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1. Motivation
The rain falling today does not “know” anything about the rain of the past months.
Why should it do so? The rain is not only determined by the local weather but
also by the global climate. Filtering out the seasonal oscillations, the precipitation
exhibits so called “white noise” over several decades in the frequency space: there
the power spectral density is almost constant. The rivers carrying this water to the
seas do not have that property: the discharge, that is the volume flow rate, near the
mouth shows a long term correlation in the form of a 1/f-noise [4, 5]. Consequently
the transport process must be non-linear, since linear systems cannot change the
noise spectrum.
On the other hand if this process in non-linear, it is not clear whether the seasonal

oscillations without any noise already produce the basic 1/f-characteristics. Nor is
it obvious if the transport of the water through the soil or the flow of the river is
the dominant non-linearity in this transport process, or if this even changes with
the considered time scale.
In this work I will focus on a simple non-linear model that mimics the flow of

water through soil. The model can be described by Burgers’ equation, that is well
known for producing turbulence, but has other applications as well [2]. I will analyze
the output that my model produces for an influx representing seasonal changes and
present the water content provided by this input as a function of space and time.
Especially the comparison between the input and the output reveals remarkable
properties of the model.
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2. The Model

Here is a model which is quite simple but capable to reproduce salient features of
the observations:
Consider a column of length L and a cross-section that shall be negligible against

its length1. Let the variables t represent time and x the longitudinal coordinate.
Let the column consist of soil, that is able to contain water, transport it along the
x-direction and to release it in the end at position x = L. During that transport
process the soil may not be altered in any way: it shall neither be advected nor
compressed. Apart from that let gravity g act on the water. The orientation of
the column can differ from that of gravity by an angle α as depicted in figure 1.
That angle only changes the effectively acting acceleration geff = g cosα and will be
considered α = 0 without restriction.

g

x

α 0

L

ε

Figure 1: Sketch of the considered geometry.

Now let ρ(x, t) be the water content at location x and time t and (x, t) the
associated current, that satisfy the one dimensional continuity equation

∂tρ+ ∂x = s(x, t) (2.1)

with a source s(x, t). Now I assume a special current: In addition to the pure linear
diffusion, let the current have a convective term increasing quadratically in ρ:

 = −D∂xρ+ C ρ2 , (2.2)

where C and D are positive constants. The convection is driven by gravity such
that C ∼ g. The quadratic dependency is supposed to model capillary forces: when
the water content is very low these forces attach the water to the soil much stronger

1Equivalently one could assume the dynamics to be invariant under translation perpendicular to
the x-axis.
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than gravity is capable of pulling it downwards. For high water content gravity
dominates the diffusion and the water is flowing in x-direction. When the water
content becomes extremely high, this model will no longer suit to the real physics
of the system: if the current is not bounded, the assumption of the soil not being
affected by the flow will no longer fit.
That assumed current produces

∂tρ = D∂2
xρ− C ∂x

(
ρ2)+ s(x, t) .

Multiplying this equation by CL3/D2β3, where β is a scaling factor for the system
size, and using the rescaling

x̃ := β
x

L
, t̃ := Dβ2

L2 t ,

ρ̃
(
x̃, t̃
)

:= CL

Dβ
ρ (x, t) , s̃

(
x̃, t̃
)

:= CL3

D2β3 s (x, t)

yields the nondimensionalized Burgers’ equation

∂t̃ρ̃ = ∂2
x̃ρ̃− ∂x̃

(
ρ̃2)+ s̃

(
x̃, t̃
)

(2.3)

for x̃ ∈ (0, β) and t̃ ∈ (0,∞). The rescaled current is given as

̃ = −∂x̃ρ̃+ ρ̃2 . (2.4)

We always consider rescaled, dimensionless quantities and suppress the tildes for
clarity from now on.

2.1. Cole-Hopf Transformation

In order to linearize Burgers’ equation it is useful to apply the Cole-Hopf trans-
formation and write the water content as the logarithmic derivative of a positive
potential ϕ(x, t) [1, 3]:

ρ = − ∂x logϕ = − ∂xϕ
ϕ

. (2.5)

Here it is important to notice, that this choice features a degree of freedom. A factor
h(t) in the potential ϕ(x, t) = h(t)ψ(x, t), that may depend on time, does not alter
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the water content:

ρ = −∂xϕ
ϕ

= −∂xh(t)ψ
h(t)ψ = −∂xψ

ψ
.

The time derivative of water content becomes

∂tρ = ∂t (−∂x logϕ) = −∂x
(
∂tϕ

ϕ

)
and the current reads

 = −∂x
(
−∂xϕ

ϕ

)
+
(
−∂xϕ

ϕ

)2

= ∂2
xϕ

ϕ

in terms of this new potential.
Via the above transformation the driven Burgers’ equation (2.3) turns into

∂x

(
∂tϕ

ϕ

)
= ∂x

(
∂2
xϕ

ϕ

)
− s(x, t) .

