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Abstract

Disordered packings of ellipsoidal particles are an important model for disordered
granular matter and can shed light on geometric features and structural transitions
in granular matter. In this thesis, the structure of experimental ellipsoid packings is
analyzed in terms of contact numbers and measures from mathematical morphometry
to characterize of Voronoi cell shapes. Jammed ellipsoid packings are prepared by
vertical shaking of loose configurations in a cylindrical container. For approximately
50 realizations with packing fractions between 0.54 and 0.70 and aspect ratios from
0.40 to 0.97, tomographic images are recorded, from which positions and orientations
of the ellipsoids are reconstructed. Contact numbers as well as discrete approxima-
tions of generalized Voronoi diagrams are extracted. The shape of the Voronoi cells
is quantified by isotropy indexes f;” based on Minkowski tensors. In terms of the
Voronoi cells, the behavior for jammed ellipsoids differs from that of spheres; the
Voronoi Cells of spheres become isotropic with increasing packing fraction, whereas
the shape of the Voronoi Cells of ellipsoids with high aspect ratio remains appro-
ximately constant. Contact numbers are discussed in the context of the jamming
paradigm and it is found that the frictional ellipsoid packings are hyperstatic, i.e.
have more contacts than are required for mechanical stability. It is observed, that the
contact numbers of jammed ellipsoid packings predominantly depend on the packing
fraction, but also a weaker dependence on the aspect ratio and the friction coefficient
is found. The achieved packing fractions in the experiments lie within upper and
lower limits expected from DEM simulations of jammed ellipsoid packings. Finally,
the results are compared to Monte Carlo and Molecular Dynamics data of unjammed
equilibrium ellipsoid ensembles. The Voronoi cell shapes of equilibrium ensembles of
ellipsoidal particles with a low aspect ratio become more anisotropic by increasing
the packing fraction, while the cell shape of particles with large aspect ratios does the
opposite. The experimental jammed packings are always more anisotropic than the
corresponding densest equilibrium configuration.



Zusammenfassung

Amorphe Packungen ellipsoidformiger Teilchen sind ein wichtiges Modell fiir unge-
ordnete Granulate. Ihr Studium ergibt Aufschluss tiber geometrische Eigenschaften
und Strukturiibergédnge in granularen Medien. In dieser Diplomarbeit wird die Struk-
tur der Packungen aus Ellipsoiden beziiglich typischer Kontaktzahlen und Form-
Mafien aus der mathematische Morphometrie zur Charakterisierung der Voronoi-
Zellen analysiert. Amorphe mechanisch stabile Packungen von Ellipsoiden werden
durch vertikales Schiitteln loser Packungen in einem zylinderférmigen Behilter
erzeugt. Circa 50 Packungen mit Packungsdichten zwischen 0.54 und 0.70 und Ach-
senverhdltnissen zwischen 0.40 und 0.97 werden per Tomographie untersucht. Aus
den 3D Tomogramm-Realraumdaten werden die Positionen und Orientierungen
rekonstruiert. Kontaktzahlen sowie diskrete Approximationen von verallgemeinerten
Mengen-Voronoi Diagrammen werden extrahiert. Die Form der Voronoi-Zellen wird
mit Anisotropie-Maflen B;°, welche auf Minkowski Tensoren basieren, analysiert. Das
Verhalten fiir amorphe Packungen von Ellipsoiden unterscheidet sich von dem von
Kugeln beziiglich der Voronoi-Zellen. Die Voronoi-Zellen von Kugeln werden mit
Erhohung der Packungsdichte isotroper, wohingegen die Form der Voronoi-Zellen
von Ellipsoiden mit hohem Achsenverhiltnis ungefdhr konstant bleibt. Die Kon-
taktzahlen werden im Sinne des “Jamming Paradigms” diskutiert. Es wird gezeigt,
dass Packungen mit reibungsbehafteten Ellipsoiden hyperstatisch sind, das heifst
sie haben mehr Kontakte, als sie fiir die mechanische Stabilitdt benotigen. Wir se-
hen, dass die Kontaktzahlen von “gejammten” Ellipsoid-Packungen in erster Linie
von der Packungsdichte abhédngt. Es wird aber auch eine schwachere Abhédngigkeit
von dem Aspektverhiltnis und dem Reibungskoeffizienten beobachtet. Die erziel-
ten Packungsdichten liegen zwischen den Werten fiir die hochste und niedrigste
Packungsdichte, welche in DEM-Simulationen vorhergesagt wurden. Zum Schluss
werden die Ergebnisse mit Daten aus Monte Carlo und Molekular Dynamik Simu-
lationen fiir Gleichgewichtsensemble verglichen. Die Form der Voronoi-Zellen von
Gleichgewichtsensemblen von Ellipsoiden mit kleinem Achsenverhiltnis wird bei
Erhohung der Packungsdichte anisotroper, wohingegen die Form der Voronoi-Zellen
tir Ellipsoide mit grofien Achsenverhiltnissen sich gegenteilig verhilt. Die expe-
rimentellen amorphen Packungen sind immer anisotroper als die entsprechende
Gleichgewichtskonfiguration.
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Introduction

How many candies are in the bag? How many objects of a given shape can you pack
into a container? These questions are interesting for children as well as for scientists.
Children aim for as many candies as possible in their bag. Scientists are, for example,
interested in finding efficient ways to pack objects or in understanding what prevents
the formation of the most efficient packing.

For granular media the understanding of packing phenomena of simple objects is
important, as it provides models for the understanding of packing effects of more
complex shapes, such as those found in sand or stones. The rigidity of granular
matter is relevant for geological processes, including avalanches and landslides [34].

The simplest convex object is a sphere. Therefore a large number of studies on
packing phenomena have focused on sphere packings. Packing phenomena of spher-
ical particles, such as the existence of a fairly sharp maximal packing fraction for
disordered packings (random close packing [9, 78]) or the jamming transition from freely
flowing to rigid sphere configurations [58, 86], have been studied numerically and
experimentally. They are quiet well understood but with some detail still under
debate. However, spheres are only the simplest model with obvious differences to the
possible anisotropic shapes found in sand or stones. Spheres are also special in terms
of their rotational symmetry in all directions, that effects the degrees of freedom.

The study of aspherical particle ensembles offers the possibility to assess the effect
of the particle shape on the packing properties. Obvious generalizations of spheres
are ellipsoids, packings of which are the subject of this thesis. Other particles shapes
are tetrahedra [26, 55] or superellipsoids [14].

The properties of random packings of frictionless ellipsoids have been studied
with different types of simulation [14, 16, 17]. Recently, a Discrete Element Simula-
tion for the simulation of frictional ellipsoid packings was described [15]. Packing
experiments on ellipsoid packings were only performed with two different types of
ellipsoidal particle shapes, with the packing fraction being the only quantity that has
been thoroughly investigated [16, 18].

With few exceptions, all current knownledge about packings of ellipsoidal particles
stems from numerical simulations, with quantitative experiments few and far be-
tween. This thesis reports on packing properties of experimental ellipsoidal particles
imaged by X-ray tomography. Packing experiments are performed with ellipsoidal
particles of different materials and aspect ratios. Tomographic images of the packings
are recorded, reconstructed and the particles are detected. A deeper understanding
of the geometric structure is obtained by the analysis with different geometrical
measures, including contact numbers or anisotropy measures based on Minkowski
tensors.

Chapter 1 provides an introduction about packing phenomena of spheres and ellip-



soids. Furthermore the anisotropy analysis with Minkowski Tensors is described. The
preparation methods, the tomographic imaging and the particles detection algorithm
are explained in chapter 2. Also the methods for calculating the statistical properties
such as packing fraction, contact numbers and anisotropy of the packing are ex-
plained. Chapter 3 analyzes the statistical properties of the experimental datasets and
compares them to published numerical results. Finally, chapter 4 provides a summary
that discusses the specific findings with reference to important open questions of the
field of granular matter.



1 Properties and Structure of Disordered
Packings

Packings of granular material are an important topic in engineering and physics [7].
Granular media as well as foams, colloidal suspensions, glasses, etc. can jam, that is,
build a rigid disordered state that withstands finite shear stress before yielding. The
transition from the flowing to the jammed state is called the jamming transition [86].

The average contact number between the particles in a system is a conceptually
simple topological quantity that is well studied, for example with respect to the
stability or rigidity of a system [86]. This work refers to the geometrical contact
number, i.e. the number of touching particles, in contrast to the mechanical contact
number which is the number of contacts per particle that carry forces [82]. The
minimum contact number, below which a system looses rigidity, is called isostatic
contact number zjs,. This value can be calculated by a constraint counting argument:
Ziso is the minimum number of contacts, for which no floppy deformations can exist
in the system. Floppy deformations are deformations which do not cost elastic
energy [86].

1.1 Jammed Sphere Packs

The packing properties of spheres are well investigated because of being the simplest
convex object. The important experimental, theoretical and numerical results are
summarized in this section.

It is numerically shown that frictionless hard spheres can only form jammed! disor-
dered packings with a packing fraction of ®; ~ 0.64 at the so-called point J. The point
] is defined as the point of the jamming transition for an infinite system of frictional
spheres [58]. Denser and fully disordered systems of spheres can only be achieved
for soft spheres by compression. The jamming paradigm states that properties like the
packing fraction or the contact number scale to point J [86]. Numerically it was found
that frictionless spheres reach isostaticity at Point ] with an average contact number
of ziso = 6 (see refs. [58, 86] for details).

Amorphous packings of frictional hard spheres can be prepared in a finite interval
of packing fractions. This was first established by Bernal and Scott [9, 78]. The lower
bound is referred to as the Random Loose Packing (RLP) limit with a packing fraction
of ®rrp ~ 0.55. Below this limit, no mechanically stable random packing exists [35].
The densest amorphous packing which can be obtained with experimental methods

1 For spheres, several different notions of jamming can be distinguished like local, collective or strict
jamming. For further information see ref. [85].
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has a packing fraction of ®rcp ~ 0.64 [78]. This upper bound is named Random Close
Packing (RCP) and coincides with point J. For frictional particles, the isostatic contact
number (the minimal number of contacts to give rigid structures) is zis, = 4. Random
packings of frictional hard spheres are generally hyperstatic, i.e. have an average
contact number larger than z;, [86]. The average contact number of sphere packings
has been analyzed previously for simulated data [36, 58, 86] as well as in experiments
on amorphous sphere packs [5, 6].

Packings above the Random Close Packing limit contain crystalline domains. For
spheres, the densest possible crystalline packings are known. These are the fcc
or hep packings resulting in a packing fraction of &g, ~ 0.74 [27]. It is by now
largely established that static jammed sphere packings show a “phase transition”
at drep = 7/v/18 ~ 0.64, the critical packing fraction at which formations of
crystalline fcc or hep clusters first occurs [36, 37]. This phase transition, in an athermal
ensemble first proposed by Edwards and co-workers [19], is analogous to the first
order phase transition in thermal hard spheres, with a critical packing fraction where
crystallization occurs [64]. The measurement of the order and crystallinity of a sphere
packing is a well investigated field. Different methods have been devised, i.e. the
widely used bond-orientational order parameter Q; defined by Steinhard et. al [84] or
methods based on Minkowski tensors [37, 38, 77]. These order metrics are all defined
with reference to the known densest crystal phases of spheres.

In this thesis, the degree of order of a packing is measured by characterizing the
Voronoi cells of the particles with the anisotropy indexes B;° based on the Minkowski
tensors, see section 1.4. In previous work, it was found that the Voronoi cells of sphere
packs are anisotropic [77]. The anisotropy indexes B can also be used to characterize
systems of equilibrium hard sphere fluids [38].

1.2 Jammed Ellipsoid Packs

An obvious generalization of spheres are ellipsoids. This chapter provides an
overview of previous work on jamming of ellipsoidal particles.

Ellipsoids can be classified into three different categories namely oblate, prolate and
fully aspherical ellipsoids. An oblate ellipsoids is a rotationally symmetric ellipsoid
with two identical shorter half-axes and one longer one. Prolate ellipsoids have two
short axes and one longer axis. For oblate and prolate ellipsoids, the aspect ratio « is
defined as the ratio of the length of the individual axis to the length of the identical
ones. Fully aspherical ellipsoids are ellipsoids with three different axis lengths.

