
An Improved Combinatorial Polynomial Algorithm for the Linear

Arrow-Debreu Market

Ran Duan∗ Jugal Garg† Kurt Mehlhorn‡

Abstract

We present an improved combinatorial algorithm for the
computation of equilibrium prices in the linear Arrow-
Debreu model. For a market with n agents and in-
tegral utilities bounded by U , the algorithm runs in
O(n7 log3(nU)) time. This improves upon the previ-

ously best algorithm of Ye by a factor of Ω̃(n). The
algorithm refines the algorithm described by Duan and
Mehlhorn and improves it by a factor of Ω̃(n3). The im-
provement comes from a better understanding of the it-
erative price adjustment process, the improved balanced
flow computation for nondegenerate instances, and a
novel perturbation technique for achieving nondegener-
acy.

1 Introduction

Walras [16] introduced an economic market model in
1874. In this model, every agent has an initial endow-
ment of some goods and a utility function over sets of
goods. Goods are assumed to be divisible. The market
clears at a set of prices if each agent can spend its en-
tire budget (= the total value of its goods at the set of
prices) on a bundle of goods with maximum utility, and
all goods are completely sold. Market clearing prices
are also called equilibrium prices. In the linear version
of the model, all utility functions are linear.

We present an improved combinatorial algorithm
for the computation of equilibrium prices. For a mar-
ket with n agents and integral utilities bounded by U ,
the algorithm runs in O(n7 log3(nU)) time. This is al-
most by a factor of n better than all known algorithms.
Jain [12] and Ye [17] gave algorithms based on the el-
lipsoid and the interior point method, respectively, and
Duan and Mehlhorn [6] described a combinatorial algo-
rithm. The new algorithm refines the latter algorithm
and improves upon its running time by a factor of al-
most n3.

Formally, the linear model is defined as follows. We

∗Institute for Interdisciplinary Information Sciences, Tsinghua

University, Beijing, China
†Max-Planck-Institut für Informatik, Saarbrücken, Germany
‡Max-Planck-Institut für Informatik, Saarbrücken, Germany

may assume w.l.o.g. that the number of goods is equal to
the number of agents and that the i-th agent owns the i-
th good. There is one unit of each good. Let uij ≥ 0 be
the utility for agent i if all of good j is allocated to him.
We assume that the utilities are integers bounded by U .
We make the standard assumption that each agent likes
some good, i.e., for all i, maxj uij > 0, and that each
good is liked by some agent, i.e., for all j, maxi uij > 0.
We also make the nonstandard assumption that for
every proper subset P of agents, there exist i ∈ P
and j /∈ P such that uij > 0. References [12, 4, 6]
show how to remove it. Agents are rational and spend
money only on goods that give them maximum utility
per unit of money, i.e., if p = (p1, . . . , pn) is a price
vector then buyer i is only willing to buy goods j with
uij/pj = max` ui`/p`. An equilibrium is a vector p of
positive prices and allocations xij ≥ 0 such that

• all goods are completely sold:
∑
i xij = 1 for all

j.

• all money is spent: pi =
∑
j xijpj for all i.

• only goods that give maximum utility per unit of
money are bought:

for all i and j: xij > 0 ⇒ uij
pj

= αi,

where αi = max`
ui`

p`
.

In an equilibrium, fij = xijpj is the amount of money
that flows from agent i to agent j. In this paper, it is
useful to represent each agent i twice, once in its role as
a buyer and once in its role as (the owner of) a good.
We denote the set of buyers by B = {b1, b2, ..., bn} and
the set of goods by C = {c1, c2, ..., cn}. So, if the price
of good ci is pi, buyer bi will have pi amount of money.

The existence of an equilibrium is nonobvious. The
first rigorous existence proof is due to Wald [15]. It
required fairly strong assumptions. The existence proof
for the general model was given by Arrow and Debreu [1]
in 1954. They proved that the market equilibrium
always exists if the utility functions are concave. The
proof is nonconstructive. Gale [9, 10] gave necessary and

ar
X

iv
:1

51
0.

02
69

4v
2

 [
cs

.D
S]

 1
6

O
ct

 2
01

5

sufficient conditions for the existence of an equilibrium
in the linear model.

The development of algorithms started in the 60s.
We restrict the discussion to exact algorithms and refer
the reader to [6] for a broader discussion of algorithms
and related work. Eaves [7] presented the first exact
algorithm for the linear exchange model. He reduced
the model to a linear complementary problem which is
then solved by Lemke’s algorithm. The algorithm is
not polynomial time. Garg, Mehta, Sohoni, and Vazi-
rani [11] give a combinatorial interpretation of the algo-
rithm. Polynomial time exact algorithms were obtained
based on the characterization of equilibria as the solu-
tion set of a convex program. The recent paper by Deva-
nur, Garg, and Végh [4] surveys these characterizations.
Jain [12] showed how to solve one of these characteriza-
tions with a nontrivial extension of the ellipsoid method.
His algorithm is the first polynomial time algorithm for
the linear Arrow-Debreu market. Ye [17] showed that
polynomial time can also be achieved with the interior
point method. We quote from his paper: “We present
an interior-point algorithm . . . for solving the Arrow-
Debreu pure exchange market equilibrium problem with
linear utility. . . . The number of arithmetic operations
of the algorithm is . . . bounded by O(n4 log 1/ε), which
is substantially lower than the one obtained by the ellip-
soid method. If the input data are rational, then an ex-
act solution can be obtained by solving the identified sys-
tem of linear equations and inequalities, when ε < 2−L,
where L is the bit length of the input data. Thus, the
arithmetic operation bound becomes O(n4L),” We
assume that utilities are integers bounded by U . Then
L = n2 logU , and the number of arithmetic operations
becomes O(n6 logU). Ye does not state the precision
needed for the computation. However, since the com-
putation must guarantee that the error ε becomes less
than 2−L, it is fair to assume that arithmetic on num-
bers with L bits is necessary. Thus the time complexity
on a RAM becomes O(n6(logU) ·M(n2 logU)), where
M(L) is the cost of multiplying L-bit numbers. On a
RAM with logarithmic word-length, M(L) = O(L) [8]
and hence the time bound for Ye’s algorithm1 becomes
O(n8(logU)2).

