the state m:

P(m,t) = incoming ratio — outgoing ratio. (2.7)

The incoming ratio consists of all transitions from any state m’ to m and therefore
consists of the sum over all states. Each single term is the probability P to find the

system at the state m’ multiplied by the probability w of a transition from m’ to m:
incoming ratio = »_w(m,m’)P(m/, t). (2.8)

We also used the Markov assumption: we assume that the transition process has no
memory, which means that the transition probability to a new configuration only

depends on the previous configuration, not on any configuration in further history.

With this assumption the outgoing ratio consists of all possible transitions from

12



2.7 Master equations

the state m to any other state m/':

outgoing ratio = P(m,t) - >_ w(m',m). (2.9)

ml

The resulting equation after inserting (2.8) and (2.9) into (2.7)) is the so-called
master equation:

P(m,t) = > w(m,m)P(m’,t) — P(m,t) - > w(m',m). (2.10)

m/ m/

In most cases the incoming and outgoing ratios can be specified easily, the deter-
mination of the transition probabilities w is usually more complicated.

Even though in many cases it may be difficult to find the exact analytical solutions
of the master equations, usually the steady state solutions can easily be obtained
from the linear equations. In the steady state the incoming and outgoing ratios are
equal, this means that the probability to encounter the system in the state m does
not change in time, giving the condition P(m,t) = 0. We obtain the steady state

solutions by solving the resulting linear equation:

w(m,m’)

Pim,t)=>" P(m’,t). (2.11)

— > w(m”,;m)

13
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3 Numerical methods

Several well-established numerical methods are used to visualize and characterize

the states and dynamics of our model.

« Visualization of the chaotic saddle and its stable and unstable man-
ifold. To obtain the chaotic invariant sets we follow the method described
in [28]. We start with a large number of particles N (¢ = 0) initially uniformly
distributed in the full phase space. All non-escaping particles are followed
over a large number of iterations n. For large enough N(0) and n, the initial
coordinates of the non-escaping particles should trace out the stable manifold,

their final positions after n steps should trace out the unstable manifold, and
g
that all initial points from the chaotic region exit with the exception of a frac-

the mid-points at time Z should trace out the chaotic saddle. The reason is

tal set of measure zero. Therefore, points spending a long time in the system

must be those that came close to the chaotic set. The points still inside after

n steps are thus either on the chaotic saddle or are already about to leave it.
2
earlier they must have been around the saddle, and initially around the stable

If so, they are practically on the unstable manifold. A long time (% steps)

manifold.

o« Measuring the dimension of fractal regions and boundaries. To de-
termine its boz-counting dimension, a region is covered with boxes of size ¢,
then the number N of non-empty boxes is counted. These steps are repeated
with different box sizes. We plot In AV(g) versus Ine and measure the slope,

which is the box-counting dimension [5] 20} 211, [30].

To determine the dimension of a fractal boundary, only the boundaries of the

region are covered with boxes. The further procedure is the same as above.

e« Measuring Lyapunov exponents. If the flow field is given by an analytical

formula, we can linearize it around a fixed point. The time evolution of the

15
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16

distance Az can be obtained by iterating the linearized equations. The loga-
rithm of the ratio Ax;/Az;_ averaged over a long time gives a good estimate

for the average Lyapunov exponent [30].

Measuring escape rates. At each time step we measure the number N (t) of
non-escaped particles in the mixing region. We follow the dynamics until the
number of particles has decreased by approximately one order of magnitude.

The slope of the In(V) versus ¢ plot gives the escape rate [28§].



4 A minimal model for thrombus

formation near wall irregularities

For modeling thrombus formation near wall irregularities, we need specific informa-
tion on the hydrodynamical and biochemical characteristics of the phenomenon that
goes beyond the level of the basic concepts reviewed in the previous chapter. In this
chapter we present first a short background on blood flow near wall irregularities
(Section in parallel with the model we use to model the flow (Section |4.2)).
Next, we briefly summarize the biological processes involved in thrombus formation
(Section , and in parallel we present the biological model we propose to study
(Section [4.4).

Regarding the hydrodynamical part, our model is based on a recent work [27]
that reported chaotic advection in the presence of vessel wall irregularities. The
biological part is based on recent literature [9, [I1), [16] regarding the dynamics of
platelets (particles involved in thrombus formation), and on communication with
Thomas Pfohl at the Max-Planck-Institute for Dynamics and Self-Organization and
Sarah Koster at Georg-August-Universitiat Gottingen.

4.1 Chaotic advection in blood flow

Blood flowing through the vasculature forms a closed system. However, from the
point of view of a phenomenon that is observed in a finite part of the vascular system,
the blood flow is locally open: there is a net current of blood flowing through the
region of observation. Particles transported by the blood enter the region of interest,
spend some time in this region, and then they usually leave downstream.

As an open flow with a time periodicity determined by the cardiac cycle, the blood
flow can exhibit chaotic advection under certain circumstances. Chaotic advection
was pointed out to appear in points where the vessel has a localized anomaly in its

diameter [27]. This anomaly can be either a constriction (a stenosis, partial blocking

17



4 A minimal model for thrombus formation near wall irregularities

of the vessel) or a sudden enlargement (an aneurysm). In the work of Schelin et
al. [27] the typical streamlines of the blood flow near these types of wall-irregularities
were obtained by using the finite-volume solver Fluent for realistic physiological
conditions (dynamic viscosity u = 0.04 g/cm - s, and density p = 1.06 g/cm?). Two
cases were studied, namely (i) partly blocked vessels in coronary arteries (Fig. [£.1]
left panels), and (ii) aneurysms in abdominal aortas in exercise conditions (right
panels). The time period of the blood flow in excercise conditions is T' &~ 0.45 s, its

typical velocity is v = 10 e¢m/s. The obtained streamlines are shown in Fig. for

(@ ‘[ =
B
(a) £
s (b)
G
(b) £

X (cm)

Figure 4.1: Snapshots of the streamlines of the blood flow in the 2D model of an
obstructed coronary artery (left), and abdominal aorta with aneurysm
(right). Time instances correspond to the minimum (a) and maximum
(b) blood velocity in the cardiac cycle. [27]

two different time instances: (a) when the inlet velocity has a minimum vy, = 0
in case of the coronary artery, and v,,;, = 20cm/s for the abdominal aorta, and
(b) for maximal inlet velocities vy = 40 cm/s for both the coronary artery and
abdominal aorta.

Even though the blood flow field is regular and non-turbulent in the presented
cases, the advection dynamics is chaotic. The advected particles are distributed in
both cases along a filamentary fractal typical to chaotic advection (see Fig. .
The filaments represent the unstable manifold of the chaotic saddle responsible for
the chaotic motion. These fractals have a fractal dimension D = 1.72 4+ 0.02 in case

of the coronary artery, and D = 1.67 4+ 0.02 for the abdominal aorta.

18



4.2 The chaotic flow model
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Figure 4.2: Snapshots of the unstable foliation of blood flow in the stenosed coronary
artery (left) and in the aorta with aneurysm, respectively (right). [27]

A consequence of the fractal spatial distribution of the advected particles is their
increased residence time in the region of observation. The average residence time
was found to be 7 = 19.2 s for the coronary artery and 7 = 2.01 s for the abdominal
aorta, which is considerably larger than the residence time of a particle advected by
a laminar blood flow. The latter is given by the period of the cardiac cycle, that is
Tiaminar = 0.45 s.

The chaotic trajectories were also characterised by sensitive dependence on the
initial conditions that can be quantified by Lyapunov exponents. The Lyapunov
exponents were found to be A = 0.187 s~! for the coronary artery, and A\ = 1.648 s~*

for the abdominal aorta.

