
RESEARCH ARTICLE

Plant species classification using flower

images—A comparative study of local feature

representations

Marco Seeland1*, Michael Rzanny2, Nedal Alaqraa1, Jana Wäldchen2*, Patrick Mäder1*
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Abstract

Steady improvements of image description methods induced a growing interest in image-

based plant species classification, a task vital to the study of biodiversity and ecological sen-

sitivity. Various techniques have been proposed for general object classification over the

past years and several of them have already been studied for plant species classification.

However, results of these studies are selective in the evaluated steps of a classification

pipeline, in the utilized datasets for evaluation, and in the compared baseline methods. No

study is available that evaluates the main competing methods for building an image repre-

sentation on the same datasets allowing for generalized findings regarding flower-based

plant species classification. The aim of this paper is to comparatively evaluate methods,

method combinations, and their parameters towards classification accuracy. The investi-

gated methods span from detection, extraction, fusion, pooling, to encoding of local features

for quantifying shape and color information of flower images. We selected the flower image

datasets Oxford Flower 17 and Oxford Flower 102 as well as our own Jena Flower 30 data-

set for our experiments. Findings show large differences among the various studied tech-

niques and that their wisely chosen orchestration allows for high accuracies in species

classification. We further found that true local feature detectors in combination with

advanced encoding methods yield higher classification results at lower computational costs

compared to commonly used dense sampling and spatial pooling methods. Color was found

to be an indispensable feature for high classification results, especially while preserving spa-

tial correspondence to gray-level features. In result, our study provides a comprehensive

overview of competing techniques and the implications of their main parameters for flower-

based plant species classification.

Introduction

Although flowering plants play a key role in terrestrial ecosystems, humans increasingly lack

the ability for their classification [1]. In addition, the classical way of plant classification, i.e.,

following a single access identification tree of dichotomous keys, is a complicated and tedious
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procedure for non-experts. However, due to tremendous achievements in the fields of com-

puter vision and machine learning, automated image based classification promises an easy and

fast way for plant classification. Using leaf images for this task was extensively investigated in

previous studies, e.g., [2, 3]. Whereas leaves can be found at almost any time throughout a

year, the acquisition of suitable leaf images poses difficulties as foreground segmentation is

required for extracting discriminative shape parameters. Furthermore, such shape parameters

are in most cases only valid for a certain leaf type, i.e., plain single leaves.

The visually most prominent and perceivable part of a plant is its flower, a subject of intense

studies by botanists and often the key for species identification. Flowers exhibit great diversity

in color, shape and texture, thus allowing to make use of a broad set of methods developed for

object classification tasks.

The general difficulty in flower image based plant classification arises from visually small

interclass variances in relation to large intraclass variances. Often only little differences in the

appearance of visually similar flowers have to be taken into account for accurate classification.

The category of such classification tasks is thus termed fine-grained classification. For such

tasks the usage of local image features, i.e., a number of image regions corresponding to objects

or parts thereof, allows for considerably higher classification accuracies compared to analyzing

the whole image content equally. Early studies on flower classification utilized specifically

crafted descriptors relying on foreground segmentation and subsequent description of flowers

by contour parameters and color histograms, e.g., [4]. Unfortunately such approaches are

highly specific and often only applicable to a certain inflorescence type and distinct viewpoint.

By using a set of local features and publishing the first benchmark dataset for flower classifica-

tion, Nilsback and Zissermann pioneered a new research direction that motivated further

work towards general purpose descriptors instead of specifically crafted ones [5]. Local features

are also used in other computer vision research areas, such as augmented reality [6], 3D recon-

struction [7], visual odometry [8], person tracking [9] or mobile visual search and landmark

recognition [10–13]. However, only few studies investigated the characteristics and perfor-

mance of flower classification by local features and those relied on a rather narrow selection of

methods [5, 14–21].

Using local features in a machine learning pipeline requires a well-defined sequence of

steps and each of those can be realized by a multitude of different methods, thus spanning a

large variety in combinations of these methods. The aim of this work is to comparatively evalu-

ate method combinations towards their classification accuracy in flower image based plant

classification on three different datasets. Furthermore, by comparing the obtained results on

these datasets we show the beneficial use of well-defined constraints during image acquisition.

Our paper is structured as follows: The image classification pipeline using local features is

briefly discussed in section Fundamentals, followed by a review of related work on flower

image based classification using local features in section Related Work. By reviewing and dis-

cussing comparative studies on object classification in section Research Scope, we define the

selection of methods investigated in this work. We introduce the datasets used and discuss

experimental parameters in section Methods. The results are then presented and discussed in

section Results and Discussion and concluded thereafter.

Fundamentals

For training a classifier such as a Support Vector Machine (SVM), it is required to quantify the

information contained in every image into vectors of fixed length, i.e., image representations.

The dimensions of the image representation span the descriptor space in which the classifica-

tion process is reduced to a similarity measure between descriptors. However, given a set of
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images the amount of local features per image can be very different as it depends on the

amount of structurally prominent regions as well as the image size. Thus, a processing pipeline

is utilized that aggregates the visual information of many local features extracted from an

image into an image representation (see Fig 1).

The process typically starts by applying a number of pre-processing steps to an image, e.g.,

resizing and color space conversion. In the detection step, positions of local features are com-

puted following strict mathematical definitions. The image patches surrounding these local

features are then quantified using a descriptor extractor within the extraction step [22]. In the
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Fig 1. Pipeline for computing image representations based on local features. Local features are

computed or defined within the detection step. Then local descriptor vectors are extracted from these

patches and are encoded after pooling from predefined image regions. The image representation is finally

used for training and classification.

doi:10.1371/journal.pone.0170629.g001
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encoding step, local descriptors are aggregated into a global image representation that is used

for classifier training and testing along with the corresponding image class label. Using differ-

ent methods for the previous steps allows for quantification of complementary image informa-

tion, e.g., separate extraction of shape and color information. Fusion of these complementary

information can be performed at various stages within the pipeline (see Fig 1). In order to

introduce weak geometric context during encoding, local features can be pooled from prede-

fined image regions and encoded for forming subimage representations that are concatenated

thereafter.

Next, we review the usage of local features for flower based plant classification in previous

and related work and will then detail the methods investigated in this work.

Related work

Whereas in the early days of computer aided plant classification researchers often reported

results on unpublished datasets, the publication of the Oxford Flower 17 [5] and Oxford

Flower 102 [14] datasets along with splits and accuracy score definitions today allows for com-

paring results of different studies utilizing different methods. These datasets are an accepted

benchmark for fine-grained flower-based classification tasks. We reviewed relevant publica-

tions on flower-based plant classification using local features and summarized their methods

for each step of the processing pipeline (see Fig 1) sorted by year of publication in Table 1. The

table solely lists the methods, but they are briefly described in the next section.

Detection

A large portion of previous work relied on the whole image content and used it equally for

classification, often after classifying the foreground region either manually or automatically by

segmentation. Using segmented images improved the overall reported accuracies in all cases,

e.g., [16, 18, 21] in Table 1. Studies on unsegmented images often incorporated a weighted

pooling strategy, e.g., by using a saliency based spatial weighting scheme for local features [20,

21]. Apart from treating every pixel equally, e.g., for extraction of color information [5, 14, 16,

19], a descriptor extractor quantifies image information of a patch surrounding a local feature.

According to Table 1, a dense definition of local features, i.e., intersection points of a grid with

constant step size and patch sizes chosen to generate overlapping patches, was used in every

publication. The multi-scale dense sampling (MSDS) is an extension of the dense sampling by

varying step and patch size. Only Chai et al. incorporated the Difference of Gaussians (DoG)

as detector for local features along with pixel-based and dense sampling [16].

Extraction

For descriptor extraction, i.e., quantifying the content of image patches, the Scale-Invariant

Feature Transform (SIFT) [23] and the Histogram of Oriented Gradients (HOG) [24] were

previously studied as general purpose shape descriptors extracted from grayscale images. In

[14], HOG allowed for an accuracy of 49.6% on segmented images of the OF102 dataset and

was thus used as complementary descriptor in combination with SIFT and color values. Inter-

estingly, [18] used HOG as sole descriptor in combination with a huge codebook (8k code-

words) and gained exceptionally high accuracies, even on unsegmented images (76.7% on

unsegmented images). In contrast to this result, Nilsback et al. ([14] and [15]) studied HOG

with optimized codebooks (250 to 4k codewords) and found the classification accuracy of

HOG significantly lower than that of SIFT and a decreasing accuracy for codebooks larger

than 1.5k codewords.