The utility graph is a bipartite graph with vertex
set B ∪ C, where bi and cj are connected by an edge if
and only if uij > 0. Any cycle D in the utility graph
has even length and hence the edges of the cycle can be
2-colored such that adjacent edges have distinct colors.
We use D0 and D1 to denote the two color classes and
call (D0, D1) the 2-partition of D. We call an instance

1Yinyu Ye confirmed in personal communication that this
interpretation of his result is correct.

degenerate if there is a cycle D with 2-partition (D0, D1)
such that

(1.1)
∏
e∈D0

ue =
∏
e∈D1

ue.

For a price vector p, the equality graph Gp = (B∪C,Ep)
is a directed bipartite graph, where the edge set Ep
consists of all edges (bi, cj) such that uij/pj = αi.
For nondegenerate instances, the equality graph with
respect to any price vector is a forest, see Lemma 2.2.

Duan and Mehlhorn [6] gave a combinatorial algo-
rithm. They obtain equilibrium prices by a procedure
that iteratively adjusts prices and allocations in a care-
fully chosen, but intuitive manner. The algorithm runs
in O(n5 log(nU)) phases and maintains a balanced flow
in a flow network defined by the current price vector.
A balanced flow is a maximum flow that minimizes the
2-norm of the surplus vector of the agents. The bal-
anced flow needs to be recomputed in each phase and
this takes O(n) max-flow computations on a graph with
n nodes and up to n2 edges. We refine their algorithm
(see Figure 1 for a complete listing) and reduce the run-
ning time by almost three orders of magnitude. The
improvement comes from three sources.

• A refined, but equally simple, method for adjusting
prices and a refined analysis. This reduces the
number of phases by a factor of n.

• An improved computation of balanced flows in
nondegenerate networks. We show that only one
general max-flow computation in a graph with
O(n) edges is needed; the other O(n) maxflow
computations are in networks with forest structure.
This reduces the number of arithmetic operations
per phase by a factor of n2 and improves upon
the running time by a factor of n2/ log(nU). The
improvement also applies to the algorithm in [6].

• A novel perturbation scheme that removes degen-
eracies without increasing the cost of our algorithm.

Orlin [13] previously described a perturbation scheme.
We will argue in the appendix that his description
is incomplete. The Cole-Gkatzelis algorithm [2] for
Nash social welfare makes use of Orlin’s perturbation
scheme. Our perturbation scheme is applicable in both
algorithms.

This paper is organized as follows. We introduce
some notation and concepts in Section 2 and describe
the algorithm in Section 3. Sections 4 and 5 prove the
bound on the number of phases. Section 6 contains the
improved algorithm for computing balanced flows for
nondegenerate instances and Section 7 introduces the
novel perturbation scheme.

2 Preliminaries

For a vector v = (v1, . . . , vn), let |v| = |v1| + . . . + |vn|
and ‖v‖ = (v21 + . . . + v2n)1/2 be the `1 and `2-norm of
v, respectively.

Let p = (p1, p2, ..., pn) denote the vector of prices of
goods 1 to n, so they are also the budgets of agents 1 to
n, if goods are completely sold. Each agent only buys
its favorite goods, that is, the goods with the maximum
ratio of utility and price. Define the bang per buck of
buyer bi to be αi = maxj{uij/pj}. For a price vector p,
the equality network Np is a flow network with vertex
set {s, t} ∪ B ∪ C, where s is a source node, t is a sink
node, B is the set of buyers, and C is the set of goods,
and the following edge set:

(1) An edge (s, bi) with capacity pi for each bi ∈ B.
(2) An edge (ci, t) with capacity pi for each ci ∈ C.
(3) An edge (bi, cj) with infinite capacity whenever

uij/pj = αi. We use Ep to denote these edges.

Our task is to find a positive price vector p such
that there is a flow in which all edges from s and to t
are saturated, i.e., (s,B ∪ C ∪ t) and (s ∪ B ∪ C, t) are
both minimum cuts. When this is satisfied, all goods
are sold and all of the money earned by each agent is
spent on goods of maximum utility per unit of money.

For a set S of buyers define its neighborhood Γ(S) =
{c ∈ C | (b, c) ∈ Ep for some b ∈ S}. Clearly, there is
no edge in Ep from S to C \ Γ(S).

With respect to a flow f , define the surplus r(bi) of a
buyer i as r(bi) = pi−

∑
j fij , where fij is the amount of

flow on the edge (bi, cj), and define the surplus r(cj) of a
good j as r(cj) = pj −

∑
i fij , Define the surplus vector

of buyers to be r = (r(b1), r(b2), ..., r(bn)). Also, define
the total surplus to be |r| =

∑
i r(bi), which is also∑

j r(cj) since the total capacity from s and to t are both
equal to

∑
i pi. For convenience, we denote the surplus

vector of flow f ′ by r′. In the network corresponding to
market clearing prices, the total surplus of a maximum
flow is zero. For a set X of buyers, let rmin(X) =
min {r(b) | b ∈ X} and rmax(X) = max {r(b) | b ∈ X}
be the minimal and maximal surplus of any buyer in X.
For the empty set of buyers, rmax(∅) = 0. The outflow
of buyer bi is outflow(bi) =

∑
j fij .

A maximum flow is balanced if it minimizes the 2-
norm of the surplus vector of the buyers. The concept
of a balanced flow was introduced by Devanur et al. [5].