If there is an antiderivative S(x, t) for the source term s(x, t) such that ∂xS = s, then
this equation simplifies into the heat equation with an extra term that represents
the source:

∂tϕ = ∂2
xϕ− S(x, t)ϕ . (2.6)
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3. Constant Influx and Steady-State

At first, to simplify matters, I consider a constant influx s = A2 δ(x−ε), where δ(x)
is the Dirac delta function, located at x = ε for 0 < ε < β, 0 < A . Moreover, I
assume the boundary conditions

 (x = 0, t) = 0 ⇐⇒ ∂2
xϕ

ϕ
(x = 0, t) = 0 , (3.1)

i. e. a closed upper boundary where no water can escape, and

ρ(x = β, t) = 0 ⇐⇒ −∂xϕ
ϕ

(x = β, t) = 0 , (3.2)

which represents an open lower boundary, where the water leaks. Thus there should
be a steady-state solution for equation (2.3), which fulfills ∂tρ ≡ ∂tϕ ≡ 0 .
Since the Heaviside step function Θ(x) fulfills ∂xΘ(x) = δ(x) in terms of distribu-

tions, every antiderivative of the source term has the form S(x) = A2 Θ(x− ε) + h,
where h ∈ R . Hence the problem is reduced to the homogeneous linear ODE

0 = ϕ′′ −
(
A2 Θ(x− ε) + h

)
ϕ (3.3)

on the interval (0, β) with the transformed boundary conditions (3.1) and (3.2).
It is easy to solve equation (3.3) to the left and right of the source separately:

ϕ′′l = hϕl in (0, ε) (3.4)
ϕ′′r =

(
A2 + h

)
ϕr in (ε, β) (3.5)

with the boundary conditions

ϕ′′l
ϕl

(0) = 0 , ρε := −ϕ
′
l

ϕl
(ε) = −ϕ

′
r

ϕr
(ε) , ϕ′r

ϕr
(β) = 0 .

Here the connection condition at x = ε arises from the claim of a continuous water
content.
Moreover (3.1) together with (3.4) imply h = 0, such that the equation (3.4) has

the general solution

ϕl(x) = m (x− ε) + c , x ∈ (0, ε) .
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The general solution to (3.5) can be written as

ϕr(x) = a eA (x−β) + b e−A (x−β) , x ∈ (ε, β) .

In order to fulfill the boundary condition at the right boundary the two coefficients
have to be equal. Hence the potential is

ϕr(x) = 2 a cosh
(
A (β − x)

)
and at the location of the source, the water content is

−ϕ
′
r

ϕr
(ε) = A tanh

(
A (β − ε)

)
= ρε.

The continuity condition provides

−m
c

= −ϕ
′
l

ϕl
(ε) = −ϕ

′
r

ϕr
(ε) = A tanh

(
A (β − ε)

)
= ρε ,

such that

ϕl(x) = c
(
ρε(ε− x) + 1

)
.

The multiplicative constants a and c cannot be determined any further. This is
not a problem, however, since they have no physical relevance, as pointed out in
section 2.1 .
In total, the potential is hence given by

ϕ(x) =

c
(
ρε(ε− x) + 1

)
, if 0 < x < ε,

2 a cosh
(
A (β − x)

)
, if ε ≤ x < β.

(3.6)

That results in the water content

ρ(x) = − ϕ
′(x)
ϕ(x) =


(
ε− x+ 1

ρε

)−1
, if 0 < x < ε,

A tanh
(
A (β − x)

)
, if ε ≤ x < β ,

which is depicted in figure 2. By construction, the water content is continuous and at
the location of the source, its value is ρ(ε) = ρε = A tanh

(
A (β − ε)

)
. Furthermore
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Figure 2: Rescaled steady-state distribution of water, ρ, in the column of soil of
length β = 1 for different constant influxes s = A2 δ(x − 0.1). The gray
vertical line marks the location of the point-like source.

the current is given by

(x, t) = A2 Θ(x− ε) ,

as can immediately be seen from (3.3) utilizing h = 0.

Beyond that, one can determine how much water there is in the soil column at
all. The total amount of water, M , is dictated by the potential:

M :=
∫ β

0
ρ(x) dx = −

∫ β

0

d
dx logϕ dx = − logϕl(x)

∣∣∣ε
0
− logϕr(x)

∣∣∣β
ε

= log (1 + ερε) + log cosh
(
A (β − ε)

)
= log

(
1 + Aε tanh

(
A (β − ε)

))
+ log cosh

(
A (β − ε)

)
= log

(
cosh

(
A (β − ε)

)
+ Aε sinh

(
A (β − ε)

))
.