Plant species classification using flower images

PLOS ONE | DOI:10.1371/journal.pone.0170629 February 24, 2017 4 / 29



Two different strategies were used for the extraction of color descriptors: (1) assessing the

color values of all foreground pixels in a color space allowing for adequate color quantification,

i.e., hsv [5, 14, 25] or Lab color space [16, 19], and (2) using SIFT variants that concatenate

SIFT descriptors computed on every channel of an input image. The best performing SIFT var-

iants are either computed in opponent color space or normalized opponent color space, i.e.,

OpponentSIFT and C-SIFT [26].

Encoding

The most simple yet often successful approach for computing an image representation out of

local feature descriptors is the “bag-of-visual-words” (BOW) approach that was applied by the

majority of previous work (see Table 1). As the hard-assignment during BOW encoding

Table 1. Results reported for the Oxford Flower 17 and Oxford Flower 102 datasets using local features along with the methods detailed for each

processing step.

Study Det. Extraction Encoding Fusion Pooling Seg. Accuracy [%] Comments

OF17 OF102

Nilsback and

Zisserman [6]

pixels hsv values BOW (500) late 1x1 yes 71.8 –

dense SIFT BOW (1k)

Nilsback and

Zisserman [15]

pixels hsv values BOW (500) none 1x1 yes – 43.0 only on foreground boundary

dense SIFT BOW (8k) – 55.1

dense SIFT BOW (8k) – 32.0

dense HOG BOW

(1.5k)

– 49.6

– above 4 fused – classifier 1x1 yes 85.1 72.8 multiple-kernel learning

Nilsback [16] pixels hsv values BOW (900) none 1x1 yes 65.9 44.6 only on foreground boundary

dense SIFT BOW (8k) 72.1 57.5

dense SIFT BOW (1k) 65.9 34.6

dense HOG BOW

(1.5k)

58.6 50.9

– above 4 fused – late 1x1 yes 87.3 69.4

– above 4 fused – classifier 1x1 yes 88.1 73.7 multiple-kernel learning

Chai et al. [17] pixels Lab values BOW (800) late 1x1 no – 64.7

dense SIFT LLC (8k)

dense SIFT LLC (8k) yes 91.1 80.0

DoG SIFT LLC (8k)

Liu et al. [18] dense SIFT BOW (1k) classifier 5x5 no 88.2 – 5x5 overlapping components

dense C-SIFT BOW (1k)

Angelova et al. [19] dense HOG LLC(8k) none 1x1+3x3 no – 76.7

dense HOG

FG-HOG

LLC (8k) late 1x1+3x3 yes – 80.87 only on foreground

Chai et al. [20] dense Lab values LLC (1k) late 1x1 yes – 85.5

MSDS SIFT FV (256)

Xie et al. [21] dense SIFT LLC (2k) none 1x1+2x2

+4x4

no 69.5 –

dense Oppo-

nentSIFT

LLC (2k) earliest 1x1+2x2

+4x4

no 91.4 – geometric phrase pooling, spatial weighting

Yang et al. [22] MSDS SIFT BOW (600) none 1x1+2x2

+4x4

no 72.6 42.6

MSDS SIFT BOW (600) late 1x1+2x2

+4x4

yes 78.3 49.1 SIFT on foreground and whole image,

multiple-kernel learningclassifier 79.3 51.0

doi:10.1371/journal.pone.0170629.t001
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inherently causes information to be lost, soft-encoding variants such as the Locality Con-

strained Linear Coding (LLC) were often used after its initial publication by Wang et al. [27].

In [19] the Fisher Vector was used to encode MSDS-SIFT descriptors sampled on the fore-

ground area of segmented images.

Fusion

For fusion of color and shape information, very different approaches were used so far. The

most simple thus often used strategy is concatenation of the image representations computed

for every feature, e.g., pixel-based hsv values and patch-based SIFT descriptors after encoding

[5, 16, 19, 21]. In this paper this fusion method is referred to as “late” fusion as the fused image

representation is obtained at the latest stage before feeding the classifier. Using SIFT variants

like OpponentSIFT and C-SIFT, e.g., [17, 20], color information is stored automatically within

the shape descriptors computed on each color channel and concatenated thereafter. As color

and shape information are thus combined at the earliest possible stage is referred to as “earli-

est” fusion in this publication.

Several publications report on fusion at the classifier level, e.g., by training one SVM per

feature type and using the prediction score averaged across all SVMs for the overall prediction

[17]. Advanced classifier fusion strategies employ methods such as multiple-kernel learning

(MKL), where a linear combination of SVM kernels [28], one for each feature, is learned [14,

15, 21]. In Table 1 this strategy is referred to as “classifier” fusion. We do not study this fusion

option within our study since we aim to solely investigate the discriminative power of local fea-

tures while keeping the effect of the classifier constant. Apart from the publications reported in

Table 1, more publications on classifier fusion exist. However, these works, e.g., [28–30], rely

on the original descriptors as provided by Nilsback and Zissermann in [14]. As we intend to

compare methods with respect to local features while keeping the classifier unaltered, these

publications are out of scope for our work and not included in Table 1.

Pooling

All encoding methods inherently suffer from loss of geometrical information, i.e., the spatial

arrangement of local features or image parts during encoding. The missing correspondence

between low-level local features and the final image representation is referred to as semantic

gap. The most prominent method for filling this gap is to partition the image into non-overlap-

ping subimages of constant size and to pool local features from these subimages. For every sub-

image an encoding step is performed followed by the concatenation of the subimages’

representations. Combining increasingly fine image partitions forms a spatial pyramid as final

image representation [31]. Using a pyramidal kernel results in a dimension for the final image

representation that is multiplied by the total number of subimages. Hence, a three-level repre-

sentation is 21 times larger compared to a one-level global encoding and accordingly requires

more time for computing. Among the work in Table 1, Angelova et al. [18] represented the

image by 2 layers, i.e., a 3x3 grid in addition to the full image (1x1). Yang et al. as well as Xie

et al. combined 1x1, 2x2, and 4x4 image partitions to form a 3 layer image representation [20,

21]. Nilsback [15] compared the one-level image representation to a three-level pyramidal

image representation, i.e., 1x1, 2x2, and 4x4. Interestingly, the overall classification accuracy

was found to decrease with pooling from 73.7% to 70.1% on the OF102 dataset.

Notable extensions

Some of the reviewed studies (see Table 1) propose very specific methods in addition to the

pipeline displayed in Fig 1. These additions mostly refer to more sophisticated pooling

Plant species classification using flower images
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solutions and are reviewed here in a nutshell for completeness of the overview. Liu et al. per-

formed classification on image components, i.e., 5x5 sets of equally sized but overlapping

image regions, and trained linear combinations of these component-classifiers for predicting

image class labels [17]. Xie et al. [20] aggregated local features neighboring in the image

domain by Geometrical Phrase Pooling (GPP) in addition to representing the image by a

three-level spatial pyramid. The GPP is an intermediate step that forms mid-level structures

aiming to connect low-level features and high-level concepts. Furthermore they used a spatial

weighting scheme that favors local feature pooling from sharp image regions by computing

edge-maps followed by gaussian blurring.

Research scope

Given the overview on previously studied methods for each processing step (see Fig 1) in sec-

tion Related Work, we conclude that various general purpose features and methods were suc-

cessfully used for flower classification so far. However, given the developments of the past

decade, many more methods were developed and successfully used, e.g., for general object or

scene classification tasks. In this section we review and shortly explain prominent methods for

the same steps of the processing pipeline.

Detection

In general, a local feature is a point or region in an image with a well-defined position in image

space, found by a strict mathematical definition, and ideally being stable under local and global

deformations, i.e., changes in illumination, orientation, and scale [22]. The underlying

assumption of such local features is that visually similar objects exhibit similar or comparable

features as long as the same method is used for their detection. However, finding correspon-

dences is unreliable in the presence of geometric and photometric deformations as they affect

the shape of such regions. Also changes in the scale of observation impact the appearance of

objects in images and thus the size of the regions. Therefore, research on local feature detectors

motivated the development of a huge pool of detectors and the demand for benchmarking

them. Unfortunately, there is no clear theory allowing to choose which features are most rele-

vant for a particular problem. Hence, we review recent developments and discuss benchmarks

performed so far, in order to select the most promising candidates.