4.2 The chaotic flow model

As a workbench system we use a time periodic, two dimensional flow defined in the
unit square with periodic boundary conditions that is known to produce chaotic
trajectories [24]. The flow consists of the alternation of two steady sinusoidal shear
flows in the x and y directions, respectively. Advection by this flow field over one time

period is equivalent to the action of the two-dimensional, area preserving map [20, 28]
defined as:

Tpr1 = xp+asin2ry, +¢) mod 1,y,11 = yn in the first %, (41)
Ynt1 = Yn+asin(2mz, +¢) mod 1, 2,41 =z, in the second %, .

where z,, and y, denote the coordinates of a fluid particle at discrete times t =
n- %, n € N, and T is the period of the flow. The amplitude a is a parameter that

controls the chaotic behavior of the flow.

19



4 A minimal model for thrombus formation near wall irregularities

One problem that generally appears in area-preserving (i.e., conservative) maps
is the existence of quasiperiodic orbits that form KAM tori. These tori act as
transport barriers separating different chaotic regions. The size of these KAM tori
can be minimized by tuning the parameters of the map. In the map defined by
Eq. there are four regions that contain KAM tori, as depicted by the white
islands in Fig. 2.2, where a = 0.6, ¢ = 0 was used. These islands exist for small
amplitudes a, and they gradually disappear for higher values of a.

In numerical simulations we use the value a = 0.6 for the amplitude of the flow.
For this value the phase space consists of one single chaotic region without visible
KAM tori. The advection dynamics is still affected by remnants of the KAM tori:
Particles that start outside the islands remain outside for a while, but might enter
the islands after a long time. This is the reason why the white islands are still
visible after a short time in Fig. 2.2] Similarly, particles starting inside the islands
will visit only points in the interior of the island, before they finally escape to the
larger outside region. To avoid effects from the remnants of KAM tori, we also run
simulations for higher amplitudes of the flow (¢ = 0.8 and a = 1.4).

A more efficient way to avoid effects of the KAM tori is to consider ¢ as a random
variable ¢, € [0, 27] taking on different values in each step of the iteration. In this
case the flow is aperiodic. An alternative approach is to keep ¢ = 0, but change
the sign of the amplitude a randomly. This approach minimizes the effects from
KAM tori as well. In Chapter [5] we investigate cases with a = 0.6, a = 0.8, and
a = 1.4, ¢ = 0 (deterministic case), compared to a = 0.6, and random phase ¢
(case of aperiodic flow). In Chapter |§| we study the case of flows with randomized
amplitude sign for |a| = 0.6, and |a| = 6.4, and keep a fixed phase ¢ = 0.

The map defined by Eq. produces a closed flow. As the blood flow is an open
flow, in numerical simulations we follow a standard “leaking” mechanism proposed
by Schneider et al. in [28]: We consider a “leak” in the unit square, i.e., we define
a spatial area through which particles can enter and/or escape the mixing region.
More details on the effects of leaking the closed system of Eq. can be found in
Appendix [B] The exact shapes and sizes of the leaks, i.e., of the inflow and outflow

regions we used in this work, are defined in Sections|4.4.1jand |4.4.2l They are shown

as blue and black areas for inflow and outflow, respectively, in Figs. 4.5 and [4.8]
The positions (x,,y,) are in R?. For plotting the spatial distribution at each half
period, the positions are alignedﬂ to a discrete, Cartesian N x N lattice of length

ISpecifically, to map each position to the respective lattice point, the real numbers z,,, y, € [0,1)
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4.3 Dynamics of thrombus formation

(N = 1000 in our plots).

and height unity with spacing Az = Ay = +

4.3 Dynamics of thrombus formation

In case of a vascular injury, hemostasis is achieved by the activation and aggregation
of platelets that form a platelet plug or thrombus at the site of the injury (Fig.[1.1)).

Platelets (thrombocytes) are small, 2 — 3 um in diameter, a-nuclear cell fragments
(i.e., cells that do not have a nucleus containing DNA), released from the bone
marrow into the blood stream. Under normal conditions, platelets circulate freely

in the blood and do not adhere to each other or to the vessel wall.

50um

Figure 4.3: Fluorescent micrographs of a) quiescent platelets and b) activated
platelets. Note that the scale bars are different. Images by Sarah Koster.

When a vascular injury occurs, the cells of the damaged vessel wall release proteins
as collagen, thrombin, or the so-called von Willebrand factor to the blood stream.
Binding of von Willebrand factor to other proteins is most efficient under high shear
stress [26]. These proteins can activate the otherwise passive platelets. Activated
platelets change in shape (Fig. 7 and pseudopods form on their surface. The
activated platelets aggregate or clump together using different connecting agents,
and adhere to the vessel wall. Aggregation and adhesion act together to form the
platelet plug that stops the bleeding until the vessel wall is fully repaired.

The same processes are encountered in the pathogenesis of atherosclerosis, where

the aggregated platelets form the atherosclerotic plaque. The activation is triggered

are multiplied by N and rounded to integer values. These integer values correspond to the
indices of a lattice point.
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4 A minimal model for thrombus formation near wall irregularities

by the same chemical factors, but the deposition occurs in places where the flow
experiences disturbances.

The details of the activation process are quite complex and a topic of very active
present research [9, [IT], 14, 16] [17]. However, for the purposes of the present study

we consider two idealized scenarios:

(A) Platelets are activated by a number of agents that are mainly secreted by the
vessel wall. Thus in modeling the phenomena we assume that platelets are
activated when they enter certain spatial regions that are rich in particles trig-
gering activation (i.e., upon close approach to the damaged vessel wall). The
corresponding model is described in Section [4.4.1]

(B) Platelets are activated by high shear stress in the blood flow. To incorporate
this factor in our model, we identify (time-dependent) regions of high shear
in the blood stream, and assume that activation occurs in these regions. This
model is described in Section [4.4.2]

For the deposition of platelets we also consider two distinct cases. In the first
case (A) we consider that aggregation and deposition of platelets takes place in well
defined spatial regions. This is most relevant to hemostasis, where the thrombus is
formed at the site of the injury. In the other case (B) we consider that deposition
takes place in regions defined by low shear rates. This mimics the formation of
atherosclerotic plaques. The slow flow in these regions promotes attachment, while

low shear helps particles to remain bounded to the vessel wall.

4.4 Minimal models for thrombus formation

In modeling the biological dynamics, we do not keep evidence of the complex chem-
ical reactions needed to activate passive platelets. Instead, we simply define spatial
regions, where the probability of activation is high (due to wall injury, high concen-
tration of activators, high shear, or other factors), and suppose that passive platelets
are activated instantaneously upon entering these regions. We refer to these regions
as activation regions. Similarly, we define the deposition regions as the areas where
active platelets have a high probability to attach to the vessel wall, and assume that
all active platelets visiting these regions are deposited instantaneously.

The proper tool to describe such a dynamics is the resetting forcing proposed

by Neufeld et al. in [20]. Following this method, we consider a particle-based,
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4.4 Minimal models for thrombus formation

i.e., Lagrangian picture. In this view, a fluid element moves as a particle, and can
have three different types: “passive” if it contains a passive platelet, “active” if it
carries an active platelet, and “empty” if the platelet has been deposited from the
fluid element under consideration. Particles are advected according to Egs.
and their types are conserved along their trajectories except for the activation and
deposition regions. In the activation region the type of passive platelets is changed
(i.e., reset) to active, while in the deposition region the type of active platelets is
reset to deposited or empty, depending on whether we talk about platelets or the

fluid elements carrying them, respectively.

1—’lUA—U}O 1—wo—wD 1—’UJO

passive

Figure 4.4: Schematic representation of the biological dynamics: Each of the tran-
sitions has a given probability depicted on the arrows. For one initial
droplet = = 0, platelets leaving will not return. For the mean-field ap-
proximation we consider that the same amount of platelets or empty
fluid elements that is leaving the system is returning as “fresh” passive
platelets, thus x = 1.