Investigations of the packing properties of hard ellipsoids have been done by Donev
et. al [16]. In their study, the Lubachevsky-Stillinger sphere-packing algorithm? was
generalized from frictionless spheres to frictionless ellipsoids. The result of this
algorithm are densest random packings for each aspect ratio, see figure 1.1-A. The
plot shows the packing fraction for jammed frictionless ellipsoids. It can be seen that

2 Hard-particle molecular dynamics algorithm. Points are randomly distributed and expand uniformly
during the simulation until the pressure diverges. The result are dense disordered packings. For
further information see refs. [42, 43].
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Figure 1.1: (A) Packing fraction and (B) average contact numbers as a function of the
aspect ratio a for jammed ellipsoids configurations created with a gen-
eralized Lubachevsky-Stillinger algorithm for oblate ellipsoids (spares),
prolate ellipsoids (circles) and fully aspherical ellipsoids (diamonds). Both
figures are reproduced from Fig 2 of ref. [16].

the achieved packing fraction depends on the aspect ratio a , e.g. densest random
packs of oblate ellipsoids are formed with an aspect ratio of about 0.65, see figure
1.1-A.

A suggested explanation for the fact, that ellipsoids can pack more densely than
spheres was derived from the fact, that the Voronoi cells of sphere packs are anisotropic
[77]. That reference suggested, that the anisotropic average cell shape of sphere packs
could provide an explanation for the observed higher packing fraction in disordered
ellipsoid packs: Given an inherently anisotropic shape of each Voronoi cell (even
when the particles are spheres, i.e. isotropic) it appears intuitive to assume that
anisotropic particles (such as ellipsoids) give a better fit with the anisotropic Voronoi
cell (if suitable aligned), and hence a higher packing fraction.

The average contact number of the particles is shown in figure 1.1-B. The isostatic
contact number for packings of frictionless prolate and oblate ellipsoids is zjs, = 10
(for fully aspherical: zis, = 12) [16]. It can be observed that packings of frictionless,
slightly ellipsoidal particles are highly hypostatic, i.e. have less contacts than the
isostaticity condition requires. Hypostatic packings should not be able to form a
jammed packing because they are mechanically underconstrained without resistance
if a force is applied forces in the direction of floppy modes. However, it has already
been demonstrated that particles with sufficiently flat curvature at the point of contact
can jam in hypostatic packings [17]. In the frictional case, the isostatic contact number
Ziso changes to 4 because there are tangential forces at the contacts [86].

The numerical results of ref. [16] have been reproduced by Discrete Element
Method?® (DEM) simulations [14]. A DEM simulation was also used to simulate fric-
tional ellipsoids settling into a rectangular container filled with a viscous liquid [15].

3 Computation of the forces acting on each particle (collisions, friction, ..) and solving of the equations
of motion, possibly under gravity and with particles immerse in a viscous fluid. (references are
given in [14, 15])
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The simulation has been done for frictionless ellipsoids and for ellipsoids with an
extremely high friction coefficient. The viscosity was varied in the simulations. For
frictionless ellipsoids, the results were found to be independent of the viscosity. The
packing fraction of frictional ellipsoids decreases when increasing the viscosity until
a constant value is reached. This new lower limit for the packing fraction was named
sedimented loose packing limit ®gpp [15].

For spheres the densest crystalline packing (fcc or hcp) is known, but not for
ellipsoids. The analysis of equilibrium ellipsoids can provide some information about
crystalline solid phases. The first phase diagram of ellipsoids has been provided by
Frenkel & Mulder [21, 22]. It basically consists of four phases: a solid phase assumed
to be a streched-fcc, a so-called plastic solid phase with position but no orientationally
order of the ellipsoids, a nematic fluid i.e. orientationally but no position ordered
ellipsoids and an isotropic fluid. Further investigations revealed new crystal phases
and the achievable packing density has increased. A new crystal structure (SM2)
with a very high packing fraction was found. It has a simple monoclinic unit cell
containing two ellipsoids of unequal orientation [18, 61, 65]. Also crystal phases of
ellipsoids on a regular lattice have been studied [66]. Until now, not all (especially the
densest) crystalline phases of ellipsoids are known. Thus, a measure of the degree
of crystallinity and order for an ellipsoid pack is harder to define than for spheres
where fcc and hep are the only densest crystalline structures.

Donev et. al compared their numerical results to experimental data of experiments
with two different types of ellipsoidal particles. The packing of two sorts of M&M'’s
Milk Chocolate candies* with aspect ratios of 0.51 and 0.53. Additionally, ellipsoids
fabricated using a stereolithography machine with aspect ratio 1.25:1:0.8 have been
analyzed [16, 45]. For packings of M&M'’s Milk Chocolate candies, an agreement in
the contact number between the experiment and the results of the simulations has
been found (see cross in figure 1.1-B). This is unexpected given that the experimental
ellipsoids are frictional, in contrast to the simulation which is for frictionless ellipsoids.
In the packing fraction a deviation to the numerical data can be observed (see error
bar in figure 1.1-A).

1.3 Generalized Voronoi Diagrams

The problem of jamming and packing of hard particles is a very geometric one - with
physical interactions reduced to hard core repulsion (at least for frictionless particles
without gravity). Because of this geometric nature, it is particularly important to
have succinct methods to quantify structure and shape, both globally and locally.
Topological contact number and neighborhoods, discussed at length in section 2.6,
are one approach to this end. A different approach, which is also used in this thesis,
is through the construction of Voronoi diagrams. Here, the construction of Voronoi
diagrams for non-spherical particles is discussed.

For an ensemble of spherical objects of the same radius, the Voronoi cells are defined
by the Voronoi tessellation of the particle centers. All locations in space are associated

41regis’tered trademark of Mars Inc.
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Figure 1.2: Construction of the Set Voronoi Diagram for ellipsoids: Difference between
the normal Voronoi Diagram of the ellipsoids center points (left plot, blue
lines) and the Set Voronoi diagram of the ellipsoids (right plot, red lines)
of three ellipsoidal particles. While the normal Voronoi diagram facets
may intersect with the ellipsoidal particles, the facets of the Set Voronoi
Diagram trace loci of equal distance to the ellipsoid surfaces.

to the object of closest distance to the center. The resulting so-called Voronoi cells are
convex polytopes [59]. For objects which are not spherical or not monodisperse the
Voronoi diagram needs to be generalized [59].

For polydisperse spheres the Laguerre diagram can be used, where the distance of
the facet to the center is weighted with the radius [59].

For non-spherical objects an even more generalized Voronoi diagram is needed
[44, 59]. The generalization can be done with the following assignment rule [59]: the
void space is assigned to the object with the closest distance to the surface. By this
generalization the facets of the Voronoi Cell may be curved and the Cell is no longer
a convex polytope. As it can be seen this tessellation is different from the normal
Voronoi tessellation, where the space is assigned to the object with closest distance to
the center. In 2D, the corresponding Voronoi diagram is called area Voronoi diagram
[59]. In reference to that, we call this generalized Voronoi diagram in the 3D case
Set Voronoi diagram. The difference between the normal and the Set Voronoi diagram
in illustrated in figure 1.2. The calculation of the Set Voronoi diagram is described in
section 2.7.

In this work the Set Voronoi diagram is analyzed with anisotropy measures
based on the Minkowski Tensors.

1.4 Structure analysis by Minkowski tensors®

This section describes the structure analysis with Minkowski tensors for arbitrary
objects K. For the analysis of ellipsoid configurations the objects K represent the
Voronoi cells of the particles.

5Most of this section is an almost verbatim extract of ref. [76] of which I am co-author.
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1.4.1 Minkowski Tensors

The definition of Minkowski functionals is built on the strong mathematical founda-
tion of integral and convex geometry, both for the scalar functionals [25, 70, 71, 72]
and for the tensor-valued functionals [2, 29, 30]. The mathematical definition based on
so-called fundamental measure theory is equivalent to a more intuitive definition based
on surface integrals that has been more popular for the application of Minkowski
functionals in the physical sciences, pioneered by Mecke [49, 51, 52, 54]. This section
provides an overview of the definition of Minkowski tensors and of their essential
properties.

Generally, a shape index is a function that takes a spatial object as the argument and
produces a value that quantifies some aspect of the shape of the object. Minkowski
functionals are shape indices in this sense for the specific situation where the object
is a solid body K (in this thesis, the Voronoi cells of the ellipsoids) bounded by
a bounding surface dK, mathematically speaking a compact set with non-empty
interior embedded in Euclidean space IE°. This definition includes in particular
bodies with a discretized, e.g. triangulated bounding surface, with curvature and
normal discontinuities at the edges. The value of a shape index is not necessarily a
single number, e.g. for the radial two-point correlation function g, (r) itis a real-valued
function. For scalar Minkowski functionals, however, the value is just a single real-
valued number and for tensorial Minkowski functionals it is a tensor, here specifically
a symmetric rank-two tensor with six independent real-valued components. Other
examples of tensorial shape indices of rank two defined for a body K are the tensor of
inertia I [23], the mean intercept length tensor MIL(K) [12, 28, 32, 48, 57, 87, 88], see
also Ref. [40], and the quadrupole tensor Q [33], see also Ref. [56].

Tensorial Minkowski functionals are the generalization of the scalar Minkowski
functionals to tensorial quantities. Obvious applications are physical systems with
explicit orientation dependence including anisotropy and orientational ordering,
effective mechanical properties of inhomogeneous materials, etc. While in principle
defined for arbitrary rank, the current focus are Minkowski tensors of rank two. An
intuitive generalization of the scalar functionals Wy & [ dV and W, (K) « [, g,dA
(forv = 1,...,3) is achieved by introducing tensor products of position vectors r
and surface normal vectors n into the integrals (g1 = 1. g» and g3 are the point-wise
mean and Gaussian curvature of the bounding surface 0K, possibly their discrete
equivalents applicable to polyhedra). For spatial geometries there are six relevant
linearly-independent tensors

W20(K) ::/Kr®rdV, (1.1)
W20(K) = ;/aKrG@rdA, (1.2)
W20(K) ::% » H(r)r®rdA, (1.3)
W20(K) = ;/aKG(r)r@)rdA, (1.4)
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WI2(K) = E;K n®nda, (1.5)
W2 (K) := % » H(r)n®n dA. (1.6)

Here, H(r) = (k1 + x2) /2 and G(r) = (k1 k) are the mean and Gaussian curvature
of 0K and ® the tensor product defined as (a ® a);; = a;a; for any vector a (note that
this is equivalent for these tensors to the conventional definition with a symmetric
tensor product [74]). Note that the labels v, r, s define different tensors and are not the
indices of its components; the components are indexed by i, j and denoted (W,r;s)i]..
The label v represents the same integral types as for the scalar Minkowski functionals
(v = 0 the volume integral, v = 1 the surface integral, v = 2 the mean-curvature
weighted surface integral, etc) and r and s the tensorial powers of the position and
surface normal vectors, respectively. Generalizing Hadwiger’s statement, Alesker’s
theorem states, that all motion-covariant, conditionally continuous, and additive
tensorial functionals F(K) can be expressed as a linear combination of the Minkowski
tensors listed above and the scalar functionals multiplied by the rank-two unit tensor
[2]. This list of tensors has also been shown to be linearly independent [30].

The definition of the Minkowski tensors provides a set of four (six) truly tensorial
shape indices for planar (spatial) bodies. The different aspects of the morphology
that these tensors capture can be intuitively understood, see Figure 1.3. The tensors
W20 bear a resemblance to the tensor of inertia I(K) = [ (—r®r+ 2 E;) dV =
~W3? + tr(W2°)E; with the three-dimensional unit matrix E; and tr denoting the
trace of a matrix. The tensor W2 can be interpreted as a so-called moment tensor of a
solid body K that quantifies the distribution of mass within the body. Similarly, W°
is the moment tensor of a hollow body with a homogeneous mass distribution on
the surface. Further, for spatial polytopes (bounded by closed polygons of straight
segments), the tensors W5 and Wg’o are the moment tensors of a wire-frame body
and a body with mass located at the vertices, with the mass distributed according
to discrete mean curvature (dihedral angles across an edge) and discrete Gaussian
curvature (angle deficit around a vertex). As does the tensor of inertia, the Minkowski
tensors WX withv =0,...,d depend on the chosen origin 0.

The tensors W‘l)’2 and Wg,z are translation-invariant; hence the choice of origin
is irrelevant for these tensors. In contrast to the tensors W>?, their morphological
interpretation is not the distribution of mass but the orientational distribution of
surface patches and curvatures. This is evident for the simple planar example where
the body K is a rectangular prism of size Ly x L, X L; aligned with the coordinate
axes; the tensor W{? is diagonal with components (W), Ly, (W(l)’z)yy Ly and
(W), o L, reflecting the portions of interface oriented along the three orthogonal
directions. For more general bodies K, the following considerations illustrate the
relationship between Wg’z and the orientation distribution, see also Figure 1.3e. Given
a body K with boundary 0K we define the function

w(Kn') = % aK(S(n(r) —n') dr (1.7)
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o Lk

(a) Wg’o - moment tensor solid (b) Wi’o - moment tensor hollow

(c) W%’O - moment tensor wire frame (d) W§’O - moment tensor vertices

SN

e) W92 - normal distribution f) W92 - curvature distribution
1 2

Figure 1.3: Geometric meaning of the six linearly independent Minkowski tensors
for 3D polyhedral bodies. While the tensors W2 characterize mass dis-
tributions of solid (Wg’o), hollow (W%’O), wireframe (W%’O) or point-vertex
cells (Wg’o), the tensors Wg’z and Wg’z characterize surface normal distri-
butions.
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1.4 Structure Analysis by Minkowski Tensors

where §(x) is Dirac’s delta distribution and n(r) the normal vector of oK at r. The
function w(K,n') is the density function of normal directions of the bounding curve
dK, i.e. w(K,n') is the total length of all those patches of K that have normal direction
n'. It is normalized to the total surface area Wi (K), i.e. [ w(K,n) dn = W;(K).