Its dependence on the square root of the influx strength, A, is shown in figure 3.

For small input, A(β − ε)� 1 , the amount of water can be approximated by

M ≈ A2 (β − ε)
(
β − ε

2 + ε

)
= A2 β

2 − ε2

2 .
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Figure 3: Total amount of water, M , in the column of soil of length β = 1 plotted
as a function of the amplitude A . The influx s = A2 δ(x− ε) is located at
ε = 0.1 .

For very high input, A(β − ε)� 1, it asymptotically approaches

M ≈ A (β − ε) + log 1 + εA

2 .
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4. Time-Dependent Influx

Now I assume a time-dependent source term s(x, t) = B(t)δ(x − ε) in Burgers’
equation (2.3). In that case there will not be a steady-state solution any more.

That is why I want to reconsider the antiderivative S(x, t) and its role in equation
(2.6): As already mentioned, any antiderivative has the form

S(x, t) = B(t)Θ(x− ε) + h(t) .

Note the time dependence of the additional term h(t), which originates in the deriva-
tive only acting in x-direction to reproduce s. The time-dependent problem is given
by

∂tϕ = ∂2
xϕ− [B(t)Θ(x− ε) + h(t)]ϕ (4.1)

with boundary conditions

(x = 0, t) = ∂2
xϕ

ϕ
(x = 0, t) = 0 , ρ(x = β, t) = −∂xϕ

ϕ
(x = β, t) = 0 (4.2)

and some arbitrary but (square-)integrable initial condition

ρ(x, t = 0) = ρ0(x) ⇐⇒ ϕ(x, t = 0) ≡ ϕ0(x) := exp
(
−
∫ x

0
ρ0(ξ) dξ

)
. (4.3)

Here I already set the prefactor of ϕ0 to unity, as it does not matter physically.
Thanks to this gauge freedom, h(t) can be absorbed into the potential as well: The
function

ϕ̃(x, t) := ϕ(x, t) exp
(∫ t

0
h(τ) dτ

)
satisfies the equation

∂tϕ̃ = ∂2
xϕ̃−B(t)Θ(x− ε)ϕ̃ , (4.4)

which is basically equation (4.1) for vanishing h. That renormalization does not
alter the boundary conditions. Rather, the logarithmic time derivative at x = 0 has
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to be identified with the current at that point:

∂tϕ̃

ϕ̃
(x = 0, t) = ∂2

xϕ̃

ϕ̃
(x = 0, t) = 0 .

The boundary conditions prevent the solution from having a pole or a zero at any
boundary and therefore the value of the potential at x = 0 stays constantly one.
For clarity I will, once again, omit the tilde in the following.

The total deviation

f := ϕ− 1 (4.5)

from that initial and boundary value is the actually interesting quantity. It satisfies
the inhomogeneous PDE

∂tf = ∂2
xf −B(t)Θ(x− ε)f −B(t)Θ(x− ε) (4.6)

with the initial and boundary conditions

f(x = 0, t) ≡ 0 , ∂xf (x = β, t) ≡ 0 , f(x, t = 0) ≡ f 0 := ϕ0 − 1 . (4.7)

Now I will choose β = π
2 and mirror the problem (4.6) symmetrically around the

points x = π
2 , x = 3π

2 and anti-symmetrically around x = π. Thus the problem is
defined on the interval (0, 2π) and the solution fulfills

f
(
π
2 + x

)
= f

(
π
2 − x

)
,

f (π + x) = −f (π − x) ,
f
(3π

2 + x
)

= f
(3π

2 − x
)
.

(4.8)

The new boundary conditions are homogeneous:

f(0, t) ≡ 0 , f(2π, t) ≡ 0 . (4.9)

Please note that the two unit step functions have to be mirrored differently in order
to get correctly mirrored dynamics: Since f has to be antisymmetric around x = π,
the unit step function in the product with f has to be mirrored symmetrically, the
last term has to be mirrored anti-symmetrically such that the extended problem is
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given by

∂tf = ∂2
xf −B(t)g(x)f −B(t)G(x) , (4.10)

where (cf. figure 4)

g(x) := χ(x) + χ(x− π) and G(x) := χ(x)− χ(x− π)

are the differently mirrored images of the indicator function of the interval (ε, π−ε):

χ(x) := χ(ε,π−ε)(x) =

1 , x ∈ (ε, π − ε)

0 , x /∈ (ε, π − ε)

 =: [x ∈ (ε, π − ε)] .

In the latter step I introduce the indicator of a proposition P

[P ] :=

1 , P is true

0 , P is false
(4.11)

to be able to write expressions of that kind in a short way.

