CHEMISTRY A European Journal

Supporting Information

Bichromophoric Compounds with Orthogonally and Parallelly Arranged Chromophores Separated by Rigid Spacers

Dirk N. H. Meineke,* Mariano L. Bossi, Haisen Ta, Vladimir N. Belov,* and Stefan W. Hell*[a]

chem_201605587_sm_miscellaneous_information.pdf

Table of Content

1 General Information 4
1.1 Solvents and Reagents 4
1.2 Preparative Methods 4
1.3 Thin Layer Chromatography (TLC) 4
1.4 Column Chromatography 4
1.5 Nuclear Magnetic Resonance (NMR) 4
1.6 Mass Spectrometry (MS) 5
1.7 High-Performance Liquid Chromatography (HPLC) 5
1.8 Fluorescence quantum yield determination 5
2 Anisotropy measurements 6
2.1 Time resolved anisotropy 6
2.1.1 Anisotropy decays for $\mathbf{B} \perp \mathbf{B}, \mathbf{B} \| \mathbf{B}, \mathbf{B}$ 6
2.1.2 Anisotropy Decays for $\mathbf{B} \perp \mathbf{R}, \mathbf{B} \| \mathbf{R}, \mathbf{R}$ 7
2.2 Steady State Anisotropy 8
2.2.1 Steady State Anisotropy for $\mathbf{B} \perp \mathbf{B}, \mathbf{B} \mid \boldsymbol{B}, \mathbf{B}$ 8
2.2.2 Steady State Anisotropy for $\mathbf{B} \perp \mathbf{R}, \mathbf{B} \| \mathbf{R}, \mathbf{R}$ 9
2.3 Effective hydrodynamic volumes and DFT structures 10
3 Photon Antibunching Experiments 12
3.1 Experimental Setup 12
3.2 Determination of emitters per molecule 13
4 Estimation of FRET efficiency 15
4.1 Optimized geometries and transition dipole moments 15
4.2 Calculation of orientation factor 19
4.3 Determination of spectral overlap integral 19
4.4 Förster radius 19
4.5 Calculation of FRET efficiency 20
5 Syntheses 21
5.1 3-Bromo-5'-iodo-2,2'-bithienyl (2) 22
5.2 3-Bromo-5'-(p-methoxyphenyl)-2,2'-bithienyl (3) 23
5.3 3-Bromo-5-iodo-5'-(p-methoxyphenyl)-2,2'-bithienyl (4) 24
5.4 3-Bromo-5'-(p-methoxyphenyl)-5-(4-pyridyl)-2,2'-bithienyl (5) 25
5.5 Compound 6 26
5.6 Compound 7 27
5.7 Compound 8 28
5.8 2-Bromo-4,4'-diiodobiphenyl (10) 30
5.9 2-[2'-Bromo-4'-(5-methyl-2-thienyl)-4-biphenylyl]-5-methylthiophene (11) 31
5.10 Compound 12 32
5.11 Compound 13 33
5.12 Compound rac-14 35
5.13 Compound 15 37
5.14 Compound B 39
5.15 Compound B \perp B 40
5.16 Compound $\mathbf{B} \| \mathbf{B}$ 42
5.17 Compound B \perp R 44
5.18 Compound $\mathbf{B} \| \mathbf{R}$ 46
5.19 Compound \mathbf{R} 47
$6{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and HPLC chromatograms 48
6.1 3-Bromo-5'-iodo-2,2'-bithienyl (2) 48
6.2 3-Bromo-5'-(p-methoxyphenyl)-2,2'-bithienyl (3) 49
6.3 3-Bromo-5-iodo-5'-(p-methoxyphenyl)-2,2'-bithienyl (4) 50
6.4 3-Bromo-5'-(p-methoxyphenyl)-5-(4-pyridyl)-2,2'-bithienyl (5) 51
6.5 Compound 6 52
6.6 Compound 7 53
6.7 Compound 8 54
6.8 2-Bromo-4,4'-diiodobiphenyl (10) 55
6.9 2-[2'-Bromo-4'-(5-methyl-2-thienyl)-4-biphenylyl]-5-methylthiophene (11) 56
6.10 Compound 12 57
6.11 Compound 13 58
6.12 Compound 15 59
6.13 Compound rac-14 60
6.14 Compound B 61
6.15 Compound $\mathbf{B} \perp \mathbf{B}$ 62
6.16 Compound $\mathbf{B} \| \mathbf{B}$ 63
6.17 Compound B \perp R 64
6.18 Compound B\|R 66
6.19 Compound R 67
References 68

1 General Information

1.1 Solvents and Reagents

The used solvents had the purity pro analysi. Anhydrous solvents were dried over molecular sieves. Commercially available substances were used without further purification. 2,6-adamantanedione was purchased from Ambinter (a trademark of Greenpharma S.A.S), Orléans, France.

1.2 Preparative Methods

If not stated otherwise, reactions were carried out with magnetic stirring under an argon atmosphere. For reactions at low temperatures, an acetone/dry ice bath was used. Reactions at $0^{\circ} \mathrm{C}$ were carried out using an ice-bath. Microwave-assisted organic synthesis were performed on a CEM Discover closed vessel microwave

1.3 Thin Layer Chromatography (TLC)

Analytical TLC was performed on ready-to-use plates. For TLC on silica gel ALUGRAM SIL G/UV 254 silica gel 60 (MACHEREY-NAGEL GmbH \& Co. KG) was used. For TLC on reversed phase (RP) silica gel 60 RP-18 F254s (MERCK KGaA) was used.

1.4 Column Chromatography

Silica gel 60 with different particle sizes was used: 0.015-0.040 mm, 0.040-0.063 mm, and 0.05-0.2 mm (MACHEREY-NAGEL GmbH \& Co. KG). RP column chromatography was carried out on POLYGREP 60-50 C_{18} (MACHEREY-NAGEL GmbH \& Co. KG).

1.5 Nuclear Magnetic Resonance (NMR)

Routine NMR spectra were recorded with an Agilent 400MR spectrometer. Some NMR spectra were recorded on Mercury-300, Unity-300 and Varian Inova-600 spectrometers. All spectra are referenced to tetramethylsilane as an internal standard ($\delta=0 \mathrm{ppm}$) using the signals of the residual protons of CHCl_{3} (7.26 ppm) in $\mathrm{CDCl}_{3}, \mathrm{CHD}_{2} \mathrm{OD}(3.31 \mathrm{ppm})$ in $\mathrm{CD}_{3} \mathrm{OD}$ or $\mathrm{DMSO}^{-\mathrm{d}_{5}}(2.50 \mathrm{ppm})$ in DMSO- d_{6}. Multiplicities of signals are described as follows: $s=$ singlet, $s_{b r}=b r o a d$ singlet, $d=$ doublet, $d_{b r}=$ broad doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet. In case of diastereotopic protons, a marks the high-field shifted proton and ${ }_{b}$ the low-field shifted signal. Coupling constants ${ }^{n} J_{x, y}$ are given in Hz , where n is the number of bonds between the two coupling nuclei x and y. Proton and carbon resonances were assigned with the aid of COSY, HSQC , and $\mathrm{HMBC}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ and ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C} 2 \mathrm{D}$ correlations.

1.6 Mass Spectrometry (MS)

Low resolution mass spectra (ESI) were obtained with a Varian 500-MS. High resolution mass spectra (ESI-HRMS) were obtained on a Bruker APEX IV spectrometer.

1.7 High-Performance Liquid Chromatography (HPLC)

Analytical and preparative HPLC were performed on a Knauer HPLC system: Smartline pump 1000 (2x), UV detector 2500, column thermostat 4000, mixing chamber, injection valve with $20 \mu \mathrm{~L}$ loop for the analytical column and $200 \mu \mathrm{l}$ loop for the preparative column; 6-port-3-channel switching valve; analytical column: Eurospher-100 $C_{18}, 5 \mu \mathrm{~m}, 250 \times 4 \mathrm{~mm}$; preparative column: Eurospher-100 $C_{18}, 5 \mu \mathrm{~m}$, $8 \times 250 \mathrm{~mm}, 200 \mu \mathrm{l}$ loop; flow rate: $1.2 \mathrm{ml} / \mathrm{min}$ (or $5 \mathrm{ml} / \mathrm{min}$ in the preparative mode); solvent A: water + 0.1% v/v TFA, solvent B : $\mathrm{MeCN}+0.1 \% \mathrm{v} / \mathrm{v}$ TFA; gradient $A / B: 70: 30 \rightarrow 0: 100$ in 25 min (unless stated otherwise).

1.8 Fluorescence quantum yield determination

Fluorescence quantum yields were determined by comparative method. ${ }^{[1]}$ The fluorescence quantum yield of the blue chromophore in $\mathbf{B} \perp \mathbf{B}, \mathbf{B} \| \mathbf{B}$, and \mathbf{B} was determined using Coumarin 120 in methanol as fluorescence quantum yield standard $\left(\Phi_{\mathrm{f}}=0.51\right)^{[2]}$. The fluorescence quantum yield of \mathbf{R} was determined using Rhodamine 6G in ethanol as fluorescence quantum yield standard ($\left.\Phi_{\mathrm{f}}=0.95\right)^{[3]}$.

2 Anisotropy measurements

2.1 Time resolved anisotropy

TCSPC measurements were performed in a custom-made setup consisting of a LDH-P-C-375 (blue chromophores excitation) or a LDH-P-C-510 (red chromophores excitation) picosecond pulsed laser (PicoQuant, Berlin, Germany), running on its internal clock at a frequency of 40 MHz , an ID100-50 (ID Quantique SA, Geneva, Switzerland) SPAD detector, and a PicoHarp 300 stand-alone TCSPC module. The sync signal used to compute the photon arrival times was provided by the laser driver. Count rates on the detector where adjusted to values below $10^{4} \mathrm{MHz}$ in all cases (typically $\sim 10^{3} \mathrm{MHz}$). An "L-shape" geometry was used with two Glan-Thompson polarizers (B. Halle Nachfl. GmbH, Berlin, Germany), a $440 / 40 \mathrm{~nm}$ or a $620 / 60 \mathrm{~nm}$ bandpass filter (AHF Analysentechnik, Tübingen, Germany) placed in front of the detector, and diverse lenses to collimate the excitation light and to collect and focus the emission onto the detector. The temperature of the sample was controlled with a single Peltier cell holder (Varian Inc., Australia). The internal response function (IRF) was collected with a dispersant in identical conditions than sample's measurements except for the bandpass filter which was removed. Fluorescence decays were deconvoluted and fitted using custom made routines.

2.1.1 Anisotropy decays for $\mathbf{B} \perp \mathbf{B}, \mathbf{B} \boldsymbol{\|}, \mathbf{B}$

Figure S1. Anisotropy decays of compound $\mathbf{B} \perp \mathbf{B}$ (red symbols), $\mathbf{B} \| \mathbf{B}$ (blue symbols) and \mathbf{B} (black symbols) in bis(2-ethylhexyl)phthalate (DEHP) at different temperatures. Black lines correspond to the best biexponential fits.

2.1.2 Anisotropy Decays for $\mathbf{B} \perp \mathbf{R}, \mathbf{B} \| \mathbf{R}, \mathbf{R}$

Figure S2. Anisotropy decays (time-resolved anisotropy for compounds $\mathbf{R}, \mathbf{B} \perp \mathbf{R}$ and $\mathbf{B} \| \mathbf{R}$ in DEHP at $4^{\circ} \mathrm{C}$ with excitation at 515 nm (left plots) and 375 nm (right plots). Detection was performed at 620 nm $(\pm 30 \mathrm{~nm})$ in all cases, near the emission maxima of the red chromophore. Dots represent values directly calculated from experimental measurements, and the lines are values calculated from the best fits to the corresponding decays with deconvolution of the IRF.

2.2 Steady State Anisotropy

Steady state anisotropy measurements were performed in a Cary Eclipse fluorescence spectrophotometer (Varian Inc., Australia), equipped with a film polarizer in the detection arm, and a Glan-Thompson polarizers (B. Halle Nachfl. GmbH, Berlin, Germany) in the excitation one. The temperature of the sample was controlled with a single Peltier cell holder (Varian Inc., Australia).

The sample was excited with vertically polarized light. The vertically and horizontally polarized fluorescence intensities I_{vv} and $I_{\mathrm{VH}}(\mathrm{V}=$ vertical, $\mathrm{H}=$ horizontal, first subscription: orientation of the excitation polarizer, second subscription: orientation of the emission polarizer) were measured. The G factor, which is the instrument sensitivity factor for vertically and horizontally polarized light, was determined according to $G=\int I_{\mathrm{HV}} \mathrm{d} t / \int I_{\mathrm{HH}} \mathrm{d} t$. Then the total fluorescence intensity was calculated according to $I_{\mathrm{TOT}}=I_{\mathrm{VV}}+2 G I_{\mathrm{VH}}$.

2.2.1 Steady State Anisotropy for $\mathbf{B} \perp \mathbf{B}, \mathbf{B} \| \mathbf{B}, \mathbf{B}$

Figure S3. Excitation spectrum ($I_{\text {Tot }}=I_{\mathrm{Vv}}+2 G I_{\mathrm{VH}} ;$ black lines) and measured steady state anisotropy of compounds $\mathbf{B} \perp \mathbf{B}$ (red lines), $\mathbf{B} \| \mathbf{B}$ (blue lines) and \mathbf{B} (black lines) in DEHP at $4^{\circ} \mathbf{C}$. The average anisotropy calculated from time-resolved anisotropy measurements is plotted with dashed lines for each chromophore.

2.2.2 Steady State Anisotropy for $\mathbf{B} \perp \mathbf{R}, \mathbf{B} \| \mathbf{R}, \mathbf{R}$

Figure S4. Excitation spectrum ($I_{\text {tot }}=I_{\mathrm{vv}}+2$ G I_{vH}; black lines) and measured steady state anisotropy (red lines) of compounds $\mathbf{R}, \mathbf{B} \perp \mathbf{R}$ and $\mathbf{B} \| \mathbf{R}$ in $D E H P$ at $4^{\circ} \mathrm{C}$. The anisotropy value at 375 nm excitation (used for TCSPC experiments) is highlighted. The average anisotropy of the first UV excitation band and the red absorption band is shown with dashed lines, for each chromophore.

2.3 Effective hydrodynamic volumes and DFT structures

The longest characteristic time of rotational anisotropy decays (or rotational correlation time) $\tau_{\text {rot }}$ for compounds $\mathbf{B} \perp \mathbf{B}, \mathbf{B} \| \mathbf{B}$ and \mathbf{B} was determined at different temperatures in order to determine the effective hydrodynamic volume V_{h} for each compound. Therefore, the rotational correlation time $\tau_{\text {rot }}$ was plotted against the viscosity η of the solvent (DEHP) ${ }^{[4]}$ at the corresponding temperature (Figure S5).

Figure S5. Rotational (longest) characteristic time of anisotropy decays $\tau_{\text {rot }}$ of compounds $\mathbf{B} \perp \mathbf{B}, \mathbf{B} \| \mathbf{B}$ and \mathbf{B} in DEHP as a function of solvent viscosity. The lines correspond to the best linear fits.