We can now rewrite the Minkowski tensor W as

1
W?’Z(K):E/aKn@m dr (1.8)
1
== 5(n—n')dn'd
5 aKn@n/S2 (n—n') dn’dr
= [ n®nw(Kn)dn (1.9)
b))

with the unit sphere $,. This shows that the Minkowski tensor W{? is an integral
tensorial characterization of the normal vector distribution. Further detail is described
in Refs. [73, 74].

1.4.2 Algorithms for Minkowski Tensors

Fast linear-time algorithms for the computation of Minkowski tensors applicable
to polygonal representations of a given body K are available [11, 73, 74], analogous
to algorithms for their scalar counter-parts [4, 24, 39, 46, 50, 53]. These algorithms
yield expressions for the Minkowski tensors of the body bounded by the triangulated
surface, that are accurate up to the numerical precision. For bodies bounded by polyg-
onal flat facets, typically triangles, that necessarily have curvature discontinuities
along the facets” edges and vertices these algorithms are derived for convex bodies
by considering parallel surfaces and parallel bodies with continuous curvature prop-
erties in the limit of vanishing thickness. Derived for convex bodies, their validity for
non-convex bodies is a consequence of the additivity of the Minkowski tensors.

The Minkowski Tensors of the Voronoi cells are calculated with Karambola. Karam-
bola is a computer software able to calculate Minkowski Tensors of three-dimensional
bodies and surfaces. It is developed at the Institute of Theoretical Physics in Erlangen,
largely implemented by Sebastian Kapfer and me. It is available as free software
(http://theoriel.physik.uni-erlangen.de/karambola). In this work version 1.5
is used.

1.4.3 Anisotropy and Shape Indices

While the natural format of an orientation-dependent physical property is tensorial,
it can be more convenient to reduce the tensorial shape indices to scalar indices.
In particular, the Minkowski tensors can be used as succinct and comprehensive
anisotropy indices of a spatial structure. In this case, the degree of anisotropy of a
given body K is conveniently expressed as the ratio of minimal to maximal eigenvalue
of the Minkowski tensors

oo Mminl o gy, (1.10)
|Pmax|
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1 Properties and Structure of Disordered Packings

where Jimin and pimax are the eigenvalues of Wy* with minimal and maximal absolute
value. Note that for non-convex planar bodies the tensor W%’O may have negative
eigenvalues.

With this notation, a body that is isotropic with respect to the tensor Wy® corre-
sponds to B’ = 1 and deviations from unity indicate the degree of anisotropy.

Importantly, there is a distinct difference between this notion of anisotropy and the
notion of asphericity [83]. Asphericity quantifies the deviations of a shape from a
sphere (of the same volume). Cubes, equilateral tetrahedra, etc. are aspherical. The
concept of asphericity has a certain ambiguity, in that one can define an ellipsoid with
axes (a,a,b # a) that gives the same asphericity as a cube, w.r.t. specific measures
of asphericity. Anisotropy quantifies the degree of orientational differences in a
tensorial sense, i.e. if the body appears identical w.r.t. a particular property from any
two planar or three spatial orthogonal directions, it is isotropic. Cubes, tetrahedra,
spheres, etc. are isotropic w.r.t. this definition.

The concept of Minkowski tensors leads to the definition of a whole set of anisotropy
indices, rather than a unique definition of a single index. This is well-justified by the
observation that the degree of anisotropy of a given object may differ depending on
which quality of the body is analyzed, e.g. surface orientation or mass distribution;
see also the discussion on page 9. The availability of a set of shape indices, that are
comprehensive in the sense defined above, allows for a rigorous anisotropy analysis
not restricted to one specific morphological quality. Importantly, if an anisotropy
analysis by Minkowski tensors yields the same dependence of all tensors W7*, this
supports the statement that the anisotropy of the system is generic and not subject to
the specific method used to quantify it.
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2 Tomography and Structure Analysis of
Ellipsoid Packings

This chapter describes the experimental preparation of jammed ellipsoid packings,
the types of ellipsoid materials used, the image analysis, the detection algorithm and
the methods to calculate structural properties.

Loose jammed packings of ellipsoidal particles with different aspect ratios and
friction coefficients produced by 3 different methods are prepared in a cylindrical
container. By periodic vertical tapping of the container, the packing can be further
compactified. With this method packings of different packing fraction can be created
by varying the number of taps. The configurations are imaged by X-Ray tomography.
Based on the resulting 3D grayscale image the particle center points, sizes and ori-
entations are reconstructed. Statistical properties such as the packing fraction, the
contact numbers and the anisotropy of the local environments are calculated. This
chapter discusses the methods for computing these quantities.

2.1 Particle Types and Materials

For the experiments ellipsoidal particles of different materials (different friction coef-
ficient) comprising several aspect ratios are used, see also figure 2.1 and tabular 2.1.

e Pharmaceutical placebo pills (PPP):
Ellipsoidal placebo pills coated with a sugar layer, with surface properties
similar to those of smarties or M&M chocolate candies. The variations in size of
these particles are very small. These particles are oblate, with axis ratios 0.59
and 0.64 for the two sets.

¢ 3D printer particles (3DP):
Gypsum ellipsoids produced with a 3D printer (Z corporation: Zprinter 650)
cured with resin. These particles have a significant rougher surface than the
placebo pills, resulting in a higher friction coefficient. They are oblate, with
aspect ratios from 0.40 to 0.97.

¢ Injection molded ellipsoids (IM):
Very small and monodisperse ellipsoids produced by plastic injection molding,
with a smooth surface and low friction. These particles have an imperfection
where the plastic was injected into the mold. They have axes ratios 1.25:1:0.8
and 1.07:1:0.95 corresponding to the max densest ellipsoids of refs. [16, 17] and
the typical anisotropy of sphere pack Voronoi Cells from ref. [77].

A selection of these ellipsoids can be seen in figure 2.1.
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2 Tomography and Structure Analysis of Ellipsoid Packings

(a) 3DP: a = 0.33 (b) 3DP: 0 = 0.4 (c) PPP: a = 0.59
(d) PPP: o = 0.64 (e) 3DP: o = 0.74 (f) IM: aspect ratio: 1.25:1:0.8

Figure 2.1: Some of the different types of ellipsoids and aspect ratios used in the

experiments. For oblate ellipsoids i.e. ellipsoids with two long half-axis
of the same length, the aspect ratio « is the short axis divided by the long
axis. The height of the pictures is about 11mm. (a,b,c) are made by the 3D
printer (3DP), (c+d) are pharmaceutical placebo pills (PPP) and (f) is made
by injection molding (IM).

aspect | size [mm] (£ 0.05 mm) | volume quality
ratio | e e er [mm?] | type | ¢ roughness
0.97 3.2 3.1 3.1 124.8 3DP | 0.027 > 32um
0.91 3.0 3.3 3.3 136.8 3DP | 0.024 > 32um
0.74 2.5 3.5 3.5 128.3 3DP | 0.024 > 32um
0.64 2.0 3.0 3.0 75.4 PPP | 0.026 /A 2um
0.60 2.2 3.75 3.75 129.6 3DP | 0.024 > 32um
0.59 2.15 3.55 3.55 113.5 PPP | 0.009 /A 2um
0.40 1.6 4.0 4.0 107.2 3DP | 0.026 > 32um
Table 2.1: Properties of the different ellipsoidal particles used in the experiments. For
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oblate ellipsoids with two half-axes of the same length, the aspect ratio « is
defined as the fraction of the short and long axes. It is extracted from the
tomographic images. e1, e2 and e3 are the half axes length of the ellipsoids,
measured with a sliding caliper. 3DP = 3D printer; PPP = pharmaceutical
placebo pill.



2.1 Particle Types and Materials

B .

100 200 300  um

Figure 2.2: Output of a Tencor Instruments Alphastep 250 Profilometer for a surface
scan of an pharmaceutical placebo pill. For the 3D printed particles, the
depth of the roughness exceeds the vertical range of the profilometer by
scanning only a few ym horizontally. (A) Display output of the profilome-
ter; (B) Extracted data from a photography of the display. (Image recorded
using the profilometer of the chair for experimental physics, Prof. Paul
Miiller, University of Erlangen)

To the naked eye, the surface of the 3D printer particles is rougher than that of
the placebo pills. To quantify this surface roughness, the surface of the ellipsoids is
scanned with a profilometer (Tencor Instruments Alphastep 250 Profilometer). The
output of a surface scan of a placebo pill (aspect ratio & = 0.59) is shown in figure 2.2.
The surface of the placebo pills is indeed very smooth; the depth of the roughness
is about 2 ym. For the 3D printed particles, the depth of the roughness exceeds the
vertical range of the profilometer by scanning only a few pym horizontally, where
the curvature of the particles has no effect. Hence, the roughness of the 3D printed
particles is larger than 32 ym, and these particles are indeed very rough with a high
degree of friction.

To check the accuracy of the shape of the particles, the difference between the parti-
cle shape imaged by tomography and a perfect ellipsoid is calculated. In figure 2.3 the
difference is illustrated in a 3D image for different particles and aspect ratios. White
voxels indicate a difference between a perfect ellipsoid and the particle. Figure 2.3b
shows that the pharmaceutical placebo pills (PPP) have an almost perfect ellipsoidal
shape. The lasting aberrations are due to the discretization of the tomographic image.
The 3D printer particles (3DP) show small protrusions at one side of the ellipsoid, see
arrows in figure 2.3a and 2.3c.

A good measure for the similarity q of the shape to an ideal ellipsoid is the volume
difference Vgt between a perfect ellipsoid and the real ellipsoid normalized by the
volume V of the perfect ellipsoid:

Vi
9= (2.1)
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2 Tomography and Structure Analysis of Ellipsoid Packings

(a) 3DP: aspect ratio = 0.40 (b) PPP: aspect ratio = 0.59 (c) 3DP: aspect ratio = 0.97

Figure 2.3: Difference between the particle shape, imaged by tomography and a
perfect ellipsoid. White voxels indicates the aberration. The placebo pill
(b) has a very good ellipsoidal shape. The 3D printer particles (a+c) have
a protrusion at one side of the ellipsoid, marked with arrows.

The smaller g, the better the quality of the ellipsoid shape of the particle. The quality
values of the different particles are shown in table 2.1.

The injection molded particles have an imperfection into the surface where the
plastic was injected into the mold, see Figure 2.4. This imperfection is at the place
where the plastic was introduced into the mold. The depth is about 200um. The
imperfection effects the particle detection in the tomographic image and the cal-
culation of discontinuous statistical parameters like the contact number. (Because
these particles are not oblate ellipsoids, but rather have three different half-axes, the
diagrams in chapter 3 do not contain data based on these particles.)

The measured properties of the different ellipsoidal particles used in the experi-
ments are shown in table 2.1.

Figure 2.4: Imperfection of a plastic injection molded particle.
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2.2 Preparation of Jammed Ellipsoid Packings

2.2 Preparation of Jammed Ellipsoid Packings

The ellipsoidal particles are packed into a cylindrical container with a diameter
of 104 mm. Different packings are created by different preparation methods and
parameters.

Preparation of loose packings

A loose packing is created with the use of a cylindrical cardboard tube which fits
tightly into the cylindrical plexiglass container. Figure 2.5 shows pictures of each
step. This smaller tube is placed into the container and is slowly filled with ellipsoids
poured trough a funnel. Then the tube is pulled out very slowly. Section 3.3 discusses
the orientation of the ellipsoids in the resulting packing.

Figure 2.5: Preparation of a loose packing; (A) slowly filling the ellipsoids through
a cone into a slightly smaller cylindrical cardboard tube; (B + C) slowly
pulling the tube outside; (D) resulting loose packing.