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2

g
,G

x/π

G(x)
g(x)

Figure 4: The functions g and G plotted for ε = 0.1 . They are equal for many x
and only differ on (π + ε, 2π − ε) .
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4.1. Time-Dependent Problem Expressed in Fourier Series

The extended PDE can be transformed into a system of ODEs by rewriting

f(x, t) =
∑
k∈Z

fk(t) eikx , g(x) =
∑
k∈Z

gk eikx , G(x) =
∑
k∈Z

Gk eikx , (4.12)

g(x)f(x, t) =
∑
l∈Z

∑
m∈Z

glfm(t) ei(l+m)x =
∑
k∈Z

∑
m∈Z

gk−mfm(t) eikx (4.13)

in Fourier series. Due to the choice of β = π
2 the problem now is defined on the

domain (0, 2π), which simplifies the relations for Fourier series, as summarized in
the appendix A.

The solution of equation (4.10) has vanishing Fourier coefficients for even indices,
the remaining ones are purely imaginary: From the symmetries in (4.8) and the
equation (A.6) one obtains

f(x, t) =
∑

k∈2N+1

2i fk(t) sin kx .

Due to the symmetry and antisymmetry of g and G around the points p = π
2 and

p = π respectively, their Fourier coefficients have the characteristics according to
(A.5):

gk = g−k [k ∈ 2Z] , Gk = −G−k [k ∈ 2Z+ 1] . (4.14)

More precisely, the Fourier coefficients of g and G can be determined exactly:
Using the Fourier coefficients

χk = 1
2π 〈χ, eik · 〉 = 1

2π

∫ 2π

0
χ(x) e−ikx dx = 1

2π

∫ π−ε

ε

e−ikx dx

= 1
2πik

(
e−ikε − e−ik(π−ε)) = 1

πk
e−ik π2 sin

(
k
(π

2 − ε
))

= (−i)k
2

(
1− 2ε

π

)
sinc

(
k
(π

2 − ε
))

,

which includes the case k = 0, since sincx := sinx
x

with removed singularity in the
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origin, and with

〈
χ( · −π), eik · 〉 = 1

2π

∫ 2π

0
χ(x− π) e−ikx dx = 1

2π

∫ π

−π
χ(y) e−ik(y+π)dy = e−ikπχk

= (−1)k χk

it follows that

gk = χk
(
1 + (−1)k

)
= (−1) k2

(
1− 2ε

π

)
sinc

(
k

2 (π − 2ε)
)

[k ∈ 2Z] (4.15)

and that

Gk = χk
(
1− (−1)k

)
= −i (−1) k−1

2

(
1− 2ε

π

)
sinc

(
k

2 (π − 2ε)
)

[k ∈ 2Z+ 1] . (4.16)

For later use I give the limit ε→ 0 for gk and Gk, respectively:

lim
ε→0

gk = [k = 0] = δk,0 , lim
ε→0

Gk = − 2i
kπ

[k ∈ 2Z+ 1] ,

since for k 6= 0:

lim
ε→0

sinc
(
k

2 (π − 2ε)
)

= lim
ε→0

2
k(π − 2ε) sin

(
k

2 (π − 2ε)
)

= 2
kπ

(−1) k−1
2 [k ∈ 2Z+ 1] ,

but

[k ∈ 2Z+ 1][k ∈ 2Z] ≡ 0 ,

while for k = 0:

lim
ε→0

sinc
(

0
2 (π − 2ε)

)
= lim

ε→0
1 = 1 .
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Using all the above, the problem (4.10) can be expressed in terms of Fourier
coefficients:

ḟk(t) = −k2fk(t)−B(t)
∑

m∈2Z+1

gk−mfm(t)−B(t)Gk , k ∈ 2Z+ 1 (4.17)

with the initial condition

fk(0) = f 0
k .

This is not trivial to solve because all modes are coupled.

4.2. Source Located in Boundary

In the limit where the source is located in the boundary, i. e. ε → 0, the problem
(4.17) can be solved analytically. Then the modes decouple because gk → [k = 0],
as presented in the previous section.

So the decoupled problem reads ḟk(t) = −
(
k2 +B(t)

)
fk(t) + 2i

kπ
B(t)

fk(0) = f 0
k

for k ∈ 2Z+ 1 . (4.18)

Using the abbreviation B(t) =
∫ t

0 B(τ)dτ the fundamental solution is given by

e−k2t−B(t) , k ∈ 2Z+ 1 .