The platelet dynamics is much more complex than the case described in [20] that
considers only two types of particles. For details on resetting two types of particles
see Appendix [C] The main difference is the selective sensitivity of the resetting
domains on the type of particles: in the activation region the passive particles are
reset only, the empty particles remain unchanged. Similarly, in the deposition region
only the active platelets are deposited, i.e., only that subset of particles that has
visited the activation region at an earlier time. All other particles (passive or empty
fluid elements) will leave the deposition region without any change in their types.

As in Section [4.3] we treat two distinct cases as follows.
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4 A minimal model for thrombus formation near wall irregularities

4.4.1 Modelling platelet activation at the vessel wall

In this case the positions of the activation and deposition regions are constant in
time and do not depend on the flow. This case represents for instance activation
of the platelets at the site of a vessel injury, whose position is fixed and does not
change in time. Similarly, deposition also takes place at the vessel wall where the
damage occured, i.e., in a well defined spatial region that does not change in time.

We consider an inflow of fresh blood containing passive platelets to the mixing
region. Since the particles engaged in chaotic motion visit all parts of the system in
sufficiently long time, the exact position of the inflow region does not have significant
effect on the behavior of the particles. Without loss of generality, we can therefore
define the inflow region as a horizontal stripe of width w; and length unity centered
at y = 0.5.

The same argument is valid for the biological dynamics: the main characteristics of
the reactions are not influenced by the exact position of the activation and deposition
regions. Thus, for the sake of convenience (i.e., to avoid additional effects caused by
overlapping areas), we consider that these regions are also stripes that are situated
parallel to the inflow region. The activation region is a stripe of width w4 and length
unity centered at y = 0.75, while the deposition region is a stripe of width wp and
length unity centered at y = 0.25. The stripes are shown in Figure 4.5 To keep the
number of the parameters as low as possible in the model, we consider only cases
where the two stripes have the same width, i.e., w4 = wp = w.

In contrast to the position, the size of the activation and deposition regions is
expected to have strong influence on the dynamics. Thus in the numerical simula-
tions we keep constant the size of the inflow region w; and change the size of the

activation and deposition regions w in steps of 0.01 from w = 0.01 to w = 0.3.

4.4.2 Modelling shear-induced platelet activation

In this case, we consider activation and deposition regions that change in time
according to the periodicity of the flow. This represents the case of platelets that
are activated by high shear rates of the blood flow and deposited in regions of low
shear, thus it is more typical to the formation of atherosclerotic plaques triggered

by disturbances of the flow.

The shear rate S can be obtained as the derivative of the equations defining the
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4.4 Minimal models for thrombus formation

Yy Yy Yy
1 1 1
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(a) w=0.05 (b) w=10.10 (¢c) w=0.15

Figure 4.5: Horizontal stripes marking the regions of inflow (blue), activation (green)
and deposition (red). The width of the inflow region is w; = 0.1.

velocity field. In our particular flow model (Eq. (4.1))) this gives

S, = ‘%y = |2macos(27mz)|, S, = 0 for the first %, (4.2)
S, = %f = [2macos(27y)l, S, = 0 for the second % '
We define a normalized shear that takes values 0 < s < 1:
S
— . 4.3
* 7 2nld] 43)

The biological dynamics for shear-induced activation and deposition are defined as
follows: Platelets are activated in regions of high shear. We assume that activation
of the platelets takes place in spatial regions where the shear is higher than a certain

threshold. Thus we define the activation region by the condition:
1>s>1—-a. (4.4)

Active platelets will be deposited where the shear rate is low, i.e.,
0<s<p, (4.5)

where o and 3 are free parameters that can be tuned in simulations to identify their

effects.

From Eq. (4.3) and the conditions (4.4)) and (4.5) results that the regions of

activation and deposition are horizontal stripes for half a period and vertical stripes
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4 A minimal model for thrombus formation near wall irregularities

for the other half of the period. The width of the stripes is

wala) = 4-75”“‘30257(3*0‘), and (4.6)
wp(f) = 1—4. 2l

In the following we treat two distinct cases: (i) the regions of activation and
deposition have the same area in space (ws = wp), and (ii) the regions represent

equal ranges in terms of shear (o = f3).

(i) In the first case the regions of activation and deposition have the same width
wq = wp = w and height unity. From Eq. (4.6) we obtain:

- 1 T,
o C:S (2 wA> (4.7)
B = cos (5 (1-— wD)) .
Y Y Y
1 1 14
1 1 1
2 2 2
T T b i
00 1 1 OO 1 1 OO 1 1
2 2 2
(a) w=0.05 (b) w=0.1 (¢c) w=0.2

Figure 4.6: Vertical stripes (in the first half period) marking the regions of activation
(green) defined by high shear (s > 1 — «) and deposition (red) defined
by low shear (s < ). The parameters o and 3 are calculated from the

desired width wa = wp = w (Eq. (4.7)).
In numerical simulations we systematically check the effects of the spatial ex-
tension of the activation and deposition regions on the productivity of reactions
by changing the width w in steps of 0.02 from 0.02 to 0.2. In Fig. the re-
gions of activation and deposition are depicted for one half of a period. In
the other half of a period the stripes are horizontal because of the horizontal

direction of the shear.

(ii) In this case the regions of activation and deposition represent equal ranges in

terms of shear (v = (7). The shear threshold parameter « is changed in steps
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4.4 Minimal models for thrombus formation

of 0.02 from 0.02 to 0.2. In Fig. the activation and deposition regions are
visualized for the first half of a period.

) Y Y
1 1 1
1 1 1
2 2 2
T i X
OO 1 1 00 1 1 00 1 1
2 2 2
(a) @ =0.05 (b) a=0.1 (¢) a=0.2

Figure 4.7: Vertical stripes (in the first half period) marking the regions of activation
(green) defined by high shear (s > 1 — a) and deposition (red) defined
by low shear (s < «). The area of the stripes depends on the shear

threshold parameter v as wy = 4 - %ﬁ‘a), wp=1—4- _afCC;;(a)

The inflow region is modeled as a stripe of length unity and of height 0.1, from
y = 0 toy = 0.1. The outflow region is modeled as a square of area 0.1, and is
centered at (0.25,0.75). Figure visualizes the inflow and outflow regions. Both
regions must have the same area due to the incompressibility of the flow, each fluid
element that is leaving the system must be replaced by a new fluid element entering

the system.

o
0

1 1
2

[N

Figure 4.8: Regions of inflow (blue) and outflow (black) on the unit square. The
inflow region is a stripe from y = 0 to y = 0.1 and the outflow region is
a square of area 0.1, centered at (0.25,0.75).
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5 Platelet activation at the vessel

wall

This chapter is devoted to the study of the thrombus formation model defined in
Section [£.4.1] Its main assumption is that platelets are activated and deposited
in fixed spatial regions that are constant in time. First, we present the spatial
distributions shown by the different types of platelets in this model. Next, we
compute the deposited material both in numerical simulations and in a mean-field
approach. Finally, we quantify the chaoticity of the dynamics and relate it to the

fraction of deposited material.

5.1 Qualitative description of platelet dynamics:

platelet distribution

We consider that the platelets are advected by the flow field given by Egs. (4.1]),
and that resetting events, i.e., changes in the type of platelets, occur in the resetting
regions (inflow, activation and deposition regions) shown in Fig. [£.5]

In this model, the spatial distribution of the platelets at a given time instance t is
determined by the history of the system. The current state of a fluid element (i.e.,
the type of platelets it contains) is determined by the sequence of resetting regions

it has visited at earlier times:

o The type of a platelet is passive, if the region it visited last time was the inflow

region.

o The type of a platelet is deposited, if it visited the deposition region and it

has visited the activation region at an earlier time.

o The type of a platelet is active, if it only visited the activation region during

its history since it entered through the inflow region.
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5 Platelet activation at the vessel wall

The most convenient way to obtain the asymptotic spatial distribution of the
platelets is to start a trajectory from each spatial point and follow it backwards in
time until it enters the inflow region. Then, according to the rules detailed above,
a type can be associated to each spatial point depending on the regions visited by

the trajectory under consideration.