Lemma 2.1. ([5, 6]) Balanced flows exist. They can be
computed with n maximum flow computations. If f is
a balanced flow, buyers bi and bj have equality edges
connecting them to the same good c and there is positive
flow from bi to c, then the surplus of bj is no larger than
the surplus of bi. Let f0 be a maximum flow and let C0

be the goods that are completely sold with respect to f0.
Then there is a balanced flow in which all goods in C0

are completely sold.

We next show that for nondegenerate instances the
equality graph with respect to any price vector is a
forest.

Lemma 2.2. Consider any cycle D in the utility graph.
If D ⊆ Ep for some price vector p, the set of utilities is
degenerate.

Proof. Consider any buyer b in the cycle and let
e0 = (c0, b) ∈ D0 and e1 = (b, c1) ∈ D1 be
the edges in D incident to b. Then ue0/p(c0) =
ue1/p(c1), and therefore p(c1) = (ue1/ue0)p(c0), and
hence

∏
e∈D1

ue/
∏
e∈D0

ue = 1.

Fisher Markets: In Fisher markets, the buyers
come with a budget to the market. They do not have
to earn their budget by selling their goods. Fisher
markets are a special case of Arrow-Debreu markets.
Let ai be the budget of the i-th buyer. Consider the
Arrow-Debreu market, where the i-th buyer owns ai
units of each good. Then in an equilibrium his budget
will be ai

∑
j pj and hence a solution to the Fisher

market can be obtained from the solution to the Arrow-
Debreu market by dividing all prices and money flows
by P =

∑
j pj .

3 The Algorithm

The algorithm is shown in Figure 1 and refines the one
of Duan and Mehlhorn [6]. It starts with all prices pi
equal to one and a balanced flow f in Np. It works in
phases (called iterations in [6]). In each phase, we first
determine a set S of buyers with surplus and the set
Γ(S) of goods connected to them by equality edges. We
increase the prices of the goods in Γ(S) and the money
flow into these goods by a common factor x > 1. Let p′

be the new price vector and let f ′ be the resulting flow.
We turn f ′ into a balanced flow f ′′ and make sure that
all goods that are completely sold with respect to f are
also completely sold with respect to f ′′. We set f to f ′′,
p to p′, and repeat. Once the total surplus is less than
ε, where ε = 1/(8n4nU3n), we exit from the loop and
compute the equilibrium prices from the current price
vector p and the current flow f . The last step is exactly
as in [6] and will not be discussed further.

We next detail the phases. We first explain the
choice of S. It is more refined than in [6] and crucial
for the improved bound on the number of phases. For
a resource bound r0, let S(r0) = {b ∈ B | r(b) ≥ r0}
be the set of buyers with surplus at least r0. In our
algorithm we choose a particular resource bound r0.

Part A: Set ε = 1/(8n4nU3n);

Set pi = 1 for all i and set f to a balanced flow in Np;

While |r(B)| ≥ ε;
Sort the buyers by their surpluses in decreasing order: b1, b2, ..., bn;

Find the smallest ` ≥ 1 for which S = S(r(b`)) satisfies outflow(bi) = 0 and ci 6∈ Γ(S) for
every bi with r(b`) > r(bi) ≥ r(b`)/(1 + 1/n) and let ` = n when there is no such `;

Let S = S(r(b`));

Determine xmax, xeq , x23, x24 and x2 and set x = min(xmax, xeq , x23, x24, x2);

Update prices and flow according to (3.2) and (3.3); let f ′ be the new flow and p′ be the
new price vector;
Compute a balanced flow f ′′ in Np′ with the property that goods that are completely sold
with respect to f are also completely sold with respect to f ′′;

Set f to f ′′ and p to p′;

EndWhile

Part B: Compute equilibrium prices from f and p as in [6];

Figure 1: The complete algorithm

We order the buyers in decreasing order of surpluses:
r(b1) ≥ r(b2) ≥ . . . ≥ r(bn−1) ≥ r(bn). Let ` ≥ 1 be
minimal2 such that outflow(bj) = 0 and cj 6∈ Γ(S) for
every bj with r(b`) > r(bj) ≥ r(b`)/(1 + 1/n), where
S = S(r(b`)). If no such ` exists, set ` = n and
S = S(r(bn)). Let r0 = r(b`).

Lemma 3.1. r(b`) > 0.

Proof. If the loop is entered, |r(B)| > 0. Let k be
maximal with r(bk) > 0. Then either k = n or
r(bk+1) = 0 < r(bk)/(1 + 1/n). Thus ` ≤ k.

The index ` is readily determined.

Lemma 3.2. The index ` can be found in O(n2) time.

Proof. We use the straightforward algorithm of scan-
ning through the buyers in order of decreasing surplus.

Set ` to 1, Γ to Γ(b1), and enter a loop.
Increment ` as long as ` < n and r(b`+1) = r(b`).

Whenever ` is increased, add Γ(b`) to Γ. Maintain Γ as
a bit-vector.

If ` reaches n return it as the desired value.
Otherwise, do the following for j = `+ 1, `+ 2, . . . :

if j reaches n + 1 or r(bj) < r(b`)/(1 + 1/n), return `.
If outflow(bj) 6= 0 or cj ∈ Γ, add Γ({b`+1, . . . , bj}) to Γ,
set ` = j, and break from the inner loop.

2[6] uses a simpler definition: let ` be minimal such that

r(b`+1) < r(b`)/(1 + 1/n). For this definition, Lemma 5.2 does
not hold.

The algorithm runs in time proportional to the
number of edges of the utility graph and hence in time
O(n2).

Lemma 3.3. There are no edges in Ep from S to C \
Γ(S), and the edges from S̄ to Γ(S) are not carrying
flow.