Preparation of dense packings by vertical tapping

To create different packings the container can be vertically tapped or shaken. This is
done by placing the container on a shaker (LDS - V550 Series Vibrators) connected to
a function generator USB-controlled by a computer. The acceleration is controlled
by the applied voltage of the function generator. An acceleration sensor which is
connected to an oscilloscope measures the acceleration of the container, see figure 2.7.
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2 Tomography and Structure Analysis of Ellipsoid Packings

USB stepper
computer Interface motor
(labjack) controller
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translation
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height
laser
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Figure 2.6: Tapping and scanning process of the ellipsoid packings in the cylindri-
cal container; (A) shaker setup with translation stage and laser sensor;
(B) flow diagram of the shaking and scanning setup.
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Figure 2.7: (A) Output of the oscilloscope monitoring the amplitude and frequency
of the shaking (see figure 2.6). One unit in y-direction is 1g and the
image shows one cycle. (B) One-dimensional profiles as recorded by laser
sensor scanning the upper surface of the ellipsoid packing, see figure 2.6.
(red) loose packing, (green) dense packing.
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2.2 Preparation of Jammed Ellipsoid Packings

2.2.1 Volume Fraction Measurement by Surface Laser Scan

With the use of a height laser sensor mounted on a computer-controlled transla-
tion stage, the one dimensional surface profile of the packing can be recorded, see
figure 2.7-B. Such a scan takes approximately two minutes.

Figure 2.6 illustrates the scanning control (as well as the shaking process). The
whole scanning process is operated by a computer. The surface profile in one direction
of the ellipsoid packing can be scanned by a laser sensor. A translation stage driven
by a stepper motor is used to move the laser sensor across the surface. The stepper
motor is connected to a stepper drive (geckodrive G210). A labjack U6 interface,
which is connected via USB to the computer, triggers the gecodrive controller. The
provided exodriver for python and C++ is used to communicate with the labjack. The
height laser sensor is connected via a serial port - USB adapter to the computer. A
C++ program is used to read out the height.

The packing fraction of the jammed ellipsoid configuration in the container can
be calculated by two methods. The first one is the scanning method which uses the
surface scan and can be done instantaneous. The second method needs tomography
and reconstruction. It is described in section 2.7. In the following the first method is
described and compared to the tomographic method.

By measuring the average height of the surface profile, the packing fraction of the
ellipsoid pack can be calculated as

_ o

*=5

(2.2)
where & is the average height of the surface scan and hj is the height of the packing
given a packing fraction of 100%. hg can be calculated as

_xv. 25
7tr

cyl

ho

where the sum is over all volumes V, of the ellipsoids inside the container and 7y is
the radius of the container. For the monodisperse case, } V., = NV,, where N is the
number of ellipsoids in the container.

If hp is unknown, ®(h) can only be calculated in arbitrary units by choosing an
arbitrary hy.

The error in the measurement of the average height Al is estimated to be Imm.
The corresponding error in the packing fraction A®(h) can then be calculated as

AD(h) = A (2.4)
2 . .

(Note that the A®(h) ~ h~2 dependence reflects the fact that the larger the packing
in terms of particle numbers, the smaller the error in the global packing fraction.)

The packing fraction calculated by equation (2.4) from the average height ®(h) can
be compared to the global packing fraction ® which was determined by tomography
(chapter 2.7). For the calculation of ®(h) an arbitrary hy is chosen. As expected there
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2 Tomography and Structure Analysis of Ellipsoid Packings
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Figure 2.8: Comparison between global packing fraction extracted from the tomo-
graphic data and the packing fraction measured by surface scanning for
spheres and ellipsoids. ®(h) is given in arbitrary units. (red) sphere-like
ellipsoids with aspect ratio « = 0.97; (blue) ellipsoids with aspect ratio
a = 0.59.

is a linear dependence between these two methods, see figure 2.8. The total shift
between the two aspect ratios is due to the arbitrary /g chosen for each aspect ratio.
The packing fraction extracted from the tomographic data is only calculated in the
middle of the container. Boundary effects at the container wall and a inhomogeneous
local packing fraction distribution could cause the small differences from the linear
proportionality, seen in figure 2.8.

The more accurate tomographic method can be used calibrate the much faster
scanning method. Hence, the average height is a good and relatively fast indicator of
the global packing fraction of ellipsoid packings without doing tomography.

2.3 Tomographic Imaging

X-Ray tomography is the reconstruction of 3D spatial structures from X-Ray projec-
tions at multiple directions. It is used to obtain high resolution 3D real-space data
of the ellipsoid packing. To this end container, prepared by the methods described
in section 2.2, is placed into an X-Ray Tomograph (GE Nanotom), see figure 2.9.
The current and acceleration voltage of the X-Ray tube are chosen to maximize the
contrast between material and air in the resulting image. Table 2.2 shows the values
used.

The projections are taken with the option of “detector movement”, which means
that the detector is moved slightly to the left and to the right for every image to
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2.4 Image Processing: From Grayscale to Labeled Images

(a) Container and flat screen detector (b) X-Ray tube

Figure 2.9: Components of the “GE Nanotom” commercial X-Ray tomograph system
used to gain 3D data of ellipsoid packings.

type ‘ acceleration voltage ‘ current
PPP | 120 kV 160 pA
3DP | 140 kV 140 uA

Table 2.2: Current and acceleration voltage of the X-Ray tube used for the different
particle types. 3DP = 3D printer; PPP = pharmaceutical placebo pill.

reduce the problem of ring artifacts. For containers which exceed the range of the
detector, the “tiling option” is used. This option moves the detector at first to the left
side and the first half of the image is recorded. Then the detector is moved to right,
the right half of the image is recorded and merged with the first half. To be able to
merge the images correctly, a small overlap between the images is needed. With this
option, images which are larger than the flat screen detector can be recorded. The
maximum diameter of a cylindrical container which fits into the Nanotom is 104 mm.

The resulting image is a 3D raster graphics image with cubic volume elements
called voxels. From the geometry of the setup the resolution of the resulting images
can be calculated. The setups used in this work alway result in a resolution of
0.064 mm /voxel according to the Nanotom software.

2.4 Image Processing: From Grayscale to Labeled Images

Starting with a 3D-grayscale image (see figure 2.10) reconstructed from the projections
of the X-Ray tomography using the program phoenix datos|x - reconstruction (Version
1.5.0.14), the single ellipsoidal particles in the 3D-grayscale image are detected to get
a labeled 3D-image. The algorithm consists in several steps which are explained in
the following. The flow diagram in figure 2.13 pictures the parts of the algorithm and
its connections. The subsequent segmentation steps are illustrated by the sequence of
2D image slices in figure 2.14. The first slice represents the original grayscale image.
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2 Tomography and Structure Analysis of Ellipsoid Packings

Figure 2.10: Three-dimensional perspective view of an ellipsoid configuration, ren-
dered from the original 3D-grayscale data using the volume rendering
tool Drishti [41].

For the particle detection algorithm a binary image is needed. The easiest way
to binarize a grayscale image is by threshold segmentation with a global threshold
G, i.e., considering all voxels with gray-value G < G, as representing the air phase
(black) and all others as representing the particle phase (white).

In the reconstructed grayscale images a lower intensity in the center of the con-
tainer and overexposures at the sides of the container are commonly observed. The
rotational symmetry of the cylindrical container means that the intensity variation
is radially dependent. Thus, the threshold is varied with the radius, as a global
threshold will not give good results.

To make the image a binary image, the gray-value histograms of different radial
layers R; are calculated and analyzed, see figure 2.11-A. The two peaks in each of
the bimodal histograms represent the material and the air phase, see figure 2.11-B.
To get the best separation, the threshold for each layer is chosen in the minimum
between the two peaks. For each distance R; the threshold can be extracted. The
threshold function G.(r) is defined as the linear interpolation between these extracted
thresholds, see figure 2.12.

The threshold for each linear distance can be calculated and the grayscale image can
be binarized by the following rule:

If(G < Gc(r)) : Voxel is set to black (air phase)
If(G > G.(r)) : Voxel is set to white (ellipsoid phase) (2.5)

A slice of the resulting binary image can be seen in figure 2.14b.
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2.4 Image Processing: From Grayscale to Labeled Images
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Figure 2.11: Determination of the radial threshold function G.(r) used for gray-scale
image segmentation: (A) sketch of top view of the cylindrical container,
the radial layers R; to Rs are illustrated. (B) gray-value histogram for
two different layers: (red) layer near center, (blue) layer near side of
container. The minima of the two curves are marked with my and ms,.
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Figure 2.12: Radial threshold dependence G, (r) for gray-scale image segmentation
with linear interpolation between the steps, see also figure 2.11.
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Figure 2.13: Flow diagram of segmentation algorithm. Elliptical nodes describe the
segmentation steps and rectangular ones resulting data/images types.
Examples of the different intermediate steps are shown in figure 2.14.
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2.4 Image Processing: From Grayscale to Labeled Images

(e) EDM of binary image (f) binarized & labeled ellipsoids

Figure 2.14: Intermediate steps of the particle detection algorithm described in the
flow diagram in figure 2.13.
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2 Tomography and Structure Analysis of Ellipsoid Packings

(a) original (b) removed holes

Figure 2.15: Isolated cluster removal: Binary image slices of an ellipsoid before and
after removing “isolated clusters”. The isolated cluster removal step
is necessary, becaues small cluster of spurious “air” voxels can remain
inside the ellipsoids after the threshold segmentation.

Isolated cluster removal

In the white ellipsoids of the binary image, often some spurious black voxels remain.
Image 2.15a shows a close-up image of a single ellipsoid. For the separation process
describe below, these wrongly identified voxels have to be eliminated. To remove
these holes, the Hoshen Kopelmann cluster identification algorithm [63] is used to
identify all black clusters. The biggest cluster is the real air phase surrounding the
particles and stays black. All the other small clusters are set to white because they
represent falsely identified black voxels, which can be caused, for example, by air
bubbles in the particles. The result of this step can be seen in figure 2.15b.

In some cases spurious clusters are not removed, because they are connected to
the air phase. This problem is solved by varying the threshold with the radius,
see figure 2.12. In some rare cases, this error still occurs for a very small number
of individual ellipsoids (typically not more than one per dataset). If this happens,
these ellipsoids need to be separated manually together with their neighborhood,
segmented and inserted back into the 3D image.

Identification of the ellipsoids

After the creation of the binary image, the actual identification of the ellipsoids begins.
At first the white phase of the image is eroded. The erosion er of the phase X of a
binary image with radius R is defined by

er(X) = {x| Br(x) C X} (2.6)

with the sphere Bg(x) of radius R and center x [81].

A very effective method to calculate the eroded image, is by thresholding the
Euclidean distance map (EDM) of the ellipsoid phase [31]. The EDM of the white
phase of a binary image labels each voxel with the distance to the nearest black voxel.
It can be calculated by solving a minimization problem [20].

The erosion depth has to be chosen such that all ellipsoids become separated. Table
2.3 shows the used erosion depth for each aspect ratio.
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2.4 Image Processing: From Grayscale to Labeled Images

type | aspect ratio | short half-axis | long half-axis | erosion depth
3DP 1.00 47 voxels 48 voxels 16 voxels
3DP 0.91 46 voxels 51 voxels 15 voxels
3DP 0.71 39 voxels 54 voxels 16 voxels
PPP 0.64 30 voxels 47 voxels 13 voxels
3DP 0.60 34 voxels 58 voxels 15 voxels
PPP 0.59 32 voxels 55 voxels 15 voxels
3DP 0.40 25 voxels 61 voxels 17 voxels

Table 2.3: Erosion depth and spatial resolution for each particle type (3DP = 3D printer;
PPP = pharmaceutical placebo pill).

After the erosion step, all ellipsoids should be separated, as shown in figure 2.14c (If
not all ellipsoids are separated, which can be determined in the end, the segmentation
has to be done again with a larger erosion depth, see below). The remaining parts can
again be labeled and counted with the Hoshen Kopelmann algorithm [63], see figure
2.14d. The number of clusters of the eroded image is the number of ellipsoids in the
analyzed part of the cylinder.

The voxels, which were previously eroded, also need to be labeled. For this step an
EDM of the original binary image is needed. A slice of the EDM is pictured in figure
2.14e. To avoid unwanted artifacts in the next step, the EDM is smoothed by a Gauss
filter. All white (ellipsoid) voxels that are not yet labeled (those that were eroded
in the previous step) are now connected to the neighboring voxel, indicated by the
gradient of the EDM. Now the connections are resolved: If a voxel is already labeled,
all connected voxels are labeled equivalently. White voxels that remain unlabeled
after this step are ignored: they are treated as wrongly identified white voxels that do
not belong to an ellipsoid.