In numerical simulations we define a 1000 x 1000 Cartesian lattice in the unit
square, and follow trajectories starting from each lattice point backwards in time
until they reach the inflow region. After each full period 7" of the flow we check the
positions of the trajectories, and make changes in their types according to the above
mentioned rules when they are found in one of the resetting regions. Between these
discrete events at integer multiples of T, the types of the platelets are conserved. We
investigate two particular cases, that of a deterministic flow with amplitude a = 0.6
and fixed phase ¢ = 0, and that of a flow with the same amplitude a = 0.6 and

random phase .

In both cases we find that the three different types of plateletsﬂ are distributed in
interwoven elongated filaments that have a Cantor set like fractal structure trans-
verse to the filaments (see Fig. [5.1)). This shows that the interplay between the

chaotic hydrodynamics and biology maintains an imperfectly mixed stationary state.

The boundary of the filaments also has a complex fractal structure. Indeed, the
boundary between the regions occupied by different platelets is the boundary be-
tween the basins of attraction of the resetting regions for the time-reversed advection
dynamics. The structure of boundaries between basins of attraction of different at-
tractors is a well-known problem in the field of chaotic dynamical systems [211 30} 32].
The complicated fractal structure of the basin boundaries appears as a consequence
of the chaotic saddle associated with the phenomena of transient chaos, i.e., with
open flows.

Such boundaries are typical to open flows. Their appearance can be understood
in a simple intuitive way. The resetting dynamics is equivalent to some kind of
“biological opening” of the flow. More exactly, regarding the dynamics of the active
platelets the activation region provides an inflow of active platelets, while the depo-
sition region acts as an outflow region for these platelets. Similarly, the deposition
region produces deposited platelets in the mixing region, thus it acts as an inflow

of deposited platelets. The region where the empty spaces are filled again with pas-

'We recall that in our terminology the spatial distribution of deposited platelets refers to “empty”
fluid elements from which the platelets have already been deposited.
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5.2 Quantitative description of the platelet dynamics

sive platelets (i.e., the original inflow region of the model) acts as an outflow for
deposited platelets. Finally, the passive platelets enter the mixing region through
the inflow region, and leave it through the activation region. In conclusion, we have
three different “biologically open” flows of the three types of platelets, with three
different chaotic saddles governing their dynamics. The patterns shown in Fig. [5.1
visualize the unstable manifolds of the three chaotic saddles.

Since the size of the outflow regions (represented by the resetting regions in our
model) is known to have strong influence on the characteristics of the unstable man-
ifold [28], we run systematic simulations for different widths of the resetting regions.

As a reference to the reader, the obtained patterns are presented in Appendix [A]

(a) a=06,9p=0 (b) @ = 0.6 with random phase ¢

Figure 5.1: Patterns of passive (blue), active (green), deposited (red) platelets for
w = wy = 0.1.

In the following, we characterize their fractal structure and relate it to the chaotic

properties of the flow.

5.2 Quantitative description of the platelet dynamics

In this section we quantitatively characterize the parameter dependence of the
platelet dynamics and compare it to analytical results obtained from a mean-field
approximation. From the point of view of thrombus formation, the most relevant

quantity is the amount of deposited platelets.
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5 Platelet activation at the vessel wall

5.2.1 Mean-field approximation

In contrast to laminar flows, chaotic advection produces very efficient mixing in the
system. Assuming the limit of perfect mixing, we can adopt a mean-field approach

in which the adequate description of the dynamics is in terms of master equations.

We focus on the probabilities Py (t) that a fluid element carries a platelet of type
X at time t, where X € {A, P, D} denotes the type of the different platelets: active,
passive, and deposited, respectively. The probabilities Px(¢) represent the relative
number of the different types of platelets in the system at time t. To establish
the master equations we have to identify first the possible transitions between the
different states, as well as the transition rates of these processes. A schematical

overview of the processes encountered in the model is presented in Fig. 5.2.

To establish the transition rates, we have to observe that the rates of the resetting
processes are proportional to the area fraction of the phase space where resetting
events can occur. For instance, passive platelets, distributed uniformly in the unit
square, can change their type into active only in the activation region that has
an area of wy -1 = w. Thus, the transition rate from the passive to the active
state is given by w. Similarly, active platelets can be deposited in the deposition
region, giving the transition rate wp - 1 = w from the active to the deposited state.
Finally, both active and deposited platelets leaving through the outflow region are
replaced by fresh passive platelets in the inflow region representing an area fraction
of wy -1 = wr = wp. Thus, both the transitions from active to passive, and from

deposited to passive states are encountered with a rate wop.

1—w 1—wo —w 1 —wo

deposited

Figure 5.2: Schematic representation of the states of the system with the possible
transitions and transition rates marked on the arrows.

With these transition rates the master equations can be written as:
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5.2 Quantitative description of the platelet dynamics

Pp = w0PD+w0PA—pr,
PA = pr—(w—i—wo)PA, (51)

PD = U)PA — U)OPD-

The relative number of different platelets in the asymptotic states can be obtained
from Egs. (5.1)) by imposing the steady state condition

Py=0 for Xe{APD}

Using the normalization Pp+ P4+ Pp = 1 and the notation f = wo/w the steady

state solutions can be obtained as

Py = f/A+]),
Py o= f/(L+ ), (5:2)
Py = 1/(1+ f)>.

5.2.2 The fraction of deposited platelets in numerical

simulations

In the following we compare the relative number of the different platelets obtained
from numerical simulations to the solutions given by Eqs. (5.2). We measure the
number of different platelets in the two-dimensional patterns shown in Fig. and
Appendix [A] and divide them by the total number of platelets. The obtained values
are shown in Fig. for an inflow region of width w; = 0.1 and different sizes w of
the activation and deposition regions.

As expected, the relative number of passive platelets decreases as the width of the
activation and deposition regions is increased. The number of active and passive
platelets show a different tendency: as the activation and deposition regions grow,
their number increases as well. At a certain point, the number of active platelets
reaches a maximum, after which it starts decreasing with the growing width of
the deposition region. From Egs. results that the maximum corresponds to
f=1,1i.e., w=w;. The number of deposited platelets show a monotone growth for
increasing values of the width w of the deposition region.

Even though the mixing produced by chaotic advection is very efficient, it is still

imperfect for a < 0.8 due to the the non-uniform, filamental structures present
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5 Platelet activation at the vessel wall

in the phase space. Therefore, mean-field treatments of chaotic systems can lead
to gross errors in some cases. Usually only systematic numerical simulations can
decide whether a mean-field approximation can adequately describe the dynamics

of a chaotic system.
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Figure 5.3: Relative number of platelets np vs. width of activation/deposition re-
gions w for several amplitude and phase parameters. The width of the
inflow region is w; = 0.1. The relative number of platelets amount to
the area fractions of the respective colors. The lines show the mean-field

prediction from Eq. (5.2)).

A more interesting issue is the role of the different degrees of imperfect mixing.
The steady state solutions given by Eqs. are valid in a perfectly mixed environ-
ment. The spatial patterns of the platelets presented in Fig. [5.1] and Appendix [A]
however, always show some degree of imperfect mixing. This can cause deviations
from the solutions of the master equations.

We recall that the chaotic behavior of the flow is controlled by the amplitude a, in

the sense that flows with higher values of the amplitude are more chaotic and produce
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5.3 Characterization of chaotic properties: fractal dimensions

better mixing. In simulations, we compare cases with amplitudes a = 0.6, a = 0.8,
and a = 1.4 (see the different panels of Fig. [5.3)). From the lower panels of the figure
it is clear that the master equations provide a fair description of the dynamics for
high values of the amplitude: the amount of deposited and active platelets follow the
steady state solutions given by Eqs. (5.2)). For smaller amplitudes a, however, there
is a systematic enhancement in the number of deposited platelets as compared to the
expected values in well-mixed environment. We can attribute these deviations from
the solutions Egs. to the chaoticity of the flow that produces irregular spatial
patterns of platelets. The irregular patterns influence the biological dynamics.