Proof. The first claim is immediate from the definition
of Γ(S). For the second claim, assume otherwise and let
bj 6∈ S and ck ∈ Γ(S) be such that there is positive flow
on the edge (bj , ck). Since ck ∈ Γ(S), there must a buyer
bi ∈ S with (bi, ck) ∈ Ep. Since the flow is balanced,
r(bj) ≥ r(bi) by Lemma 2.1, and hence bj ∈ S.

We raise the prices of the goods in Γ(S) and the flow
on the edges incident to them by a common factor x > 1.
We also increase the flow from s to buyers in S such that
flow conservation holds. This give us a new price vector
p′ and a new flow f ′. Except for the modified definition
of S, this is exactly as in [6]. Observe that the surpluses
of the goods in Γ(S) stay zero. Formally,

p′j =

{
x · pj if cj ∈ Γ(S);

pj if cj /∈ Γ(S).
(3.2)

f ′ij =

{
x · fij if cj ∈ Γ(S);

fij if cj /∈ Γ(S).
(3.3)

The changes on the edges incident to s and t are implied
by flow conservation. Since there are no edges from
S to C \ Γ(S), and the edges from S̄ to Γ(S) are not
carrying flow, an equivalent definition of the updated
flow is f ′ij = xfij if bi ∈ S and f ′ij = fij if bi ∈ S̄.

rmin(S)

rmin(S)/(1 + 1/n)

type 4a

type 4

type 1

type 2

type 3

no outflow

b

Figure 2: The left vertical segment shows the buyers
grouped into the buyers with surplus at least rmin(S),
with surplus in (rmin(S), rmin(S)/(1 + 1/n)], and with
surplus below rmin(S)/(1 + 1/n). S constitutes the
type 1 and 2 buyers. The red part on the right
vertical segment indicates Γ(S). The goods in Γ(S) are
completely sold to the buyers in S. The type 4a buyers
have no outflow and all equality edges incident to them
end in Γ(S). The type 3 and 4 buyers have no flow to
Γ(S).

The change of prices and flows affects the surpluses
of the buyers, some go up and some go down. We
distinguish between four types of buyers, depending on
whether a buyer b belongs to S or not and whether the
good owned by b belongs to Γ(S) or not. The effect of
the change on the surpluses of the buyers is given by
the following theorem.

Lemma 3.4. ([6]) Given a maximum flow f in Np,
a set S of buyers such that all goods in Γ(S) are
completely sold and there is no flow from S̄ to Γ(S),
and a sufficiently small parameter x > 1, the flow f ′

defined in (3.3) is a feasible flow in the equality network
with respect to the prices in (3.2). The surplus of each
good remains unchanged, and the surpluses of the buyers
become:

r′(bi) =



x · r(bi) if bi ∈ S, ci ∈ Γ(S)
(type 1 buyer);

(1− x)pi + x · r(bi) if bi ∈ S, ci /∈ Γ(S)
(type 2 buyer);

(x− 1)pi + r(bi) if bi /∈ S, ci ∈ Γ(S)
(type 3 buyer);

r(bi) if bi /∈ S, ci /∈ Γ(S)
(type 4 buyer).

Proof. See [6].

In contrast to [6], we need to split the set of type 4
buyers further into type 4a buyers and type 4b buyers.

A type 4 buyer has type 4a, if its surplus is at least
rmin(S)/(1 + 1/n). Otherwise, its type is 4b. See
Figure 2 for an illustration.

Lemma 3.5. r(bi) < rmin(S)/(1 + 1/n) for every type
3 and type 4b buyer bi. For a type 4a buyer bi and an
edge (bi, cj) ∈ Ep, cj ∈ Γ(S).

Proof. Consider any buyer bi with r(bi) ≥ rmin(S)/(1 +
1/n) and bi 6∈ S. Then ci 6∈ Γ(S) and hence bi does
not have type 3. So, it must have type 4, and more
precisely, type 4, it has type 4a. Let (bi, cj) ∈ Ep.
Since outflow(bi) = 0, bi has surplus and hence cj is
completely sold. The buyers with flow to cj have surplus
at least the surplus of bi and hence have surplus at least
rmin(S). Thus they belong to S and hence cj ∈ Γ(S).

Lemma 3.6. If there is no type 3 buyer then there is at
least one type 1 buyer.

Proof. Since S is nonempty and every buyer has at
least one incident equality edge, Γ(S) is nonempty. The
goods in Γ(S) are completely sold and owned by the
type 1 and type 3 buyers. If there are no type 3 buyers,
there has to be at least one type 1 buyer.

For the definition of the factor x, we perform the
following thought experiment. We increase the prices of
the goods in Γ(S) and the flow on the edges incident to
them continuously by a common factor x until one of
four events happens: (1) a new edge enters the equality
graph or (2) the surplus of a type 2 buyer and a type
3 or 4b buyer become equal or (3) the surplus of a
type 2 buyer becomes zero or (4) x reaches a maximum
admissible value3 xmax, where

xmax =


1 + 1

Cn3

if there are type 3 buyers

1 + 1
Ckn3

if there are no type 3’s and k type 1 buyers,

and C = 48e2.
The increase of the prices of the goods in Γ(S)

makes the goods in C \ Γ(S) more attractive to the
buyers in S and hence an equality edge connecting a
buyer in S with a good in C \Γ(S) may arise. This will
happen at x = xeq(S), where

xeq(S) = min{uij
pj
· pk
uik
|

bi ∈ S, (bi, cj) ∈ Ep, ck /∈ Γ(S)}.