Every cluster should represent one ellipsoid and hence all clusters should have
approximately the same size in the end, corresponding roughly to the small degree of
polydispersity of the particles. If the variation in cluster size is larger than compatible
with the particle polydispersity, some ellipsoids have not been separated properly by
the erosion. In this case the segmentation process is repeated, for the whole sample,
with a larger erosion depth. The final result of the particle detection is shown in figure
2.14f.
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2 Tomography and Structure Analysis of Ellipsoid Packings
2.5 Extraction of Ellipsoid Shape Features from Labeled
Images

In the last section a labeled image of the tomographic data was generated. This
section describes the extraction of the shape features (position, orientation, size) of
ellipsoids from such labeled images. For the analysis of the ellipsoid packings, the
defining features of the single ellipsoids in the ensemble are needed. An ellipsoid is
described by:

* its center point: ¢
¢ its three normalized axis vectors: aj, ap, a3
¢ its three half-axis lengths: e1, e, €3

Figure 2.16 pictures an ellipsoid and its defining features. The following sections
describe the calculation of these defining features from a segmented 3D-picture.

Figure 2.16: Ellipsoid and its defining features. ej, e; and e3 are the lengths of three
half-axis.

2.5.1 Minkowski Tensors of Binary and Labeled Images

This chapter describes the calculation of the following Minkowski tensors for binary
images:

* Wy, a scalar representing the volume of the considered object.
e W;", avector which is the center of mass multiplied by the volume of the object.

. W(Z,’O, a tensor which quantifies the distribution of mass within the object. It is
related to the tensor of inertia.
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2.5 Extraction of Ellipsoid Shape Features from Labeled Images

The exact definition and geometric interpretation of the Minkowski tensors has
already been described in chapter 1.4.1.

In the following calculations, a binary image with a black phase (represents air) and
a white phase (represents ellipsoids) is assumed. The Minkowski tensors of the white
phase are calculated. The defining features of a voxelized ellipsoid can be extracted of
the three above mentioned tensors, see chapter 2.5.2. Images with labeled objects (e.g.
labeled image of an ellipsoid packing, see section 2.4) can be treated as binary images
for every label, hence the calculation for each label is the same as for a binary image.

Wy represents the volume of the white phase. Hence, the voxels of the white phase
are summed up.

W can be interpreted as the center of mass multiplied by the volume and can be
calculated for binary images as follows:

X
Wy (ellipsoid) = ) y 2.7)

white voxels \ z
voxel

For the calculation of Wg’o the calculation of the same tensor for a unit cube with
center in the origin Uy is needed.

5 0 0
2,0 O
Wii(Up)=(0 5 O (2.8)
0 0 %
The translation of the Minkowski tensors is given by
r
W (Kwt) = ) (;) " WPS(K) (2.9)

p=0

where the body K translated by a vector t is denoted K W t [74]. Thus, the tensor WS’O
of the unit cube with center in the origin translates as

Wl (Upwt) = W20 (Up) +t@t (2.10)

with the tensor product ®. As the Minkowski tensors are additive (see section 1.4),
WP of the white phase is the summation of W2° (w.r.t. the same common origin) of
each white voxel.

2.5.2 Extraction of Ellipsoid Properties from Minkowski Tensors

The defining features of an ellipsoid can be extracted from the Minkowski tensors
Wo, Wé’o and Wg’o, whose calculation was explained in the previous section. For an
ensemble of ellipsoids it is important that the Minkowski tensors are all calculated
with respect to the same origin.
The center of mass vector ¢, can be represented by Wy and Wy as follows:

_ W

= 211
<= To @1
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2 Tomography and Structure Analysis of Ellipsoid Packings

The axis vectors aj, a, a3 are given by the eigenvectors of Wg’o.

For the calculation of the aspect ratio, at first, an axis-aligned ellipsoid in the Cartesian
coordinate system is assumed. An axis-aligned ellipsoid can be transformed to a
sphere by the following linear transformation:

1o o0
=0 { 0]r=Gr (2.12)
00 1

For a sphere Wg’o, can be calculated exactly [74].
wg,o of an ellipsoidal particle K can then be calculated as

W20 = /K (ror) dr
= Js, (G_lr'> ® (G_lr') ﬁ d3r

=G! </ r ®r’d3r’> abc-G™!
52

4n
15 I

_4m 1711
—Eubc G '1G

A a2 0 0

= Eabc 0 v 0 (2.13)
0 0 c?

with the unit sphere S, and the three-dimensional unit matrix 1.

Considering now an arbitrary ellipsoid, the aspect ratios a1 and a, can be extracted

from the eigenvalues A1, A; and A3 of W3, if the ellipsoid is placed in the origin, by
the following equations:

a =L = N A (2.14)

€2
fy = ZJ — VA As (2.15)
3

For the absolute axis lengths, W or the volume also has to be considered. The volume
V of an ellipsoid is given by

4
V:W():gn-el-ez-e;; (2.16)
4 e1 €
= —7-e1—— 2.17
3N e m (2.17)

The axis length e; can then be calculated as:

3.V -
er = 1 # (2.18)
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2.6 Contact Numbers

Figure 2.17: Rendered 3D image of an ellipsoid packing in a cylindrical container used
the rendering tool povray (www.povray.org). In contrast to figure 2.10,
this image is based on a set of ellipsoids placed at the center points and
orientations as extracted from the tomographic image.

and then e, and e3 can be calculated very easily from equations (2.14) and (2.15).

With all this information, the position, orientation and size of the ellipsoids of
a labeled image can be reconstructed. Figure 2.17 shows a 3D image of detected
ellipsoids in a cylindrical container.

2.6 Contact Numbers

A very simple topological quantity of granular packings is the average contact number,
i.e. the average number of neighbors in contact with an objects. As any interaction
and force is transmitted from particle to particle through mutual contacts, the contact
number is conceptually a very important parameter for the mechanical stability of
a packing. Therefore, the contact number of jammed ensembles is a well-studied
parameter in the literature [5, 9, 14, 55, 80]. However, the contact number is highly
sensitive to details of its definition, due to its discrete values.

For experimental data, the contact numbers are hard to determine, because the
contact number is a discontinuous function of the particle positions and their ori-
entations. The finite accuracy of the X-Ray tomography and the reconstruction as
well as deviations of experimental particle shape from perfect ellipsoids lead to small
deviations in position and orientations. Hence, a simple geometric “contact counting”
would lead to incorrect contact numbers. The polydispersity of the particles does
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not affect the determination of the contact number, because the analysis in this thesis
treats the ellipsoids as polydisperse objects.

To determine the average contact number of an ellipsoid ensemble, an algorithm is
needed to decide whether two given ellipsoids intersect or not.

2.6.1 Intersection of Ellipsoids
An ellipsoid can be defined by

Ky <<a1 (o9 (- 9f (@ <r—c>>2> o e

2 2
€] € €3

The test if two ellipsoids (K; and Kj) intersect can be formulated as a constrained
minimization, which can be solved by the method of Lagrange multipliers: Minimize
K (r) subject to the constraint K; (r) = 0 [69]. This can be written as:

minF(r,A) with F(r,A) = Kx(r) — AKq(r) (2.20)
At the Minimum, the first derivative is zero.
oF .
o, =0, =123 (2.21)
oF
—_ = 2.22
3 0 (2.22)

This system of equations can be solved by Newton’s method [63]. Newton’s method
can be used to find the roots of these 4 equations for the derivations g—i and g—f\. These
roots correspond to minima or maxima of the distance function for points of K; to Kj.
In order to converge to the minimum, the starting point has to be set in the half of the
ellipsoid Kj, which is closer to ellipsoid Kj, otherwise Newton’s method converges to
the maximum. The starting point is set to

1
Tstart — R (Cl + CZ) (2.23)
A=0 (2.24)

with the two center points of the ellipsoids ¢; and c,. After a few steps Newton's
method converges to 1,1, the minimum on ellipsoid Kj. The position of rg,, deter-
mines if the ellipsoids intersect or not. If Ky (rgna1) > 0, the ellipsoids don’t intersect
because rfp, lies outside ellipsoid Kj. Otherwise the ellipsoids intersect.

2.6.2 Determining the Average Contact Number

In order to extract the average contact number k from the tomographic data, the
method introduced by Asteet al. for spheres [5] is improved and generalized for
ellipsoids. A morphological scaling factor of the ellipsoids x is introduced for this
method. The scaling factor x dilates the ellipsoids with a sphere B; of radius s, where

2[3Va

s=x
47

(2.25)

32



2.6 Contact Numbers

Figure 2.18: Morphological dilation of the ellipsoids by a sphere of radius s. As the
dilation radius is increased, a larger number of nearby ellipsoids are
identified as “in contact”. The approach of section 2.6 to identify the
correct contact number relies on guessing the correct form of the CNS
function and fitting the data to this curve.

and Vg, is the average Volume of the ellipsoids in the ensemble. A negative x
leads to an erosion of the ellipsoids. The dilation K(ej, ez, e3) & Bs of an ellipsoid

K(e1,e2,e3) = {(xy,z) z—; + ‘Z; + i—; < 1} with half-axes ey, ey, e3 is different from the
1 2 3

larger ellipsoid K(ej + s,e2 + s,e3 + s) with half-axes e; + s, e, + s, e3 +5.! How-

ever, for small s, K(e; +s,e; + s,e3 + s) is a good approximation of the dilation
K(e1, ez, e3) W Bs. An illustration can be seen in figure 2.18.

Contact number scaling function

The average contact number of an ellipsoid ensemble can be extracted from a contact
number scaling function (CNS function). The CNS function maps the morphological
scaling factor x onto the average contact number of the ensemble. The CNS function
is a sum of two parts f1(x) and fo(x).

The first part of this sum f;(x) is represented by a step function convoluted with
a Gauss function. To understand this part, exact data of jammed hard ellipsoids is
assumed where no ellipsoids overlap and each ellipsoid touches with its neighbors
at one point. In this case, if the dilated ellipsoids are smaller than their actual size
(for x < b) there should be no contacts. When the ellipsoids reach their actual size
(for x = b), the function jumps to the average contact number a of the ensemble. The
morphological scaling factor at this point is denoted by b. Hence, for exact data the
first part of the CNS function can be described by a step function h(x).

h(x) =a-6(x—Db) (2.26)

! Note that this dilation operation corresponds directly to the inverse of the erosion operation used in
equation 2.6 for the identification of the ellipsoids.
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2 Tomography and Structure Analysis of Ellipsoid Packings

(The second part of the sum f,(x), relevant for the gradually increasing number of
contact when the ellipsoids are dilated beyond their original size for x > b, is dealt
with below).

For experimental data, the position, size and orientation of the ellipsoids are not
exact, there are small deviations due to the tomography and reconstruction. These
errors are assumed to be distributed Gaussian and represented by the Gauss function
8(x).

C —(c x)z 1

g(x):ﬁe , UZE

The width of the Gauss function is denoted by o.
The first summand of the CNS function for experimental data can be calculated as
the convolution of the step function /(x) and the Gauss function g(x):

fi(x) = h(x) * g(x)

(2.27)

T . T

| —_——

g \/—? erf (¢ (x=D))

a a
=5 + > erf (c(x —b)) (2.28)
with the error function:
2 X

erf (x) = —— [ e Tdr (2.29)

Now for the second part: When the ellipsoids are dilated beyond their original
size (x > b), ellipsoids which have no physical contact but are close to each other are
now in contact. This increase of the CNS function with x is, by lack of deeper insight,
assumed to be a linear function f,(x). The function f,(x) starts at the inflection point
of the error function, and is defined by:

fa(x) =0(x—0b)-d-(x—b) (2.30)
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2.6 Contact Numbers

CNS(x)

2 - a-6(x —b) 7

average contact number

0 : :
0 b 0.05 0.1
scaling factor x

Figure 2.19: Model of the fitted contact number scaling (CNS) function to extract the
average contact number from tomographic data; (blue) CNS function,
(red) error function, (dashed) step function.

The size of the ellipsoids at the inflection point b is the actual size of the ellipsoids.
The combined CNS function for the analysis of the tomographic data is the sum of
the convolution of 1(x) and g(x) (equation (2.28)) and the linear increase f,(x):

CNS(x) = g (1+erf(c(x—b)))+0(x—b)-d-(x—b) (2.31)

An illustration of the CNS function can be seen in figure 2.19.

Now the parameters of the CNS function can be tuned to match the data of detected
ellipsoids in a tomographic image. With the intersection test of ellipsoids described in
section 2.6.1, a discrete CNS function of the detected ellipsoids can be extracted. The
implementation of the non-linear least-squares Marquardt-Levenberg algorithm in
the gnuplot graphics program (www.gnuplot.org) [89] is used to fit the CNS function
to the data of the detected ellipsoids. The fitting is done twice: At first, the CNS
function is fitted to a large dilation range of the particles, to get first estimates of the
parameters. In a second fit, the fit of the CNS function is restricted to the range

[b— 40 : b+ 80] (2.32)

The width of the error function ¢ can be calculated from c (see equation (2.27)). For
the definition of the fit-range, the parameters b and c are taken from the first fit. After
the second fit, the fit parameter a represents the average contact number. Figure
2.20 shows the CNS functions fitted to a dataset of placebo pills and to a dataset
of 3D-Printer particles. The differences of the fit for the ellipsoids produced by the
3D-printer and the data are due to the small protrusions of the ellipsoids. The larger ¢
is also caused by the inaccurate shape of these particles and results in a larger fitting
range.