The deviations from the solutions of the master equations caused by the chaotic
flow are usually small: with few exceptions they are less than 10% of the expected
values. Thus, the main role of the chaotic flow is to mix the platelets assuring that
they visit the different resetting regions. The imperfect mixing, i.e., irregular spatial
distribution of the platelets, seems to introduce only minor quantitative changes into

the dynamics.

5.3 Characterization of chaotic properties: fractal

dimensions

To shed more light on the interplay between the chaotic hydrodynamics and the
biological dynamics, in the following we quantify the chaotic properties of the flow
as well. The chaotic advection dynamics is governed by the chaotic saddle present
in the mixing region. More exactly, in our model there are three different chaotic
saddles that govern the dynamics of the three different types of platelets. The chaotic

saddles have a fractal structure that can be characterized by the fractal dimension.

5.3.1 Mean-field approximation

In a mean-field approximation, we can calculate a theoretical estimate for the fractal
dimensions of the different chaotic saddles. For this, we use the Kantz-Grassberger

relation

D~1—r/, (5.3)

that relates the fractal dimensions D of the chaotic saddles to the escape rates k via

the average Lyapunov exponents .
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5 Platelet activation at the vessel wall

Assuming a well-mixed environment, the escape processes can be considered pro-
portional to the area of the region through which the platelets escape normalized
by the area of the full chaotic region. The escape region for passive platelets is the
activation region of area fraction w,. Active platelets escape through the deposition
and inflow region that represents an area fraction of wp + w;. Deposited platelets
escape through the inflow region, i.e., in an area fraction of w;. Thus the escape

rates can be written as:

kp = —log(l —wy),
ka = —log(l—w;—wp), (5.4)
kp = —log(l—wy).

The fractal dimensions corresponding to these values of the escape rates are shown
in Fig. with continuous lines.

5.3.2 Fractal dimensions measured in numerical simulations

The patterns shown in in Fig. and Appendix [A] represent the unstable manifold
of the chaotic saddle. Its fractal dimension D, is related to the fractal dimension
of the chaotic saddle as D,,ss = 1 + D. Thus, measuring the fractal dimension of
the unstable manifold along a transect gives exactly the fractal dimension D of the
chaotic saddle.

The spatial distribution of platelets along a line segment can be obtained with the
method described in Section [5.1] i.e., by starting trajectories from the points of the
line and iterating them backwards in time until they reach the inflow region. This
allows us to reach high resolution easily for the one-dimensional transects without
having to calculate the whole two-dimensional field.

We measure the fractal dimensions of the different types of platelets along a line
segment situated at y = 0.0 by iterating 10?° time-reversed trajectories starting
from this line. The simulations are run again for fixed values of the inflow region
wy = 0.1, and different widths w of the activation and deposition regions. The fractal
dimensions are measured using the box-counting method. The results obtained for
amplitude a = 0.6 of the flow (both for deterministic and randomized flows) are
shown in Fig. 5.4

In the limit w = 0 of the activation and deposition regions, the biological activity

vanishes. In this case the “biological opening” of the flow is absent, thus the flow be-
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Figure 5.4: Fractal dimensions of the passive (blue), active (green) and deposited
(red) platelets as a function of the width w of the activation and de-
position regions. The inflow region has a fixed width w; = 0.1. The
continuous lines are obtained from Eq. using the measured val-
ues of the Lyapunov exponents A\ = 2.75, and the theoretical estimates

Egs. (5.4).

haves as a closed flow, i.e., the unstable manifold is a space filling, two-dimensional
object with D, = 2. As the biological activity is turned on (i.e., w # 0), the un-
stable manifold of the passive platelets becomes a fractal, and its fractal dimension
Dyynst decreases as the width of the activation region w increases. The fractal di-
mension of the active platelets shows a similar tendency: it decreases as the width w
of the deposition region increases. The deposited platelets, more exactly the empty
fluid elements from which the platelets have been deposited, show a different behav-
ior: their fractal dimension increases as the width of the deposition region increases,
and it seems to saturate for large values of w.

The fractal dimensions measured in our numerical experiments show strong de-
viations from the mean-field expectation values. There are a number of reasons
responsible for these deviations. First, (i) the orientation of the escape regions has
a strong influence on the escape rates (for more details see Appendix [Bf and refer-
ence [28]). While the activation and deposition stripes are narrow, this influence is
strong. When the stripes become larger and cover a considerable part of the full
mixing region, the role of the orientation decreases. Thus, this effect is responsible
mainly for the deviations observed for small values of w. Further, (ii) the escape
process is influenced by the actual number of platelets in the mixing region. When
the width w of the activation and deposition regions is small, only few active and

deposited platelets are present in the mixing region, thus a statistical description
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5 Platelet activation at the vessel wall

is no longer valid for these types of platelets. And finally, (iii) the mean field de-
scription is valid only in the case when the mixing is strong enough to redistribute
the platelets almost uniformly between two resetting events. For large values of w,
however, this assumption fails, because the large activation and deposition regions
produce large patches of active and deposited platelets that cannot be dispersed
uniformly by the flow during one time period.

In conclusion, the mean-field approach provides only a rough approximant of
the real escape rates and fractal dimensions of the chaotic saddles. For a proper
characterization of the saddles, numerical simulations are needed that resolve the
details of the fractal structures.

Nevertheless, the mean field approach has its own merits. It gives some theoretical
insight into the behavior of the fractal dimensions as a function of the parameter
w. It provides a better understanding of the logarithmic dependence of the fractal
dimension of passive platelets on the width w of the activation region. It also
explains the saturation observed on the dimension of the deposited platelets, and

gives a theoretical estimate of the value at which this saturation occurs.

5.4 Interplay between the chaotic dynamics and

biological dynamics

The deposition of platelets in the places where the blood flow exhibits chaotic be-
havior involves a complex interplay between the chaotic hydrodynamics and the
biological dynamics of the platelets. The minimal chaotic advection model we in-
vestigated in this chapter clarified some steps of this interplay that can be outlined

as follows:

(i) The chaotic advection assures a good mixing of the platelets in the region
of interest that allows them to consecutively visit the activation and deposi-
tion regions. It also provides an inflow of fresh blood containing new passive

platelets that replace the deposited ones.

(ii) The biological dynamics acts as a “biological opening” of the flow. This means
that the activation and deposition regions select a chaotic saddle that will
govern the dynamics. The size and geometry of the activation and deposition
regions will determine the quantitative characteristics of the saddle. The exis-

tence of this saddle in the mixing region will cause a fractal spatial distribution
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5.4 Interplay between the chaotic dynamics and biological dynamics

of the advected platelets. In the absence of the biological dynamics (see the
case w = 0 in Fig. , the fractal structures do not appear in the dynamics,

the distribution of the platelets is uniform, space-filling.

(iii) Subsequently, the irregular spatial distribution of platelets along a fractal has
a feedback on the biological dynamics. This feedback will modify the amount
of the deposited platelets and cause deviations from the mean-field expectation
values. In general, there is no simple formula to estimate these deviations, since
they depend on the detailed geometry of the fractal structures. The deviations
gradually disappear as the chaoticity of the flow increases (for instance upon

increasing the amplitude a) and provides a better mixing of the platelets.

To have a quantitative estimate of this latter effect, we compute the relative devia-

tions

AD _ Nd — Nmean— field ' (55)
Nmean— field

of the number of deposited platelets measured in simulations ng from their mean-
field expectation values 7y,eqn— ficia for the cases presented in Fig. . Since we
expect that the deviations Ap are caused by the fractal distribution of the active
platelets, we plot these values as a function of the fractal dimension D, of active

platelets in Figure [5.5]
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Figure 5.5: Relative deviations Ap of the deposited platelets from the mean-field ex-
pectation values as a function of the fractal dimension of active platelets.
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5 Platelet activation at the vessel wall

As we can see, the deviations are rather small in the studied case, approximately
5—10% of the mean field expectation valud?] As already stated in the Section [5.2.2]
the irregular spatial distribution of the platelets seems to introduce only minor

quantitative changes into the dynamics.