The effective hydrodynamic volume V_{h} was calculated from the slope of the plot according to

$$
\begin{equation*}
\tau_{\text {rot }}=\frac{\eta}{k_{\mathrm{B}} T} V_{\mathrm{h}} . \tag{1}
\end{equation*}
$$

The resulting effective hydrodynamic volumes V_{h} and radii of spheres $r_{\text {sphere }}$ with these volumes are listed in Table S1.

Table S1. Calculated hydrodynamic volumes V_{h} and corresponding sphere radii.

compound	V_{h} / \AA^{3}	$r_{\text {sphere }} / \AA$	
\mathbf{B}	$6.86 \cdot 10^{3}$	11.8	
$\mathbf{B} \perp \mathbf{B}$	$1.20 \cdot 10^{4}$	14.2	
$\mathbf{B} \\| \mathbf{B}$	$1.36 \cdot 10^{4}$	14.8	

Figure $\mathbf{S 6}$ shows ground state energy minimized $D F T$ structures of compounds $\mathbf{B} \perp \mathbf{B}, \mathbf{B} \| \mathbf{B}$ and \mathbf{B} drawn inside spheres which correspond to the hydrodynamic volume listed in Table S1 (see section 4 for computational details).

Figure S6. Orthographic projections of ground state geometries optimized by density functional calculations, drawn inside spheres with volumes corresponding to the effective hydrodynamic volume.

3 Photon Antibunching Experiments

3.1 Experimental Setup

Figure S7. Confocal microscope combined with two independent detection channels. BS: beam splitter; $D_{1,2}$: avalanche photon diodes; DM: dichroic mirrors; F: fluorescence band pass filter; HW: half-wave plate; L: lens; M: Mirror; OB: objective; PH: pinhole; QW: quarter-wave plate.

A 375 nm diode laser (LDH-P-C-375; PicoQuant, Berlin, Germany) was fed to an optical fiber (PM-S405-XP; Thorlabs GmbH, Dachau/Munich, Germany) to generate a Gaussian beam. Circular polarization was generated after the excitation light passed a pair of half and quarter wave plates. Excitation light was then reflected by a hot mirror (M 254 H 00 ; Thorlabs) into an objective (HCX-PL-APO 100x/1.4-0.7 OIL CS; Leica Microsystems, Wetzlar, Germany) and the fluorescence was collected by the same objective and transmitted through the hot mirror. After a tube lens ($f=200 \mathrm{~mm}$), the fluorescence went through a $50 \mu \mathrm{~m}$ pinhole (correspond to ~ 1 airy disk diameter) and was collimated by another lens ($f=100 \mathrm{~mm}$) before it was split into two identical detection channels. Detection filters of type 460/60 (F39-46; AHF Analysentechnik AG, Tübingen, Germany) were used with single photon counting modules (COUNT @blue; Laser Components $G m b H$, Olching, Germany) as detectors. The excitation repetition rate was 40 MHz and the laser power was $\sim 21 \mu \mathrm{~W}$. The detected signal was transferred through a time-correlated single photon counting card (DPC 230; Becker \& Hickl GmbH, Berlin, Germany) and stored by a PC for post processing. Experimental control, data acquisition and analysis were performed with custom made MATLAB software.

3.2 Determination of emitters per molecule

The antibunching experiments with compounds $\mathbf{B} \perp \mathbf{B}, \mathbf{B} \| \mathbf{B}$ and \mathbf{B} were carried in chloroform at concentrations of 13,11 and $15 \mathrm{nmol} / \mathrm{l}$, respectively. The measurement time was 300 s for each. The data was analysed according to the method reported by Enderlein and co-workers. ${ }^{[5]}$ The correlation function was fitted by the model functions

$$
\begin{equation*}
A+B \sum_{j=0}^{\infty} \exp \left(-\frac{\left|t-j T_{\mathrm{rep}}\right|}{\tau}\right)-C \exp \left(-\frac{t}{\tau}\right) \tag{2}
\end{equation*}
$$

for lag time t close to zero and

$$
\begin{equation*}
A^{\prime}+B^{\prime} \sum_{j=0}^{\infty} \exp \left(-\frac{\left|t-j T_{\mathrm{rep}}\right|}{\tau}\right) \tag{3}
\end{equation*}
$$

for infinite lag time t (Figure S 8 , left). $T_{\text {rep }}$ is the time between subsequent laser pulses, whereas A, B, C, A^{\prime}, B^{\prime} and τ are fitting parameters. Although τ is the fluorescence lifetime it was not fixed during the fitting procedure. The number of independent emitters/chromophores per molecule was calculated by

$$
\begin{equation*}
n=\frac{B-B^{\prime}}{C} \tag{4}
\end{equation*}
$$

The fluorescence correlation spectroscopy curves were fitted to model function

$$
\begin{equation*}
D+\frac{E+F \exp \left(-\frac{t}{t_{1}}\right)+G \exp \left(-\frac{t}{t_{2}}\right)}{(1+t / a) \sqrt{1+t / b}} \tag{5}
\end{equation*}
$$

with $D, E, F, G, t_{1}, t_{2}, a$, and b as fitting parameters (Figure S8, right). While t_{1} and t_{2} correspond to the temporal decay of the ACF on a microsecond time scale, the parameters a and b are related to the diffusion of the fluorophores out of the detection volume. In the end, the corrected number independent emitters/chromophores per molecules is calculated by

$$
\begin{equation*}
n=\frac{B-B^{\prime}}{C} \frac{D+E+F+G}{D+E} \tag{6}
\end{equation*}
$$

Figure S8. Measured cross correlation functions. (left) Magnification at zero lag time $t \approx 0$ (plotted in blue) and at large lag time $t+\Delta t$ where Δt was chosen to be 1 s (plotted in red); (right) normalized cross correlation function by its value at $t=\infty$. Dots: measured cross correlation function; solid lines: fitting to the experimental data (model function equation 2 and 3).

4 Estimation of FRET efficiency

Although not valid at short donor-acceptor separations in the order of the fluorophore size, the energy transfer efficiency was estimated applying the FRET point-dipole approximation. For this purpose the photophysical properties of model compounds \mathbf{B} and \mathbf{R} were used. The geometrical arrangement of the transition dipole moments was determined by density functional theory (DFT) and time-dependent density functional theory (TD-DFT) calculations. ${ }^{[6]}$

4.1 Optimized geometries and transition dipole moments

All DFT and TD-DFT calculations were carried out using the Gaussian 09 program ${ }^{[7]}$ at the B3LYP/6-31G** level of theory in gas phase. Ground state geometries of compounds $B, R, B \perp B, B \perp R, B \| B$ and $B \| R$ were optimized using DFT calculations (Figures S9-S14). The S_{1} state geometry of model compound \mathbf{B} was optimized using TD-DFT (Figure S9).
ground state geometry

S_{1} state geometry

Figure S9. DFT and TD-DFT optimized geometries of model compound \mathbf{B} and corresponding transition dipole moments shown as double-headed arrows. Top: Ground state geometry with absorption ($\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$) transition dipole moment (red arrow); bottom: S_{1} state geometry and emission $\left(\mathrm{S}_{1} \rightarrow \mathrm{~S}_{0}\right)$ transition dipole moment (blue arrow). H atoms are omitted for sake of clarity.

Figure S10. DFT optimized geometry of model compound \mathbf{R} and absorption $\left(\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}\right)$ transition dipole moment shown as red double-headed arrow. H atoms are omitted for sake of clarity.

Figure S11. DFT optimized ground state geometry of bichromophore $\mathbf{B} \perp \mathbf{B}$. The absorption $\left(\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}\right)$ and emission ($\mathrm{S}_{1} \rightarrow \mathrm{~S}_{0}$) transition dipole moments are shown as red and blue double-headed arrows, respectively. H atoms are omitted for sake of clarity.

Figure S12. DFT optimized ground state geometry of bichromophore $\mathbf{B} \perp \mathbf{R}$. The absorption $\left(\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}\right)$ and emission ($\mathrm{S}_{1} \rightarrow \mathrm{~S}_{0}$) transition dipole moments are shown as red and blue double-headed arrows, respectively. H atoms are omitted for sake of clarity.

Figure S13. DFT optimized ground state geometry of bichromophore $\mathbf{B} \| \mathbf{B}$. The absorption $\left(\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}\right)$ and emission ($S_{1} \rightarrow S_{0}$) transition dipole moments are shown as red and blue double-headed arrows, respectively. H atoms are omitted for sake of clarity.

Figure S14. DFT optimized ground state geometry of bichromophore $\mathbf{B} \| \mathbf{R}$. The absorption $\left(S_{0} \rightarrow S_{1}\right)$ and emission $\left(S_{1} \rightarrow S_{0}\right)$ transition dipole moments are shown as red and blue double-headed arrows, respectively. H atoms are omitted for sake of clarity.

Absorption and emission transition dipole moments were calculated using TD-DFT (Figures S9-S14). According to the Franck-Condon principle, the absorption ($\mathrm{S}_{0} \rightarrow \mathrm{~S}_{1}$) transition dipole moments were calculated at the optimized S_{0} state geometries, whereas the emission ($\mathrm{S}_{1} \rightarrow \mathrm{~S}_{0}$) transition dipole moments were calculated at the optimized S_{1} state geometry. Absorption transition dipole moments were calculated for model compound \mathbf{R}, the red fluorophores of $\mathbf{B} \perp \mathbf{R}$ and $\mathbf{B} \| \mathbf{R}$, and for one fluorophore in $\mathbf{B} \| \mathbf{B}$ and $\mathbf{B} \perp \mathbf{B}$. In order to reduce the computational load, the emission transition dipole moment of the blue fluorophore (energy donor) was calculated exclusively for model compound B. The position and orientation was transferred to the blue fluorophores of the individual bichromophores in their ground state optimized geometry using the adamantane scaffold as reference system.

The transition dipole moments are shown as double-headed arrows with arbitrary length of $10 \AA$ (Figures S9-S14). The center of the double-headed arrow was positioned at the middle of the connecting bond between the phenyl (or thienyl) groups of the blue (or red) fluorophore (Figure S15).
a)

b)

Figure S15. Position of the transition dipole moment (marked as x) used in the context of the point dipole approximation; a) the center between atoms 4 a and 4 b was used for the blue fluorophore; b) the center between atoms 7a and 7b was used for the red fluorophore.

4.2 Calculation of orientation factor

From the angles between the transition dipole moments of the donor $\boldsymbol{\mu}_{\mathrm{D}}$ and acceptor $\boldsymbol{\mu}_{\mathrm{A}}$ and interconnecting vector $\boldsymbol{R}_{\mathrm{DA}}$ as defined in Figure S16, the orientation factor κ^{2} was calculated according to $\kappa^{2}=\left[\cos \left(\theta_{D A}\right)-3 \cos \left(\theta_{\mathrm{D}}\right) \cos \left(\theta_{\mathrm{A}}\right)\right]^{2}$ (Table S2).

Figure S16. Angles between transition dipole moments of the donor $\boldsymbol{\mu}_{\mathrm{D}}$ and acceptor $\boldsymbol{\mu}_{\mathrm{A}}$ and interconnecting vector $\boldsymbol{R}_{\text {DA }}$ relevant to the orientation factor κ^{2}.

4.3 Determination of spectral overlap integral

The spectral overlap integral $J_{\text {DA }}$ was calculated for the combinations of blue/blue and blue/red chromophores Based on the absorption and emission spectra of model compounds \mathbf{B} and \mathbf{R} (Table S2) according to ${ }^{[8]}$

$$
\begin{equation*}
J_{\mathrm{DA}}=\int F_{\lambda}(\lambda) \varepsilon(\lambda) \lambda^{4} \mathrm{~d} \lambda \tag{7}
\end{equation*}
$$

where $F_{\lambda}(\lambda)$ is the emission spectrum of the donor (model compound \mathbf{B}) normalized according to $\int F_{\lambda}(\lambda) \mathrm{d} \lambda=1$ and $\varepsilon(\lambda)$ is the absorption spectrum of the acceptor (model compound \mathbf{B} or \mathbf{R}).

4.4 Förster radius

The Förster radius R_{0} was calculated using the photophysical data of model compounds \mathbf{B} and \mathbf{R} with the refractive index of the solvent $n\left(\mathrm{CHCl}_{3}, 20{ }^{\circ} \mathrm{C}\right)=1.4459,{ }^{[9]}$ according to

$$
\begin{equation*}
R_{0}=\sqrt[6]{\frac{9 \ln (10)}{128 \pi^{5} N_{A}} \cdot \frac{\kappa^{2} \Phi_{\mathrm{D}} J_{\mathrm{DA}}}{n^{4}}}, \tag{8}
\end{equation*}
$$

where Φ_{D} is the quantum yield of the donor (model compound \mathbf{B}) in absence of the acceptor, J_{DA} is the spectral overlap between the donor (model compound \mathbf{B}) emission and acceptor (model compound B or R) absorption, and N_{A} is the Avogadro constant (Table S2).

4.5 Calculation of FRET efficiency

The FRET efficiency was calculated according to

$$
E_{\text {FRET }}=\frac{1}{1+\left(\frac{R_{\text {DA }}}{R_{0}}\right)^{6}},
$$

where $\left|\boldsymbol{R}_{\mathrm{DA}}\right|$ is the magnitude of the interconnecting vector between the positions of the transition dipole moments (determined as described above), i.e. the distance between donor and acceptor.

Table S2. Angles $\theta_{\mathrm{D}}, \theta_{\mathrm{A}}$ and θ_{DA} between transition dipole moments and interconnecting vector $\boldsymbol{R}_{\mathrm{DA}}$, orientation factor κ^{2}, distance between the donor and acceptor $\left|\boldsymbol{R}_{\mathrm{DA}}\right|$, spectral overlap J_{DA}, calculated Förster radius R_{0}, and calculated FRET efficiency $E_{\text {FRET }}$.