For a given k ∈ 2Z+ 1 variation of constants provides the ansatz

fk(t) = rk(t) e−k2t−B(t) (4.19)

to solve the inhomogeneous problem (4.18). Inserting the ansatz results in ṙk(t) = 2i
kπ
B(t) ek2t+B(t)

rk(0) = fk(0) = f 0
k

,
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which can be integrated immediately. The solution

r(t) = f 0
k + 2i

kπ

∫ t

0
B(τ) ek2τ+B(τ)dτ ,

together with (4.19), yields

fk(t) = f 0
k e−k2t−B(t) + 2i

kπ
e−k2t−B(t)

∫ t

0
B(τ) ek2τ+B(τ)dτ (4.20)

= f 0
k e−k2t−B(t) + 2i

kπ

∫ t

0
B(τ) ek2(τ−t)+B(τ)−B(t)dτ . (4.21)

4.3. Solution for Special Driving

In the following I assume a constant influx that is perturbed periodically:

B(t) = A2 + P sin Ωt (4.22)

with positive constants A, P and Ω, and A2 ≥ P for the sake of a non-negative
input signal. The frequency Ω can be understood to model a period of about one
year. Thus this input is a first approximation to the real rain which usually displays
seasonal oscillations.
Let the source be located at x = ε→ 0 as discussed in the previous section. With

the antiderivative of the input signal

B(t) =
∫ t

0
B(τ) dτ = A2t+ P

Ω (1− cos Ωt)

equation (4.21) takes the form

fk(t) = f 0
k e−(k2+A2)t ePΩ (1−cos Ωt)

+ 2i
kπ

∫ t

0

(
A2 + P sin Ωτ

)
e−(k2+A2)(t−τ) ePΩ (cos Ωt−cos Ωτ)dτ

= f 0
k e−(k2+A2)t ePΩ (1−cos Ωt)

+ 2i
kπ

e−(k2+A2)t ePΩ cos Ωt
∫ t

0

(
A2 + P sin Ωτ

)
e(k2+A2)τ e−PΩ cos Ωτdτ︸ ︷︷ ︸

=:I

. (4.23)

The long time behavior of the solution does not depend on the initial condition f 0

since the corresponding term decays exponentially. The second term depends on
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the input and the physical properties of the model. Therefore, the latter contains
the information about the long time behavior of the flow and I will not discuss the
former in the following.

The integral I is still not easy to solve. Let N � max
{
P
Ω , 1
}
be given, then for

long times

t >
N

A2 > t∗k := N

k2 + A2 (4.24)

it can be approximated. For this purpose the integral is divided in three parts, each
of which will be taken care of separately:

I =
∫ t∗k

0

(
A2 + P sin Ωτ

)
e(k2+A2)τ e−PΩ cos Ωτdτ︸ ︷︷ ︸

=:I1

+
∫ t

t∗k

A2 e(k2+A2)τ e−PΩ cos Ωτdτ︸ ︷︷ ︸
=:I2

+
∫ t

t∗k

P sin Ωτ e(k2+A2)τ e−PΩ cos Ωτdτ︸ ︷︷ ︸
=:I3

= I1 + I2 + I3 .

The first part of the integral can be estimated very roughly via

I1 <
(
A2 + P

) N

k2 + A2 eN ePΩ , (4.25)

which is independent of time. To simplify matters in the second and third parts,
I assume that the term involving the cosine in the exponential function can be
neglected against the growing exponential factor2. Applying this approximation to
the second part results in

I2 ≈
∫ t

t∗k

A2 e(k2+A2)τdτ = A2

k2 + A2

(
e(k2+A2)t − eN

)
. (4.26)

2At this point this is an uncontrolled approximation. Its quality will be checked a posteriori in
section 4.4, where we discuss to what quality the obtained solution approximates the solution
of equation (4.21).

16



For the third and last part of I one finds

I3 ≈ P

∫ t

t∗k

sin Ωτ e(k2+A2)τdτ = P Im
∫ t

t∗k

e(k2+A2+iΩ)τdτ

= P Im 1
k2 + A2 + iΩ

(
e(k2+A2+iΩ)t − e(k2+A2+iΩ)t∗k

)

= P Im k2 + A2 − iΩ
(k2 + A2)2 + Ω2

(
e(k2+A2)t (cos Ωt+ i sin Ωt)− eN (cos Ωt∗k + i sin Ωt∗k)

)
= P e(k2+A2)t

(k2 + A2)2 + Ω2

((
k2 + A2) sin Ωt− Ω cos Ωt

)
− P eN

(k2 + A2)2 + Ω2

((
k2 + A2) sin Ωt∗k − cos Ωt∗k

)
.

Since the entire integral I in the solution (4.23) is multiplied with e−(k2+A2)t, every
term in I that is bounded can be neglected for t > N

A2 .