2The higher values of 20 — 80% represent cases where the mean field approximation is not valid
because of the very small number (less than 14%) of deposited platelets in the mixing region.
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6 Shear-induced platelet activation

In this chapter we investigate the thrombus formation model defined in Section [4.4.2]
i.e., we consider the scenario in which platelets are activated by high shear of the
flow and are deposited in regions of low shear. Since the blood flow is periodic in
time, this results in activation and deposition regions that change in time according
to the rhythm of the flow.

We follow the same steps as in the previous chapter: First we present a quali-
tative picture of the spatial distributions shown by the different types of platelets.
Then we quantitatively characterize the biological and chaotic dynamics. Next, we
compute the deposited material in numerical simulations and in a mean-field ap-
proach. Finally, we discuss the interplay between the hydrodynamics and biological
dynamics.

As compared to the method of study used in the previous chapter, here we adopt
a different approach. In the previous chapter we focused primarily on the steady-
state spatial distributions of the platelets, and used the Kantz-Grassberger relation
to obtain information about the time evolution of the system. Here in turn, we
follow the temporal evolution of the system, and use the same formula to get insight

into the spatial distributions of the platelets.

6.1 Qualitative description of platelet dynamics:

platelet distribution

As in the previous chapter, we consider that the platelets are advected by the same
flow field given by Egs. [.1], and that resetting events occur in discrete steps in the
resetting regions. Here, however, the resetting regions (i.e., activation and deposition
regions) are not localized in fixed spatial positions, but they always move to regions
of the flow field that experience high and low shear-rates, respectively. Thus, they
change their positions and orientations according to the time dependence of the

flow. The positions of the activation and deposition regions in the first half of the
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6 Shear-induced platelet activation

period are shown in Figs. [4.6land[4.7] Apart from the positions of the activation and
deposition regions, the biological dynamics follows the same rules as in the previous
chapter.

We consider a sustained inflow of passive platelets: at each half period of the flow,
a droplet of 10° passive platelets enters the mixing region through the inflow region
shown in Fig. [£.8] The platelets spend some time in the mixing region, eventually
participate in biological reactions and change their types, and finally they are washed
out downstream. The outflow region, through which platelets can leave the mixing
region, is also shown in Fig. [4.§|

We follow the trajectories of the platelets in the mixing region and keep evidence
of the changes in their types. Fig. [6.1] shows a series of snapshots of the spatial
distribution of platelets taken at different time instances.

We see that the first droplet of passive platelets gets elongated and folded by the
chaotic flow. In places where the droplet encounters high shear rates, the platelets
are activated. Then the continuous streching and folding by the flow produces a
complex filamental distribution of the platelets that repeatedly crosses regions of
high and low shear of the flow giving birth to new active and deposited platelets.
Finally, in approximately 20 periods of the flow, the inflow and outflow balances
each other and the spatial distribution of platelets approaches a steady state, in the
sense that the filaments have time independent statistical properties, but they still
move with the rhythm of the flow.

In conclusion, also in this case the chaotic low maintains an imperfectly mixed
stationary state in which the different types of platelets trace out permanent fractal
structures: the unstable manifolds of the chaotic saddles.

Tuning the parameter a can change the chaoticity of the flow. Simulations run
for higher values of the amplitude |a| = 6.4 exhibit the same kind of temporal evo-
lution of the system: the repeated streching and folding produces the same complex
filamental structure also in this case, but the overall appearance of the distribution
is much closer to a well-mixed system. The other effect of the higher amplitude is
that the remnants of the KAM tori visible in Fig. [6.1] are much smaller in this case.

As described in Section [4.4.2] we study two distinct cases where (i) wa = wp = w
and (ii) a = . In the second case the activation regions occupy a much larger area
than the deposition regions. This results in a bigger amount of active platelets in the
mixing region, that can be observed from a comparison of Fig. and Fig. [6.2} in

the latter the green color representing active platelets clearly dominates the picture.
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6.1 Qualitative description of platelet dynamics: platelet distribution

(a) |a| =0.6

TRt
|

Figure 6.1: Patterns of the spatial distribution of passive (blue), active (green) and
deposited (red) platelets for w = 0.1, /T = 0.5, 1,5, 10, 15, 20.
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6 Shear-induced platelet activation

(b) |a| = 6.4

Figure 6.2: Patterns of the spatial distribution of passive (blue), active (green) and
deposited (red) platelets for « = 0.1, t/T = 0.5,1, 5,10, 15, 20.
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6.2 Quantitative description of the platelet dynamics

6.2 Quantitative description of the platelet dynamics

We focus on the quantity of deposited platelets. We compute a mean-field expecta-

tion value and compare it to results obtained from numerical simulations.

6.2.1 Mean-field approximation

Assuming a well-mixed environment, we can establish master equations to describe
the dynamics of the system. Compared to the case described in Section [5.2.1] there
is an additional state of the platelets: those which left through the outflow region.
The possible transitions between different states are represented in Fig. [6.3] The
transition rates are given by the area fraction of the activation, deposition, and

outflow regions, respectively.

l—wqg—wo 1—wp—wp 1—wo

Figure 6.3: Schematic representation of the states of the system with the possible
transitions and transition rates marked on the arrows. For one initial
droplet x = 0, platelets leaving will not return. For the mean-field
approximation we consider that the same amount of platelets or empty
fluid elements that is leaving the system is returning as “fresh” passive
platelets, thus x = 1.

The master equations can be written as:

Pp = woPp+woPs —waPp,
Py = waPp— (wp +wo)Pa, (6.1)
PD = wDPA — wOPD-
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6 Shear-induced platelet activation

If we take into account that in an open flow platelets which escaped through the
outflow region are immediately replaced by fresh blood containing passive platelets,
in the scheme represented in Fig. [6.3 we can eliminate the outflow state and redirect
all the incoming and outgoing transitions to the passive state. Thus, the scheme
becomes topologically equivalent to the one presented in Section [5.2.1

Using the notations fa = wo/w4 and fp = wo/wp the steady state solutions of
Egs. (6.1)) can be written as:

Py = fa/(1+ fa),
P fo/(1+ fa)(1+ fp) , (6.2)
Py o= 1/(1+ fa)(1 + fp) .

In the case wy = wp = w, these steady state solutions reduce to Egs. (5.2) from
Section [£.2.11

6.2.2 The fraction of deposited platelets in numerical

simulations

To measure the amount of deposited material, in numerical simulations we started
one single droplet containing 10° passive platelets at time t = 0 from the inflow
region, and counted the deposition events at each half period of the flow. The time
evolution of this quantity is plotted in Fig. [6.4]

0.5 ————————7——————— 0.5 ————

Np

0.25 S 025

A
o o
0 le ] H ) 1 \

0 10 20
T
(a) same area in space (b) equal ranges in terms of shear

Figure 6.4: Fraction of deposited platelets np as a function of time. (a) Varying the
widths of the stripes from w = 0.02 to w = 0.2 increasing in steps of
0.02. (b) Different values of the shear threshold « from 0.02 to 0.2 in
steps of 0.02. In both cases the amplitude of the flow is |a| = 0.6.
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6.2 Quantitative description of the platelet dynamics

After an initial increase, the number of deposited platelets saturates at a certain

value. By

this time the majority of the platelets from the original droplet got

deposited or left the mixing region already, thus new deposition events do not occur

unless fresh blood with passive platelets enters the mixing region.
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Fraction of deposited platelets at t/T" = 20 vs. width w (top) and vs. «
(bottom). The line shows the mean-field expectation from Eq. (6.2)).