Compound	θ_{D}	θ_{A}	θ_{DA}	κ^{2}	$\left\|\boldsymbol{R}_{\mathrm{DA}}\right\| / \AA$	$J_{\mathrm{DA}} /\left(\mathrm{M}^{-1} \mathrm{~cm}^{-1} \mathrm{~nm}^{4}\right)$	R_{0} / \AA	E_{FRET}	
$\mathbf{B} \\| \mathbf{B}$	90.0°	90.0°	0.0°	1.00	13.3	$6.6 \cdot 10^{13}$	29.3	0.99	
$\mathbf{B} \\| \mathbf{R}$	90.0°	83.2°	6.9°	0.99	13.3	$2.4 \cdot 10^{14}$	36.1	1.00	
$\mathbf{B} \perp \mathbf{B}$	90.1°	90.1°	91.4°	$6 \cdot 10^{-4}$	8.4	$6.6 \cdot 10^{13}$	8.5	0.51	
$\mathbf{B} \perp \mathbf{R}$	89.9°	83.4°	90.5°	$1 \cdot 10^{-4}$	8.4	$2.4 \cdot 10^{14}$	7.7	0.38	

5 Syntheses

Scheme S1. Synthesis strategy. Reagents and conditions: a) N -iodosuccinimide (NIS), $\mathrm{HOAc}, \mathrm{MeOH}, 60^{\circ} \mathrm{C}$, 1 h ; b) 4-methoxyphenylboronic acid, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, aq. $\mathrm{NaHCO}_{3}, 1,2$-dimethoxyethane, $90^{\circ} \mathrm{C}, 16 \mathrm{~h}$; c) NIS, THF, HOAc, r.t., 24 h ; d) 4-pyridinylboronic acid, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$, aq. $\mathrm{K}_{3} \mathrm{PO}_{4}, 1,4$-dioxane, $70^{\circ} \mathrm{C}, 22 \mathrm{~h}$; e) i. n-BuLi, THF, $-78{ }^{\circ} \mathrm{C}, 10 \mathrm{~min}$, ii. 2,6-adamantanedione, THF, $-78{ }^{\circ} \mathrm{C}$ to r.t., $1-19 \mathrm{~h}$; f) $60-75 \%$ aq. $\mathrm{H}_{2} \mathrm{SO}_{4}$, n-octane, r.t., $30-60 \mathrm{~min}$; g) perfluorocyclopentene, $\mathrm{H}_{2} \mathrm{O}$, HOAc ; h) 1,2-dichloroethane, microwave, $130^{\circ} \mathrm{C}, 10 \mathrm{~min}$; i) THF, $40^{\circ} \mathrm{C}, 30 \mathrm{~min}$; j) $2 \mathrm{M} \mathrm{HCl}, \mathrm{MeCN}, \mathrm{NaNO}_{2},-5$ to $-10^{\circ} \mathrm{C}, 35 \mathrm{~min}$, then $\mathrm{KI},-10^{\circ} \mathrm{C}$ to r.t., $16 \mathrm{~h} ; \mathrm{k}) 5$-methyl-2-(tributylstannyl)thiophene, $\left.\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{PhMe}, 110^{\circ} \mathrm{C}, 16 \mathrm{~h} ; \mathrm{I}\right)$ i. n-BuLi, THF, $-78{ }^{\circ} \mathrm{C}$, $10 \mathrm{~min}, \mathrm{ii} .7, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$ to r.t., 5 h ; m) TiCla, Zn , pyridine, THF, $80^{\circ} \mathrm{C}, 16 \mathrm{~h}$.

5.1 3-Bromo-5'-iodo-2,2'-bithienyl (2)

Regioselective iodination of bithiophene derivative $\mathbf{1}$ was carried out under conditions given in ref. ${ }^{[10]}$.

To a solution of 3 -bromo-2, 2^{\prime}-bithiophene ($2.15 \mathrm{~g}, 8.77 \mathrm{mmol}, 1.00 \mathrm{eq}$) in dry MeOH (194 ml), N -iodosuccinimide ($8.29 \mathrm{~g}, 36.8 \mathrm{mmol}, 4.20 \mathrm{eq}$) was added at r.t.. To the clear yellow solution HOAc $(2.2 \mathrm{ml}, 2.3 \mathrm{~g}, 38 \mathrm{mmol}, 1.0 \mathrm{eq})$ was added. The solution was heated at $60^{\circ} \mathrm{C}$ for 60 min . TLC of the clear brown reaction mixture on $\mathrm{RP} \mathrm{SiO}_{2}-\mathrm{C}_{18}$ with MeCN as eluent displayed almost full consumption of the starting compound. Then 1.0 M aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (200 ml) was added. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{ml})$; combined organic solutions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give 4.16 g of brown solids suspended in a yellow oil. Column chromatography on silica gel $\left(150 \mathrm{~g} \mathrm{SiO}_{2}\right.$, cyclohexane) gave $2.81 \mathrm{~g}(7.57 \mathrm{mmol}, 86 \%)$ of the title compound as yellow oil.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.00\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 7.05\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 7.19(\mathrm{~d}$, $\left.{ }^{3} \int_{\mathrm{H}, \mathrm{H}}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, 5-\mathrm{H}\right), 7.22\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, \mathbf{1 0 1} \mathrm{MHz}$): $\delta=74.7$ (C-5'), 108.5 (C-3), 124.9 (C-5), 128.1 (C-3'), 131.6 (C-2'), 132.0 (C-4), 137.1 (C-4'), 140.4 (C-2) ppm.

GC-MS (EI): $m / z(\%)=370 / 372(100) \mathbf{M}^{+}$.
HRMS (EI): m / z calc. for $\mathrm{C}_{8} \mathrm{H}_{4} B r \mid S_{2}[M]^{+} 369.7982$; found 369.7978 .

TLC: $\quad R_{\mathrm{f}}=0.34\left(\mathrm{SiO}_{2}\right.$, cyclohexane $)$,
$R_{\mathrm{f}}=0.42\left(\mathrm{RP} \mathrm{SiO}_{2}-\mathrm{C}_{18}, \mathrm{MeCN}\right)$.

5.2 3-Bromo-5'-(p-methoxyphenyl)-2,2'-bithienyl (3)

3'-Bromo-5-iodo-2,2'-bithiophene ($3.01 \mathrm{~g}, 7.57 \mathrm{mmol}, 1.00 \mathrm{eq}$), 4-methoxyphenylboronic acid (1.38 g , $9.08 \mathrm{mmol}, 1.20 \mathrm{eq}$), 1,2-dimethoxyethane (21.0 ml), and sat. aq. $\mathrm{NaHCO}_{3}(21.0 \mathrm{ml}$) were mixed under argon. $\left[\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\right](0.44 \mathrm{~g}, 0.38 \mathrm{mmol}, 0.05 \mathrm{eq})$ was added, and the yellow suspension was stirred at $90^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was diluted with water (100 ml) and extracted with dichloromethane $(3 \times 50 \mathrm{ml})$. The combined organic solutions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give 3.35 g of a yellow oil which solidified upon standing at room temperature. The crude product was isolated by crystallization from a mixture of CHCl_{3} and MeOH . Column chromatography on silica gel $\left(100 \mathrm{~g} \mathrm{SiO}_{2}\right.$, cyclohexane/EtOAc $\left.=10: 1\right)$ gave $1.56 \mathrm{~g}(4.46 \mathrm{mmol}, 59 \%)$ of a yellow solid (NOTE: The product is poorly soluble in non-chlorinated solvents, high dilution during chromatography is recommended in order to avoid precipitation).
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.90-6.95\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}\right), 7.02\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=5.4 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 7.16\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.8 \mathrm{~Hz}, 1 \mathrm{H}, 4-\mathrm{H}\right), 7.18\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=5.4 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.37\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.8 \mathrm{~Hz}, 1 \mathrm{H}\right.$, $3-H), 7.54-7.58\left(m, 2 H, 2^{\prime \prime}-H, 6^{\prime \prime}-H\right) p p m$.
${ }^{13} \mathrm{C}^{2}$ NMR ($\left.\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=55.5\left(\mathrm{OCH}_{3}\right), 107.6\left(\mathrm{C}-3^{\prime}\right)$, $114.5\left(\mathrm{C}-3^{\prime \prime}, \mathrm{C}-5^{\prime \prime}\right), 122.3(\mathrm{C}-4), 124.2\left(\mathrm{C}-5^{\prime}\right)$, 126.9 ($\mathrm{C}-1^{\prime \prime}$), 127.2 ($\mathrm{C}-2^{\prime \prime}, \mathrm{C}-6^{\prime \prime}$), 127.7 ($\mathrm{C}-3$), 132.1 ($\mathrm{C}-4^{\prime}$), 132.6, 132.7 (C-2, $\mathrm{C}-2^{\prime}$), 145.0 (C-5), 159.6 (C-4') ppm.

GC-MS (EI): $m / z(\%)=350 / 352(100) \mathrm{M}^{+}$.

HRMS (EI): m / z calc. for $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BrOS}_{2}[\mathrm{M}]^{+} 349.9435$; found 349.9435 .

TLC: $\quad R_{\mathrm{f}}=0.26\left(\mathrm{SiO}_{2}\right.$, cyclohexane/EtOAc $\left.=9: 1\right)$,

$$
R_{\mathrm{f}}=0.47\left(\mathrm{RP} \mathrm{SiO} 2-\mathrm{C}_{18}, \mathrm{MeCN}\right)
$$

5.3 3-Bromo-5-iodo-5'-(p-methoxyphenyl)-2,2'-bithienyl (4)

Regioselective iodination of bithiophene derivative $\mathbf{3}$ was carried out under mild iodination conditions. ${ }^{[11]}$

To a solution of compound $\mathbf{3}(1.00 \mathrm{~g}, 2.85 \mathrm{mmol}, 1.00 \mathrm{eq})$ in dry THF (8.0 ml) N -iodosuccinimide (769 mg , $3.42 \mathrm{mmol}, 1.20 \mathrm{eq}$) was added at room temperature. To the clear yellow solution HOAc (6.0 ml) was added. The reacton mixture was stirred at room temperature for 24 h giving a yellowish suspension. TLC of the reaction mixture on $\mathrm{RP} \mathrm{SiO}_{2}-\mathrm{C}_{18}$ with MeCN as eluent showed almost full consumption of the starting material. Then 1.0 M aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution (80 ml) was added and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 80 \mathrm{ml})$. The combined organic solutions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give 1.76 g of a light brown solid. Column chromatography on silica gel $\left(200 \mathrm{~g} \mathrm{SiO} 2\right.$, cyclohexane $/ \mathrm{CHCl}_{3}=$ $5: 1 \rightarrow 3: 1)$ gave $1.19 \mathrm{~g}(2.49 \mathrm{mmol}, 87 \%)$ of the title compound as yellowish solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.90-6.95\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}\right), 7.14\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.9 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 7.14(\mathrm{~s}, 1 \mathrm{H}, 4-\mathrm{H}), 7.29\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.9 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 7.52-7.57\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}, 6^{\prime \prime}-\mathrm{H}\right) \mathrm{ppm}$.
 (C-1"), 127.3 (C-2", C-6"), 128.1 (C-3'), 131.6 (C-2), 138.7 (C-2'), 140.6 (C-5), 145.6 (C-5'), 159.7 (C-4") ppm.

MS (ESI, pos.): $m / z(\%)=476 / 478(100)[M]^{+}$.

HRMS (EI): m / z calc. for $\mathrm{C}_{15} \mathrm{H}_{10} \mathrm{BrIOS}_{2}[\mathrm{M}]^{+} 475.8401$; found 475.8413 .

TLC: $\quad R_{\mathrm{f}}=0.47\left(\mathrm{SiO}_{2}\right.$, cyclohexane $\left./ \mathrm{CHCl}_{3}=5: 1\right)$,
$R_{f}=0.31\left(\mathrm{RP} \mathrm{SiO}_{2}-\mathrm{C}_{18}, \mathrm{MeCN}\right)$.

5.4 3-Bromo-5'-(p-methoxyphenyl)-5-(4-pyridyl)-2,2'-bithienyl (5)

Compound 4 ($618 \mathrm{mg}, 1.30 \mathrm{mmol}, 1.00 \mathrm{eq}$), 4-pyridinylboronic acid ($159 \mathrm{mg}, 1.30 \mathrm{mmol}, 1.00 \mathrm{eq}$), 1,4-dioxane (8.4 ml), and $2.0 \mathrm{M} \mathrm{K}_{3} \mathrm{PO}_{4}(2.4 \mathrm{ml})$ were mixed in a screw-capped tube, and argon was bubbled through the mixture for $10 \mathrm{~min} . \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(91 \mathrm{mg}, 0.13 \mathrm{mmol}, 0.10 \mathrm{eq})$ was added, and the resulting yellow suspension was stirred at $70^{\circ} \mathrm{C}$ for 22 h . The reaction mixture was diluted with EtOAc $(30 \mathrm{ml})$ and filtered through CELITE $(\varnothing=4 \mathrm{~cm}, h=0.6 \mathrm{~cm})$. The filter cake was washed with EtOAc $(100 \mathrm{ml})$ followed by $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{ml})$. The combined filtrates were concentrated in vacuo to give 625 mg of an orange solid. Separation by column chromatography on silica gel $\left(40 \mathrm{~g} \mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=4: 1+\right.$ $0.1 \% \mathrm{NEt}_{3}$) gave $280 \mathrm{mg}(654 \mu \mathrm{~mol}, 50 \%)$ of the title compound as orange-yellow solid.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.91-6.96\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}\right), 7.18\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.9 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, 4^{\prime}-\mathrm{H}\right), 7.39-7.43\left(\mathrm{~m}, 3 \mathrm{H}, 4-\mathrm{H}, 3^{\prime \prime \prime}-\mathrm{H}, 5^{\prime \prime \prime}-\mathrm{H}\right), 7.45\left(\mathrm{~d},{ }^{3} \mathrm{H}_{\mathrm{H}, \mathrm{H}}=3.9 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right), 7.54-7.59(\mathrm{~m}, 2 \mathrm{H}$, $\left.2^{\prime \prime}-\mathrm{H}, 6^{\prime \prime}-\mathrm{H}\right), 8.60-8.64\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime \prime \prime}-\mathrm{H}, 6^{\prime \prime \prime}-\mathrm{H}\right) \mathrm{ppm}$.
 (C-4'), 126.6 (C-1"), 127.3 (C-2", C-6"), 128.3 (C-3'), 130.0 (C-4), 132.2 (C-2), 134.3 (C-5), 138.4 (C-2'), 140.0 (C-4'"), 145.9 (C-5'), 150.6 (C-2'", C-6'"), 159.8 (C-4') ppm.

MS (ESI, pos.): $m / z(\%)=428 / 430(100)[M+H]^{+}$.

HRMS (EI): m / z calc. for $\mathrm{C}_{20} \mathrm{H}_{14} \mathrm{BrNOS}_{2}[\mathrm{M}]^{+} 426.9700$; found 426.9703.
$\mathrm{TLC}\left(\mathrm{SiO}_{2}\right): R_{\mathrm{f}}=0.24\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}=1: 1+0.1 \% \mathrm{NEt}_{3}\right)$.