The width of the error function ¢ is a good indicator for the accuracy of the particle
shapes. It is also obvious that the larger ¢, the larger the ambiguity of the exact
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2 Tomography and Structure Analysis of Ellipsoid Packings

value of the average contact number. At the moment there is no method available to
quantify the error of the extracted average contact number. Thus, the contact numbers
in the analysis are given without error bars.

Beyond its use to determine average contact numbers, the CNS function is also
used to determine the size of the ellipsoids in the tomographic data. For the further
analysis of the packing fraction and anisotropy, the ellipsoids are dilated to their
actual size indicated by the inflection point of the CNS function.
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(a) Packing of placebo pills. (b) Packing of of 3D-Printer particles.

Figure 2.20: Fitting the CNS function to data of detected ellipsoids in a tomographic
image to determine the average contact number. The accuracy of the
placebo pills is much better than the one of the 3D-Printer particles. This
is evident also in the width of the error function, which is much smaller
for the placebo pills. The green line indicates the fitting range.

2.7 Generalized Voronoi Diagram for Ellipsoidal Particles

This section describes an algorithm for the calculation of the Set Voronoi diagram for
aspherical or polydisperse objects, introduced in section 1.3.

To calculate the set Voronoi diagram, the surface of the ellipsoidal particles is
discretized by vertices connected by triangles (surface triangulation), see figure
2.22. The normal (point) Voronoi diagram of all these vertices is calculated using the
software tool ghull [8]. The Voronoi diagram of the discretization consists of two types
of facets, those that separate two vertices of the same ellipsoid, and those that separate
two vertices of different ellipsoids. The latter represent an approximation of the Set
Voronoi diagram of the ellipsoid configuration. The set Voronoi diagram is hence
obtained from the normal Voronoi Diagram of the triangulation by removing the
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2.7 Generalized Voronoi Diagram for Ellipsoidal Particles

Figure 2.21: Construction of the set Voronoi diagram. (A) Set Voronoi diagram of
non-overlapping particles (gray) obtained as a subset of the facets of
the point Voronoi diagram of a surface triangulation. (B) Set Voronoi
of overlapping ellipsoids. Prior to the computation of the Set Voronoi
diagram, the particles are eroded (by a parallel surface transformation) to
eliminate overlap. In both figures the symbols are: (black line) ellipsoid
surface; (black dots) discretized parallel surface; (dashed) Voronoi cells
of points on discretized parallel surface; (ref) generalized Voronoi cell.

superfluous facets which lie between seed points on the same object. The construction
of the generalized Voronoi diagram is illustrated in figure 2.21-A.

This construction of the Set Voronoi diagram provides a good approximation
provided that the typical edge length of the surface is small compared to the minimal
distance between adjacent objects/ellipsoids (Indeed, while we have not formally
pursued this, a convergence analysis similar to the related Voronoi-based Medial axes
algorithms [3, 75] appears possible). For ellipsoidal particles in geometric contact, this
criterion is not fulfilled. In fact, even worse, due to the accuracy of the reconstruction
algorithm, adjacent ellipsoids may have a very slight overlap. Fortunately, the Set
Voronoi diagram of an ellipsoid packing is the same as that of the same packing
with all ellipsoids (parallelly) eroded by a (not too) large value §, see Figure 2.21-B.
Therefore, the ellipsoidal particles are eroded (points moved along the inwards-
pointing surface normal) prior to the computation of the Set Voronoi diagram.

Note that the construction of this generalized Voronoi diagram bears a strong re-
semblance to the Medial axis or medial surface construction [10, 79] and the described
algorithm to the Voronoi-based medial axis algorithm [3, 75].

Assuming that the Set Voronoi cells represent the local volume associated to each
particle, the local packing fraction ®; for each ellipsoid can be calculated:

Vellipsoid

D, =
: Vcell

(2.33)
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The global packing fraction @ is then defined as the average value of all local packing
fractions (over all ellipsoid particles, excluding those close to the container walls).

0]
> Z 1

© = () = #ellipsoids

(2.34)

In the following the technical details of the discretization and the calculation of the
generalized Voronoi Cell are described.

Note that, in contrast to the normal point Voronoi diagram, the Voronoi Cells of the
Set Voronoi diagram are not necessarily convex, even if the particles are.

Figure 2.23 shows a 3D image of a generalized Voronoi cell of a single ellipsoids
of a jammed ellipsoid configuration. In figure 2.14 a slide of segmented ellipsoidal
particles in a cylindrical container and an image of the corresponding generalized
Voronoi cells of the inner ellipsoids can be seen.

Discretized representation of an ellipsoid and its parallel surface

First, an ellipsoid aligned with the coordinate axes is discretized and the parallel
surface (erosion) is calculated. Then the discretized surface is translated and rotated
to the position and orientation of the original ellipsoid (as extracted from the tomo-
graphic data).

An axis-aligned ellipsoid (aligned with the coordinate axes) can be parameterized by

x = ey cos(¢) sin(0)
y = ey sin(¢) sin(0) (0<¢9<2m,0<0<mn) (2.35)
z = ez cos(0)

with the three axis length e;, e; and es3.
For a homogeneous discretization of a sphere into triangles of (approx) the same size,
the surface element

sin(6)d¢d6 (2.36)

of the sphere between the triangulation vertices need to be constant. This constraint
is also used for the discretization of the ellipsoid surface, which leads to a higher
discretization of regions with high curvature, a somewhat desirable side effect!

At first, the circle of § = 71/2is discretized with N points of equally distance, by using
adp(0 = m/2)of 2t/ N. Now 66 is chosen as d¢(0 = 1t/2). To fulfill the constraint
in equation (2.36), 6 needs to be increased for smaller 6.

1
59 (0) Sin(0) (2.37)

2For the image in (b) the generalized Set Voronoi cells are not determined by the triangulated algorithm
of section 2.7 but by a voxel-based algorithm. This algorithm generates a water-shed partition of
the void space in the ellipsoid configuration, with respect to the Euclidean distance map, similar to
ideas in ref. [68].
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2.7 Generalized Voronoi Diagram for Ellipsoidal Particles

Figure 2.22: Discretized ellipsoid surface.

Figure 2.23: A generalized Voronoi cell of a single ellipsoids of a jammed ellipsoid
configuration. Note that the facets of the Set Voronoi diagram can be
curved and the cells are not necessarily convex.

(a) detected ellipsoids (b) generalized Voronoi cells

Figure 2.24: Image slice of segmented ellipsoidal particles in a cylindrical container
and the corresponding generalized Set Voronoi cells?. Voronoi cells of
the outermost layer of particles near the cylinder wall are not shown,
because a closed Voronoi cell is not defined for them.
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An example of a discretized ellipsoid surface is illustrated in figure 2.22. Now the
points are shifted along the inward-pointing surface normal n(6,¢), see equation
(2.39), to get the discretized parallel surface. For this, the normal vector to the ellipsoid
surface is needed. For a point p

e1 cos(¢) sin(6)
p = | e2sin(¢) sin(0) (2.38)
es cos(6)
on the ellipsoid surface, the normal vector to the ellipsoid surface can be calculated as
epes cos( ) sin(60)
n(p) = dp X dp _ erezsin(¢) sin(0) (2.39)
de do
e1ep cos(6)

The discretized parallel surface is the surface defined by the points p + dn(p). In
order to retain convexity and a smooth bounding surface of the eroded ellipsoid, the
value of § must not exceed the smallest radius of the curvature, which is

el
'min = — (2'40)
€3

with the smallest axis e; and the largest axis e3 [47].
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3 Statistical Properties of Ellipsoid
Packings

In this chapter the statistical properties extracted from the experimental datasets are
discussed. First, the range of global packing fractions that can be explored by the
tapping method as well as the spatial distribution of local packing fractions in the
resulting configurations are analyzed. Further the orientational alignment of the
ellipsoids with the direction of gravity, as function of distance from the cylinder walls,
is determined. The key focus of the chapter is the analysis of contact numbers (both
global and local) that are discussed in the context of the jamming paradigm. A further
analysis of the local contact number gives a deeper insight how the aspect ratio a
and the friction coefficient y affect the contact number. Besides the contact number
analysis, the local environment is also characterized by the shape of Voronoi cells.
Their shape is quantified by the anisotropy index ,B%’O based on Minkowski tensors,
which reveals that the Voronoi Cells of sphere-like particles become isotropic with
increasing packing fraction, whereas the shape of the Voronoi Cells of ellipsoids with
high aspect ratio remains approximately constant. Finally, section 3.6 compares the
results to numerical data of Discrete Element Simulations, in particular for the densest
and looses random packings, and to unjammed equilibrium ellipsoid ensembles of
much lower densities.

3.1 Global Packing Fractions and Compaction

Experimental realizations of ellipsoid configurations are prepared by the protocols
described in section 2.2. To achieve packings with different packing fractions for each
aspect ratio, a loose packing is prepared. This loose packing of ellipsoidal particles is
then tapped with different number of taps of an acceleration of 4g. The number of
ellipsoids in the cylindrical container and the resulting number in the tomogram is
shown in table 3.1. The table shows also the number of realized configurations and
the symbol for each aspect ratio used in the following plots.

For the analysis of the packing fraction of the contact number and of the anisotropy,
the ellipsoids near the container wall are not considered in order to reduce boundary
effects. Therefore the outside ellipsoids which are closer than 2cm to the container
wall are removed. The remaining analyzed number of ellipsoids can also be seen in
table 3.1.

Note that the number of particles with aspect ratio « = 0.91 and & = 0.64 was
not enough to fill the whole container. The experiments with these particles were
performed with a half filled container.
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aspect approximate number of particles | # of packings
ratio | symbol | type | cylinder | tomogram | analyzed | (tapping, other)
0.97 + 3DP 5000 2300 800 6,0

0.91 3DP 2500 1600 490 2,5

0.74 + 3DP 5000 2200 720 5,0

0.64 ° PPP 5000 4100 1400 5,5

0.60 + 3DP 5000 2200 700 6,0

0.59 ° PPP 5000 2900 880 6,3

0.40 3DP 5000 2600 800 5,0

Table 3.1: Number of ellipsoidal particles in the container, in the tomographic image
and analyzed particles after removing the outermost layers. The first num-
ber in the last column represents packings prepared by the tapping method,
the second one packings prepared with other methods. 3DP = 3D printer;
PPP = pharmaceutical placebo pill.

The packing fraction of an ellipsoid packing is adjusted by the tapping procedure
described in section 2.2. By tapping the container, the height of the packing gets
smaller which means that the packing gets denser. This dependence is also recog-
nized by the analysis of the global packing fraction in the tomographic image, see
figure 3.1. The increase in density by tapping the container and the reach of constant
packing fraction for large number of taps is consistent with published results [62, 67].
Ellipsoids seem to behave in the same way, but it takes longer to reach a constant
packing fraction. This can be explained with the elongation. Spheres move more
easily because they have rotational symmetry in all directions. The more ellipsoidal
its shape, the harder it is for a particle to move to the perfect packing position, because
it also needs to rotate.

Placebo pills form denser packings than the 3D-Printer particles. The reason is the
different friction coefficient u of the two particle types. The particles of the 3D-Printer
have a higher friction coefficient which leads to looser packs because they are more
sticky. The placebo pills with a lower friction coefficient i form denser packs because
the particles can slide more easily into denser configurations.

3.2 Local Packing Fractions

Using the generalized Voronoi Diagram of section 2.7 to define a sphere’s local
volume, the local packing fraction ®; (ellipsoid volume divided through Voronoi
cell volume) for each single ellipsoid can be defined, see chapter 2.7. An important
result is that the distribution of the local packing fraction P(®;) seems to be largely
independent of the aspect ratio . Distributions of different aspect ratio with global
packing fraction of about 0.65 are shown in Figure 3.2. To analyze this behavior for all
different packings, the standard deviation of the local packing fraction distribution
o(P(®;)) is calculated. It can be seen, the standard deviation depends only on the
global packing fraction and not on the aspect ratio a of the ellipsoids, see figure 3.3.
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Figure 3.1: Compaction of ellipsoid packings by tapping N-times with an acceleration
of 4g; the global packing fraction ® is extracted from the tomographic data.
Each curve represents ellipsoids with different aspect ratio «, as indicated
by the curve labels. (dot) pharmaceutical placebo pills; (cross) 3D-Printer
particles.
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Figure 3.2: Histogram of local packing fractions for different aspect ratios. The global
packing fraction for each packing is approximately 0.65. (dot) pharmaceu-
tical placebo pills; (cross) 3D-Printer particles.
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Figure 3.3: Standard deviations of the local packing fraction distributions. The de-
viations of the ellipsoids with aspect ratio « = 0.40 are probably con-
nected to the more inhomogeneous radial packing fraction distribution,
see figure 3.4. (dot) pharmaceutical placebo pills; (cross) 3D-Printer parti-
cles. The inset shows rescaled local packing fraction distributions of all
the ellipsoid packings. The global packing fraction ® is the average value
of all local packing fractions ®;.