The total number of deposited platelets normalized by the total number of platelets

from the initial droplet represents the fraction of deposited platelets in the steady

state distribution in the case of a continuous inflow of platelets. Plotting this quan-
tity along with the steady state solutions given by Egs. (6.2)) in Fig. shows that

the master

equations give a fair description of the dynamics. There are small devi-

ations from the mean-field expectation values that are due to the irregular spatial

distribution of platelets.
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6 Shear-induced platelet activation

6.3 Characterization of chaotic properties: escape

rates

The chaotic dynamics observed in the mixing region of open chaotic flows is due to
the presence of a chaotic saddle in the mixing region. In our model the situation is
more complex, since there are different types of openings in the system. One is due
to the outflow of particles that is associated with a chaotic saddle. The other is the
“biological opening” of the flow discussed in the previous chapter, meaning that the
transformation of passive platelets to active ones can be considered as an outflow
of passive platelets. This causes an additional opening for the passive platelets and
results in an additional saddle. Subsequently, the active platelets are changed to
deposited platelets, which causes an additional opening for the active platelets’ flow.

The escape of particles from the chaotic saddle is typically exponential [29] and
can be characterized by the escape rate. The escape rate is determined by the
structure of the saddle and it is uniquely related to the fractal dimension of the
saddle via the Kantz-Grassberger relation (12.6)).

Since in our case there are three different saddles, we expect that the escape
rates (and the dimensions of the different saddles, respectively) are different for the
different types of platelets.

We can calculate an estimate for the escape rates using a mean-field approximation
analog to Section[5.2.1] Biological dynamics are happening twice each period in this
model, thus the escape rates must be multiplied by a factor of 2. Because of the
geometry of our model, the outflow region is covering a part of the deposition region
of size wp - /wo. This area needs to be substracted from the area fraction wp. The

resulting escape rates are:

Kp = _210g<1 - wA)a
ka = —2log(l —wo —wp + wpy/wo), (6.3)
RKp = —210g(1 — wo).

To obtain the escape rates numerically, we follow the time evolution of the number
of active and deposited platelets in the mixing region. This number, indeed, exhibits
an exponential decay (see Fig. for different cases). The fact that active platelets
escape not only through the outflow region, but also by deposition, is reflected by
the faster decay of their number as compared to the decay of deposited platelets

that can leave the mixing region only through the outflow region.
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Figure 6.6: Exponential decay of the number N of active (green) and deposited (red)
platelets.

To characterize the parameter dependence of the escape rates, we run systematic
simulations (i) for various widths w of the resetting regions, and (ii) for various
shear thresholds a defining the resetting regions. The results are summarized in
Fig.[6.7 As expected, the escape rate of active platelets increases as the size of the
deposition region increases, showing a logarithmical dependence k4 = —2log(1 —
wo — w + w\/wo) on the width w of this region.

The escape rate of deposited platelets shows in turn a surprising behavior. Since
deposited platelets escape only through the outflow region that was kept constant
in our simulations, we expect that the escape rate of the deposited platelets has a
constant value kp = —2log(l —wp) = —21o0g(0.9) over the whole range of widths
w of the deposition region. In contrast to this naive expectation, the escape rate
increases slightly with the width w in all studied cases.

The different escape rates of the different platelets demonstrate that their dynam-

ics are governed by different chaotic saddles that can be characterized by different
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Figure 6.7: k vs w, and k vs « for active (green) and deposited (red) platelets.

fractal dimensions. One way to visualize and quantify the chaotic saddles is by using
the box-counting method described in Chapter 3| and Appendix |[Bl To apply this
method, however, numerical simulations with high spatial resolution are necessary.
A more convenient way to obtain the fractal dimension of the saddles is to compute
them from the temporal behavior of the system, i.e., from the measured escape rates
using the Kantz Grassberger relation and the Lyapunov exponents A = 2.75

and A = 12 measured for the flow amplitudes a = 0.6 and a = 6.4, respectively.

6.4 Interplay between the chaotic dynamics and

biological dynamics

Similarly to Section [5.4] the complex interplay between hydrodynamics and biolog-

ical dynamics can be summarized in three main steps:

(i) The chaotic blood flow produces a good mixing of the platelets assuring that
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6.4 Interplay between the chaotic dynamics and biological dynamics

they consecutively visit regions of high and low shear of the flow, thus they

can be activated and deposited.

(ii) The biological dynamics selects a chaotic saddle and determines its quanti-
tative characteristics. The activated and deposited platelets are distributed
along the fractal filaments of the unstable manifold of the saddles. There is
one remarkable difference, however, between the models discussed in Chap-
ters[p] and [6] In the model used in the previous chapter the fractal structures
appeared only as a consequence of the biological opening: the biology was
the only mechanism to open the flow and make the chaotic saddles and other
fractal structures visible. In the model treated in this chapter, a permanent
fractality is present already in the advection dynamics, even in the absence of

biological activity.

(iii) The fractal spatial distribution of the platelets has a feedback on the dynamics

and causes deviations from the mean-field expectation values.

To compare the effects of the fractal distribution on the dynamics to those ob-
tained in the previous chapter, we plot the deviations Ap defined by Eq. (5.5 as a
function of the fractal dimension of the active platelets D4 in Fig.
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Figure 6.8: Relative deviation Ap of the fraction of deposited platelets from the
mean-field expectation value as function of the fractal dimension of active
platelets D 4.

The figure shows that the deviations are small also in this case. When the activa-
tion and deposition regions have equal spatial extents (ws = wp = w), the fraction
of deposited platelets is higher than the mean-field expectation value regardless of

the exact size of the resetting regions. When the width of the activation region is
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6 Shear-induced platelet activation

much bigger than that of the deposition region, i.e., when both of them are deter-
mined by the same shear threshold «, the situation is changed and the measured
values are in general below the mean-field expectation value. Finally, when the flow
rate is increased (the case |a| = 6.4 corresponding to fractal dimensions close to 1),
the deviations take both positive and negative values, showing that on average the

mean-field approximation gives a fair description of the system.
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7/ Discussion and summary

In traditional studies of active processes taking place in blood, the possible effects
of chaotic advection were usually disregarded. In the present work we addressed
the problem of chaotic advection in the context of thrombus formation. We focused
on sites where the vessel wall presented irregularities, either a constriction, or an
enlargement, because these are the places where chaotic advection has been observed
(see Figs. 4.1 and 4.2).

1. To describe the dynamics of platelets involved in thrombus formation, we
constructed a minimal advection-reaction model. The advection dynamics
was generated by a simple two-dimensional time-periodic flow that produced
chaotic trajectories. The biological dynamics, i.e., the activation and sub-
sequent deposition of platelets were represented by discrete resetting events.
Resetting events took place only in well-defined spatial regions called activa-

tion and deposition regions.

2. We designed two idealized models:

— In the first model the activation and deposition regions were localized
and their position did not depend on the flow field. This model describes

thrombus formation at the vessel wall, on sites where an injury occurs.

— The second model considered platelet activation and deposition triggered
by high and low shear rates of the flow. Consequently, the activation and
deposition regions became time-dependent spatial regions that changed
their locations according to the time dependence of the flow. This model

is more adequate to describe atherosclerosis.

3. We adopted two different methods of study:

— To obtain a high resolution of the spatial distributions, we identified the
type of platelets by checking their history, i.e., by iterating trajectories
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7 Discussion and summary

o4

backward in time and following the resetting regions visited by the tra-

jectory.

— To obtain more insights on the temporal evolution of the system we fol-

lowed the trajectories forward in time.

Conclusion: The two methods gave similar quantitative results regarding the
quantity of deposited material, thus they can be considered two equivalent and

complementary approaches to study the phenomenon.

. We quantified the productivity of reactions:

— In a mean-field approach, we described the dynamics in terms of master
equations. We found exact analytical solutions for the steady states of

the system.

— In numerical simulations we measured the quantity of deposited mate-
rial and found that it is well-described by the solutions of the master

equations.

Conclusion: The deposited material can be expressed by Eqgs. 5.2 and 6.2, and

depends only on the area fraction of the different resetting regions.