5.5 Compound 6

Bromide 5 ($152 \mathrm{mg}, 354 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$) was dissolved in dry THF (7.5 mL), and the solution was cooled to $-78{ }^{\circ} \mathrm{C}$. A 1.6 M solution of n-BuLi in n-hexane ($0.27 \mu \mathrm{~L}, 0.43 \mathrm{mmol}, 1.2 \mathrm{eq}$) was added dropwise at $-78{ }^{\circ} \mathrm{C}$ over a period of 1 min . After 15 min , the solution of lithiated 5 was transferred to a solution of 2,6-adamantanedione ($175 \mathrm{mg}, 1.06 \mathrm{mmol}, 3.00 \mathrm{eq}$) in dry THF (5.0 mL) at $-78^{\circ} \mathrm{C}$ over a period of 1 min . The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min and at room temperature for additional 1.5 h . Then sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$ and water (25 mL) were added. The mixture was extracted with EtOAc ($3 \times 25 \mathrm{ml}$), and the combined organic solutions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration in vacuo gave 305 mg of an orange solid. Column chromatography on silica gel ($45 \mathrm{~g} \mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}^{2}=1: 1+0.1 \% \mathrm{NEt}_{3}$) gave 156 mg of 6 ($304 \mu \mathrm{~mol}, 86 \%$) as yellow solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=1.77-1.85\left(\mathrm{~m}, 2 \mathrm{H},\left[4-\mathrm{H}_{\mathrm{a}}, 10-\mathrm{H}_{\mathrm{a}}\right] /\left[8-\mathrm{H}_{\mathrm{a}}, 9-\mathrm{H}_{\mathrm{a}}\right]\right), 1.89-1.98\left(\mathrm{~m}, 2 \mathrm{H},\left[8-\mathrm{H}_{\mathrm{a}}\right.\right.$, $\left.\left.9-\mathrm{H}_{\mathrm{a}}\right] /\left[4-\mathrm{H}_{\mathrm{a}}, 10-\mathrm{H}_{\mathrm{a}}\right]\right), 2.03-2.12\left(\mathrm{~m}, 2 \mathrm{H},\left[4-\mathrm{H}_{\mathrm{b}}, 10-\mathrm{H}_{\mathrm{b}}\right] /\left[8-\mathrm{H}_{\mathrm{b}}, 9-\mathrm{H}_{\mathrm{b}}\right]\right), 2.36-2.41(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H} / 7-\mathrm{H}), 2.45-$ $2.50(\mathrm{~m}, 1 \mathrm{H}, 7-\mathrm{H} / 5-\mathrm{H}), 2.59-2.65(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{H}, 3-\mathrm{H}), 2.71-2.80\left(\mathrm{~m}, 2 \mathrm{H},\left[8-\mathrm{H}_{\mathrm{b}}, 9-\mathrm{H}_{\mathrm{b}}\right] /\left[4-\mathrm{H}_{\mathrm{b}}, 10-\mathrm{H}_{\mathrm{b}}\right]\right.$), $3.40\left(S_{\text {br }, ~} 1 \mathrm{H}, \mathrm{OH}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.89-6.98\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime \prime \prime}-\mathrm{H}, 5^{\prime \prime \prime}-\mathrm{H}\right.$), 7.16 ($\mathrm{d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.7 \mathrm{~Hz}, 1 \mathrm{H}, 4^{\prime \prime}-\mathrm{H}$), $7.30-7.36$ (m, $3 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 3 \mathrm{AA}-\mathrm{H}, 5 \mathrm{~A}-\mathrm{H}$), 7.38 (s, $1 \mathrm{H}, 4^{\prime}-\mathrm{H}$), $7.52-7.60\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime \prime \prime}-\mathrm{H}, 6^{\prime \prime \prime}-\mathrm{H}\right.$), $8.45-8.52$ (m, $2 \mathrm{H}, 2 \mathrm{~A}-\mathrm{H}, 6 \mathrm{~A}-\mathrm{H}$) ppm.
${ }^{13} \mathrm{C}^{2}$ NMR (CDCl $\left.{ }_{3}, 101 \mathrm{MHz}\right): \delta=34.1$ ([C-8, C-9]/[C-4, C-10]), 35.5 (C-1, C-3), 36.5 ([C-4, C-10]/[C-8, C-9]), 45.2, 45.3 (C-5, C-7), $55.5\left(\mathrm{OCH}_{3}\right), 74.1$ (C-2), 114.5 (C-3'"', C-5'’"), 119.5 (C-3A, C-5A), 122.4 (C-4"), 126.1 (C-4'), 126.6 (C-1'"), 127.2 (C-2"', C-6'"), 130.6 (C-3'), 133.0 (C-2"), 135.9 (C-2'), 139.4 (C-5'), 140.8 (C-4A), 143.6 (C-3'), 146.8 (C-5"), 150.3 (C-2A, C-6A), 159.8 (C-4'"), 217.2 (C-6) ppm.

MS (ESI, pos.): $m / z(\%)=514.4(100)[M+H]^{+}$.

HRMS (ESI): calcd. for $\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{NO}_{3} \mathrm{~S}_{2} 514.1505$; found 514.1515.

TLC $\left(\mathbf{S i O}_{2}\right): R_{\mathrm{f}}=0.27\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}^{2}=1: 1+0.1 \% \mathrm{NEt}_{3}\right)$.

5.6 Compound 7

An intramolecular acid catalyzed Friedel-Crafts dehydration of a tertiary alcohol was carried out according to a literature method. ${ }^{[12]}$

Alcohol $6(105 \mathrm{mg}, 205 \mu \mathrm{~mol}, 1.00 \mathrm{eq})$ was suspended in n-octane (10 ml) using an ultrasonic bath and 70% aq. $\mathrm{H}_{2} \mathrm{SO}_{4}(1.0 \mathrm{ml})$ was added. After vigorous stirring at room temperature for 15 min , the reaction was "quenched" by addition of 4.0 m aq. $\mathrm{NaOH}(70 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 50 \mathrm{ml})$. The combined organic solutions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo, to give 91 mg ($0.18 \mathrm{mmol}, 89 \%$) of pure compound $\mathbf{7}$ as yellow-orange solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=1.80-1.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{1}^{\prime}-\mathrm{H}, 3^{\prime}-\mathrm{H}\right), 2.05-2.16\left(\mathrm{~m}, 4 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}, 8-\mathrm{H}_{\mathrm{a}}, 9-\mathrm{H}_{\mathrm{a}}\right.$, $\left.10-\mathrm{H}_{\mathrm{a}}\right), 2.81-2.94\left(\mathrm{~m}, 6 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}, 8-\mathrm{H}_{\mathrm{b}}, 9-\mathrm{H}_{\mathrm{b}}, 10-\mathrm{H}_{\mathrm{b}}, 5^{\prime}-\mathrm{H}, \mathrm{7}^{\prime}-\mathrm{H}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH} \mathrm{H}_{3}\right), 6.92-6.98(\mathrm{~m}, 2 \mathrm{H}$, $\left.3^{\prime \prime \prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}\right), 7.45-7.52\left(\mathrm{~m}, 3 \mathrm{H}, 5-\mathrm{H}, 3^{\prime \prime \prime}-\mathrm{H}, 5^{\prime \prime \prime}-\mathrm{H}\right), 7.53-7.59$ (m, $\left.2 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}, 6^{\prime \prime}-\mathrm{H}\right), 7.80(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H})$, $8.55-8.61\left(m, 2 H, 2^{\prime \prime \prime}-H, 6^{\prime \prime \prime}-H\right) ~ p p m$.
 (OCH_{3}), 57.6 ($\mathrm{C}-2^{\prime} / 4$), 114.7 ($\mathrm{C}-3^{\prime \prime}, \mathrm{C}-5^{\prime \prime}$), 119.2 ($\left.\mathrm{C}-3^{\prime \prime \prime}, \mathrm{C}-5^{\prime \prime \prime}\right), 121.8$ (C-5), 124.5 (C-3), 127.1 (C-2", C-6"), 127.5 (C-1"), 135.7 (C-7a), 139.1 (C-2), 140.2 (C-7b), 142.1 (C-4'"), 145.1 (C-6), 150.5 (C-2"', C-6"'), 156.2 (C-3a), 157.9 (C-4a), 159.6 (C-4"), 216.1 (C-6') ppm.

MS (ESI, pos.): $m / z(\%)=469.4(100)[M+H]^{+}$.

HRMS (ESI): calcd. for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{NO}_{2} \mathrm{~S}_{2} 496.1399[\mathrm{M}+\mathrm{H}]^{+}$found 496.1399.
$\mathbf{T L C}\left(\mathbf{S i O}_{2}\right): R_{\mathrm{f}}=0.18\left(E t O A c+0.1 \% \mathrm{NEt}_{3}\right)$.

5.7 Compound 8

To a freshly prepared solution of $\mathrm{TiCl}_{4}(31 \mu \mathrm{l}, 53 \mathrm{mg}, 0.28 \mathrm{mmol}, 4.6 \mathrm{eq})$ in dry THF ($732 \mu \mathrm{l}$), zinc dust ($<10 \mu \mathrm{~m}$ particle size, $37 \mathrm{mg}, 0.57 \mathrm{mmol}, 9.3 \mathrm{eq}$) was added in one portion at $0^{\circ} \mathrm{C}$. The reaction vessel was purged with Ar and sealed. The reaction mixture was heated to $80^{\circ} \mathrm{C}$ (oil bath temperature) for 1 h to give a brown suspension. After cooling to room temperature, a solution of pyridine ($11 \mathrm{mg}, 11 \mu \mathrm{l}$, $0.14 \mathrm{mmol}, 2.3 \mathrm{eq})$ in dry THF (0.19 ml), followed by compound $7(30 \mathrm{mg}, 61 \mu \mathrm{~mol}, 1.0 \mathrm{eq})$ and compound B ($30 \mathrm{mg}, 61 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) were added sequentially. The reaction vessel was purged with argon, sealed and heated to $80^{\circ} \mathrm{C}$ (oil bath temperature) for 23 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and "quenched" by addition of 10% aq. $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \mathrm{ml})$. The mixture was diluted with water (100 ml) and brine (100 ml) and extracted with $\mathrm{CHCl}_{3}(10 \times 40 \mathrm{ml})$. The combined organic solutions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give 61.4 mg of an orange solid. The crude product was purified by column chromatography on silica gel ($15 \mathrm{~g} \mathrm{SiO}_{2}, \mathrm{CHCl}_{3}$); $21 \mathrm{mg}(22 \mu \mathrm{~mol}, 37 \%)$ of the title compound was obtained as colorless solid. NOTE: Compound $\mathbf{8}$ is poorly soluble in acetone, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, benzene or THF and sensitive to acids. Dissolving in CDCl_{3} (containing traces of phosgen and DCl) gave a black suspension; therefore CDCl_{3} was filtered through basic $\mathrm{Al}_{2} \mathrm{O}_{3}$ before preparing NMR samples.
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta=1.73-1.98\left(\mathrm{~m}, 12 \mathrm{H}, 5-\mathrm{H}, 7-\mathrm{H}, 5^{\prime}-\mathrm{H}, 7{ }^{\prime}-\mathrm{H}, 8 \times \mathrm{CH}_{2} \mathrm{H}_{\mathrm{b}}\right), 2.55\left(\mathrm{~s}, 6 \mathrm{H}, 5 \mathrm{C}-\mathrm{CH}_{3}\right.$, 5D-CH3), 2.67-2.81(m, 4 H, $4 \times \mathrm{CH}_{2} \underline{H}_{6}$), $3.08-3.18\left(\mathrm{~m}, 4 \mathrm{H}, 4 \times \mathrm{CH}_{3} \underline{H}_{6}\right), 3.35-3.46\left(\mathrm{~s}, 4 \mathrm{H}, 1-\mathrm{H}, 3-\mathrm{H}, 1^{\prime}-\mathrm{H}\right.$, $3^{\prime}-\mathrm{H}$), $3.87\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.76-6.80(\mathrm{~m}, 2 \mathrm{H}, 4 \mathrm{C}-\mathrm{H}, 4 \mathrm{D}-\mathrm{H}), 6.94-7.00(\mathrm{~m}, 2 \mathrm{H}, 3 \mathrm{~B}-\mathrm{H}, 5 \mathrm{~B}-\mathrm{H}), 7.16\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}\right.$ $=3.3 \mathrm{~Hz}, 2 \mathrm{H}, 3 \mathrm{C}-\mathrm{H}, 3 \mathrm{D}-\mathrm{H}), 7.46-7.51$ (m, $2 \mathrm{H}, 3 \mathrm{~A}-\mathrm{H}, 5 \mathrm{~A}-\mathrm{H}$), $7.55-7.63$ (m, $5 \mathrm{H}, 2 \mathrm{~B}-\mathrm{H}, 6 \mathrm{~B}-\mathrm{H}, 3^{\prime \prime \prime}-\mathrm{H}, 6^{\prime \prime \prime}-\mathrm{H}$, $\left.5^{\prime \prime}-\mathrm{H}\right), 7.75-7.79\left(\mathrm{~m}, 2 \mathrm{H}, 4^{\prime \prime \prime}-\mathrm{H}, 5^{\prime \prime \prime}-\mathrm{H}\right), 7.88\left(\mathrm{~s}, 1 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}\right), 8.36\left(\mathrm{~s}, 2 \mathrm{H}, 1^{\prime \prime \prime}-\mathrm{H}, 8^{\prime \prime \prime}-\mathrm{H}\right), 8.56-8.62(\mathrm{~m}, 2 \mathrm{H}$, 2A-H, 6A-H) ppm.
${ }^{13} \mathrm{C}^{2}$ NMR (CDCl ${ }_{3}, 101 \mathrm{MHz}$): $\delta=15.7\left(5 \mathrm{C}-\mathrm{CH}_{3}, 5 \mathrm{D}-\mathrm{CH}_{3}\right), 30.6,30.8\left(\mathrm{C}-1, \mathrm{C}-3, \mathrm{C}-1^{\prime}, \mathrm{C}-3^{\prime}\right), 34.6,35.2(\mathrm{C}-5, \mathrm{C}-7$, C-5', C-7'), 35.9, 36.5, 36.9 (C-4, C-8, C-9, C-10, C-4', C-8', C-9', C-10'), $55.6\left(\mathrm{OCH}_{3}\right), 58.0,59.0\left(\mathrm{C}-6 / 4^{\prime \prime}\right.$, C-6'/9'"), 114.7 (C-3B, C-5B), 119.2 (C-3A, C-5A), 119.9 (C-4"', C-5'"'), 122.5 (C-5"), 122.8 (C-3A, C-3D), 124.8 (C-3'"', C-6'"), 125.2 (C-3"), 126.5 (C-4C, C-4D), 127.1 (C-2B, C-6B), 127.2 (C-1"', C-8'"'), 127.9 (C-1B), 132.4 (C-2/C-2'), 132.6 (C-2'", C-7"' $), 135.1$ (C-2'/C-2), 135.3 (C-7a"), 138.3 (C-2"), 139.4 (C-5C, C-5D), 139.9 (C-4a'", C-4b"') 142.6 (C-4A), 143.2 (C-2C, C-2D), 144.2 (C-7b"), 150.4 (C-2A, C-6A), 151.8 (C-8a"', C-9a"'), 157.8 (C-3a"), 159.4, 159.5 (C-4a", C-4B) ppm.

HRMS (ESI): calcd. for $\mathrm{C}_{62} \mathrm{H}_{54} \mathrm{NOS}_{4}[\mathrm{M}+\mathrm{H}]^{+} 956.3083$; found 956.3077 .
MS (ESI, pos.): $m / z(\%)=956.6(100)[M+H]^{+}$.

MS (MALDI-TOF): m / z (\%) = 955.3 (100) M $^{+}$.
$\operatorname{TLC}\left(\mathbf{S i O}_{2}\right): R_{\mathrm{f}}=0.49\left(\mathrm{EtOAc}+0.1 \% \mathrm{NEt}_{3}\right)$.