Local feature detection is a low-level image processing operation, which can be divided into

four main categories based on the resulting types of local features: edge, corner, blob, and

region detectors. Edges are connected points in an image where pixel intensities exhibit dis-

continuities and thus large gradient values. Edges by themselves are rather unsuitable as local

features since their appearance varies with image scale and rotation. Corners are an intersec-

tion of two edges, where points are characterized by the two different edge directions in their

local neighborhood. Blobs are image regions either darker or brighter than their surroundings.

Regions, the last category, are areas of the image characterized by uniform distribution of pixel

intensities or delimited from their surroundings by significant changes in intensity or texture.

Comprehensive reviews of relevant detection methods and their chronological evolution

along with computational details can be found in [22, 32–36]. Comparative evaluations of

local feature detectors confirm on their repeatability and matching performance, as first intro-

duced by the framework of Mikolajczyk et al. [37].

We found the following results and comparisons relevant for the selection of detector can-

didates for our study. Comparing detector-descriptor combinations, it was shown that SIFT

(Scale-Invariant Feature Transform) is still the best descriptor for arbitrary local feature detec-

tors and object categories or scenes [32, 34, 38–40]. It was observed that SIFT performs bad in

Plant species classification using flower images
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combination with its own detector, the DoG (Difference-of-Gaussians) [34]. Instead of DoG,

the FAST (Features from Accelerated Segment Test) detector allows for a high number of

matches [35] but performs bad under scale variations [41]. Contrary to its high matching per-

formance and robustness under changes in viewpoint, lightning, and scale, MSER (Maxi-

mally-Stable Extremal Regions) performs bad for classification problems as typically only a

small number of local features are detected [42]. Furthermore, the matching performance of

MSER is weak for non-planar scenes or 3D objects [32, 38, 41]. However, MSER as region

detector is complementary to corner or blob detectors [41] and it might still be useful in con-

junction with other detectors. The HessAff (affine covariant Hessian) detector is often

reported to achieve best results due to its robustness against changes in viewpoint, lightning,

and scale [32, 34, 37, 38] and slightly outperforms the DoG detector [40]. DoG still offers a bet-

ter tradeoff between performance and speed [43] as the affine shape estimation of HessAff

requires additional geometric and photometric normalization. It was also reported that the

matching performance does not or only marginally benefit from affine shape estimation [41].

In [41] it was concluded that a fixed scale Harris corner detector performed better than the

Hessian detector. Unfortunately, [42] did not include their own HessAff detector into their

comparative evaluation of matching performance using different object classes. Amongst the

investigated detectors (DoG, HarrLap, HessLap, and MSER), the HessLap (Hessian-Laplace)

was found to perform best. Motivated by these contradicting results, the following research

question is proposed:

Research Question 1 (RQ1)

Do affine-covariant image patches yield higher classification accuracies compared to their

affine-variant counterparts?

In general, detectors providing a large number of local features show better performance

for classification problems [34, 40]. This justifies the success of dense sampling and MSDS

(multi-scale dense sampling) relying on a grid-based definition of local points instead of their

detection. MSDS was found to outperform any local feature detector in scene classification but

was severely affected by changes in scale and orientation [34], thus rather unsuitable for classi-

fication of 3D objects under different viewpoints, such as flowers. Furthermore, given typical

values for image size (500x500 pixels) and step size (5), dense sampling results in 10k local

patches to be quantified and encoded. True feature detectors yield about one order of magni-

tude less patches, thus decreasing the overall time required for computing an image represen-

tation. Considering the related work Table 1, a true feature detector was used in only one out

of nine studies, whereas dense sampling or MSDS were used in basically all studies although

rather unsuitable for flower images of different scales and viewpoints. Hence we propose the

following research question:

Research Question 2 (RQ2)

Can the vast amount of local features computed by MSDS outperform other local feature

detectors?

Motivated by these results, we selected a set of local feature detectors to compare their per-

formance for our classification task by combining them with suitable descriptors. For corners,

we chose the recent FAST as well as the Harris detectors, both in a multi-scale variant moti-

vated by their scale dependency. Regarding blobs, we compare the DoG and the Hessian-based

Plant species classification using flower images
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detectors including the scale-normalized determinant of the Hessian (DoH) computed from

Haar wavelets, as used as detector for the SURF descriptor [44]. MSER is solely used and evalu-

ated as a region detector. In order to evaluate the relevancy and possible benefit of affine

covariance, we compare both the Harris and the Hessian with and without affine shape

estimation.

Extraction

Once local features are detected, feature descriptors quantifying the visual information of the

patch surrounding the local features are extracted. Extraction methods such as SIFT, SURF,

and HOG compute local descriptors based on a gray-level patch, thus quantifying the shape

information surrounding a local feature. Detection and descriptor extraction of local features

are often treated interdependently, i.e., most detection methods come along with their own

description method, e.g., SIFT (DoG) [23] and SURF (DoH) [44]. Similarly to local feature

detectors, a large number of descriptor extractors was developed within the past years and

their performance was assessed through studies [32, 38–40, 42]. Drawing a general conclusion

from these studies, Lowe’s SIFT is still accepted as the most effective gray-level descriptor. This

observation is still justified in recent studies, even a decade after SIFT’s development and origi-

nal implementation [34, 35, 43]. Some studies report that SURF shows performances compara-

ble to SIFT while being several times faster as the computation is performed on integral

images [45]. To summarize the SIFT descriptor extraction pipeline in a nutshell, local gradient

magnitudes are computed on 4 × 4 sub-regions from the patch around the local feature. The

orientation of the gradients of each sub-region is then quantized into an 8 bin histogram, thus

forming an 128 dimensional descriptor. The SURF descriptor also relies on 4 × 4 sub-regions

but computes the sum of Wavelet responses in horizontal and vertical direction, overall form-

ing a 64 dimensional descriptor. The HOG was first introduced by Dalal and Triggs for pedes-

trian detection in combination with a Support Vector Machine as a sliding window detector

[24]. It works as shape descriptor by binning local gradient magnitudes into an histogram of

edge orientations. Typically, HOG is computed on a dense grid of uniformly spaced cells on

an image, but it can also be utilized for quantifying the patch appearance around interest

points. Given these different methods, the following research question is defined:

Research Question 3 (RQ3)

Which shape descriptor (SIFT, SURF, and HOG) allows for the highest flower classifica-

tion accuracies?

Instead of such real-valued descriptors, binary descriptors such as ORB [46] are considered

an efficient alternative as their computation is faster and requires less memory. They achieved

high performance in local feature matching applications where pairs of corresponding local

features are searched [45, 47]. Only few studies report on their performance in object classifi-

cation tasks using an encoding pipeline similar to our study [34, 48–51]. These studies draw

the following conclusions: binary descriptors are highly suitable for real-time applications or

those being executed on low-end and embedded hardware, but their classification perfor-

mance is still lower than those of real-valued descriptors like SIFT. Based on this general find-

ing, binary descriptors were not evaluated within this study but listed here for completeness.

Apart from shape, the color is the most visually perceivable feature of a flower [52]. In

order to utilize this information for flower classification, we consider different methods for the

extraction of color features are reviewed. A comprehensive overview on color descriptors is

given in [26]. The requirements for a good color descriptor are to be discriminative while
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possessing photometric and geometric robustness to some degree as well as to be compact

[53]. Similar to shape descriptors, several color descriptors are proposed in literature and the

best performing ones were considered for our comparative study.