. We found permanent fractal structures in the spatial distributions of platelets.

Conclusion: The interplay between the advection and biological dynamics in-

volved in thrombus formation maintains an imperfect mixing.

. We quantitatively characterized these fractal structures

— by measuring fractal dimensions, and

— by measuring escape rates.

Conclusion: The naive mean-field expectation values do not show good agree-
ment with the measured values. This is because these quantities depend on
the detailed geometry of the spatial structures appearing in the phase space
and there is no simple formula to calculate this dependence. Thus, the fractal
dimensions and escape rates should be measured in direct numerical simula-

tions.

. We studied the interplay between chaotic hydrodynamics and biological dy-

namics, the conclusions are summarized in Sections 5.4 and 6.4.



The most surprising finding is that even though the interplay between the advec-
tion and biological dynamics involved in thrombus formation maintains an imperfect
mixing of the platelets, the fractal structures that are clearly dominating the pictures
in all the studied cases do not seem to have a significant effect on the productivity
of the reactions: the deposited material is well described by the mean-field ap-
proach. However, before making a premature statement about the role of fractality,

we should mention some factors that could diminish the effects of fractality:

— In our simulations, the resetting events take place in discrete steps at each half
or full period of the flow. In such a long time, the flow can redistribute the
advected platelets uniformly between two resettings, thus it washes out the
effects of fractality. Choosing a smaller time step could reveal chaotic effects

that are not observable in the simulations presented in the present work.

— A more elaborate model would take into account that only platelets which
are in direct contact with activating agents are activated. This means that
activation events can occur only on the surface of the fractal filaments, but not
in the bulk where passive platelets do not have access to activators. This case
is similar to acid-base reactions that are known to be drastically enhanced by

the fractal distribution of the reagents.

— The final answer on the effects of fractality can be given by more realistic nu-
merical simulations that explicitely take into account the flow fields presented
in Figs 4.1. and 4.2.
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A Unstable manifolds of the
different types of platelets

The snapshots shown in Figs. and represent the unstable manifolds of the

platelets for different widths w of the resetting regions as obtained from the model
defined in Section [4.4.1l
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A Unstable manifolds of the different types of platelets

(c) deposited platelets

Figure A.1: The spatial distribution of the different types of platelets, calculated
from Eq. with fixed phase ¢ = 0. The width of the inflow region
is fixed to wy = 0.1, and the width of the two other regions is increased
from w = 0 to w = 0.2 in steps of 0.01.
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(c) deposited platelets

Figure A.2: A random phase is added to the argument of the sine map (Eq. (4.1])).
All other parameters are chosen as described in Fig. [AT]
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B Leaking dynamics

Chaotic advection has been typically treated separately for open (see for example [33]
and references therein) and closed flows [19] 24]. The reason for this is that in the
open case there is a well defined, permanent fractal characteristic due to the flux of
fluid flowing through the system. This is the unstable manifold of the chaotic set
as traced out by the advected particles. In contrast, in the closed case the unstable
foliation is space-filling. A droplet placed in the closed flow will trace out a part of
the unstable manifold for a while, but finally it will become uniformly distributed
in the full two dimensional phase space (see Figure 2.2)).

Under certain circumstances, however, the signatures of fractality become observ-
able even in closed flows. The simplest way to visualize fractal structures in closed
flows is to manually open the flow. Based on the findings of [28], we investigated
effects of opening in the closed flow given by Eq.(4.1) with a = 0.6, = 0. We
opened the flow by cutting a “leak” in the form of a stripe of width w = 0.1 and
length unity, centered at y = 0.5, through which the particles can escape.

To visualize the chaotic sets, we followed 10° points — initially uniformly dis-
tributed in the unit square — for 20 periods. We removed all particles that entered
the “leak” The positions of the non-escaped particles after 20 periods visualize
the unstable manifold of the chaotic saddle, the positions 10 periods earlier show
the saddle, and the initial positions of the particles represent the stable manifold
(see Figure[B.I). The stable and unstable manifolds are filamental structures, while
the saddle has the typical Cantor set structure and, as expected, consists of the
intersection points of the stable and unstable manifolds.

The “leaked” system, being an open flow, can be characterized by escape rates.
To obtain the escape rate, we measured the time evolution of the number of particles
in the mixing region and plotted the number of particles for each time 7" in a semi-
logarithmic plot (Figure B.1]). The slope of this plot gave the escape rate £ = 0.09.

Using the Kantz-Grassberger relation and the numerically measured value

A = 2.75 of the Lyapunov exponent and x = 0.09 of the escape rate, we can calculate
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Figure B.1: Stable manifold (upper left) and unstable manifold (upper right), and
saddle (lower left). In the lower right panel the plot used for the mea-
surement of the escape rate is shown.

the fractal dimension of the chaotic saddle as D = 0.967. Using the same relation
but the naive theoretical expectation for the escape rate k = —In(1 — w) we obtain
D = 0.961, which is in good agreement with the numerically obtained value.

One important finding of [28] is that the escape rate strongly depends on the
orientation of the leak. This is a surprising statement since in a closed flow where
the unstable foliation is uniform and space filling, one might expect that the escape
process depends on the area of the leaked region only. However, the unstable mani-
fold that became visible by leaking the system has a strong spatial anisotropy. This
anisotropy of the unstable foliation along which advected particles are accumulated

results in the orientation dependence of the escape rates.
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C Resetting dynamics

In order to maintain a nontrivial stationary distribution of tracers, earlier works
(see for instance [19]) added source terms or sinks to the dynamics. A more realistic
approach was suggested by Pierrehumbert [24], namely the resetting forcing. In
this approach, tracers can be of two types and they change their types when they
enter certain spatial domains of the flow (called resetting domains). The resetting
dynamics was motivated by practical examples such as the thermal convection in a
Rayleigh-Bernard cell, where the role of the resetting domains is played by the hot
and cold plates. Another motivation is provided by the field of atmospheric sciences,
that of chemical tracers in the stratosphere, where polar and equatorial regions play
the role of the resetting zones.

In the numerical simulations we considered advection in the field of the alter-
nating shear flow defined by Egs. and two resetting domains D; and Dy of
width w = 2/15 situated at the top and bottom of the unit square, centered at
y = 14/15 and y = 1/15, respectively. The stationary tracer field was constructed
from 1000x1000 uniformly distributed particles by calculating backwards trajectories
until they reached one of the resetting regions (or a maximum of 100 iterations).
Periodic boundaries were used in the x and y coordinate. We observed that the
fractal structures became a permanent feature of the dynamics (Figure upper
panels). The reason for this is that the resetting domain D; acts as an inflow region
for particles of type 1, domain Dy acts as outflow region, and thus the dynamics
becomes formally open.

The residence time function was calculated on a line situated at y = 0.5 for 2000
points. The number of iterations needed to reach one of the resetting domains was
measured for these points and plotted in Figure[C.I] The irregularity of the residence
time function is a typical feature of open chaotic advection because the time spent
in the mixing region is very sensitive to the initial position. Particles on the stable
manifold are trapped in the mixing region for long times and lead to singularities of

the residence time. These infinitely many singularities are distributed on a fractal
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Figure C.1: Stationary fractal field (with magnification), residence time function
(number of iterations), and fractal dimension for different sizes of the
resetting domain.

set.

We also calculated the fractal dimension along a line situated at y = 0.5 using
216 points along the line. We iterated the trajectories backwards in time until
they reached one of the resetting zones. In these simulations, the centers of the
resetting stripes were moved to 0.25 and 0.75, respectively. The fractal dimension
was measured using the box-counting method described in the previous section. The
measurements were repeated for different widths of the stripes. The numerically
measured values of the fractal dimension are presented in Figure as red points
along with a theoretical prediction based on the Kantz-Grassberger relation given
by equation (2.6). In our case the escape rate  in equation was replaced by

the resetting rate kK = 1 — 2w, and the Lyapunov exponent A\ = 2.75 was measured
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numerically.
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