5.8 2-Bromo-4,4'-diiodobiphenyl (10)

Compound 10 was prepared by Sandmeyer-type reaction ${ }^{[13]}$ from 2-bromobenzidine (9) which was prepared according to the method of Kang et al. ${ }^{[14]}$

2-Bromobenzidine ($1.00 \mathrm{~g}, 3.80 \mathrm{mmol}, 1.00 \mathrm{eq}$) was dissolved in dry $\mathrm{MeCN}(61 \mathrm{ml})$ and $2.0 \mathrm{~m} \mathrm{HCl}(61 \mathrm{ml}$, $0.12 \mathrm{~mol}, 32 \mathrm{eq})$ was added at room temperature. The colorless clear reaction mixture was cooled to $-10^{\circ} \mathrm{C}$ (controlled by an internal themometer). A solution of $\mathrm{NaNO}_{2}(658 \mathrm{mg}, 9.54 \mathrm{mmol}, 2.51 \mathrm{eq}$) in water (20 ml) was added slowly over a period of 6 min keeping the temperature of the reaction mixture below $-5^{\circ} \mathrm{C}$. The orange-brown reaction mixture was stirred at $-10^{\circ} \mathrm{C}$ for 30 min . Then $\mathrm{KI}(5.49 \mathrm{~g}, 33.1$ $\mathrm{mmol}, 8.71 \mathrm{eq}$) was added at $-10^{\circ} \mathrm{C}$ in portions over a period of 5 min . The cooling-bath was removed, and the reaction mixture was stirred at room temperature for 16 h . The brown suspension was diluted with water (150 ml) and neutralized by addition of sat. aq. NaHCO_{3} (approx. 170 ml). The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 200 \mathrm{ml})$. The dark brown combined organic solutions were washed with 1.0 M aq. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \times 100 \mathrm{ml})$. The combined washing solutions were extracted with $\mathrm{Et}_{2} \mathrm{O}(100 \mathrm{ml})$. All organic solutions were pooled, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give a yellow solid. It was dissolved in hot cylohexane (approx. 40 ml), and loaded onto a silica gel column. Column chromatography on silica gel ($150 \mathrm{~g} \mathrm{SiO}_{2}$, cyclohexane) gave $1.29 \mathrm{~g}(2.66 \mathrm{mmol}, 70 \%)$ of a colorless solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.01\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, 6-\mathrm{H}\right), 7.09-7.14\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}, 6^{\prime}-\right), 7.68(\mathrm{dd}$, $\left.{ }^{3} \mathrm{H}_{\mathrm{H}, \mathrm{H}}=8.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}\right), 7.74-7.79\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right), 8.02\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}\right) \mathrm{ppm}$.
 (C-5), 137.4 (C-3', C-5'), 139.6 (C-1'), 141.1 (C-1), 141.3 (C-3) ppm.

GC-MS (EI): $m / z(\%)=484 / 486(30)[M]^{+}$.
HRMS (EI): m / z calc. for $\mathrm{C}_{12} \mathrm{H}_{7} \mathrm{Brl}_{2}[\mathrm{M}]^{+} 483.7820$; found 483.7829.
$\mathrm{TLC}\left(\mathbf{S i O}_{2}\right): R_{\mathrm{f}}=0.48$ (cyclohexane).

5.9 2-[2'-Bromo-4'-(5-methyl-2-thienyl)-4-biphenylyl]-5-methylthiophene (11)

5-Methyl-2-(tributylstannyl)thiophene ($7.00 \mathrm{~g}, 18.1 \mathrm{mmol}, 2.20 \mathrm{eq}$) was added to a solution of compound $10(3.98 \mathrm{~g}, 8.22 \mathrm{mmol}, 1.00 \mathrm{eq})$ in dry toluene $(60 \mathrm{ml})$ in a pressure tube, and a slow stream of argon was bubbled through the solution for 5 min . Then $\left[P d\left(\mathrm{PPh}_{3}\right)_{4}\right](0.95 \mathrm{~g}, 0.82 \mathrm{mmol}, 0.10 \mathrm{eq})$ was added. The sealed reaction vessel was heated to $110^{\circ} \mathrm{C}$ for 20 h . The reaction mixture was cooled to r.t. and diluted with $\mathrm{CHCl}_{3}(240 \mathrm{ml})$ followed by washing with $1.0 \mathrm{M} \mathrm{KF}(3 \times 200 \mathrm{ml})$. The combined organic solutions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give 9.81 g of a greenish solid. The crude compound was recrystallized from $\mathrm{MeOH}(500 \mathrm{ml})$ to give 2.63 g of a yellow solid. It was adsorbed on silica ($\sim 20 \mathrm{~g}$) and loaded onto a silica gel column. Column chromatography on silica gel (150 g SiO , cyclohexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=2: 1$) gave $1.72 \mathrm{mg}(4.04 \mathrm{mmol}, 49 \%)$ of a colorless solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=2.53\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 6.73-6.77\left(\mathrm{~m}, 2 \mathrm{H}, 4-\mathrm{H}, 4^{\prime \prime \prime}-\mathrm{H}\right), 7.15\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.5 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H}, 3^{\prime \prime \prime}-\mathrm{H}\right), 7.17\left(\mathrm{~d},{ }^{3} \mathrm{H}_{\mathrm{H}, \mathrm{H}}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, 3-\mathrm{H}\right), 7.32\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime \prime}-\mathrm{H}\right), 7.41-7.46\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime}-\mathrm{H}\right.$, $\left.6^{\prime}-\mathrm{H}\right), 7.52\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime \prime}-\mathrm{H}\right), 7.59-7.63\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.86(\mathrm{~d}$, $\left.{ }^{4} J_{\mathrm{H}, \mathrm{H}}=1.9 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}\right) \mathrm{ppm}$.
 (C-3', C-5'), 126.4, 126.6 (C-4, C-4'"'), 130.0 (C-3"), 130.0 (C-2', C-6'), 131.6 (C-6' $), 134.2$ (C-4'), 135.6 (C-4"), 139.3 (C-1'), 139.9, 139.9, 140.4, 140.7 (C-5, C-1", C-2"', C-5"'), 141.6 (C-2) ppm.

HRMS (EI): m / z calc. for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{BrS}_{2}[\mathrm{M}]^{+} 423.9955$; found 423.9938 .
TLC $\left(\mathbf{S i O}_{2}\right): R_{\mathrm{f}}=0.53(n$-hexane/EtOAc $=4: 1)$.

5.10 Compound 12

Bromide 11 ($31 \mathrm{mg}, 73 \mu \mathrm{~mol}, 1.2 \mathrm{eq}$) was dissolved in dry THF (3.0 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. A 1.6 M solution of n-BuLi in n-hexane ($45 \mu \mathrm{~L}, 73 \mu \mathrm{~mol}, 1.2 \mathrm{eq}$) was added dropwise at $-78{ }^{\circ} \mathrm{C}$ over a period of 1 min . After 10 min , the solution of lithiated $\mathbf{7}$ was transferred using a syringe to a solution of ketone $\mathbf{7}$ ($30 \mathrm{mg}, 61 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) in dry THF $(7.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ over a period of 1 min . The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 10 min and then 5 h at room temperature. Then water $(3 \mathrm{~mL})$ was added followed by sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$. The reaction mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 8 \mathrm{ml})$. The combined organic solutions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentration in vacuo to give 60 mg of an orange solid. Separation by flash column chromatography on silica gel ($16 \mathrm{~g} \mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}^{2}=1: 1+0.1 \% \mathrm{NEt}_{3}$) gave 26 mg ($31 \mu \mathrm{~mol}, 51 \%$) of the title compound as orange solid.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=1.34-1.41\left(\mathrm{~m}, 1 \mathrm{H}, 1^{\prime}-\mathrm{H} / 3^{\prime}-\mathrm{H}\right), 1.51-1.57\left(\mathrm{~m}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H} / 1^{\prime}-\mathrm{H}\right), 1.64-$ $1.89\left(\mathrm{~m}, 2 \mathrm{H}, 2 \times \mathrm{CH}_{2} \mathrm{H}_{\mathrm{b}}\right), 2.11-2.77\left(\mathrm{~m}, 14 \mathrm{H}, 2 \times \mathrm{CH}_{2} \underline{H}_{b}, 2 \times \mathrm{CH}_{2}, 5^{\prime}-\mathrm{H}, \mathrm{7}^{\prime}-\mathrm{H}, 5 \mathrm{C}-\mathrm{CH}_{3}, 5 \mathrm{D}-\mathrm{CH}_{3}\right), 3.85(\mathrm{~s}, 3 \mathrm{H}$, $\left.4^{\prime \prime}-\mathrm{OCH}_{3}\right), 6.73-6.76(\mathrm{~m}, 1 \mathrm{H}, 4 \mathrm{C}-\mathrm{H} / 4 \mathrm{D}-\mathrm{H}), 6.78-6.81(\mathrm{~m}, 1 \mathrm{H}, 4 \mathrm{D}-\mathrm{H} / 4 \mathrm{C}-\mathrm{H}), 6.92-6.97\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}\right.$, $\left.5^{\prime \prime}-\mathrm{H}\right), 7.12\left(\mathrm{~d},{ }^{3} \int_{\mathrm{H}, \mathrm{H}}=3.4 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{C}-\mathrm{H} / 3 \mathrm{D}-\mathrm{H}\right), 7.11\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, 6 \mathrm{~A}-\mathrm{H}\right), 7.21\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.4 \mathrm{~Hz}\right.$, 1 H, 3D-H / 3C-H), $7.38-7.48$ (m, 4 H, 5-H, 5A-H, 2B-H, 6B-H), 7.48-7.51 (m, 2 H, $3^{\prime \prime \prime}-\mathrm{H}, 5^{\prime \prime \prime}-\mathrm{H}$), 7.53 $7.57\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}, 6^{\prime \prime}-\mathrm{H}\right), 7.58-7.62(\mathrm{~m}, 2 \mathrm{H}, 3 \mathrm{~B}-\mathrm{H}, 5 \mathrm{~B}-\mathrm{H}), 7.73-7.78(\mathrm{~m}, 1 \mathrm{H}, 3-\mathrm{H}), 7.87\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=\right.$ $1.8 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{~A}-\mathrm{H}), 8.50-8.55\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime \prime \prime}-\mathrm{H}, 6^{\prime \prime \prime}-\mathrm{H}\right) \mathrm{ppm}$.

MS (ESI, pos.): $m / z(\%)=842.3(11)[M+H]^{+}$.
HRMS (ESI): calcd. for $\mathrm{C}_{52} \mathrm{H}_{44} \mathrm{NO}_{2} \mathrm{~S}_{4}[\mathrm{M}+\mathrm{H}]^{+} 842.2249$; found 842.2213.

5.11 Compound 13

An intramolecular acid catalyzed Friedel-Crafts dehydration of a tertiary alcohol were carried out according to a literature method. ${ }^{[12]}$

Alcohol 12 ($15 \mathrm{mg}, 17 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) was suspended in n-octane (1.0 ml) using an ultrasonic bath, and 60% aq. $\mathrm{H}_{2} \mathrm{SO}_{4}(0.20 \mathrm{ml})$ was added. After vigorous stirring at room temperature for 120 min, the reaction was quenched by addition of 2.0 M aq. $\mathrm{NaOH}(10 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{ml})$. The combined organic solution were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo, to give 14 mg of a yellow solid. Column chromatography on silica gel ($6 \mathrm{~g} \mathrm{SiO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}^{2}=5: 1+0.1 \% \mathrm{NEt}_{3}$) gave 6.0 mg ($7.3 \mu \mathrm{~mol}, 42 \%$) of the title compound as an orange solid.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=1.98-2.06\left(\mathrm{~m}, 2 \mathrm{H}, 5^{\prime}-\mathrm{H}, 7^{\prime}-\mathrm{H}\right), 2.08-2.12\left(\mathrm{~m}, 2 \mathrm{H}, 1^{\prime}-\mathrm{H}, 3^{\prime}-\mathrm{H}\right), 2.48(\mathrm{~s}, 6 \mathrm{H}$, $\left.5 B-\mathrm{CH}_{3}, 5 \mathrm{C}-\mathrm{CH}_{3}\right), 2.56-2.78\left(\mathrm{~m}, 4 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}, 8-\mathrm{H}_{\mathrm{a}}, 9-\mathrm{H}_{\mathrm{a}}, 10-\mathrm{H}_{\mathrm{a}}\right), 3.09-3.23\left(\mathrm{~m}, 4 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}, 8-\mathrm{H}_{\mathrm{b}}, 9-\mathrm{H}_{\mathrm{b}}, 10-\mathrm{H}_{\mathrm{b}}\right)$, $3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.72-6.74(\mathrm{~m}, 2 \mathrm{H}, 4 \mathrm{~B}-\mathrm{H}, 4 \mathrm{C}-\mathrm{H}), 6.93-6.98\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}\right), 7.10\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=\right.$ $3.6 \mathrm{~Hz}, 2 \mathrm{H}, 3 \mathrm{~B}-\mathrm{H}, 3 \mathrm{C}-\mathrm{H}), 7.55-7.59\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}, 6^{\prime \prime}-\mathrm{H}\right), 7.63\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, 3 \mathrm{~A}-\mathrm{H}, 6 \mathrm{~A}-\mathrm{H}\right), 7.65(\mathrm{~s}$, $1 \mathrm{H}, 5-\mathrm{H}), 7.69-7.73\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime \prime \prime}-\mathrm{H}, 5^{\prime \prime \prime}-\mathrm{H}\right), 7.80\left(\mathrm{~d},{ }^{3} \mathrm{H}_{\mathrm{H}, \mathrm{H}}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, 4 \mathrm{~A}-\mathrm{H}, 5 \mathrm{~A}-\mathrm{H}\right), 8.12(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}), 8.35$ (s, $2 \mathrm{H}, 1 \mathrm{~A}-\mathrm{H}, 8 \mathrm{~A}-\mathrm{H}$), $8.46-8.49\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime \prime \prime}-\mathrm{H}, 6^{\prime \prime \prime}-\mathrm{H}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right.$, some signals detected by gHMBCAD$): \delta=15.6\left(5 \mathrm{~B}-\mathrm{CH}_{3}, 5 \mathrm{C}-\mathrm{CH}_{3}\right), 30.1,31.1$ (C-4', C-8', C-9', C-10'), 33.6, 34.2 (C-1', C-3', C-5', C-7'), $55.6\left(\mathrm{OCH}_{3}\right), 58.7,61.4$ (C-4/2', C-6'/9A), 114.8 (C-3', C-5'), 119.5 (C-3'", C-5'"), 120.1 (C-4A, C-5A), 122.8 (C-5), 122.9 (C-3B, C-3C), 125.2 (C-3A, C-6A), 126.5 (C-4B, C-4C), 127.0 (C-1A, C-8A), 127.3 (C-1"), 127.3 (C-2", C-6"), 132.8 (C-2A, C-7A), 134.9 (C-7a), 135.0 (C-2), 139.7 (C-5B, C-5C), 140.0 (C-4Aa, C-4Ab), 142.9 (C-2B, C-2C), 143.2 (C-2"', C-6"'), 145.5 (C-7b), 150.8 (C-8Aa, C-9Aa), 157.5 (C-3a), 159.9 (C-4'), 160.7 (C-4a) ppm.

MS (ESI, pos.): $m / z(\%)=824.4(100)[\mathrm{M}+\mathrm{H}]^{+}$.

HRMS (ESI): calcd. for $\mathrm{C}_{52} \mathrm{H}_{42} \mathrm{NOS}_{4}[\mathrm{M}+\mathrm{H}]^{+}$824.2144; found 824.2134.
$\operatorname{TLC}\left(\mathrm{SiO}_{2}\right): R_{\mathrm{f}}=0.37\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}\right)=5: 1+0.1 \% \mathrm{NEt}_{3}$.