3In [6], xmax is defined as 1 + 1/(Cn3). The refined definition

of S allows us to choose a larger value if there are no type 3 buyers.
This choice will be crucial for Lemma 5.2.

rmin(S)

rmin(S)/(1 + 1/n)

type 4a

type 4b

type 1

type 2

type 3

xx = 1

Figure 3: The surpluses of various types of buyers as
a function of x. x23 and x24 are the smallest values
of x at which the surpluses of a type 2 and a type 3
or type 4b surplus becomes equal. x2 is the smallest
value of x at which a surplus of a type 2 buyer becomes
zero. It may happen that the surplus of a type 3 buyer
becomes larger than the surplus of a type 1 buyer for
an x < min(x23, x24, x2). This possibility is overlooked
in [6] and invalidates some of their arguments. They
can be fixed along the lines of this paper.

When we increase the prices of the goods in Γ(S) by
a common factor x ≤ xeq(S), the equality edges in
(S×Γ(S))∪(S̄×(C \Γ(S))) will remain in the network.
In particular, by Lemma 3.3, all flow-carrying edges stay
in the network.

The surplus of type 1 and 3 buyers increases, the
surplus of type 2 buyers decreases, and the surplus of
type 4 buyers does not change, see Figure 3. Since the
total surplus does not change (recall that the surpluses
of the goods are not affected by the price update), the
decrease in surplus of the type 2 buyers is equal to
the increase in surplus of the type 1 and 3 buyers. In
particular, there are type 2 buyers. We define quantities
x23(S) and x24(S) at which the surplus of a type 2
and type 3 buyer, respectively type 4b4 buyer, becomes
equal, and a quantity x2 at which the surplus of a type

4In [6], type 4 is used.

2 buyer becomes zero.

x23(S) = min{pi + pj − r(bj)
pi + pj − r(bi)

|

bi is type 2 and bj is type 3 buyer},

x24(S) = min{pi − r(bj)
pi − r(bi)

|

bi is type 2 and bj is type 4b buyer},

x2(S) = min{ pi
pi − r(bi)

| bi is type 2 buyer}.

Lemma 3.7. With S as defined in the algorithm and
x = min(xmax, xeq(S), x23(S), x24(S), x2(S)), f ′ is a
feasible flow in Np′ .

Proof. Obvious.

This ends the description of the algorithm. An
important property of the algorithm is that goods with
nonzero surplus have price one.

Lemma 3.8. Once the surplus of a good becomes zero,
it stays zero. As long as a good has nonzero surplus, its
price stays at one.

Proof. Initially all goods have price one. The price
adjustment does not change the surplus of any good and
only increases the prices of goods that are completely
sold. In the balanced flow f ′′, all goods that are
completely sold with respect to f are also completely
sold with respect to f ′′.

4 The Analysis

In this section, we derive a bound on the number
of phases. We distinguish between xmax-phases and
balancing phases. A phase is an xmax-phase if x = xmax

and is balancing otherwise. As in [6], we use two
potential functions for the analysis, namely the product
P =

∏
i pi of all prices and the 2-norm ‖r(B)‖ of the

surplus vector of the buyers.
In Section 4.1, we show that the number of xmax-

phases is O(n4 log(nU)), and in Section 5.3, we show the
same bound for the number of balancing phases. This
is by a factor of n better than in [6].

The improvement for the number of phases comes
from the more careful definition of the set S, the
distinction between phases with and without type 3
buyers, the refined definition of xmax in phases without
type 3 buyers and a refined analysis of the number of
such phases (Lemma 4.3), a new analysis of the number
of xmax-phases with type 3 buyers (Lemma 4.4), a
refined analysis of the norm increase in xmax-phases,
and an improved analysis of the norm decrease in
balancing phases.

4.1 The Number of xmax-Phases. We first recall
a result from [6] that prices stay bounded by (nU)n.

This immediately yields a bound of (nU)n
2

on the
product of the x-factors used in all phases and also on
the number of xmax-phases with no type 3 buyers. A
different argument yields a bound on the number of
xmax-phases with type 3 buyers. The latter is even
strongly polynomial.

Lemma 4.1. ([6]) All prices stay bounded by
max(n,U)n−1 ≤ (nU)n.

Proof. The upper bound is stated as (nU)n−1 in [6].
The proof actually shows the bound max(n,U)n−1.

Lemma 4.2. For a phase h, let xh > 1 be the factor by
which the prices in Γ(S) are increased. Then∏

h

xh ≤ (nU)n
2

.

Proof.

∏
h

xh ≤
∏
j

 ∏
pj is increased in phase h

xh


≤
∏
j

(nU)n ≤ (nU)n
2

.

The next two Lemmas have no equivalent in [6].

Lemma 4.3. The number of xmax-phases with no type
3 buyers is O(n4 log(nU)).

Proof. Let T be the number of such phases. Consider
any such phase and assume that there are k type 1
buyers. Then the prices of exactly k goods are increased
by a factor xmax = 1+1/(Ckn2). Thus P =

∏
i pi grows

by a factor of

(1 +
1

Ckn2
)k = exp(k ln(1 +

1

Ckn2
))

≥ exp(k
1

2Ckn2
) = exp(

1

2Cn2
).

Since lnP is bounded by n2 log(nU), we have T ·
1/(2Cn2) ≤ n2 log(nU) and hence T ≤ 2Cn4 log(nU).

Lemma 4.4. The number of xmax-phases with type 3
buyers is O(n4 lnn).

Proof. For i ≤ 3, let Bi be the set of type i buyers. We
first show that the total budget of the type 3 buyers
is at most the total budget of the type 2 buyers, more
precisely,∑

i∈B3

pi ≤
∑
i∈B2

pi =
∑
i∈B3

pi +
∑

i∈B1∪B2

r(bi).

The goods owned by the type 1 and type 3 buyers are
completely bought by the buyers of type 1 and type 2.
Hence ∑

i∈B1∪B3

pi =
∑

i∈B1∪B3

inflow(ci)

=
∑

i∈B1∪B2

outflow(bi)

=
∑

i∈B1∪B2

(pi − r(bi)).