In total the long term solution reads

fk(t) = 2i
kπ

ePΩ cos Ωt
(

A2

k2 + A2 + P
(k2 + A2) sin Ωt− Ω cos Ωt

(k2 + A2)2 + Ω2

)
, (4.27)

f(x, t) =
∑

k∈2N+1

2ifk(t) sin kx

= − 4
π

ePΩ cos Ωt
∑

k∈2N+1

sin kx
k

(
A2

k2 + A2 + P
(k2 + A2) sin Ωt− Ω cos Ωt

(k2 + A2)2 + Ω2

)
= − 4

π
ePΩ cos Ωt

∑
k∈2N+1

sin kx
k

(
A2

k2 + A2 + P Im eiΩt

k2 + A2 + iΩ

)
. (4.28)

4.4. Limitation of the Solution

As a consequence of the approximations made in the previous section, the solution
(4.27) will only be suitable for a reduced set of parameters. In order to determine
this range of parameters, I test the solution using the original problem in the form
(4.18):

ḟk(t) +
(
k2 +B(t)

)
fk(t) = 2i

kπ
B(t) , k ∈ 2Z+ 1 . (4.29)
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Differentiation of the solution with respect to time yields

ḟk(t) = −P sin(Ωt)fk(t) + 2i
kπ

ePΩ cos ΩtP Im iΩ eiΩt

k2 + A2 + iΩ

=
(
A2 −B(t)

)
fk(t) + 2i

kπ
ePΩ cos ΩtP Im iΩ eiΩt

k2 + A2 + iΩ ,

which implies

ḟk(t) +
(
k2 +B(t)

)
fk(t) =

(
k2 + A2) fk(t) + 2i

kπ
ePΩ cos ΩtP Im iΩ eiΩt

k2 + A2 + iΩ

= 2i
kπ

ePΩ cos Ωt
(
A2k

2 + A2

k2 + A2 + P Im eiΩtk
2 + A2 + iΩ
k2 + A2 + iΩ

)
︸ ︷︷ ︸

=A2+P sin Ωt=B(t)

= 2i
kπ
B(t) ePΩ cos Ωt

6≡ 2i
kπ
B(t) .

This means, that only in the limit P
Ω → 0 the solution (4.28) is a valid solution to

(4.29). Therefore, I want to assume P
Ω � 1 in the following.

4.5. Analysis of the Solution

4.5.1. Comparison With Steady State

It is easy to see, that the approximated solution becomes time-independent for a
constant influx B(t) = A2, i. e. setting P = 0 in (4.28) results in

f(x) = −
∑

k∈2N+1

4
πk

A2

k2 + A2 sin kx . (4.30)

This series is equivalent to the steady state solution (3.6) if the further assumptions
β = π

2 , ε = 0, the rescaling and shifting

f s(x) := ϕs(x)
ϕs(0) − 1 =

cosh
(
A
(
π
2 − x

))
cosh πA

2
− 1 ,

as well as the mirroring from (4.8) are applied to the steady state potential

ϕs(x) = cosh
(
A
(
π
2 − x

))
.
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Because of the symmetries it is sufficient to calculate the Fourier coefficients for
k ∈ 2N+ 1 by

2if s
k = 4

π

∫ π
2

0
f s(x) sin(kx) dx = 4

π cosh πA
2

∫ π
2

0
cosh

(
A
(
π
2 − x

))
sin(kx) dx︸ ︷︷ ︸

=:I4

− 4
πk

.

Partially integrating I4 twice reproduces the integral:

I4 = −1
k

cosh
(
A
(
π
2 − x

))
cos(kx)

∣∣∣∣π2
0
− A

k

∫ π
2

0
sinh

(
A
(
π
2 − x

))
cos(kx) dx

= 1
k

cosh πA2 −
A

k
sinh

(
A(π2 − x

)
sin(kx)

∣∣∣∣π2
0︸ ︷︷ ︸

=0

−A
2

k2 I4

= 1
k

cosh πA2 −
A2

k2 I4 .

Thus the integral itself is given by

I4 = k

k2 + A2 cosh πA2 .

This implies
2if s

k = 4
π

(
k

k2 + A2 −
1
k

)
= − 4

πk

A2

k2 + A2 ,

which coincides with (4.30). In summary, for x ∈
[
0,π2
]
the following holds:

∑
k∈2N+1

4
πk

A2

k2 + A2 sin kx = 1−
cosh

(
A
(
π
2 − x

))
cosh πA

2
. (4.31)
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Since this equation remains valid when replacing A2 → A2 + iΩ , it can be exploited
to calculate the series in the time-dependent long term solution:

f(x, t) = − 4
π

∑
k∈2N+1

sin kx
k

(
A2

k2 + A2 + P Im eiΩt

k2 + A2 + iΩ

)
= −

∑
k∈2N+1

4
πk

A2

k2 + A2 sin kx

− P Im
(

eiΩt

A2 + iΩ
∑

k∈2N+1

4
πk

A2 + iΩ
k2 + A2 + iΩ sin kx

)