Finlayson et al. presented a Comprehensive Color Image Normalization (CCIN) exhibiting

invariance against photometrical distortions and being usable as global image representation

[54]. The photometric invariance of CCIN is obtained by iterative normalization of each rgb

color channel by their spatial averages after normalization of each rgb pixel based on its chan-

nel intensities. Van de Weijer and Schmid adopted the idea of CCIN for local color feature

extraction from the patches around interest points [55]. The authors proposed local histo-

grams of photometric invariants as color descriptors being robust to changes in shadowing,

shading, specularities and changes of the light source. Results on classification tasks indicated

that Robust Hue Histograms (RHH) and Opponent Angle Histograms (OppA) perform

equally or better to CCIN. They also found that their color descriptors achieve different results

depending on the color saturation within the specific dataset, i.e., the RHH performs better for

datasets with saturated colors whereas the OppA is advised for datasets with less saturated col-

ors. The RHH is a hue-histogram where each sample is weighted by its saturation in order to

increase robustness of the hue certainty [55]. Similarly, the OppA is weighted with its gradient

strength for improving certainty. Whereas previous research in color descriptor design was

motivated by imposing photometric invariance, Van de Weijer et al. [56] adopted the Bag-of-

Words encoding (detailed in section Encoding) for pixel-based conversion of Lab color values

of the patch surrounding a local feature to a basic set of 11 color names trained on Google

Image queries. The frequency of these color names is then used as descriptor. As different

shades of a color are mapped to the same color name, the learned partitioning of the color-

space into 11 clusters automatically induced photometric invariance to a certain degree. Khan

et al. additionally improved this color description by clustering bins in Lab space based on

their discriminative power in classification tasks on multiple datasets. They learned a universal

color descriptor, named Discriminant Color Descriptor (DCD), that can be applied to previ-

ously unseen data without the need of learning dataset specific color codebooks [53]. Based on

the identified and briefly introduced extraction approaches, our next research question is

defined as:

Research Question 4 (RQ4)

Which photometric invariant color descriptor is most stable against illumination changes

while allowing for high flower classification accuracies?

Encoding

For classification tasks, the extracted local feature descriptors are encoded into an image repre-

sentation. The encoding step is based on a codebook often termed “visual vocabulary” follow-

ing the idea of document classification in text processing [57]. In order to compute this

codebook, local feature descriptors are extracted from each training image and are then clus-

tered into K clusters using K-means or a Gaussian-Mixture-Model. The totality of cluster cen-

ters (aka codewords) defines the codebook, i.e., the vocabulary of “visual words”.

The most simple yet successful approach for computing an image representation is to assign

every local feature descriptor to the cluster center nearest in descriptor space, followed by com-

puting the frequency of occurrence of the codewords inside the image. This approach results

in a sparse vector of length K of the frequency of the codewords (local image features) repeated

in a document (image) and is thus often referred to as “bag-of-visual-words” (BOW) [58]. Due
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to this hard assignment to a single codeword, the BOW suffers from codeword uncertainty,

i.e., in cases where distances between a feature descriptor and an adjacent codewords are

somewhat comparable, as well as codeword plausibility if the overall distance becomes too

large, making the assignment implausible at all. For addressing these problems, soft assign-

ment variants of the BOW that store additional statistics apart from codeword frequencies

were developed. The earliest of these methods is the Kernel Codebook encoding (KCB) that

models the similarity of local feature descriptors and codewords using a Gaussian kernel [59].

Depending on the kernel parameters every descriptor then contributes some information to

every bin of the word occurrence histogram of size K. The improvements of such distance-

based soft assignment suggested the locality of the codewords being used for encoding local

feature descriptors. This is accounted for by the Locality Constrained Linear Coding (LLC)

that projects every feature descriptor into a local coordinate system spanned by M< K code-

words closest to the feature descriptor, respectively [27]. Every local feature descriptor is

encoded into a sparse K-dimensional vector that contains only zeros except for the M compo-

nents corresponding to the closest codewords. For generating the global image representation

of size K, the projected coordinates of all local feature descriptors are combined by max-

pooling.

Rather than only aggregating codeword occurrences, advanced encoding methods such as

the Vector of Locally Aggregated Descriptors (VLAD) [60] and the Fisher Vector (FV) [61]

encoding store additional statistics between codewords and local feature descriptors. Applying

VLAD, local feature descriptors are encoded by averaging their residuals with respect to the K
cluster centers. The VLAD encoded image representation is then obtained by concatenating

all K residuals. The L2 intra-normalization of the image representation, computed by dividing

each residual by its norm, was shown to further improve this encoding method [62]. As only

the codeword centers are required for the VLAD encoding, the same codebooks as for the

BOW and its soft-assignment variants can be used. Given D as length of the local feature

descriptor, VLAD encoding results in an image representation of length D � K. The FV encod-

ing relies on storing the mean and covariance deviation vectors for each component k of the

Gaussian-Mixture-Model (GMM) and each element of the local feature descriptors [61]. The

image representation is computed by concatenating all mean and covariance vectors, resulting

in a vector of length D � K � 2.

Chatfield et al. [63] performed a comparative evaluation of the encoding methods men-

tioned above (VLAD excluded). They used MSDS-SIFT and linear SVMs on top of the differ-

ent encoding methods utilizing distinct vocabulary sizes. The comparison was performed on

the PASCAL VOC 2007 and Caltech-101 datasets. They found that all encoding methods con-

siderably gained from large (25k codewords) codebooks, resulting in correspondingly large

image representations. Furthermore the FV outperformed the other encoding methods. How-

ever, their comparative evaluation was based on distinct codebook sizes instead of distinct

global image representation lengths. 8k and 25k element encodings were compared to 41k ele-

ment encodings using the FV, whose length is factorized by the local feature descriptor lengths

times 2.

The introduced and briefly discussed methods motivated the following research question:

Research Question 5 (RQ5)

Do first and second order feature-codebook statistics positively impact the classification

accuracy and what are the minimum codebook sizes required for outperforming BOW as

baseline?
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Fusion

The local shape features discussed in section Extraction are traditionally computed on gray-

scale images. The exclusion of color information is motivated by large variations in color due

to perturbations in the illumination conditions, making the task of robust description of color

features difficult. However, color is a major feature of flowers and highly beneficial for classifi-

cation purposes. We thus evaluate three possible strategies for fusing local shape and color fea-

tures. Previous work [43] categorizes two general strategies: Early Fusion and Late Fusion (see

Fig 2).

In early fusion, color and shape are locally combined and then processed together through-

out the rest of the classification pipeline [64]. Typically one local shape descriptor is computed

for each channel of the color image and all local descriptors are then concatenated. We term

Fig 2. Earliest vs. early vs. late fusion of shape and color features. In the earliest fusion strategy all local shape descriptors are computed from every

color channel, followed by concatenation and encoding. In the early fusion strategy, all local features (shape and color) are extracted from the same

patches and are locally concatenated before encoding whereas in the late fusion the image representations are computed separately for each feature and

concatenated thereafter.

doi:10.1371/journal.pone.0170629.g002

Plant species classification using flower images

PLOS ONE | DOI:10.1371/journal.pone.0170629 February 24, 2017 12 / 29



this approach ‘earliest fusion’ in order to distinguish it from another early fusion approach.

Previous studies found OpponentSIFT descriptors (earliest fused SIFT descriptors in opponent

colorspace) to offer superior performance for object classification tasks, such as the PASCAL

VOC 2007 [26]. The length of the earliest fused local feature descriptor is three times the length

of the respective grayscale descriptor. This is crucial if VLAD or FV is applied for encoding,

whereas for the BOW encoding the length of the image representation remains constant, only

the memory consumption during codebook generation is multiplied as the local descriptor

length increases. For BOW the number of codewords should be increased as the codewords

become more discriminative by incorporation of color.

Van de Weijer and Schmid proposed an approach that is termed ‘early fusion’ for the rest

of this paper (see Fig 2). It relies on extracting color feature descriptors from the patches used

for computing shape descriptors and concatenating both feature descriptors locally [55].

Instead of being multiplied by the number of color channels, the length of the early fused local

feature descriptor is the sum of the length of the respective local feature descriptors before con-

catenation. By fusing the local feature descriptors and mutual encoding, spatial correspon-

dence can be preserved, thus increasing the discriminative power of the local features.

For the late fusion strategy, one image representation is computed per feature type, i.e., local

shape and local color features are computed and encoded separately and concatenated thereaf-

ter. As spatial correlation is lost by late fusion, the resulting image representations are expected

to be less discriminative. Bianco et al. compared earliest and late fusion for pairwise feature

matching on several datasets [43]. Their findings implied that the performance of different

fusion techniques depends on the dataset. This motivated the following research question:

Research Question 6 (RQ6)

How important is the spatial correspondence of features extracted from flower images

when performing feature fusion before classification?