Subtracting
∑
i∈B1

pi from both sides establishes the
equality in the claim. The inequality follows since
surpluses are nonnegative.

We next show that
∑
i∈B2

pi ≤ 2Cn4, whenever

x ≥ 1 + 1/(Cn3). The outflow of any type 2 buyer bi is
pi − r(bi) at the beginning of the phase. It increases
by (pi − r(bi))/(Cn

3) during the price update. The
increase cannot be more than the surplus and hence
(pi − r(bi))/(Cn

3) ≤ r(bi) or pi ≤ (1 + Cn3)r(bi).
Summing over all type 2 buyers and observing that the
total surplus is at most n initially and never increases
yields∑

i∈B2

pi ≤ (1 + Cn3)
∑
i∈B2

r(bi) ≤ n+ Cn4 ≤ 2Cn4.

We finally show that the number of xmax-phases
with type 3 buyers is at most n + (Cn4 + n) ln(2Cn4).
Assume otherwise. Then there must be a buyer bi such
that there are at least 1 + (Cn3 + 1) ln(2Cn4) phases
in which bi is a type 3 buyer and x = 1 + 1/(Cn3). In
each such phase the price of bi increases by a factor of
1 + 1/(Cn3) and hence the price of pi before the last

such phase is at least (1 + 1/(Cn3))(Cn
3+1) ln(2Cn4) >

eln(2Cn
4) = 2Cn4. We conclude that the total budget

of the buyers in B3 and hence, by the first claim, the
total budget of the buyers in B2 exceeds 2Cn4. This
contradicts the second claim.

5 The Evolution of the Surplus Vector

The 2-norm of the surplus vector of the buyers is
our second potential function. In the price and flow
adjustment, the surpluses of type 2 and type 3 buyers
move towards each other. Lemma 5.1 is our main tool
for estimating the resulting reduction of the 2-norm of
the surplus vector. Lemmas 5.3 and 5.4 show that the 2-
norm of the surplus vector increases by at most a factor
1 + O(1/n3) in xmax-phases. Lemma 5.5 shows that
a balancing phase reduces the 2-norm by a factor of
1 − Ω(1/n3). Putting everything together, we obtain
the O(n4 log(nU)) bound on the number of balancing
phases.

5.1 A Technical Lemma. We start with a technical
lemma.

Lemma 5.1. Let r = (r1, . . . , rn) and (r′1, . . . , r
′
n) be

nonnegative vectors. Let k ∈ [1, n] be such that r′i ≥ r′j
for i ≤ k < j. Suppose that δi = ri − r′i ≥ 0
for i ≤ k and δj = r′j − rj ≥ 0 for j > k. Let
D = mini≤k ri − maxj>k rj, and let ∆ =

∑
i≤k δi. If

∆ ≥
∑
j>k δj,

‖r′‖2 ≤ ‖r‖2 −D∆.

Proof. Let m = maxj>k rj and m′ = maxj>k r
′
j . Then

ri ≥ m+D and r′i ≥ m′ for all i ≤ k. Therefore,

‖r‖2 − ‖r′‖2

=
∑
i≤k

(
r2i − (ri − δi)2

)
+
∑
j>k

(
r2j − (rj + δj)

2
)

=
∑
i≤k

(
2riδi − δ2i

)
+
∑
j>k

(
−2rjδj − δ2j

)
=
∑
i≤k

δi (ri + ri − δi)−
∑
j>k

δj (rj + rj + δj)

=
∑
i≤k

δi(ri + r′i)−
∑
j>k

δj(rj + r′j)

≥ (m+D +m′)
∑
i≤k

δi − (m+m′)
∑
j>k

δj

≥ D∆.

5.2 xmax-Phases. In xmax-phases, the 2-norm of the
surplus vector of the buyers grows. We again distinguish
xmax-phases with and without type 3 buyers and show
that for both kind of phases the 2-norm grows by at
most a factor of (1+O(1/n3)). The argument for xmax-
phases with type 3 buyers was essentially already given
in [6]. The argument for xmax-phases without type 3
buyers is new. For both arguments we need a bound on
the maximum ratio of surpluses of buyers in S. In [6] is
was shown that rmax(B) ≤ e·rmin(S) for their definition
of S. For our definition of S, we have in addition that
rmax(B) ≤ (1 + 4k/n)rmin(S) in the case that there
are k type 1 buyers and no type 3 buyers. The latter
inequality does not hold for the definition of S as used
in [6] as Figure 4 shows; it is crucial for the improved
bound on the number of phases.

Lemma 5.2. The maximum surplus of a buyer is the
maximum surplus of a buyer in S, i.e., rmax(B) =
rmax(S). Let k = |Γ(S)|. Then rmax(S) ≤ min(e, (1 +
4k/n))rmin(S). The squared norm of the surplus vector
of the buyers is bounded by ne2rmin(S)2. If there are no
type 3 buyers, k is equal to the number of type 1 buyers.
The maximum surplus of any buyer or good is at most
n.

price

10

10

15

5/(1 + 1/n)

5/(1 + 1/n)2

surplus

5

5

5

5/(1 + 1/n)

5/(1 + 1/n)2

Figure 4: The good owned by a buyer is shown at
the same height as the buyer. The edges shown are
equality edges. The two topmost buyers have type 1.
Their budgets are 10 and their surplus is five. Both of
them spend 5 units on the good owned by the topmost
buyer. The third buyer from the top has a budget of
15 and a surplus of 5. It spends 10 units on the good
owned by the second buyer. Then we have a chain of
arbitrary length of buyers with budget and surplus equal
to 5/(1 + 1/n)i, i ≥ 1. According to our definition of
S, S consists of the three topmost buyers. According
to the definition used in [6], the entire chain of nodes
would also belong to S.