= −
(

1−
cosh

(
A
(
π
2 − x

))
cosh πA

2

)

− P Im
(

eiΩt

A2 + iΩ

(
1−

cosh
(√

A2 + iΩ
(
π
2 − x

))
cosh π

2

√
A2 + iΩ

))
. (4.32)

4.5.2. Outflux

We now analyze the current

 = ∂2
xf

f + 1

provided by (4.32), especially the current leaving the system at x = π
2 . With

∂2
xf(x, t) = A2 cosh

(
A
(
π
2 − x

))
cosh πA

2
+ P Im eiΩt cosh

(√
A2 + iΩ

(
π
2 − x

))
cosh

(
π
2

√
A2 + iΩ

)
and sech x := 1

coshx the outflux J(t) := 
(
π
2 , t
)
can be written compactly:

J(t) =
A2 + P cosh

(
πA
2

)
Im eiΩt sech

(
π
2

√
A2 + iΩ

)
1− P cosh

(
πA
2

)
Im eiΩt

A2+iΩ

(
1− sech

(
π
2

√
A2 + iΩ

)) . (4.33)

This result already shows, that in general there is a phase shift between the
outflux J(t) and the influx B(t): the imaginary part of sech

(
π
2

√
A2 + iΩ

)
in the

numerator does not vanish for all A and Ω. Its complex phase can be absorbed
into the exponential function. The corresponding term in the denominator provides
another phase shift.
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A very interesting limit is that of very slow changing in the influx:

Ω� A2 =⇒ A2 + iΩ ≈ A2 .

In that case the outflux is very simple:

J(t) ≈ A2 + P sin Ωt
1− P σ(A) sin Ωt , (4.34)

where

σ(y) =
cosh πy

2 − 1
y2 = π2

4

∞∑
n=0

1
(2n+ 2)!

(πy
2

)2n
= π2

8 + π4

384 y
2 +O(y4)

is a well defined positive function. The similarity of J(t) and B(t) is already obvi-
ous. Since P � Ω � A2, the outflux (4.34) has no poles for sufficiently small A.
Consequently the denominator can be expanded into a geometric series:

1
1− P σ(A) sin Ωt =

∞∑
n=0

(
P σ(A) sin Ωt

)n
= 1 + P σ(A) sin Ωt+O(P 2) ,

The outflux up to the second order in P reads

J(t) = A2 +
(
1 + A2σ(A)

)
P sin Ωt+O(P 2)

= B(t) + PA2σ(A) sin Ωt+O(P 2) . (4.35)

The terms of higher order in P should be considered small against A2. Up to second
order in P the determined solution faithfully describes the mass balance of the
system: the mean output is A2, i.e. it agrees with the mean input. This provides
further confidence in the faithfulness of the predictions which presumably can be
trusted to linear order in P . This leading order results suggest an amplification of
the perturbation: Since σ is positive, the factor of amplification is 1+A2σ(A) > 1 .
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5. Discussion and Summary
In the preceding section the current

 = ∂2
xf

f + 1

was determined. Accordingly the water content as a function of space and time is
given as

ρ = − ∂xf

f + 1 .

These two functions are plotted in the figures 5 to 7. All these figures have in com-
mon, that for increasing A, but unchanged P = 10−2 and Ω = 1

4 , the amplification
of the perturbation increases, even though the relative perturbation P/A2 becomes
smaller and smaller.
For even higher A the density and the flux display poles as can already be seen

in equation (4.34). That effect could be inherited from the simple model discussed
in section 2. We do not expect that it describes the real physics:

• The soil will eventually be advected or compressed due to the high current.

• The water density in a random point is bounded by the physical pressure of
the environment. The pressure is not at all taken into account.

On the other hand, the model shows another interesting phenomenon: the water
can be stored in the soil column for some time, before finally being entirely released
(cf. figure 6). The possibility to store and later release water might be the physical
background of the observed singularities. For a system with this property, a noisy
input signal, e. g. rain, could cause severe floods in response to an in comparison
relatively small stimulus in the input flux.
In order to further substantiate this expectation it would be of considerable in-

terest to expand the results of the present thesis to cover the response to a noisy
input with a broad spectrum of input frequencies.
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Figure 5: The outflux J(t) scaled by the average outflux A2 for different A (as indi-
cated in the legend) and fixed P = 10−2.
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Figure 6: The density ρ as a function of x and t for A = 2.00 (left) and A = 5.55
(right), respectively. The amplitude of the perturbation is set to P = 10−2.
Beware the vastly different scales of the output signal.