The inset in figure 3.3 shows rescaled local packing fraction distributions of all the
ellipsoid packings, which are lying on top of each other. The global packing fraction
® is the average value of all local packing fractions &; .

For some configurations of ellipsoids with aspect ratio & = 0.40, the standard
deviation differs. These deviations are probably connected to spatial inhomogeneities
of the packing fraction for these particular configuration, see figure 3.4. This effect
needs further investigation with more experimental datasets.

Spatial homogeneity of the packing fraction

Here, the radial and vertical variations of the local packing fractions ®; of the particles
in the container is discussed. For this analysis all ellipsoids in the tomogram are used,
except the outermost layer near the container wall, because a closed Voronoi Cell is
not defined for them. The variation of the radial packing fraction is different for the
different ellipsoidal particles and aspect ratios, see left panel of figure 3.4. For most of
the particles, the packing fraction varies in a range of £1%. The small variations are
probably caused by the preparation method with the cardboard tube explained in
section 2.2.

The particles with aspect ratio « = 0.40 show a trend to a higher packing fraction
in the middle of the container (r = 0). This inhomogeneity probably causes the
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Figure 3.4: Spatial variation of the local packing fraction for a loose and a dense
packing of different aspect ratios. The approximate size of the ellipsoidal
particles is about 6.5 mm, the exact values are shown in table 2.1. The
average packing fraction is the packing fraction averaged over radial or
height intervals of approximately 4 mm. Left panel: Radial distribution
of the packing fraction. r is the radial distance from the center of the
container. Right panel: Packing fraction distribution in vertical direction.
(dot) pharmaceutical placebo pills; (cross) 3D-Printer particles.

larger standard deviation of local packing fraction distribution, seen in figure 3.3. The
influence of the preparation method and the container wall on the inhomogeneity of
the packing fraction distribution needs further investigations.

In the vertical direction the packing fraction stays constant, despite the gravity
effects in this direction, see figure 3.4 right panel. The weight of the upper layers on
the lower ones has no effect on the vertical packing fraction distribution.
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3 Statistical Properties of Ellipsoid Packings

3.3 Orientation

This section quantifies the degree of alignment of the vertical axis e, and the average
orientation of the particles in the container. The orientation of an oblate ellipsoid
can be characterized by the vector of the smallest axis. It is evident that a single
oblate ellipsoids (two large, one small axis) on a flat substrate under the action of
gravity adopts a particular equilibrium position (with the shorter axis perpendicular
to the substrate). To what degree packings of many ellipsoids are influenced by such
preferred orientations is the question addressed in this section.

Because of the radial symmetry of the system, the angle between the horizontal
coordinate axes is expected to be (and indeed is) random. However, alignment with
the vertical axis e, is possible.

The polar angle 6; for an ellipsoid is defined as the angle between the vertical axis
e; and the orientation axis es of the ellipsoid.

A

es 1
A€z !

Figure 3.5: Definition of the polar angle 6; of an ellipsoid.

The average polar angle 6 of all ellipsoids is an indicator for the global alignment of
the ellipsoids. Figure 3.6 shows the average polar angle for all the different packings.

For a random distribution of vectors on the upper unit sphere half, the average
polar angle is

90°

0. — / 0sin(6) do — -
0

7T

~ 57° (3.1)

Ensembles with 0 < 6,,,q4 have a preferred alignment with the vertical axis. For
ensembles with 6 > 6,4 the ellipsoids tend to be oriented in the horizontal plane.

By pouring the ellipsoids into the cylinder, oblate ellipsoids orient preferentially in
the vertical direction due to gravity. The more ellipsoidal the particles, the stronger
is the orientation. It can also be seen, that the orientation decreases with the friction
coefficient. The placebo pills with aspect ratio & = 0.59 show the strongest degree of
alignment. This is probably due to the low friction coefficient. They are also heavier
than the placebo pills with aspect ratio & = 0.64 which leads to a increased alignment
during the preparation process because of gravity.

By tapping the cylinder, the average angle increases implying that the ellipsoids
are distributed more randomly.
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Figure 3.6: Global average polar angle of the particles in ellipsoid packings with
different global packing fractions ® and aspect ratios «. The definition
of the polar angle is illustrated in figure 3.5. The dashed line indicates
the value expected for a fully random distribution of orientations on the
unit sphere $,. The numbers indicate the aspect ratio a of the particles.
(dot) pharmaceutical placebo pills; (cross) 3D-Printer particles.

3.4 Analysis of Contact Numbers

3.4.1 Global Contact Number

For each jammed ellipsoid configuration the average contact number can be deter-
mined with the “contact number scaling function” method described in Section 2.6.
Here the average contact number as a function of the global packing fraction is an-
alyzed. The predominant determinant of the average contact number is the global
packing fraction. This can be seen in figure 3.7, where the average contact number
as a function of the global packing fraction is shown. The contact numbers are only
calculated in the middle of the container, excluding the outermost layers. Ellipsoids
closer than 2 cm to the container wall are ignored to reduce boundary effects of the
container wall, see section 3.1

Upon closer inspection of the data, differences between the different particles’
shapes and friction properties can be resolved. An important result is that at a given
packing fraction sphere-like particles have on average less contacts than ellipsoidal
ones. Also particles of the same aspect ratio but different friction coefficients seem
to behave slightly differently. This can be seen by comparing the placebo pills with
aspect ratio & = 0.59 to the 3D-Printer particles with almost the same a = 0.60, but
very different friction coefficient .
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Figure 3.7: Average contact number as a function of the global packing fraction. In
first order the points seem to collapse to a master curve, but in second
order there are differences. This differences could be caused by the aspect
ratio, the friction coefficient and the history. (dot) pharmaceutical placebo
pills; (cross) 3D-Printer particles.

The isostatic contact number zi, for frictionless ellipsoidal particles is 4, see
section 1.2. It can be observed that the frictional ellipsoid packings are hyperstatic, i.e.
have more contact than the isostaticity condition requires, see figure 3.7. This is in con-
trast to packings of frictionless ellipsoids, which are hypostatic (contact number < z;g;)
[16].

In the following, the effect of the aspect ratio « and the friction coefficient y on the
contact number is analyzed.

3.4.2 Local Contact Number

The local contact number for each ellipsoid can also be determined with the same
method of section 2.6. This allows an analysis of the local contact number as a function
of the local packing fraction ®;.

The actual size of the ellipsoids can be determined with the contact number scaling
function. Each ellipsoid is dilated to its actual size and a simple geometric contact
counting for each ellipsoid determines its number of contacts. The contact number is
a discontinuous function and small deviations of the position and orientation lead to
errors, see section 2.6. Thus, only the contact number averaged over ellipsoids with
the same local packing fraction is compared.
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Figure 3.8: Relationship between local packing fraction ®; and contact number. At
the bottom (and using the right hand scale) the distribution of the local
packing fraction of a jammed ensemble with ellipsoids of aspect ratio
0.64 is plotted. The top data points with error bars, represent the contact
number averaged over all ellipsoids with local packing fraction between
®; — 0.005 and @; + 0.005, using the left hand scale. The error bars repre-
sent the width of the distributions of the contact numbers.

Figure 3.8 shows the local packing fraction distribution (using the right hand
scale) for a jammed ellipsoid ensemble with global packing fraction 0.648 and
ellipsoids of aspect ratio 0.64. On top of the local packing fraction distribution,
the contact number averaged over all ellipsoids with local packing fraction between
®; — 0.005 and ®; + 0.005 (using the left hand scale) is shown. The error bars rep-
resent the width of the distributions of the contact numbers. The plot shows, that
the average contact number of an ellipsoid increases with the local packing fraction.
This seems reasonable as the denser the packing is, the closer the particles are to each
other and hence, the more particles are in touch.

Dependence on aspect ratio

The behavior of the local contact number is now compared for spheres and ellipsoidal
particles. At first the most sphere-like (x = 0.97) and the most oblate particles
(o« = 0.40) both produced with the 3D-Printer are compared. These particles have
same friction coefficient but different aspect ratios.

It can be seen, that for sphere-like particles, the local contact numbers are indepen-
dent of the global packing fraction. The curves coincide, which is in agreement to
published results [6]. The small variations are due to the small difference to an exact
sphere and poor statistics of approximately 800 analyzed particles per dataset. For
ellipsoidal particles it can be observed that these curves split up. The local contact
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Figure 3.9: Relationship between local packing fraction ®; and local contact number
for almost spherical and strongly ellipsoidal particles of the same friction
coefficient, both produced with the 3D-Printer. For each aspect ratio the
curves of the local contact numbers for different global packing fractions
are shown. The triangles indicate the global packing fraction and global
contact number of the different packings. For the sphere-like particles the
curved coincident. Ellipsoidal particles show a vertical offset between the
curves.

numbers for denser packs are higher than the ones for looser packs. This split could
not be caused by the orientational alignment, the alignment with the vertical axis
is the same for three of the shown curves of particles with « = 0.40, see section 3.3.
By analyzing the curves of more different aspect ratios it can be observed, that the
splitting gets stronger the more ellipsoidal the particles are.

The global contact numbers are also represented in these curves by black triangles,
see figure 3.9. It can be observed, that the global contact numbers fall onto the local
contact number curves. The analysis of the local contact number gives a deeper
insight into the contact distribution of ellipsoid packs.

Dependence on friction coefficient

Packings with ellipsoids of approximately the same aspect ratio but different friction
coefficient y are analyzed. Packings of placebo pills with a low friction coefficient are
compared to particles of the 3D-Printer with a high friction coefficient, see figure 3.10.
Each curve represents a packing with a different global packing fraction. The packings
with placebo pills have a smaller range of packing fractions (®; = 0.590 — 0.663) than
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Figure 3.10: Relationship between local packing fraction ®; and local contact num-
ber for ellipsoidal particles of different friction coefficient. Each curve
represents the local contact numbers of a packing with a different global
packing fraction ®. A different range in the vertical splitting for particles
with approximately the same aspect ratio but different friction coefficient
can be observed. (In this plot, the color of the placebo pill symbols is changed
in order to distinguish more clearly between the curves.)

the packings with particles fabricated with the 3D-Printer (®; = 0.635 — 0.682).

The local contact number curves of packings with placebo pills are strongly shifted
for different global packing fractions. In contrast, The 3D-Printer particles show only
a small vertical shift between the curves despite them covering a larger range of
global packing fractions.

The different range of the vertical split of the local contact number curves for
particles with approximately the same aspect ratio but different friction coefficient is
a strong indication that the packing properties of ellipsoids depend on the friction

coefficient.
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3 Statistical Properties of Ellipsoid Packings

3.5 Anisotropy Analysis of the Particles’ Voronoi Cells

The contact number is a local quantity of an ellipsoid and its touching neighbors.
Contact numbers are sensitive to the position and orientation of the ellipsoids because
of their discontinuous nature with respect to these parameters. Shape measures
of Voronoi cells are a further approach to local structure characterization. These
geometric (rather than topological) order metrics change continuously with the
position and orientation of the particles in contrast to the contact number. Thus,
shape measures of Voronoi cells are a good method to describe local quantities of
experimental packings, where small inaccuracies of position and orientation occur
due to tomography and reconstruction. Here, the characterization of the generalized
Set Voronoi cells is done with the anisotropy index ﬁ%’o € [0,1] based on Minkowski
Tensor W2 eigenvalue ratios, see section1.4. The Minkowski tensor W3 quantifies
the distribution of mass within a solid Voronoi cell and the corresponding anisotropy
index ,6‘3’0 the deviations from an isotropic cell. For an isotropic packing ( ‘3’0> is 1.
The smaller the value of ( (2)’0>, the more anisotropic is the packing. This method was
already used to characterize various ensembles of spherical particles [38, 77].

The average anisotropy index ( ,B%’(]) as a function of the global packing fraction is
analyzed for the experimental packings prepared with the vertical tapping method
described in section 2.2. It can be seen in figure 3.11. In addition, packings prepared
with a range of different (less well documented) methods and container sizes are
shown. These data blend in perfectly with to the ones prepared with the tapping
protocol.