Proof. By definition, S contains the buyer of largest
surplus.

Let S′ = {bi ∈ S | outflow(bi) > 0 or ci ∈ Γ(S)} be
the subset of buyers in S whose surplus changes by the
price and flow adjustment. Let r1 > r2 > . . . > rh be
the different surplus values of the buyers in S′. Any two
buyers in S′ that have positive flow to the same good
have the same surplus value. Thus there are at most
k distinct surplus values of buyers in S′ with positive
outflow. Every buyer bi in S′ either has positive outflow
or ci ∈ Γ(S). There are at most k buyers of the latter
kind. Thus h ≤ 2k. Also, h ≤ n.

Recall that b1 is a buyer of highest surplus. We
claim b1 ∈ S′ and hence r1 = rmax(S). Indeed, if b1 6∈ S′
then outflow(b1) = 0. Let (b1, c) be an equality edge
incident to c. Then c is completely sold and the flow into
c comes from buyers with surplus at least the surplus of
b1. These buyers have outflow and hence belong to S′.
Thus r1 = rmax(S).

Let b be a buyer in S′ whose surplus is larger than
rmin(S). Since S(r(b)) did not qualify for S, there must
be a buyer b′ such that that r(b)/(1+1/n) ≤ r(b′) < r(b)
and either outflow(b′) > 0 or c′ ∈ Γ(S(r(b)). In either
case, we conclude rmin(S) ≤ r(b′) and hence b′ ∈ S′.
The argument also shows that rmin(S) = rh. Thus

rj+1 ≥ rj/(1 + 1/n) for j < h and hence

rmax(S)

rmin(S)
≤ (1 + 1/n)min(2k,n) ≤ emin(2k,n))/n

≤ min(e, 1 + 4k/n),

where the last inequality follows from ex ≤ 1 + 2x for
0 ≤ x ≤ 1.

By the two preceding arguments, rmax(B) ≤ e ·
rmin(S). Thus the squared 2-norm of the surplus vector
is at most ne2rmin(S)2.

If there are no type 3 buyers, |Γ(S)| is equal to the
number of type 1 buyers.

The initial surplus of the buyers is n and the total
surplus never increases. Thus, no buyer can ever have
a surplus of more than n.

We turn to xmax-phases with type 3 buyers.

Lemma 5.3. In a xmax-phase with type 3 buyers, the
2-norm of the surplus vector of the buyers increases by
at most a factor 1 + O(1/n3). The total multiplicative
increase of the 2-norm of the surplus vector of the buyers
over all xmax-phases with type 3 buyers is nO(n).

Proof. Consider the price and flow adjustments in an
xmax-phase with type 3 buyers, and let r′ be the surplus
vector with respect to the flow f ′. The surpluses of the
type 1 buyers are multiplied by the factor 1 + 1/(Cn3),
the surpluses of the type 2 buyers go down, the surpluses
of the type 3 buyers go up, and the surpluses of the type
4 buyers do not change. Also, the surpluses of the type
2 buyers do not fall below the surpluses of the type 3
buyers. The total decrease of the surpluses of the type
2 buyers is equal to the total increase of the surpluses
of type 1 and type 3 buyers and hence is at least the
total increase of the surpluses of the type 3 buyers.

We split the surplus vector into three parts: the
surpluses r1 corresponding to type 1 buyers, the sur-
pluses r2,3 corresponding to the type 2 and 3 buyers,
and the surpluses r4 corresponding to type 4 buyers.
The norm of the first subvector is multiplied by x, the
norm of the third subvector does not change, and we can
bound the change in the norm of the second subvector
by Lemma 5.1. In particular, the norm of the second
subvector does not increase. Thus

‖r′‖2 − ‖r‖2 = (‖r′1‖2 − ‖r1‖2) + (‖r′23‖2 − ‖r23‖2)

+ (‖r′4‖2 − ‖r4‖2)

≤ ((1 + 1/(Cn3))2 − 1) · ‖r1‖2

≤ 3/(Cn3) · ‖r‖2,

and hence

‖r′‖ ≤
√

1 + 3/(Cn3)‖r‖ ≤ (1 + 3/(Cn3))‖r‖.

The 2-norm of the surplus vector with respect to f ′′ is
at most ‖r′‖.

The number of xmax-phases with type 3 buyers is
O(n4 lnn). Hence the total multiplicative increase in
xmax-phases with type 3 buyers is at most

(1 +
3

Cn3
)O(n4 lnn) ≤ eO(n lnn) = nO(n).

We next turn to xmax-phases without type 3 buyers.

Lemma 5.4. Consider an xmax-phase with no type 3
buyer. Then ‖r′‖ ≤ (1 + O(1/n3))‖r‖. The total
multiplicative increase of the norm of surplus vector in
xmax-phases with no type 3 buyers is (nU)O(n).

Proof. Let k be the number of type 1 buyers and let
R = rmin(S) be the minimum surplus of any buyer in
S. By Lemma 5.2, the surplus of any buyer is at most
(1 + 4k/n)R. Also, xmax = 1 + 1/(Ckn2).

The increase of the surpluses of the type 1 buyers
is equal to the decrease of the surpluses of the type 2
buyers. Let δi be the change of surplus of buyer i, i ∈ S,
and let ∆ be the total increase in surplus of the type
1 buyers. Let B1 and B2 be the type 1 and 2 buyers.
Then

‖r′‖2 − ‖r‖2 =
∑
i∈B1

(ri + δi)
2 − r2i +

∑
i∈B2

(ri − δi)2 − r2i

≤ 2∆((1 + 4k/n)R−R) + 2∆2.