5.12 Compound rac-14

Bromide 11 ($50 \mathrm{mg}, 0.12 \mathrm{mmol}, 2.0 \mathrm{eq}$) was dissolved in dry THF (3.0 mL) and cooled to $-78{ }^{\circ} \mathrm{C}$. A 1.6 M solution of n-BuLi in n-hexane ($81 \mu \mathrm{~L}, 0.13 \mathrm{mmol}, 2.2 \mathrm{eq}$) was added dropwise at $-78^{\circ} \mathrm{C}$ over a period of 1 min . After 10 min , a solution of 2,6-adamantanedione ($9.6 \mathrm{mg}, 59 \mathrm{~mol}, 1.0 \mathrm{eq}$) in dry THF (1.0 mL) was added at $-78^{\circ} \mathrm{C}$ over a period of 10 min . The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 min and at room temperature for additional 2 h . Then sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ was added followed by water (5 mL). The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{ml})$ and the combined organic solutions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration in vacuo gave 86.4 mg of a yellowish solid. The crude product was dissolved in $\mathrm{CHCl}_{3}(2 \mathrm{~mL})$ and loaded onto a silica gel column. Column chromatography on silica gel (two columns, $2 \times 15 \mathrm{~g} \mathrm{SiO}_{2}, \mathrm{CHCl}_{3}$) gave $34 \mathrm{mg}(40 \mu \mathrm{~mol}, 68 \%)$ of the title compound rac-14 as colorless solid.
${ }^{1} \mathrm{H}$ NMR (CDCl $\left.{ }_{3}, 400 \mathrm{MHz}\right): \delta=1.36-1.55\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2}, 2 \times \mathrm{CH}_{\mathrm{a}} \mathrm{H}_{\mathrm{b}}\right), 1.79(\mathrm{~s}, 2 \mathrm{H}, 2 \times \mathrm{OH}), 1.97-2.31(\mathrm{~m}$, $\left.8 \mathrm{H}, \mathrm{CH}_{2}, 2 \times \mathrm{CH}_{a} \mathrm{H}_{\mathrm{b}}, 1-\mathrm{H}, 3-\mathrm{H}, 5-\mathrm{H}, 7-\mathrm{H}\right), 2.50-2.52\left(\mathrm{~m}, 12 \mathrm{H}, 5 \mathrm{~B}-\mathrm{CH}_{3}, 5 \mathrm{C}-\mathrm{CH}_{3}, 5 \mathrm{D}-\mathrm{CH}_{3}, 5 \mathrm{E}-\mathrm{CH}_{3}\right), 6.70-$ 6.75 (m, 4 H, 4B-H, 4C-H, 4D-H, 4E-H), 7.09 (d, $\left.{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.6 \mathrm{~Hz}, 2 \mathrm{H},[3 \mathrm{~B}-\mathrm{H}, 3 \mathrm{C}-\mathrm{H}] /[3 \mathrm{D}-\mathrm{H}, 3 \mathrm{E}-\mathrm{H}]\right), 7.09\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}\right.$ $\left.=7.9 \mathrm{~Hz}, 2 \mathrm{H}, 6^{\prime}-\mathrm{H}, 6^{\prime \prime}-\mathrm{H}\right), 7.12\left(\mathrm{~d},{ }^{3}{ }_{\mathrm{H}, \mathrm{H}}=3.6 \mathrm{~Hz}, 2 \mathrm{H},[3 \mathrm{D}-\mathrm{H}, 3 \mathrm{E}-\mathrm{H}]\right.$ or $\left.[3 \mathrm{~B}-\mathrm{H}, 3 \mathrm{C}-\mathrm{H}]\right), 7.28-7.35(\mathrm{~m}, 4 \mathrm{H}$, $\left.2^{\prime \prime \prime}-\mathrm{H}, 6^{\prime \prime \prime}-\mathrm{H}, 2 \mathrm{~A}-\mathrm{H}, 6 \mathrm{~A}-\mathrm{H}\right), 7.43\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.8 \mathrm{~Hz}, 2 \mathrm{H}, 5^{\prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}\right), 7.47\left(\mathrm{~m}, 4 \mathrm{H}, 3^{\prime \prime \prime}-\mathrm{H}, 5^{\prime \prime \prime}-\mathrm{H}\right.$, $3 A-H, 5 A-H), 7.73\left(d,{ }^{4} J_{H, H}=1.8 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}\right) \mathrm{ppm}$.
 C-5, C-7), 76.9 (C-2, C-6), 123.0, 123.1 (C-3B, C-3C, C-3D, C-3E), 123.7 (C-5', C-5"), 124.5 (C-3', C-3'), 124.8 (C-3"', C-5"", C-3A, C-5A, 126.3, 126.4 (C-4B, C-4C, C-4D, C-4E), 129.6 (C-2"", C-6"", C-2A, C-6A), 133.3 (C-2D, C-2E), 133.7 (C-2B, C-2C), 134.2 (C-6', C-6"), 139.6, 139.7, 141.7, 141.8, 141.9, 143.1 (C-1', C-4', C-1", C-4", C-1'", C-4'", C-1A, C-4A, C-5B, C-5C, C-5D, C-5E) ppm.

HRMS (ESI): calcd. for $\mathrm{C}_{54} \mathrm{H}_{48} \mathrm{NaO}_{2} \mathrm{~S}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$879.2429; found 879.2378.
$\operatorname{TLC}\left(\mathrm{SiO}_{2}\right): R_{\mathrm{f}}=0.41\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

5.13 Compound 15

Bromide 11 ($306 \mathrm{mg}, 719 \mu \mathrm{~mol}, 1.00 \mathrm{eq}$) was dissolved in dry THF (23.0 mL) and cooled to $-78^{\circ} \mathrm{C}$. A 1.6 M solution of n-BuLi in n-hexane ($0.49 \mathrm{~mL}, 0.79 \mathrm{mmol}, 1.1 \mathrm{eq}$) was added dropwise at $-78{ }^{\circ} \mathrm{C}$ over a period of 1 min . After 10 min , the solution of lithiated 11 was transferred using a syringe to a solution of 2,6-adamantanedione ($236 \mathrm{mg}, 1.44 \mathrm{mmol}, 2.00 \mathrm{eq}$) in dry THF (12 mL) at $-78^{\circ} \mathrm{C}$ over a period of 10 min . The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 10 min and at room temperature for additional 4 h . The reaction was quenched by addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})$ and water (40 mL). The mixture was extracted with $\mathrm{CHCl}_{3}(4 \times 50 \mathrm{ml})$ and the combined organic solutions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Concentration in vacuo gave 479 mg of a brownish solid. Column chromatography on silica gel ($40 \mathrm{~g} \mathrm{SiO}_{2}, \mathrm{CHCl}_{3}$) gave 411 mg of the title compound (with residual 2,6-adamantanedione) as yellowish solid. The product was used without further purification.
${ }^{1} \mathrm{H}$ NMR (CDCl $\left.{ }_{3}, 400 \mathrm{MHz}\right): \delta=1.68-1.76\left(\mathrm{~m}, 2 \mathrm{H},\left[4-\mathrm{H}_{\mathrm{a}}, 10-\mathrm{H}_{\mathrm{a}}\right] /\left[8-\mathrm{H}_{\mathrm{a}}, 9-\mathrm{H}_{\mathrm{a}}\right]\right), 1.79-1.87\left(\mathrm{~m}, 2 \mathrm{H},\left[4-\mathrm{H}_{\mathrm{a}}\right.\right.$, $\left.\left.10-\mathrm{H}_{\mathrm{a}}\right] /\left[8-\mathrm{H}_{\mathrm{a}}, 9-\mathrm{H}_{\mathrm{a}}\right]\right), 1.98-2.07\left(\mathrm{~m}, 2 \mathrm{H},\left[8-\mathrm{H}_{\mathrm{b}}, 9-\mathrm{H}_{\mathrm{b}}\right] /\left[4-\mathrm{H}_{\mathrm{b}}, 10-\mathrm{H}_{\mathrm{b}}\right]\right), 2.31-2.41(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{H}, 3-\mathrm{H}), 2.48-$ $2.60\left(\mathrm{~m}, 10 \mathrm{H},\left[8-\mathrm{H}_{\mathrm{b}}, 9-\mathrm{H}_{\mathrm{b}}\right] /\left[4-\mathrm{H}_{\mathrm{b}}, 10-\mathrm{H}_{\mathrm{b}}\right], 5-\mathrm{H}, 7-\mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 6.72-6.77\left(\mathrm{~m}, 2 \mathrm{H}, 4^{\prime \prime \prime}-\mathrm{H}, 4 \mathrm{~A}-\mathrm{H}\right), 7.12(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime \prime \prime}-\mathrm{H} / 3 \mathrm{~A}-\mathrm{H}\right), 7.16\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.5 \mathrm{~Hz}, 1 \mathrm{H}, 3 \mathrm{~A}-\mathrm{H} / 3^{\prime \prime \prime}-\mathrm{H}\right), 7.17\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, 6^{\prime}-\mathrm{H}\right)$, $7.35-7.40\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}, 6^{\prime \prime}-\mathrm{H}\right), 7.49\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, 5^{\prime}-\mathrm{H}\right), 7.58-7.54(\mathrm{~m}, 2 \mathrm{H}$, $\left.3^{\prime \prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}\right), 7.82\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.8 \mathrm{~Hz}, 1 \mathrm{H}, 3^{\prime}-\mathrm{H}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 101 \mathrm{MHz}\right): \delta=15.6\left(5^{\prime \prime \prime}-\mathrm{CH}_{3}, 5 \mathrm{~A}-\mathrm{CH}_{3}\right), 34.3$ ([C-4, $\left.\left.\mathrm{C}-10\right] /[\mathrm{C}-8, \mathrm{C}-9]\right), 34.8$ (C-5, C-7), 36.2 ([C-8, C-9]/[C-4, C-10]), 45.0, 45.4 (C-1, C-3), 76.4 (C-6), 123.1, 123.3 (C-3"', C-3A), 124.2, 124.3 (C-3', C-5'), 125.0 (C-3'", C-6"), 126.4, 126.5 (C-4'", C-4A), 129.7 (C-2", C-6'), 133.6 (C-4'), 134.0 (C-4'), 134.7 (C-6'), 139.9, 140.1 (C-5'", C-5A), 140.9 (C-1'), 141.1 (C-1') $, 141.5,141.6$ (C-2"', C-2A), 142.7 (C-1'), 217.5 (C-2) ppm.

MS (ESI, pos.): $m / z(\%)=533.2(100)[\mathrm{M}+\mathrm{Na}]^{+}$.

HRMS (ESI): m / z calc. for $\mathrm{C}_{32} \mathrm{H}_{30} \mathrm{NaO}_{2} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 533.1579$; found 533.1566.
$\operatorname{TLC}\left(\mathrm{SiO}_{2}\right): R_{\mathrm{f}}=0.24\left(\mathrm{CHCl}_{3}\right)$.

5.14 Compound B

Intramolecular acid catalyzed Friedel-Crafts dehydrations of tertiary alcohols were carried out according to literature methods. ${ }^{[12]}$

Alcohol 15 (363 mg with residual 2,6-adamantanedione) was suspended in n-octane (10.0 ml) using an ultrasonic bath and 75% aq. $\mathrm{H}_{2} \mathrm{SO}_{4}(5.0 \mathrm{ml})$ was added. After vigorous stirring at room temperature for 30 min , the reaction was quenched by addition of 3.0 M aq. $\mathrm{NaOH}(100 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($5 \times 200 \mathrm{ml}$). The combined organic solutions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo, to give 320 mg of a colorless solid. Column chromatography on regular silica gel (50 g SiO 2 , cyclohexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}=$ 1:1) gave 186 mg ($0.378 \mu \mathrm{~mol}, 53 \%$, over two steps) of compound B as a colorless solid.
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=1.81-1.86(\mathrm{~m}, 2 \mathrm{H}, 5-\mathrm{H}, 7-\mathrm{H}), 1.97-2.05\left(\mathrm{~m}, 4 \mathrm{H}, 4-\mathrm{H}_{\mathrm{a}}, 8-\mathrm{H}_{\mathrm{a}}, 9-\mathrm{H}_{\mathrm{a}}, 10-\mathrm{H}_{\mathrm{a}}\right)$, $2.54\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right), 2.90-2.95(\mathrm{~m}, 2 \mathrm{H}, 1-\mathrm{H}, 3-\mathrm{H}), 3.19-3.29\left(\mathrm{~m}, 4 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}, 8-\mathrm{H}_{\mathrm{b}}, 9-\mathrm{H}_{\mathrm{b}}, 10-\mathrm{H}_{\mathrm{b}}\right), 6.76-$ $6.79\left(\mathrm{~m}, 2 \mathrm{H}, 4^{\prime \prime}-\mathrm{H}, 4^{\prime \prime \prime}-\mathrm{H}\right), 7.13\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.5 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 3^{\prime \prime \prime}-\mathrm{H}\right), 7.61\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.9 \mathrm{~Hz}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}\right)$, $7.77\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.9 \mathrm{~Hz}, 2 \mathrm{H}, 4^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}\right), 8.24\left(\mathrm{~s}, 2 \mathrm{H}, 1^{\prime}-\mathrm{H}, 8^{\prime}-\mathrm{H}\right) \mathrm{ppm}$.
${ }^{13} \mathrm{CNMR}^{\left(\mathrm{CDCl}_{3}, \mathbf{1 0 1 ~ M H z}\right): ~} \delta=15.6\left(5^{\prime \prime}-\mathrm{CH}_{3}, 5^{\prime \prime \prime}-\mathrm{CH}_{3}\right), 34.2$ (C-5, C-7), 34.6 (C-4, C-8, C-9, C-10), 45.4 (C-1, C-3), 56.9 (C-6/9'), 120.2 (C-4', C-5'), 123.0 (C-3', C-3''), 125.4 (C-3', C-6'), 126.5 (C-4", C-4'"), 126.7 (C-1', C-8'), 133.0 (C-2', C-7'), 139.8 (C-4a', C-4b', C-5", C-5"'), 142.6 (C-2", C-2'"'), 150.5 (C-8a, C-9a), 216.1 (C-2) ppm.

HRMS (EI): m / z calc. for $\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{OS}_{2}[\mathrm{M}]^{+} 492.1582$; found 492.1575.
$\mathbf{T L C}\left(\mathbf{S i O}_{2}\right): R_{\mathrm{f}}=0.65\left(\mathrm{CHCl}_{3}\right)$.