Pooling

Encoding inherently causes information on the spatial arrangement of local features to be lost.

The most prominent method of introducing weak geometric information is to partition the

image into non-overlapping subimages of constant size per level. In addition to the 1x1 image

on the first level, i.e., the original image, the partitioning is repeated on multiple levels, e.g.,

2x2 on the second level, 4x4 on the third level [31]. One encoding step is performed for every

subimage and all subimage representations are concatenated after local normalization. The

dimension of the final image representation is thus multiplied by the total number of subi-

mages, e.g., 21 times for a three level pyramid, hence enlarging the memory footprint accord-

ingly. In the original approach by Lazebnik et al. [31], the subimage representations are

normalized according to their size (in the image domain) prior to concatenation. However,

according to the original publications of the encoding methods (see section Encoding), the L1

norm should be used in case of BOW and KCB whereas the L2 norm is used for LLC, VLAD,

and FV. Also Chatfield et al. found this normalization scheme to perform better than region-

size dependent normalization [63].

During the encoding of each subimage, local features of the respective region can be pooled

in two different ways: (a) using sum-pooling, i.e., the encodings of the local features are com-

bined additively, and (b) using max-pooling, i.e., each bin in the resulting representation is

assigned the respective maximum in that region [63]. Typically, max-pooling is used for the

LLC encoding and sum-pooling for the other methods [63].
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As this spatial binning along with feature pooling became a standard method in image classi-

fication, it is widely used for computing improved image representations with weak geometric

context (cp. Table 1). In [15] Nilsback compared the standard one-level representation, i.e., 1x1

sum-pooled BOW encoding, to a three-level pyramidal representation, using sum-pooling along

with region-size dependent normalization as in [31], and found the classification accuracy to be

reduced on the OF102 dataset. Using FV encoding with a large SIFT codebook (256 elements),

also Chai et al. achieved remarkable classification accuracy without any spatial binning on the

OF102 dataset (see Table 1). Based on these results, we experimentally evaluated to which extent

the pyramidal image representation along with respective feature pooling benefits the classifica-

tion accuracies on the different flower datasets used in this study for answering our last RQ:

Research Question 7 (RQ7)

What benefits classification accuracy more: additional feature-codebook statistics or weak

geometric context?

Methods

In the previous section, seven research questions (RQ 1–7) were defined. These questions are

answered by evaluating the introduced methods on three datasets: the Oxford Flower 17

(OF17), [65], the Oxford Flower 102 (OF102) [66], and our own Jena Flowers 30 (JF30) [67].

Next, we describe these datasets.

Datasets

OF17 is known as a challenging dataset with 17 flower classes that were chosen to be indistin-

guishable solely by color. The images have been acquired by searching the web and selecting

images of a species with substantial variation in shape, scale, and viewpoint [5]. Each class is

represented by 80 images in the dataset. The OF102 is a dataset containing 102 classes repre-

sented by 40 to 258 images per class and 8,189 images in total. About 45% of the OF17 images

are also part of OF102, i.e., OF17 is not simply a subset of OF102. OF102 is particularly chal-

lenging due to both small inter-class variances and large intra-class variances [14]. Our experi-

ments were also performed on our own Jena Flower 30 dataset with 30 classes based on

common wild-flowering species found on semi-arid grasslands around the city of Jena in Ger-

many [68]. Classes are represented by 11 to 70 images with a total of 1,479 images. All images

were acquired as top-view flower images using an iPhone 6 throughout an entire flowering

season. Different illumination conditions were enforced by image acquisition under shaded

conditions with enabled and disabled flash as well as through direct exposition to the sun. The

dataset is challenging since multiple species exhibit large visual similarities and due to the fact

that it covers a variety of blooming stages, drastically impacting the appearance of the flowers.

Sample images are shown in Fig 3. The JF30 was added to the evaluation due to its image prop-

erties orthogonal to the Oxford Flower datasets: viewpoint and scale are fixed, the flower is in

the center of the image and covers about 50% of the image area whereas illumination condi-

tions and intra-class flower appearances are very different. Using these three datasets allows us

to investigate the performance of the methods for different sets of conditions.

Training, testing and implementation details

All classification experiments were performed using a linear Support Vector Machine (SVM),

one of the most popular and generalized types of discriminate classifiers [69, 70]. In our
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experiments the VLfeat implementation [71] was used. Training was performed in a 1-vs-all

manner and a χ2 kernel was applied for linearization of the descriptor space. The regulariza-

tion parameter was optimized on the validation set by grid search, respectively. In order to

quantify classification accuracy, the top-1 prediction per image was evaluated and averaged

across all classes.

Training, validation, and test splits were utilized for all three datasets. For the OF17 dataset,

every experiment was cross-validated using the three data splits originally provided by the cre-

ators containing 30 training, 30 validation, and 20 test images per class. The OF102 dataset is

solely divided into training and validation (10 images per class, respectively) and test sets (at

least 20 images per class) in a single split, hence no cross-validation could be applied. For the

JF30 dataset, three random training (up to ten images), validation (up to ten images), and test

splits (remaining images) were created. Whereas 25 classes of JF30 are represented by 35 to 70

images (see Fig 4), five classes are underrepresented by only 11 to 28 images, adding additional

difficulty to the dataset.

All experiments were performed on unsegmented images. Although segmentation often

improves classification results (compare with Table 1), no use of any object regions or seg-

ments was made for classification purposes, even if provided with the datasets. The incorpo-

ration of image segmentation adds an additional pre-processing step that is again prone to

optimization. While a positive impact on classification rates is expected, we hypothesize that

this is not interdependent with the selection and configuration of image descriptors and

should therefore impact them equally. Furthermore, in a natural environment, plants of a cer-

tain class often live in the same habitat type with comparable visual appearance. Despite

Fig 3. Challenging examples from the Jena Flower 30 (JF30) dataset. (a) and (b) Evolution of two flowers

throughout the season and (c) Species with similar visual appearance: Lotus corniculatus vs. Hippocrepsis

comosa, Scabiosa columbaria vs. Knautia arvensis, Inula hirta vs. Inula salicina.

doi:10.1371/journal.pone.0170629.g003
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clutter, the background might therefore contain useful information for the purpose of plant

classification.

For detecting DoG, DoH, FAST, MSER, MSDS features as well as extracting SIFT, SURF,

and HOG descriptors the OpenCV implementation, version 2.4.13 [72], was used. HOG

descriptors were extracted using three different patch sizes, i.e., 16x16, 24x24, and 32x32.

Angelova et al. computed HOG descriptors for four different patch sizes [18]. However,

decreased classification accuracies were found in our experiments. Detection using Hessian

and Harris variants was performed using the VLfeat library, version 0.9.20 [71]. The RHH,

OppA, and DCD color descriptors were computed using the original implementation by van

de Weijer [53, 55]. SIFT and DCD descriptors were L1-normalized and square-rooted before

encoding [73]. All images were resized to fit a maximum size of 1000 px at either side, except

for HOG were a maximum size of 500 px was used as no improvement for larger image sizes

was found. BOW encodings were L2 normalized before applying the χ2 kernel. VLAD and FV

encoding was performed using VLfeat and the improved FV including Hellinger’s non-linear

additive kernel [74] as well as L2 intra-normalization for VLAD [62] were used. For the encod-

ing experiment, the implementation provided by Chatfield et al. was used for KCB and LLC

[63]. For KCB, K and σ were set to 5 and 100, respectively, whereas for LLC the regularization

parameter was set to β = 5e − 3 and K = 11.