For ensembles of jammed spheres ( ﬁg'()) increases with the packing fraction, i.e. the
packing becomes more isotropic. This behavior was already observed before [77],
and is reproduced for the 3D printed sphere-like particles in our experiments.

A new result is that for ellipsoidal particles the behavior changes. For example for
packings of ellipsoids with aspect ratio « = 0.40 the average anisotropy is approxi-
mately constant and independent on the global packing fraction, see the orange line
in figure 3.11.

To analyze this change in behavior, linear fits for each aspect ratio « are applied to
the data, see lines in figure 3.11. The slope s

d(pg”)

T 4o

(3.2)

of each fit can be analyzed as a function of the aspect ratio, see figure 3.12. For sphere-
like particles the slope s is quite high as already known before. Ellipsoidal particles
show a much lower (if any) slope s. There must be a transition or cross-over between
these two types of behavior. To determine the exact dependence of the slope s on the
aspect ratio, packings with more aspect ratios in this range need to be analyzed. Also
the friction coefficient has to be considered. The slope s of the placebo pills (dots) is
higher than the one of the 3D-Printer particles with roughly the same aspect ratios,
see figure 3.12.
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Figure 3.11: Average anisotropy index ( ﬁ%'()) of the Set Voronoi cells of the ellipsoid
configurations as a function of the global packing fraction. The curve
labels represent the aspect ratio a of the particles; (cross) 3D-Printer
particles, (dot) placebo pills. These data are generated by the vertical
tapping method described in section 2.2. In addition, triangles represent
packings prepared with a range of different methods and container sizes.
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Figure 3.12: Slope of the linear fits to ( %’0> (@) as a function of the aspect ratio «, see
figure 3.11.
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3.6 Comparison to Numerical Data

3.6.1 Attainable Packing Fractions and Estimates from Discrete Element
Method Simulations

The global packing fraction of the experimental data can be compared to numerical
results. For frictionless and frictional ellipsoids settling into a container filled with a
viscous liquid Delaney et. al [15] performed Discrete Element Method Simulations
(DEM). Simulations with extremely high friction coefficient and very high viscosity
lead to the loosest packings. This limit was named sedimented loose packing limit ®gp
[15]. These values should be a lower bound for the packing fraction for each aspect
ratio. The upper bound is given by simulations of frictionless ellipsoids. In this case
the packing fraction is independent on the viscosity. The upper bound estimated by
Delaney et. al [15] coincides with the Lubachevsky Stillinger simulations performed
by Donev et. al [16] despite their simulations have been without gravity.

The global packing fractions of the experimental datasets prepared by vertical
tapping are now compared to these limits, see figure 3.13. In addition packings
prepared with a range of different methods and container sizes are shown. The
achieved packing fractions of all preparation methods lie in between these two limits.

It is difficult for experiments to probe the range of packing fractions for which
disorder and jammed configurations can exist. Mostly due to friction, it is unclear if
experiments can explore the whole range between the simulated lower and upper
limits. Low packing fractions can only be achieved by a slowly settling of highly
frictional particles. This can be accomplished by using a viscous liquid with a slightly
smaller density than the one of the particles. To find the best way of preparing dense
packings different preparation methods need to be tried. Tapping with more than
1500 taps can lead to denser packs. An experimental verification of both limits as well
as the possibility of creating denser of looser packings need further investigations.

3.6.2 Voronoi Cell Anisotropy of Equilibrium Ellipsoid Ensembles and
Jammed Ellipsoid Packings

A good reference system for ellipsoidal particles are non-static equilibrium fluids
i.e. systems of ellipsoids with hard-core particle-particle interaction and no gravity
in the system which is a well studied liquid crystal model. The orientations of the
particles in the system are distributed randomly. Simulations of these systems are
created with two methods. A Monte Carlo (MC) algorithm [60] was applied for low
densities. The code for this simulation was provided by the group of Tanja Schilling!.
For denser ensembles a Molecular Dynamics (MD) Simulation [13] has been used.
Configurations of the MD ensembles were provided from Cristiano De Michele and
Francesco Sciortino?.

The anisotropy index (82°) of non-static equilibrium fluids for different global
packing fractions is shown in figure 3.14. It can be observed that the data of the

ITheory of Soft Condensed Matter, University of Luxembourg
2Department of Physics, University of Rome
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Figure 3.13: The packing fractions of the experimental data compared to the upper
and lower limits known from Discrete Element Method Simulations
[15]. (cross) 3D-Printer particles, (dot) placebo pills, (triangle) packings
prepared with different methods and container sizes, (square) upper and
lower limits calculated by DEM Simulation. The upper limit is given by
simulations of frictionless ellipsoids, the lower bound by simulation of
the sedimentation of highly frictional particles in a viscous liquid. The
lower bound was named sedimented loose packing limit ®spp. (DEM data
for upper and lower limits courtesy of Gary Delaney, CSIRO, Melbourne).
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MC and MD simulations merge perfectly. In the limit & — 0 the anisotropy index
is independent on the aspect ratio. This is obvious because in this limit the shape
of the particles is irrelevant. In this limit the anisotropy index fits with the already
known results for a Poisson Point Process [38]. For sphere-like particles the anisotropy
index increases with the packing fraction implying that the cells get more isotropic.
Ellipsoidal particles behave different the more ellipsoidal the shape of the particles
becomes. Very ellipsoidal particles show a decrease of the anisotropy index with the
packing fraction. A explanation for this behavior is that the shape of the Voronoi cell
assimilates more the shape of its containing particle the denser the packing gets.

The anisotropy index for the jammed ellipsoid packs is smaller than the one for
the densest fluid packing. This holds for sphere-like as well as for very ellipsoidal
particles.

An interesting fact is that the anisotropy index in the MD simulations stays ap-
proximately constant for the aspect ratio &« ~ 0.65. Curiously, this coincides with the
aspect ratio that produces the densest random packings in Lubachevsky Stillinger
[16] and DEM simulations [14, 15].
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Figure 3.14: Average anisotropy index (B3°) of the Set Voronoi cells of the ellipsoids
as function of the global packing fraction for equilibrium ellipsoid ensem-
bles and static jammed ellipsoid packings. (MC) Monte Carlo Simulation;
(MD) Molecular Dynamics Simulation; (DEM) Discrete Element Simula-
tion; (3DP) Experimental data of 3D-Printer particles; (PPP) Experimental
data of placebo pills. (MC data courtesy of Tanja Schilling, Universite du
Luxembourg; MC data courtesy of Cristiano De Michele and Francesco
Sciortino, University of Rome; DEM data courtesy of Gary Delaney,
CSIRO, Melbourne).
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4 Summary and Outlook

In this thesis the properties of jammed experimental packings of ellipsoidal particles
have been studied. This study was based on the following analyzes:

Experimental preparation of disordered packings of approximately 5000 el-
lipsoidal particles, each by a tapping protocol (ellipsoidal particles of three
different types of materials, comprising in total 9 different aspect ratios).

Recording of tomographic images of approximately 50 packings including
digital reconstruction by segmentation and particle detection.

Extraction of average (global) and local contact numbers from the tomographic
datasets by a method based on “contact number scaling functions” of dilation
width.

Discussion of the alignment between the direction of gravity and the orien-
tation of ellipsoids in experimental packings, to assess degree of order and
homogeneity.

Implementation of software to compute generalized (Set) Voronoi diagrams
for ellipsoidal particles, by an algorithm based on the Voronoi Diagram of
triangulated surfaces.

Anisotropy analysis of the experimental and simulated ellipsoid configurations,
using Minkowski tensor anisotropy measures applied to Voronoi cells.

Comparison of experimental packing fractions and Voronoi cell anisotropy to
Discrete Element Method simulations of jammed ellipsoids and to Monte Carlo
and Molecular Dynamics data of equilibrium ellipsoid ensembles.

The analysis of the experimental packings and the comparison to numerical simula-
tion have lead to the following results and conclusions:

The distribution of the local packing fractions depends (in good approximation)
only on the global packing fraction and seems to be independent on the aspect
ratio. Deviations observed for only one particle type can be explained with
spatial inhomogeneities of the local packing fraction.

Packings of frictional ellipsoids are hyperstatic (mechanically overconstrained)
in contrast to frictionless ellipsoids.

The contact numbers of jammed ellipsoid packings predominantly depend on
the global packing fraction. A weaker dependence on the aspect ratio « and the
friction coefficient y is observed.
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¢ The packing fractions of the experimental datasets lie in between the two limits

known from DEM simulations for the densest and looses possible values (under
sedimentation) [15].

The Minkowski anisotropy measure (3°) of the Set Voronoi cells reveals an
interesting difference in the local environment between jammed spheres and
ellipsoid packings: While the Voronoi cell shape of spheres becomes more
isotropic with increasing packing fraction (i.e. change shape [77]), the change of
shape of the Voronoi cells of strongly oblate ellipsoid packings with the packing
fraction is much weaker.

Equilibrium fluids of ellipsoidal particles with different aspect ratios show
different behavior in the average anisotropy index (B%°). Sphere-like parti-
cles show an increase in the anisotropy index with the packing fraction. The
Voronoi cell shapes of ellipsoidal particles with a low aspect ratio « become
more anisotropic with increasing packing fraction, while the cell shape of parti-
cles with large « does the opposite. This can be explained by the observation
that the denser the packing the more the Voronoi cell adapts its shape to that of
the particle.

Outlook

The results of this thesis suggest ideas for further investigation. In the following some
interesting and open questions are briefly discussed.
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* Does the average contact number of a jammed ellipsoid ensemble depend on

the preparation history? For spheres a dependence was found numerically [1]
but experimental results are missing. Lately it was found, that for ensembles of
frictional tetrahedra the average contact number depends on the preparation
history [55]. The particle detection in tomographic images and the contact
number determination from the CNS function discussed in this thesis is of
sufficiently good accuracy to address this problem, with experimental packings
prepared by different protocols.

For packing of spherical particles, a protocol-independent value for the dens-
est achievable packing fraction of amorphous packings exists (random close
packing). An interesting question is the nature, existence, type and protocol
(in)dependence of the equivalent transition in ellipsoid packings. While a first
order transition in spheres now appears as the most likely scenario, it is more
complex in ellipsoids because of the degeneracy and a lack of knowledge of
the crystal states. While particle friction and/or gravity prevented us from
reaching even the maximally possible packing fractions for disordered configu-
rations (in most cases), other experimental setups (such as shear cells, use of
density-matched fluidized beds, ...) could give protocols to compact further
and possibly induce crystal order. The geometric analysis described here will
be useful to detect geometric signatures of this transition/behavior.
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Figure 4.1: Average anisotropy index ( %0> (red, left y-axis) for maximally dense
random packings of oblate ellipsoids created by DEM simulations [14].
Also the corresponding packing fraction (blue, right y-axis) is shown.
The green line indicates the linear trend for small aspect ratios. (DEM
configurations Courtesy of Gary Delaney (CSIRO, Melbourne).)

¢ How to measure the degree of order or crystallinity of an ellipsoid packing?
With generalized Voronoi cells and Minkowski Tensor measures an in-depth
understanding of local environment can be gained. In particular, order metrics
could be defined either by quantifying deviations from a known crystalline
reference state (analogous to the use of Qg in spheres) or by the study of typical
features of local property distributions, such as Voronoi cell volumes, contact
numbers, anisotropy; ...

¢ The anisotropy analysis of the densest random ellipsoid packings which can be
obtained by DEM simulations of frictionless particles shows interesting features.
First results can already be seen in figure 4.1. The average anisotropy index
(B2°) of the Set Voronoi cells of the ellipsoidal particles shows a linear trend for
small aspect ratios (green line). This changes at an aspect ratio of approximately
a ~ 0.9. At this point the anisotropy index shows a different behavior and
heads towards the already known lower value for spheres [77]. The aspect
ratio where this change in behavior seems to occur does not correspond to the
aspect ratio with the maximal achievable packing fraction. The work of this
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thesis (particularly the construction of the generalized Voronoi cell) can further
elucidate there relationships between Voronoi cell shape and particle shape.

* Analyzing the transition from fluid to solid. For this purpose data of algorithms
that can bridge a large range of packing fractions can be analyzed, e.g. the
Lubachevsky Stillinger algorithm. This algorithm starts with a fluid state
followed by an intermediate state which converges to a jammed state. It is
not known if for ellipsoids with this algorithm crystalline or partially ordered
states can be created. A study of geometric similarities and differences between
ellipsoid configurations at very different densities (incl. equilibrium fluid,
possible nematic order, amorphous or crystalline solids) will provide important
reference data.
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