5.15 Compound B \perp B

Intramolecular acid catalyzed Friedel-Crafts dehydrations of tertiary alcohols were carried out according to literature methods. ${ }^{[12]}$

Alcohol 14 ($34 \mathrm{mg}, 40 \mu \mathrm{~mol}, 1.0 \mathrm{eq}$) was suspended in n-octane (2.0 ml) using an ultrasonic bath and aq. $\mathrm{H}_{2} \mathrm{SO}_{4}(75 \%, 1.0 \mathrm{ml})$ was added. After vigorous stirring at room temperature for 60 min , the reaction was quenched by addition of 3.0 M aq. $\mathrm{NaOH}(10 \mathrm{ml})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 15 \mathrm{ml})$. The combined organic solutions were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo, to give 27.2 mg of a yellowish solid. The crude product was purified by column chromatography on silica gel (15 g SiO , cyclohexane $/ \mathrm{CHCl}_{3}=$ $5: 1 \rightarrow 4: 1$). 26 mg ($31 \mu \mathrm{~mol}, 79 \%$) of the desired product was obtained as colorless solid.
${ }^{1} \mathrm{H}$ NMR (CDCl $\left.{ }_{3}, 400 \mathrm{MHz}\right): \delta=2.09-2.16(\mathrm{~m}, 4 \mathrm{H}, 1-\mathrm{H}, 3-\mathrm{H}, 5-\mathrm{H}, 7-\mathrm{H}), 2.48\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.1 \mathrm{~Hz}, 12 \mathrm{H}\right.$, $4 \times \mathrm{CH}_{3}$), $3.07-3.17\left(\mathrm{~m}, 8 \mathrm{H}, 4-\mathrm{H}_{2}, 8-\mathrm{H}_{2}, 9-\mathrm{H}_{2}, 10-\mathrm{H}_{2}\right), 6.69-6.74\left(\mathrm{~m}, 4 \mathrm{H}, 4{ }^{\prime \prime \prime}-\mathrm{H}, 4 \mathrm{~A}-\mathrm{H}, 4 \mathrm{~B}-\mathrm{H}, 4 \mathrm{C}-\mathrm{H}\right), 7.08$ (d, ${ }^{3} J_{\mathrm{H}, \mathrm{H}}=3.6 \mathrm{~Hz}, 4 \mathrm{H}, 3^{\prime \prime \prime}-\mathrm{H}, 3 \mathrm{~A}-\mathrm{H}, 3 \mathrm{~B}-\mathrm{H}, 3 \mathrm{C}-\mathrm{H}$), $7.60\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.2 \mathrm{~Hz}, 4 \mathrm{H}, 3^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, 3^{\prime \prime}-\mathrm{H}\right.$, $6^{\prime \prime}-\mathrm{H}$), 7.78 (d, ${ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=8.0 \mathrm{~Hz}, 4 \mathrm{H}, 4^{\prime}-\mathrm{H}, 6^{\prime}-\mathrm{H}, 4^{\prime \prime}-\mathrm{H}, 6^{\prime \prime}-\mathrm{H}$), $8.46\left(\mathrm{~d},{ }^{4}{ }_{\mathrm{H}}, \mathrm{H}=1.2 \mathrm{~Hz}, 4 \mathrm{H}, 1^{\prime}-\mathrm{H}, 8^{\prime}-\mathrm{H}, 1^{\prime \prime}-\mathrm{H}\right.$, $\left.8^{\prime \prime}-\mathrm{H}\right) \mathrm{ppm}$.
 (C-1, C-3, C-5, C-7), 59.7 (C-2/9', C-6/9'), 119.9 (C-4', C-6', C-4", C-6"), 122.8 (C-3'", C-3A, C-3B, C-3C), 125.1 ($\mathrm{C}-3^{\prime}, \mathrm{C}-6^{\prime}, \mathrm{C}-3^{\prime \prime}, \mathrm{C}-6^{\prime \prime}$), 126.4 ($\mathrm{C}-4^{\prime \prime \prime}, \mathrm{C}-4 \mathrm{~A}, \mathrm{C}-4 \mathrm{~B}, \mathrm{C}-4 \mathrm{C}$), 127.4 ($\mathrm{C}-1^{\prime}, \mathrm{C}-8^{\prime}, \mathrm{C}-1^{\prime \prime}, \mathrm{C}-8^{\prime \prime}$), 132.7 (C-2', C-7', C-2", C-7"), 139.4 (C-5"', C-5A, C-5B, C-5C), 140.1 (C-4a', C-4b', C-4a", C-4b"), 143.1 (C-2'", C-2A, C-2B, C-2C), 151.1 (C-8a', C-9a', C-8a", C-9a") ppm.

HRMS (MALDI-TOF): calcd. for $\mathrm{C}_{54} \mathrm{H}_{44} \mathrm{~S}_{4} \mathrm{M}^{+}$820.2320; found 820.2331.

$$
\mathrm{TLC}\left(\mathrm{SiO}_{2}\right): R_{\mathrm{f}}=0.21 \text { (cyclohexane } / \mathrm{CHCl}_{3}=5: 1 \text {). }
$$

5.16 Compound B\|B

To freshly prepared solution of $\mathrm{TiCl}_{4}(18 \mu \mathrm{l}, 31 \mathrm{mg}, 0.16 \mathrm{mmol}, 4.6 \mathrm{eq})$ in dry THF (0.43 ml) was added zinc dust ($<10 \mu \mathrm{~m}$ particle size, $22 \mathrm{mg}, 0.33 \mathrm{mmol}, 9.3 \mathrm{eq}$) at $0^{\circ} \mathrm{C}$ in one portion. The reaction vessel was purged with Ar and sealed. The stirred reaction mixture was heated to $80^{\circ} \mathrm{C}$ (oil bath temperature) for 1 h to give a brown suspension. After cooling to room temperature, a solution of pyridine ($6.6 \mu \mathrm{l}, 6.5 \mathrm{mg}$, $82 \mu \mathrm{~mol}, 2.3 \mathrm{eq}$) in dry THF ($93.4 \mu \mathrm{l}$), followed by solid compound B ($35 \mathrm{mg}, 71 \mu \mathrm{~mol}, 2.0 \mathrm{eq}$) were added. The reaction vessel was purged with argon, sealed and heated to $80^{\circ} \mathrm{C}$ (oil bath temperature) for 16 h . The reaction mixture was cooled to $0^{\circ} \mathrm{C}$ and quenched with 10% aq. $\mathrm{K}_{2} \mathrm{CO}_{3}(5 \mathrm{ml})$. The mixture was stirred at room temperature for 15 min and filtered through a pad of CELITE ($\varnothing=4 \mathrm{~cm}, h=0.5 \mathrm{~cm}$). Some product remained as yellow solid on the pad of the CELITE. The CELITE cake was refluxed with hot $\mathrm{CHCl}_{3}(100 \mathrm{ml})$ for 3 min , filtered hot and washed with hot $\mathrm{CHCl}_{3}(2 \times 30 \mathrm{ml})$. The combined filtrates were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give 33 mg of a yellowish solid with low solubility in common organic solvents including EtOAc, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and n-hexane. The crude product was recrystallized from EtOAc (approx. 100 ml) to give $20 \mathrm{mg}(21 \mu \mathrm{~mol}, 60 \%)$ of the desired product as yellowish solid.
${ }^{1} \mathrm{H}$ NMR (CDCl $\left.{ }_{3}, 400 \mathrm{MHz}\right): \delta=1.77-1.91\left(\mathrm{~m}, 12 \mathrm{H}, 4-\underline{H}_{a} \mathrm{H}_{\mathrm{b}}, 8-\underline{H}_{a} \mathrm{H}_{\mathrm{b}}, 9-\underline{H}_{a} \mathrm{H}_{\mathrm{b}}, 10-\underline{H}_{a} \mathrm{H}_{\mathrm{b}}, 4^{\prime}-\underline{H}_{a} \mathrm{H}_{\mathrm{b}}, 8^{\prime}-\underline{H}_{a} \mathrm{H}_{\mathrm{b}}\right.$, $\left.9^{\prime}-\underline{H}_{a} H_{b}, 10^{\prime}-\underline{H}_{a} H_{b},\left[1-\mathrm{H}, 3-\mathrm{H}, 1^{\prime}-\mathrm{H}, 3^{\prime}-\mathrm{H}\right] /\left[5-\mathrm{H}, 7-\mathrm{H}, 5^{\prime}-\mathrm{H}, 7^{\prime}-\mathrm{H}\right]\right), 2.56\left(\mathrm{~d},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.2 \mathrm{~Hz}, 12 \mathrm{H}, 4 \times \mathrm{CH}_{3}\right.$), $3.08-$ $3.19\left(\mathrm{~m}, 8 \mathrm{H}, 4-\mathrm{H}_{a} \underline{H}_{b}, 8-\mathrm{H}_{a} \underline{\mathrm{H}}_{\mathrm{b}}, 9-\mathrm{H}_{a} \underline{H}_{b}, 10-\mathrm{H}_{a} \underline{H}_{b}, 4^{\prime}-\mathrm{H}_{a} \underline{H}_{b}, 8^{\prime}-\mathrm{H}_{a} \mathrm{H}_{\mathrm{b}}, 9^{\prime}-\mathrm{H}_{a} \underline{H}_{b}, 10^{\prime}-\mathrm{H}_{a} \underline{H}_{b}\right), 3.43-3.51(\mathrm{~m}, 4 \mathrm{H}$, $\left.\left[5-\mathrm{H}, 7-\mathrm{H}, 5^{\prime}-\mathrm{H}, 7^{\prime}-\mathrm{H}\right] /\left[1-\mathrm{H}, 3-\mathrm{H}, 1^{\prime}-\mathrm{H}, 3^{\prime}-\mathrm{H}\right]\right), 6.78\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.6 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.2 \mathrm{~Hz}, 4 \mathrm{H}, 4 \mathrm{~A}-\mathrm{H}, 4 \mathrm{~B}-\mathrm{H}, 4 \mathrm{C}-\mathrm{H}\right.$, $4 \mathrm{D}-\mathrm{H}), 7.17\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=3.5 \mathrm{~Hz}, 4 \mathrm{H}, 3 \mathrm{~A}-\mathrm{H}, 3 \mathrm{~B}-\mathrm{H}, 3 \mathrm{C}-\mathrm{H}, 3 \mathrm{D}-\mathrm{H}\right), 7.61\left(\mathrm{dd},{ }^{3} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=7.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}_{\mathrm{H}, \mathrm{H}}=1.3 \mathrm{~Hz}, 4 \mathrm{H}\right.$,
 $\left.1^{\prime \prime}-\mathrm{H}, 8^{\prime \prime}-\mathrm{H}, 1^{\prime \prime \prime}-\mathrm{H}, 8^{\prime \prime \prime}-\mathrm{H}\right)$ ppm.

HRMS (MALDI-TOF): calcd. for $\mathrm{C}_{64} \mathrm{H}_{56} \mathrm{~S}_{4} \mathrm{M}^{+} 952.3259$; found 952.3260.

$$
\mathrm{TLC}\left(\mathrm{SiO}_{2}\right): R_{\mathrm{f}}=0.80\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)
$$

5.17 Compound $B \perp R$

To a solution of compound $13(9.8 \mathrm{mg}, 10 \mu \mathrm{~mol}, 1.0 \mathrm{eq}) \mathrm{in}$ 1,2-dichloroethane (4.0 ml) water was added $(44 \mu \mathrm{l})$ and $\mathrm{HOAc}(45 \mu \mathrm{l})$. The mixture was cooled to $0^{\circ} \mathrm{C}$, and octafluorocyclopentene ($0.44 \mathrm{ml}, 0.70 \mathrm{~g}$, $3.3 \mathrm{mmol}, \sim 320 \mathrm{eq})$ was added using a pre-cooled syringe. The sealed reaction vessel was placed into a microwave cavity, and the reaction mixture was irradiated (150 W max. power) with controlled reaction temperature at $130^{\circ} \mathrm{C}$ for 10 min . The dark purple reaction mixture was cooled to r.t. and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ and sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(25 \mathrm{ml})$. The organic phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give $11 \mathrm{mg}(9.3 \mu \mathrm{~mol}, 92 \%)$ of a purple black solid. An analytically pure sample was obtained by normal phase HPLC (ProntoSIL 120-5 Amino E, $5 \mu \mathrm{~m}, 16 \mathrm{~mm}$ inner diameter, 25 cm length; iso-octane $/ \mathrm{CHCl}_{3}=55: 45 ; 11 \mathrm{ml} / \mathrm{min}$ flow; 6.9 min retention time).
${ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 400 \mathrm{MHz}\right): \delta=1.76-1.95\left(\mathrm{~m}, 4 \mathrm{H}, 1^{\prime}-\mathrm{H}, 3^{\prime}-\mathrm{H}, 5^{\prime}-\mathrm{H}, 7^{\prime}-\mathrm{H}\right), 2.32\left(\mathrm{~s}, 6 \mathrm{H}, 5 \mathrm{~B}-\mathrm{CH}_{3}, 5 \mathrm{C}-\mathrm{CH}_{3}\right)$ 2.63-2.75 (m, 2 H, 4- $\left.\mathrm{H}_{\mathrm{a}}, 8-\mathrm{H}_{\mathrm{a}}, 9-\mathrm{H}_{\mathrm{a}}, 10-\mathrm{H}_{\mathrm{a}}\right), 2.86-3.04\left(\mathrm{~m}, 4 \mathrm{H}, 4-\mathrm{H}_{\mathrm{b}}, 8-\mathrm{H}_{\mathrm{b}}, 9-\mathrm{H}_{\mathrm{b}}, 10-\mathrm{H}_{\mathrm{b}}\right), 3.71(\mathrm{~s}, 3 \mathrm{H}$, $4^{\prime \prime}-\mathrm{OCH}_{3}$), $6.69-6.72(\mathrm{~m}, 2 \mathrm{H}, 4 \mathrm{~B}-\mathrm{H}, 4 \mathrm{C}-\mathrm{H}), 6.87-6.93\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime \prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}\right), 7.20-7.24(\mathrm{~m}, 2 \mathrm{H}, 3 \mathrm{~B}-\mathrm{H}$, 3C-H), 7.56 - 7.63 (m, 4 H, $\left.2^{\prime \prime}-H, 6^{\prime \prime}-H, 3 A-H, 6 A-H\right), 7.86-7.92$ (m, 2 H, $\left.4 A-H, 5 A-H\right), 7.95$ (s, 1 H, 5-H), $8.17-8.24\left(\mathrm{~m}, 2 \mathrm{H}, 3^{\prime \prime \prime}-\mathrm{H}, 5^{\prime \prime \prime}-\mathrm{H}\right), 8.27(\mathrm{~s}, 2 \mathrm{H}, 1 \mathrm{~A}-\mathrm{H}, 8 \mathrm{~A}-\mathrm{H}), 8.71(\mathrm{~s}, 1 \mathrm{H}, 3-\mathrm{H}), 8.84-8.90\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime \prime \prime}-\mathrm{H}\right.$, $\left.6^{\prime \prime \prime}-\mathrm{H}\right) \mathrm{ppm}$.
${ }^{13}$ C NMR (DMSO-d ${ }_{6}, 101 \mathrm{MHz}$, some quaternary carbon atoms not detected): $\delta=14.9$ (C-5B, C-5C), 29.1, 30.0 (C-4', C-8', C-9', C-10'), 32.9, 33.9 (C-1', C-3', C-5', C-7'), 55.1 (4' $-\mathrm{OCH}_{3}$), 58.3, 60.5 (C-4/2', C-6'/9A), 114.5 (C-3", C-5"), 119.8 (C-3"', C-5"'), 120.4 (C-4A, C-5A), 122.7 (C-5), 123.2 (C-3B, C-3C), 124.6 ([C-3A, C-6A]/[C-2", C-6" $]$), 125.7 (C-1A, C-8A), 126.4, 126.8 (C-4B, C-4C), 126.9 ([C-2", C-6"]/[C-3A, C-6A]), 131.2
(C-3), 131.9, 133.8, 134.7, 138.8, 139.2, 140.8 (C-2'", C- $6^{\prime \prime \prime}$), 141.6, 146.6, 147.0, 147.5, 150.5, 157.7, 159.3, 161.4 ppm.
${ }^{19}$ F NMR (DMSO-d ${ }_{6}, \mathbf{3 7 6 . 4} \mathrm{MHz}$): $\delta=-\mathbf{1} 25.9 \mathrm{ppm}$.