Experiments

Based on the methods identified and briefly introduced in section Research Scope, we con-

ducted a set of experiments for answering our research questions. Starting with feature

Fig 4. Images per species within the Jena Flower 30 (JF30) dataset.

doi:10.1371/journal.pone.0170629.g004
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detection methods, we investigated the median number of detected features per image using

DoG, DoH, FAST, MSER, MSDS as well as Hessian and Harris along with their Laplacian

variants. Next, we compared classification accuracy achieved using Hessian, HessLap, Har-

ris, and HarrLap with and without affine shape estimation. Evaluating these results, we

reduced the list of feature detectors and evaluated their classification accuracies in combina-

tion with shape descriptors, i.e., SIFT, SURF, and HOG, as well as color descriptors, i.e.,

RHH, OppA, and DCD. We then evaluated encoding methods, i.e., BOW, LLC, KCB,

VLAD, and FV, in terms of classification accuracy and memory footprint using discrete

codebook sizes and image representation lengths. Based on the identified best performing

detector-descriptor-encoding combination, we compared fusion strategies by using Oppo-

nentSIFT (earliest fusion), local concatenation of SIFT and DCD before mutual encoding

(early fusion), and global concatenation of SIFT and DCD after separate encoding (late

fusion). At last, we evaluated to which extent a spatial pyramid image representation benefits

classification accuracy comparing two (1x1, 2x2) and three (1x1, 2x2, 4x4) layer pyramids to

the one layer baseline. By comparing the dimensions of the final image representations we

investigated the tradeoff between novel encodings (e.g., FV), codebook sizes, and pyramidal

image representation.

Results and discussion

Detection

Amount of detected features. We evaluated the selected local feature detectors by ana-

lyzing the median amount of features detected per image. The results on all three datasets

are given in Table 2. Among the true detection approaches (excluding the MSDS), MSER

and HarrLap consistently detect the smallest amount of features (100 to 500) whereas FAST

detects a vast amount of features (1,400 to 3,200). Comparing all methods, the grid-based

MSDS provides the highest amount of local features, i.e., about an order of magnitude more

compared to the true detectors. The multi-scale Hessian and Harris detectors double the

amount of local features in comparison to their variants with Laplacian scale detection (Hes-

sLap and HarrLap).

Relevance of affine covariance. In order to evaluate the relevancy of affine covariance

for classification, we computed the classification accuracy using the Hessian, HessLap, Har-

ris, and HarrLap with and without affine shape estimation. SIFT was used for descriptor

extraction. The FV with 64 codewords was used for encoding and codebooks were computed

Table 2. Median amount of local features extracted per image for the OF17, the OF102, and the JF30

dataset.

Detector local features per image

OF17 OF102 JF30

DoG 1,308 972 561

DoH 1,735 1,524 1,473

FAST 3,224 2,519 1,463

MSER 361 343 318

MSDS 12,264 12,348 12,883

Hessian 1,669 1,121 196

HessLap 894 607 110

Harris 1,182 887 316

HarrLap 479 363 109

doi:10.1371/journal.pone.0170629.t002
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per detector and split. Hessian and Harris were used on multiple scales whereas the trace of

Laplacian was used for scale detection for the Laplacian variants (HessLap and HarrLap).

The fixed scale detectors consistently showed poor results compared to their multi-scale or

Laplacian variants and were thus excluded from further evaluation. Results show that affine

covariance does not substantially impact flower classification accuracies (see Table 3).

Instead, slightly worse accuracies were obtained especially on the Oxford Flower datasets.

Whereas affine covariant detectors showed high stability against viewpoint changes allowing

for good performance in feature matching tasks [37], the affine shape estimation tends to

lower the discriminative power of local features upon encoding. Computing time can thus be

saved (see Table 2) by using the Harris or Hessian detectors without the need for an iterative

affine shape estimation. The Harris corner detector was found to deliver slightly better local

features compared to the Hessian detector. Furthermore, the Laplacian variants perform

worse compared to the multi-scale variants of the Hessian and Harris detectors, likely caused

by the smaller amount of local features.

Finding 1

For image classification, affine covariance of image patches does not significantly impact

classification accuracy.

Extraction

Based on the findings of the previous section, we further evaluated the DoG, DoH, FAST, Hes-

sian, Harris, and MSDS as feature detectors and used them in combination with the local

shape descriptors (SIFT, SURF, and HOG) and the color descriptors (RHH, OppA, and

DCD). After detecting local features, the local descriptors were extracted and then encoded

into a global image representation using the FV encoding. The SIFT, SURF, and HOG code-

books contained 64, 128, and 228 codewords respectively. Codebook sizes were chosen to yield

image representations of about 214 elements, a typical size used for shape descriptors (compare

with Table 1). The RHH and OppA codebooks contained 15 codewords yielding a 540 dimen-

sional image representation each. The DCD codebook contained 24 codewords yielding a 528

dimensional image representation, as typically used for pure color descriptors (cp. Table 1).

Resulting classification accuracies are given in Table 4.

Whereas MSDS yields high classification accuracy for scene recognition tasks [34], it shows

no improvement for our flower classification. Instead, using true local feature detectors such

as DoH even improves the classification accuracy achieved while lowering the number of fea-

tures and hence the computational effort by an order of magnitude. Comparing our results to

previous work studying dense-SIFT and MSDS-SIFT, we closely reproduced previous results

Table 3. Classification accuracy on the OF17, the OF102, and the JF30 dataset. Computed using SIFT in

combination with the Hessian and Harris-based detectors without and with (values in brackets) affine shape

estimation.

Detector Classification Accuracy [%]

OF17 OF102 JF30

Hessian (HessianAff) 78.6 (78.0) 48.4 (46.7) 64.6 (65.7)

HessLap (HessLapAff) 77.1 (77.0) 44.7 (43.9) 60.7 (61.2)

Harris (HarrisAff) 79.2 (79.9) 49.4 (48.8) 69.0 (67.7)

HarrLap (HarrLapAff) 75.8 (73.7) 40.4 (41.0) 60.7 (60.3)

doi:10.1371/journal.pone.0170629.t003
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even with non-segmented images used for our experiments (cp. Table 1). Using dense- or

MSDS-SIFT allowed for classification accuracies of about 70% on OF17 whereas distinct color

descriptors allowed for about 66%. Furthermore, replacing SIFT by SURF on the OF17 dataset,

a classification accuracy of almost 78% was achieved outperforming the MSDS-SIFT by 9% in

total. Whereas our results using HOG are close to the results of Nilsback et al. [5, 15] we were

not able to reproduce the results achieved by Angelova et al. [18]. Similarly, by testing larger

codebooks (up to 8k) we found no improvement in classification accuracy. These results are

again in line with the ones of Nilsback [15], but contrary to the results of Angelova et al. [18].

Except for HOG, all local shape descriptors give worse results if computed on a regular grid.

Due to the variations in viewpoint and scale in the Oxford Flower datasets, the interest point

based methods are clearly more robust [43].

Finding 2

For object classification, MSDS provides dispensable amount of local features and can be

replaced by true local feature detectors.

Averaged across all detectors and datasets, SIFT yields about 11% higher classification accu-

racies compared to SURF and 16% compared to HOG, thus resembling the results of [32, 34,

38–40]. We also confirm the finding of Hietanen et al. [34], i.e., SIFT performs worse in

Table 4. Class averaged classification accuracy of the studied shape and color descriptors for the OF17, the OF102, and the JF30 datasets.

Classification Accuracy on OF17 [%]

Detector Shape Descriptor Color Descriptor

SIFT SURF HOG RHH OppA DCD

DoG 75.3 68.1 64.1 54.3 44.7 65.9

DoH 78.6 81.2 68.7 52.7 44.9 67.1

FAST 74.4 76.1 69.5 55.4 46.7 68.0

Hessian 78.6 72.6 65.1 52.7 44.9 67.1

Harris 79.2 67.2 62.7 47.7 39.1 59.1

MSDS 68.8 77.9 68.1 50.3 46.8 69.12

MSER 63.7 52.7 52.9 43.3 34.0 59.9

Classification Accuracy on OF102 [%]

DoG 49.0 37.6 36.8 34.5 22.7 40.6

DoH 59.9 56.4 39.2 34.0 25.3 42.1

FAST 51.1 58.5 42.3 35.5 25.8 41.9

Hessian 48.4 41.6 32.1 32.0 21.6 39.8

Harris 49.4 37.8 32.1 32.0 20.8 38.5

MSDS 47.2 52.3 44.8 33.6 28.1 43.7

MSER 36.8 28.3 25.1 26.3 17.0 32.7

Classification Accuracy on JF30 [%]

DoG 74.9 72.5 68.5 58.7 66.3 66.3

DoH 91.6 88.6 75.7 63.9 71.1 69.5

FAST 79.9 77.6 76.5 60.6 66.2 66.2

Hessian 64.6 65.7 55.9 49.4 52.7 57.3

Harris 69.0 64.0 55.7 50.1 55.6 56.0

MSDS 67.7 79.9 75.1 63.4 79.7 71.8

MSER 73.8 64.6 59.7 52.7 54.2 61.9

doi:10.1371/journal.pone.0170629.t004
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combination with its original DoG detector. The combination of the DoH detector and the

SIFT descriptor allows for the highest classification accuracies, achieving 59.9% and 91.6% on

the OF102 and the JF30 datasets, respectively.