23



A = 2.00

0
0.4

0.8
1.2

1.6
x

0 10 20 30 40 50 60

t

0.96
0.98

1
1.02
1.04

ρ(x,t)/ρeq(x)

A = 3.00

0
0.4

0.8
1.2

1.6
x

0 10 20 30 40 50 60

t

0.92
0.96

1
1.04
1.08

ρ(x,t)/ρeq(x)

A = 4.00

0
0.4

0.8
1.2

1.6
x

0 10 20 30 40 50 60

t

0.8
0.9
1

1.1
1.2

ρ(x,t)/ρeq(x)

A = 5.00

0
0.4

0.8
1.2

1.6
x

0 10 20 30 40 50 60

t

0.4
0.8
1.2
1.6
2

2.4

ρ(x,t)/ρeq(x)

A = 5.50

0
0.4

0.8
1.2

1.6
x

0 10 20 30 40 50 60

t

0.1

1

10

100

ρ(x,t)/ρeq(x)

A = 5.55

0
0.4

0.8
1.2

1.6
x

0 10 20 30 40 50 60

t

0.1

1

10

100

ρ(x,t)/ρeq(x)

Figure 7: The ratio of the density −∂xf(x,t)/(1 + f(x, t)) and its steady state coun-
terpart A tanh

(
A (π2 − x)

)
for different average flux A2 (A = 2.00, 3.00,

4.00, 5.00, 5.50, and 5.55, respectively; as indicated above the respective
panels), and fixed amplitude P = 10−2 of the periodic perturbation. Note
the rapid increase of the deviations with increasing average flux A.
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Appendix

A. Properties of Fourier Series

In order to solve the time dependent problem I use a Fourier representation of the
fields. Some of the general properties that are not obvious will be presented in the
following.
For a square integrable function u ∈ L2 ([0, X]) the Fourier expansion

u(x) =
∑
k∈Z

uk e 2πikx
X

identifies the function with a square summable sequence {uk}k∈Z. Since the canon-
ical inner product in L2 ([0, X]) is given by

〈u, v〉 =
∫ X

0
u(x)v(x) dx , (A.1)

the functions
{

e 2π
X

ik ·
}
k∈Z

are orthogonal:

〈
e 2π
X

ik ·, e 2π
X

il ·
〉

=
∫ X

0
e 2π
X

i(k−l)x dx = X δkl . (A.2)

The Fourier expansion expresses the fact, that this indexed family of functions is an
orthogonal basis of L2([0, X]) and this implies that the members of the representing
sequence, also called Fourier coefficients, can be calculated by

uk = 1
X

∫ X

0
u(x) e− 2π

X
ikx dx . (A.3)

By periodic extension, any function in L2([0, X]) can be identified with a periodic
function. The scalar product can then be calculated over any full period: For
p = r + kX where r ∈ [0, X) and k ∈ Z holds∫ p+X

p

u(x)v(x) dx =
∫ r+X

r

u(x)v(x) dx =
(∫ X

r

+
∫ r+X

X

)
u(x)v(x) dx

=
(∫ X

r

+
∫ r

0

)
u(x)v(x) dx =

∫ X

0
u(x)v(x) dx

= 〈u, v〉 .

25



In the following I will assume a function in L2([0, X]) to be periodically extended
whenever it is convenient. On the other hand, any bounded function with period X
has a representation in L2([0, X]).
Suppose a function w ∈ L2([0, X]) to be symmetric or antisymmetric around a

point p :

w(p+ x) = ±w(p− x) . (A.4)

Then the Fourier coefficients have a certain symmetry property as well:

wk = 1
X

∫ X

0
w(x) e− 2π

X
ikxdx = 1

X

∫ −p+X
−p

w(p+ y) e− 2π
X

ik(p+y)dy

= ± 1
X

∫ −p+X
−p

w(p− y) e− 2π
X

ik(p+y)dy = ± e− 2π
X

ikp 1
X

∫ −p+X
−p

w(p− y) e− 2π
X

ikydy

= ± e− 4π
X

ikp 1
X

∫ 2p

2p−X
w(z) e 2π

X
ikzdz = ± e− 4π

X
ikp w−k . (A.5)

The case X = 2π together with a real valued function u and the symmetries

u(π + x) = −u(π − x) and u(π2 + x) = u(π2 − x)

plays a major role in my work. Here, the equation (A.5) takes the form

uk = −u−k and uk = (−1)k u−k ,

respectively. This can only be true, if the uk vanish for k ∈ 2Z. The entire Fourier
representation of u immediately simplifies to

u(x) =
∑
k∈Z

uk eikx =
∑

k∈2N+1

2iuk sin kx . (A.6)

Real-valued functions have a further symmetry in the Fourier coefficients:

uk = u−k ,

which can easily be seen from (A.3). Thus for an odd real-valued function the
Fourier coefficients are purely imaginary: uk = u−k = −uk .
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