MS (ESI, pos.): $m / z(\%)=992.4(100)[M+H]^{+}$.

HRMS (ESI): calcd. for $\mathrm{C}_{57} \mathrm{H}_{42} \mathrm{~F}_{4} \mathrm{NO}_{3} \mathrm{~S}_{4}[\mathrm{M}+\mathrm{H}]^{+} 992.1978$; found 992.1978 .

TLC ($\left.\mathbf{S i O}_{2}\right): R_{\mathrm{f}}=0.76\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=50: 1\right)$.

5.18 Compound $\mathbf{B} \| \mathbf{R}$

To a suspension of compound $\mathbf{8}(\sim 1 \mathrm{mg}, \sim 1 \mu \mathrm{~mol}, 1 \mathrm{eq})$ in HOAc ($450 \mu \mathrm{l}$) water was added ($10 \mu \mathrm{l}$). The mixture was cooled to $0^{\circ} \mathrm{C}$ and octafluorocyclopentene ($50 \mu \mathrm{l}, 79 \mathrm{mg}, 0.37 \mathrm{mmol}, \sim 370 \mathrm{eq}$) was added using a pre-cooled syringe. The sealed reaction vessel was stirred at r.t. for 22 h . TLC ($\mathrm{SiO}_{2}, \mathrm{EtOAc}$ as eluent) showed unreacted starting material. After addition of THF (0.46 ml) and octafluorocyclopentene ($50 \mu \mathrm{l}, 79 \mathrm{mg}, 0.37 \mathrm{mmol}, \sim 370 \mathrm{eq}$) and stirring the reaction mixture at r.t. for 18 h and at $56^{\circ} \mathrm{C}$ for 8 h , more octafluorocyclopentene ($50 \mu \mathrm{l}, 79 \mathrm{mg}, 0.37 \mathrm{mmol}, \sim 370 \mathrm{eq}$) was added, and the reaction mixture was stirred at $56^{\circ} \mathrm{C}$ for 14 h . The dark purple reaction mixture was cooled to r.t.; TLC showed almost full conversion and a complex mixture of products. The desired product was isolated by preparative normal phase HPLC (Knauer Nucleosil $100 \mathrm{OH}, 7 \mu \mathrm{~m}, 10 \mathrm{~mm}$ inner diameter, 25 cm length; iso-octane $/ \mathrm{CHCl}_{3}=$ 60:40 to 0:100 gradient over $15 \mathrm{~min} ; 5 \mathrm{ml} / \mathrm{min}$ flow; 6.3 min retention time) as a dark purple solid ($0.1 \mathrm{mg}, \sim 10 \%$).

HRMS (MALDI-TOF): calcd. for $\mathrm{C}_{67} \mathrm{H}_{53} \mathrm{~F}_{4} \mathrm{NO}_{3} \mathrm{~S}_{4} \mathrm{M}^{+}$1123.2844; found 1123.2861.

MS (ESI, pos.): $m / z(\%)=1124.4(100)[M+H]^{+}$.
$\mathrm{TLC}\left(\mathrm{SiO}_{2}\right): R_{\mathrm{f}}=0.62\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=100: 1\right)$.

5.19 Compound R

To a solution of compound $\mathbf{7}(12 \mathrm{mg}, 25 \mu \mathrm{~mol}, 1.0 \mathrm{eq})$ in 1,2-dichloroethane (4.0 ml) water was added $(44 \mu \mathrm{l})$ followed by HOAc ($45 \mu \mathrm{l}$). The mixture was cooled to $0^{\circ} \mathrm{C}$ and octafluorocyclopentene $(0.44 \mathrm{ml}$, $0.70 \mathrm{~g}, 3.3 \mathrm{mmol}, \sim 130 \mathrm{eq})$ was added using a pre-cooled syringe. The sealed reaction vessel was placed into a microwave cavity and the reaction mixture was irradiated (150 W max. power) with controlled reaction temperature at $130^{\circ} \mathrm{C}$ for 10 min . The dark purple reaction mixture was cooled to r.t. and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{ml})$ and sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}(25 \mathrm{ml})$. The organic phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 ml), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo to give 12 mg of a purple black solid. Column chromatography on silica gel ($10 \mathrm{~g} \mathrm{SiO}, \mathrm{CH}_{2} \mathrm{CH}_{2} / \mathrm{MeOH}=25: 1$) gave $4.6 \mathrm{mg}(6.9 \mu \mathrm{~mol}, 28 \%)$ of compound R as a black solid.
${ }^{1} \mathrm{H}$ NMR (CDCl $\left.{ }_{3}, 400 \mathrm{MHz}\right): \delta=1.66-1.72\left(\mathrm{~m}, 2 \mathrm{H}, 1^{\prime}-\mathrm{H}, 3^{\prime}-\mathrm{H}\right), 1.92-2.05\left(\mathrm{~m}, 4 \mathrm{H}, 4^{\prime}-\mathrm{H}_{\mathrm{a}}, 8^{\prime}-\mathrm{H}_{\mathrm{a}}, 9^{\prime}-\mathrm{H}_{\mathrm{a}}\right.$, $10^{\prime}-\mathrm{H}_{\mathrm{a}}$), $2.65-2.72\left(\mathrm{~m}, 2 \mathrm{H}, 5^{\prime}-\mathrm{H}, 7^{\prime}-\mathrm{H}\right), 2.82-2.94\left(\mathrm{~m}, 4 \mathrm{H}, 4^{\prime}-\mathrm{H}_{\mathrm{b}}, 8^{\prime}-\mathrm{H}_{\mathrm{b}}, 9^{\prime}-\mathrm{H}_{\mathrm{b}}, 10^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, 0 \mathrm{OCH}_{3}\right)$, $7.01-7.07$ (m, 2 H, $\left.3^{\prime \prime}-\mathrm{H}, 5^{\prime \prime}-\mathrm{H}\right), 7.75-7.82\left(\mathrm{~m}, 2 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}, 6^{\prime \prime}-\mathrm{H}\right), 8.09(\mathrm{~s}, 1 \mathrm{H}, 5-\mathrm{H}), 8.36-8.42(\mathrm{~m}, 2 \mathrm{H}$, $\left.3^{\prime \prime \prime \prime}-H, 5^{\prime \prime \prime}-H\right), 8.82\left(s, 1\right.$ H, 3-H), $8.95-9.01$ (m, 2 H, $\left.2^{\prime \prime \prime}-H, 6^{\prime \prime \prime}-H\right) ~ p p m . ~$

MS (ESI, neg.): $m / z(\%)=698.6$ (100) $[\mathrm{M}+\mathrm{Cl}]$.
HRMS (ESI): calcd. for $\mathrm{C}_{35} \mathrm{H}_{25} \mathrm{~F}_{4} \mathrm{NO}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$664.1234; found 664.1221.
$\mathbf{T L C}\left(\mathbf{S i O}_{2}\right): R_{\mathrm{f}}=0.59\left(E t O A c+0.1 \% \mathrm{NEt}_{3}\right)$.

$6{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra and HPLC chromatograms

6.1 3-Bromo-5'-iodo-2,2'-bithienyl (2)

Figure S17. NMR spectra of compound 2 in CDCl_{3}. Top: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz); bottom: ${ }^{13} \mathrm{C}$ APT NMR spectrum (101 MHz).

6.2 3-Bromo-5'-(p-methoxyphenyl)-2,2'-bithienyl (3)

Figure S18. NMR spectra of compound 3 in CDCl_{3}. Top: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz); bottom: ${ }^{13} \mathrm{C}$ NMR spectrum (101 MHz).

6.3 3-Bromo-5-iodo-5'-(p-methoxyphenyl)-2,2'-bithienyl (4)

Figure S19. NMR spectra of compound 4 in CDCl_{3}. Top: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz); bottom: ${ }^{13} \mathrm{C}$ NMR spectrum (101 MHz).

6.4 3-Bromo-5'-(p-methoxyphenyl)-5-(4-pyridyl)-2,2'-bithienyl (5)

Figure S20. NMR spectra of compound 5 in CDCl_{3}. Top: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz); bottom: ${ }^{13} \mathrm{C}$ NMR spectrum (100 MHz).

6.5 Compound 6

Figure S21. NMR spectra of compound 6 in CDCl_{3}. Top: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz); bottom: ${ }^{13} \mathrm{C}$ NMR spectrum (101 MHz).

6.6 Compound 7

Figure S22. NMR spectra of compound 7 in CDCl_{3}. Top: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz); bottom: ${ }^{13} \mathrm{C}$ NMR spectrum (101 MHz).

6.7 Compound 8

Figure S23. NMR spectra of compound $\mathbf{8}$ in CDCl_{3}. Top: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz); bottom: ${ }^{13} \mathrm{C}$ NMR spectrum (101 MHz).

6.8 2-Bromo-4,4'-diiodobiphenyl (10)

Figure S24. NMR spectra of compound 10 in CDCl_{3}. Top: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz); bottom: ${ }^{13} \mathrm{C}$ NMR spectrum (101 MHz).

6.9 2-[2'-Bromo-4'-(5-methyl-2-thienyl)-4-biphenylyl]-5-methylthiophene (11)

Figure S25. NMR spectra of compound 11 in CDCl_{3}. Top: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz); bottom: ${ }^{13} \mathrm{C}$ NMR spectrum (101 MHz).

6.10 Compound 12

Figure S26. ${ }^{\mathbf{1}} \mathrm{H}$ NMR spectrum (400 MHz) of compound $\mathbf{1 2}$ in CDCl_{3}.

6.11 Compound 13

Figure S27. NMR spectra of compound $\mathbf{1 3}$ in CDCl_{3}. Top: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz); bottom: ${ }^{13} \mathrm{C}$ NMR spectrum (101 MHz).

6.12 Compound 15

Figure S28. NMR spectra of compound 15 in CDCl_{3}. Top: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz); bottom: ${ }^{13} \mathrm{C}$ NMR spectrum (101 MHz).

6.13 Compound rac-14

Figure S29. NMR spectra of compound 14 in CDCl_{3}. Top: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz); bottom: ${ }^{13} \mathrm{C}$ NMR spectrum (101 MHz).

6.14 Compound B

Figure S30. NMR spectra of compound B in CDCl_{3}. Top: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz); bottom: ${ }^{13} \mathrm{C}$ NMR spectrum (101 MHz).

6.15 Compound B \perp B

Figure S31. NMR spectra of compound $\mathbf{B} \perp \mathbf{B}$ in CDCl_{3}. Top: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz); bottom: ${ }^{13} \mathrm{C}$ NMR spectrum (101 MHz).

6.16 Compound $\mathbf{B} \| \mathrm{B}$

Figure S32. ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz) of compound $\mathbf{B} \| \mathbf{B}$ in CDCl_{3}.

6.17 Compound $B \perp R$

Figure S33. NMR spectra of compound $\mathrm{B} \perp \mathbf{R}$ in $\mathrm{DMSO}-\mathrm{d}_{6}$. Top: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz); bottom: ${ }^{13} \mathrm{C}$ APT NMR spectrum (101 MHz).

Figure S34. HPLC analysis of compound $B \perp R$ after purification by preparative HPLC (ProntoSIL 120-5 Amino $\mathrm{E}, 5 \mu \mathrm{~m}, 4 \times 250 \mathrm{~mm}$; iso-octane $/ \mathrm{CHCl}_{3}=80: 20$ to $0: 100 \mathrm{in} 20 \mathrm{~min} ; 1.5 \mathrm{ml} / \mathrm{min}$ flow); top: HPLC trace; bottom: UV/Vis absorption spectrum of the peak with $t_{\mathrm{R}}=8.4 \mathrm{~min}$.

6.18 Compound $\mathbf{B} \| \mathbf{R}$

Figure S35. HPLC analysis of compound $\mathbf{B} \| \mathbf{R}$ after purification by preparative HPLC (ProntoSIL 120-5 Amino $\mathrm{E}, 5 \mu \mathrm{~m}, 4 \times 250 \mathrm{~mm}$; iso-octane $/ \mathrm{CHCl}_{3}=70: 30$ to 0:100 in $15 \mathrm{~min} ; 1.5 \mathrm{ml} / \mathrm{min}$ flow); top: HPLC trace; bottom: UV/Vis absorption spectrum of the peak with $t_{\mathrm{R}}=6.34 \mathrm{~min}$.

6.19 Compound \mathbf{R}

Figure S36. NMR spectra of compound \mathbf{R} in DMSO-d . Top: ${ }^{1} \mathrm{H}$ NMR spectrum (400 MHz); bottom: ${ }^{19}$ F NMR spectrum (376 MHz).

References

[1] C. Würth, M. Grabolle, J. Pauli, M. Spieles, U. Resch-Genger, Nature Protocols 2013, 8, 15351550.
[2] H. Pal, S. Nad, M. Kumbhakar, J. Chem. Phys. 2003, 119, 443-452.
[3] D. Magde, R. Wong, P. G. Seybold, Photochem. Photobiol. 2002, 75, 327-334.
[4] S. K. Mylona, M. J. Assael, K. D. Antoniadis, S. K. Polymatidou, L. Karagiannidis, J. Chem. Eng. Data 2013, 58, 2805-2808.
[5] J. Sykora, K. Kaiser, I. Gregor, W. Bönigk, G. Schmalzing, J. Enderlein, Anal. Chem. 2007, 79, 40404049.
[6] C. Adamo, D. Jacquemin, Chem. Soc. Rev. 2013, 42, 845-856.
[7] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian Inc., Wallingford, 2009, p. Gaussian 09.
[8] B. Valeur, M. N. Berberan-Santos, Molecular Fluorescence: Principles and Applications, WileyVCH, Weinheim, 2012.
[9] D. R. Lide, R. David, CRC Handbook of Chemistry and Physics, Internet version, CRC Press, Boca Raton, FL, 2005.
[10] T. Cardolaccia, A. M. Funston, M. E. Kose, J. M. Keller, J. R. Miller, K. S. Schanze, J. Phys. Chem. B 2007, 111, 10871-10880.
[11] K. Toyota, H. Katsuta, T. Iwamoto, N. Morita, Heteroat. Chem. 2011, 22, 531-537.
[12] S. Van Mierloo, P. J. Adriaensens, W. Maes, L. Lutsen, T. J. Cleij, E. Botek, B. Champagne, D. J. Vanderzande, J. Org. Chem. 2010, 75, 7202-7209.
[13] S. Suzuki, R. Sugimura, M. Kozaki, K. Keyaki, K. Nozaki, N. Ikeda, K. Akiyama, K. Okada, J. Am. Chem. Soc. 2009, 131, 10374-10375.
[14] H.-M. Kang, Y.-K. Lim, I.-J. Shin, H.-Y. Kim, C.-G. Cho, Org. Lett. 2006, 8, 2047-2050.