Finding 3

Comparing SIFT, SURF, and HOG, the SIFT allows for the highest classification accura-

cies though it yields lower performance with its original DoG feature detector. The highest

accuracy is achieved using the DoH detector.

The Hessian and Harris detectors show results comparable to the FAST and DoG detec-

tors on the Oxford Flowers datasets but worse results on the JF30 dataset, where the average

amount of local features is about three times less compared to the OF17 and OF102 dataset

(cp. Table 2). Except for the Hessian and Harris detectors, the constraints of the JF30 dataset

in terms of image viewpoint and scale improve the classification accuracy, especially for the

MSDS approach that is known to be highly sensitive to viewpoint and scale changes. MSER

was previously characterized to detect image regions complementary to corners and blobs

[41]. In addition to the results summarized in Table 4, we picked the detector allowing for

the highest classification accuracies, i.e., DoH, supplemented it with MSER and used SIFT

as descriptor. However, none of the classification accuracies improved in this experiment.

Comparing the color descriptors, the DCD descriptors [53] are outperforming the explicitly

photometric invariant color descriptors for all detectors by 40% (RHH) and 20% (OppA),

respectively. However, given a relative improvement of 11% using MSDS, DCD is slightly out-

performed by the OppA color descriptors on the JF30 dataset, which contains large variations

in object colors due to the very different illumination conditions during image acquisition.

OppA is specifically designed to be invariant against changes in the illuminantion in presence

of diffuse light (as in the JF30 dataset), but is still sensitive to changes in the lighting geometry

(as in the OF17 and OF102 datasets) [55]. Furthermore, for the viewpoint and scale restricted

JF30 dataset, all color descriptors perform 19% better if extracted from grid-points (i.e.,

MSDS) rather than extracted from detected local features.

Finding 4

The DCD allows for high classification accuracy while being implicitly photometric

invariant.

Encoding

In 2011, Chatfield et al. compared feature encoding methods on the challenging PASCAL

VOC 2007 and Caltech-101 datasets [63]. They controlled all parameters of the classification

pipeline apart from feature encoding. We followed this approach and extended their work by

incorporating the promising VLAD method [60]. Additionally, we were interested in the

memory footprint of the resulting descriptors and thus compared the encoding methods in

terms of information density by keeping the dimensions of the image representation set to dis-

crete values. Based on the previously discussed results, we selected the best performing detec-

tor-descriptor combinations, i.e., DoH for the detection of local features, SIFT for the

extraction of local shape descriptors, and DCD for the extraction of color descriptors. The

number of codewords was computed to yield discrete image representation lengths of 2n with

n = 8. . .14 for SIFT descriptors and n = 4. . .10 for DCD descriptors. For BOW, KCB, and LLC
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we restricted the codebook size to a maximum of 1,024 SIFT codewords. For example, n = 8

and 128-dimensional local SIFT descriptors resulted in codebooks containing 256 codewords

for BOW, KCB, and LLC, whereas only one and two codewords were computed for FV and

VLAD, respectively. Results of the evaluated encoding methods in terms of classification accu-

racy are shown in Fig 5.

First, our results confirm Chatfield’s et al. finding that larger codebooks lead to higher rec-

ognition rates [63]. The performance is not saturated even for high-dimensional image repre-

sentations and is likely to further improve for larger codebooks. The relative gain using soft-

assignment (KCB) against the hard-assignment (BOW) is 2% on average. The overall classifi-

cation accuracy using LLC is lower compared to BOW. Chatfield et al. concluded that LLC

benefits considerably from large codebooks [63].

By comparing encoding methods with each other based on the number of codewords

(see Fig 5(a)), FV is the best performing approach, i.e., either 16 (OF17 and JF30) or 32

(OF102) SIFT codewords are sufficient using FV to achieve classification accuracies compa-

rable to KCB with 1,024 codewords. The observed higher classification accuracy is con-

nected to a larger memory footprint since FV and VLAD encode additional statistics within

codewords (residuals and covariances). The resulting dimensions of the image

Fig 5. Classification accuracies using (a) DoH-SIFT and (b) DoH-DCD features and different encoding methods for discrete codebook sizes and

image representation lengths.

doi:10.1371/journal.pone.0170629.g005
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representations are multiplied by the dimension of the utilized local descriptor. A compari-

son based on image representation lengths shows that VLAD and FV require an order of

magnitude more elements in the image representation for demonstrating a noticeable effect

over other encoding methods. On the other hand, due to the high memory consumption

they require increased computational effort for calculating codebooks of the sizes reached

by VLAD and FV encodings (more than 1,024 codewords). VLAD and FV allow for high-

dimensional and discriminative image representations without demanding huge codebooks.

Comparing FV and VLAD for the same image representation lengths, FV outperforms

VLAD by 5.5% on average showing that the encoding of second order information (aka

codeword covariances) indeed benefits classification performance.

Finding 5

Encoding first and second order statistics (VLAD and FV) increases classification accu-

racy without demanding large codebooks, thus lowering the computational effort for

codebook generation.

Fusion

For the evaluation of the three fusion strategies, we applied the DoH method for local feature

detection as we found it to provide highest classification accuracies (cp. section Extraction).

Based on the detected local features, we compared the following descriptor-fusion combina-

tions: the earliest fused OpponentSIFT to early and late fusion of the SIFT shape descriptor

with the DCD color descriptor. FV was used for encoding local features as it allowed for the

best classification accuracies in the previous experiment.

For earliest fusion, SIFT descriptors were computed for every channel of the color image

in opponent colorspace. The local descriptors thus contained 384 elements and were

encoded using FV with only 22 codewords to yield image representations of dimensions

comparable to those in section Extraction. Please note that Chai et al. used an order of mag-

nitude more codewords solely for FV encoding of SIFT descriptors on segmented images

[19]. For early fusion, we concatenated the local SIFT descriptors with the 11-element DCD

descriptors, thus yielding local descriptors of 139 elements. The weight parameter λ for the

shape descriptor was set to 0.375. These local descriptors were encoded by FV using 59 code-

words, again for yielding image representation sizes comparable to the other experiments.

Following the late fusion strategy, we concatenated a DoH-SIFT based global representation

encoded by FV with 62 codewords and a global MSDS-DCD based representation, also

encoded by FV with 24 codewords. The results of the three different strategies are displayed

in Table 5.

Bianco et al. compared earliest and late fusion for pairwise feature matching on several

datasets. Their findings imply that the performance of different fusion techniques depends on

Table 5. Class averaged classification accuracies for the fused shape and color descriptors on the OF17, the OF102, and the JF30 datasets all

using the DoH detector.

Fusion strategy Methods Classification accuracy [%]

OF17 OF102 JF30

earliest DoH-OpponentSIFT 91.8 72.8 94.8

early DoH-SIFT+DCD 90.3 70.2 93.2

late DoH-SIFT+MSDS-DCD 88.1 66.0 91.6

doi:10.1371/journal.pone.0170629.t005
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the dataset [43]. We found that the earliest fusion (OpponentSIFT) outperforms the other

fusion methods by 4% on average, followed by the early fusion strategy. The loss of spatial cor-

respondence between local color and shape information by late fusion results in a relative drop

of classification accuracy by 3% compared to early fusion.

Finding 6

Loosing spatial correspondence between local color and shape information by late fusion

negatively impacts the classification accuracy. Earliest fusion by channel-wise descriptor

concatenation allows for the highest classification accuracy.

Pooling

In order to investigate the impact of spatial binning along with feature pooling, we com-

pared classification accuracies achieved using DoH-OpponentSIFT features on a single-lay-

ered image representation to the spatial pyramid representation introduced by Lazebnik

et al. [31]. Instead of region-size dependent normalization, we used L2 normalization of the

subimage representations. Max-pooling was used for LLC and sum-pooling for BOW and

FV encoding [63]. Furthermore, the same codebooks as in the previous section were used,

i.e., 1,024 codewords for BOW and LLC as well as 22 codewords for FV. We investigated an

increasing amount of pyramidal levels, i.e., one level (1x1), two levels (1x1, 2x2) and three

levels (1x1, 2x2, and 4x4). Due to concatenation of the subimage representations, the size of

the final image representation is multiplied by the number of subimages. Hence, for BOW

and LLC encoding and 1,024 codewords on three pyramidal levels, the final image represen-

tation contains about 21.5k elements whereas about 355k for FV, causing larger memory

demands and longer training times.

A general finding is that the standard one-level FV encoding consistently outperforms all

other encodings (cp. Table 6). This finding is consistent with the results of the encoding exper-

iment in section Encoding. The classification accuracy for FV was consistently reduced by

using a pyramidal image representation. Using two levels instead of one allowed for slight

improvements in case of BOW and LLC on the OF102 and the OF17 dataset. However, by

using a three-level pyramid the resulting classification accuracies were the lowest across all

datasets. Hence, with respect to the discriminative power and length of the final image repre-

sentation we found the encoding of first and second order feature-codeword statistics using

Table 6. Class averaged classification accuracies on the OF17, the OF102, and the JF30 datasets using DoH-OpponentSIFT and an increasing

amount of pyramidal levels (one to three).

Pyramidal bins Encoding Classification accuracy [%]

OF17 OF102 JF30

1x1 BOW 86.0 63.9 94.6

LLC 85.0 63.2 94.5

FV 91.8 72.8 94.8

1x1+2x2 BOW 86.0 64.1 94.1

LLC 86.0 65.1 94.5

FV 88.8 70.4 93.8

1x1+2x2+4x4 BOW 83.7 63.0 93.3

LLC 85.6 64.1 93.7

FV 87.5 68.4 93.2

doi:10.1371/journal.pone.0170629.t006
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the FV to be more beneficial for flower classification than adding weak geometric context by

using a spatial pyramid.

Finding 7

For flower classification, encoding first and second order feature-codeword statistics

using FV is more beneficial than adding weak geometrical context by using a pyramidal

image representation.

Conclusion

We performed a comprehensive comparison of state-of-the-art methods within an image clas-

sification pipeline for flower image based plant species classification using local features.

Hence, we investigated methods relevant for local feature detection, descriptor extraction,

encoding, pooling, and fusion. We investigated the impact of the selected methods measured

in terms of classification accuracy on three different datasets: the Oxford Flower 17, the Oxford

Flower 102, as well as our own Jena Flower 30.

Whereas dense sampling of local features in combination with segmentation or weighted

feature pooling is widely used, our results show that comparable or better classification accu-

racy can be achieved by using true feature detectors. Although enabling high accuracy in scene

recognition tasks, multi-scale dense sampling achieved only poor results on our datasets, espe-

cially for those with variation in viewpoint and scale, i.e., the Oxford Flower datasets. Addi-

tionally, true feature detectors produce at least an order of magnitude less features compared

to dense sampling, thus lowering computational effort during descriptor extraction and

encoding. The Hessian-based SURF (DoH) detector in combination with SIFT as local shape

descriptor was found to be superior over other detector-descriptor combinations in terms of

classification accuracy. SIFT was found to perform relatively bad in combination with its origi-

nal detector (DoG). Comparing the Harris corner and Hessian blob detectors with and with-

out affine covariant image patches, no significant impact on the classification accuracy, rather

we gained slightly worse accuracies if affine covariant patches are used. Furthermore, despite

the MSER region detector was previously found to detect local features most complementary

to corner and blob detectors, the classification accuracy was not found to be improved if it was

used as a supplementary feature detector.

With respect to local shape descriptors, we found SIFT to facilitate more accurate classifica-

tions compared to SURF and HOG. On the other hand, whereas the overall accuracy using

dense sampling was poor, dense sampled SURF features instead of SIFT improved the classifi-

cation accuracies for all datasets.

Color bagging using a generic but highly discriminative codebook, i.e., the Discriminative

Color Descriptor (DCD), was found to be the best local color descriptor in terms of classifica-

tion accuracy and photometric stability. However, if the dataset covers very different illumina-

tion conditions, the performance of the Discriminative Color Descriptor is reduced and the

explicitly photometric invariant Opponent Angle descriptor achieves slightly better results,

though it generally performs worse.

Concerning feature encoding, we compared the traditional Bag of Words (BOW) to its

soft-encoding variants as well as to first and second order encoding methods (VLAD and

Fisher Vector). Whereas the Locality Constrained Linear Coding was found to require signifi-

cantly larger codebooks (> 1k codewords), the Kernel Codebook encoding slightly outper-

formed the BOW for all codebook sizes. As the generation of huge codebooks requires

significant computational resources, the VLAD and FV encoding showed their advantageous
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utilization of additional visual word statistics that allow to lower the required codebook sizes

by at least an order of magnitude for achieving highly discriminative image representations.

VLAD and FV were found to perform almost equally well, with FV performing slightly better

for larger codebooks.

Comparing different pipelines for fusion of color and shape descriptors before classification

revealed that earliest fusion, i.e., OpponentSIFT, achieved the best classification accuracies

compared to the early fusion (local concatenation of SIFT and DCD). Late fusion after encod-

ing was found to decrease accuracy due to the loss of spatial correspondence between color

and shape information, especially if large variations in viewpoint and scale are present within

the dataset.

For scene classification, using a pyramidal image representation increases the classification

accuracy by adding weak geometric context, hence it is a widely accepted method for object

classification as well. However, we showed that it is more efficient for flower classification to

pool and encode local features globally instead of using a pyramidal image representation,

especially if the FV is used for encoding.

Whereas the Oxford Flower 17 and especially the Oxford Flower 102 dataset are somewhat

challenging as the images represent fairly uncontrolled image situations, the results on our

own Jena Flower 30 dataset confirm the benefit of defining constraints in image viewpoint and

scale. Being incorporated in applications for mobile devices, such requirements can be easily

met and help non-expert users in classifying unknown plant species. Finally, we provide the

Jena Flower 30 dataset consisting of images acquired throughout a whole season, thus captur-

ing flowers in visually very different blooming stages and under very different illumination

conditions. Despite the higher amount of classes (plant species) compared to the OF17 dataset,

high classification accuracies of 94% were realized already for this dataset with a well-designed

classification pipeline based on local features.
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Description of Flower Colors for Image based Plant Species Classification. Zentrum für Bild- und Sig-

nalverarbeitung e.V.; 2016. p. 145–154.

53. Khan R, van de Weijer J, Khan FS, Muselet D, Ducottet C, Barat C. Discriminative Color Descriptors. In:

2013 IEEE Conference on Computer Vision and Pattern Recognition; 2013. p. 2866–2873.2013.369.

54. Finlayson GD, Schiele B, Crowley JL. Comprehensive Colour Image Normalization. In: Proceedings of

the 5th European Conference on Computer Vision-Volume I—Volume I. ECCV’98. London, UK, UK:

Springer-Verlag; 1998. p. 475–490.

55. van de Weijer J, Schmid C. Coloring Local Feature Extraction. In: Proceedings of the 9th European

Conference on Computer Vision—Volume Part II. ECCV’06. Berlin, Heidelberg: Springer-Verlag; 2006.

p. 334–348.

56. van de Weijer J, Schmid C, Verbeek J. Learning Color Names from Real-World Images. In: 2007 IEEE

Conference on Computer Vision and Pattern Recognition; 2007. p. 1–8.2007.383218.

57. Leung T, Malik J. Representing and Recognizing the Visual Appearance of Materials using Three-

dimensional Textons. International Journal of Computer Vision. 2001; 43(1):29–44. doi: 10.1023/

A:1011126920638

58. Csurka G, Dance CR, Fan L, Willamowski J, Bray C. Visual categorization with bags of keypoints. In: In

Workshop on Statistical Learning in Computer Vision, ECCV; 2004. p. 1–22.

59. Gemert JC, Geusebroek JM, Veenman CJ, Smeulders AW. Kernel Codebooks for Scene Categoriza-

tion. In: Proceedings of the 10th European Conference on Computer Vision: Part III. ECCV’08. Berlin,

Heidelberg: Springer-Verlag; 2008. p. 696–709.
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