Next observe that ∆ ≤ (xmax − 1)k(1 + 4k/n)R ≤
1

Ckn2 · k · 5 ·R ≤ 5R/(Cn2). Thus

‖r′‖2−‖r‖2 ≤ O(
R

n2
kR

n
+
R2

n4
) = O(

kR2

n3
) = O(

1

n3
)‖r‖2,

since ‖r‖2 ≥ kR2. Thus ‖r′‖ ≤
√

1 +O(1/n3)‖r‖ =
(1 +O(1/n3))‖r‖.

The number of xmax-phases with no type 3 buyers
is O(n4 log(nU)). Hence the multiplicative increase is
bounded by

(1 +O(
1

n3
))n

4 log(nU) = exp(O(n log(nU))) = (nU)O(n).

5.3 Balancing Phases. In a balancing phase, x <
xmax. Our goal is to show that balancing phases reduce
the norm of the surplus vector of the buyers by a factor
1− Ω(1/n3).

Lemma 5.5. Let r′′ be the surplus vector with respect to
f ′′. In balancing phases,

‖r′′‖ ≤ (1− Ω(
1

n3
))‖r‖.

Proof. In a balancing phase, we first increase the prices
of the goods in Γ(S) and the flows into these goods by
a common factor x = min(xeq , x23, x24, x2) to obtain a
flow f ′ and then construct a balanced flow f ′′ in the
network Np′ . The 2-norm of f ′′ is certainly no larger
than the 2-norm of f ′.

We have rmin(S)/(1 + 1/n) ≥ rmax(B3 ∪ B4b)
(equivalently rmin(S)− rmax(B3 ∪B4b) ≥ rmin(S)/(n+
1)) at the beginning of the phase. The price and flow
update affects this gap. We distinguish cases according
to whether f ′ closes half of the gap or not. We introduce
R = rmin(S) as a shorthand.

Case One, r′min(S) − r′max(B3 ∪ B4b) <
rmin(S)/(2(n + 1)): This case occurs when x = x23 or
x = x24 or x = x2. It can also occur, when x = xeq . Re-
call, that the total decrease of the surpluses of the type
2 buyers is equal to the total increase of the surpluses
of the type 1 and type 3 buyers, that surpluses of type
1 and type 3 buyers do not decrease and that surpluses
of type 2 buyers do not increase. Thus, it must be the
case that the total decrease of the surpluses of the type
2 buyers plus the total increase of the surpluses of the
type 3 buyers is at least rmin(S)/(2(n+ 1)).

We split the surplus vector into three parts: the
surplus vector r1 corresponding to type 1 buyers, the
surplus vector r2,3 corresponding to the type 2 and 3
buyers, and the surplus vector r4 corresponding to type
4 buyers. The 2-norm of the third subvector does not
change. The 2-norm of the first subvector increases. If
there are type 3 buyers, x ≤ 1 + 1/(Cn3) and hence

‖r′1‖2 − ‖r1‖2 ≤ ((1 +
1

Cn3
)2 − 1) · n(eR)2 ≤ 3e2R2

Cn2
.

If there are no type 3 buyers and k type 1 buyers,
x ≤ 1 + 1/(Ckn2) and hence

‖r′1‖2 − ‖r1‖2 ≤ ((1 +
1

Ckn2
)2 − 1) · k(eR)2 ≤ 3e2R2

Cn2
.

We next bound the change in the norm of the second
subvector by Lemma 5.1. Let D = rmin(B2)− rmax(B3)
be the minimum distance between a type 2 and a type 3
surplus, and let ∆ be the total decrease of the surpluses
of the type 2 buyers. Then D ≥ R/(n + 1) and
∆ ≥ R/(4(n+ 1)). Thus the squared 2-norm of the the
vector r23 decreases by at least R2/(4(n+ 1)2). Thus

‖r′‖2 − ‖r‖2 = (‖r′1‖2 − ‖r1‖2) + (‖r′23‖2 − ‖r23‖2)

+ (‖r′4‖2 − ‖r4‖2)

≤ 3e2R2

Cn2
− R2

4(n+ 1)2

≤ −Ω(
1

n3
)‖r‖2 since ‖r‖2 ≤ ne2R2

and hence ‖r′‖ ≤ (1− Ω(1
n3))‖r‖.

Case Two, r′min(S) − r′max(B3 ∪ B4b) ≥
rmin(S)/(2(n+1)): This can only be the case if x = xeq .
We first observe that

‖r′′‖2 − ‖r‖2 = ‖r′′‖2 − ‖r′‖2 + ‖r′‖2 − ‖r‖2

≤ ‖r′′‖2 − ‖r′‖2 +
3e2R2

Cn2
,

where the inequality follows from the proof of first case.
We need to relate the squared 2-norm of the surplus
vectors with respect to the flows f ′′ and f ′. To this
end, we construct a feasible flow f̂ from f ′ and argue
about the 2-norm of its surplus vector. Since f ′′ is a
balanced flow, its 2-norm is at most the 2-norm of f̂ .
The construction of f̂ is described in Figure 5.

We initialize f̂ to f ′, the flow after price and flow
adjustment. Let (*) be a shorthand for rmin(S, f̂) ≤
rmax(B3 ∪B4b, f̂)’. Let Enew be the new equality edges
connecting buyers in S with goods in C \ Γ(S). There
may also be new equality edges5 from S̄ to C \ Γ(S);
they are of no concern to us. We iterate over the edges
(bi, cj) in Enew . For any such edge, we first increase
the flow across the edge until either cj is completely
sold or (*) holds. In the latter case, the construction

of f̂ is complete. In the former case, we consider the
flow-carrying edges (bk, cj) with bk ∈ S̄. Since type 4a
nodes have no outgoing flow, bk has type 3 or type 4b
and hence r(bk) ≤ r(bi)/(1+1/n). We increase the flow
along the edge (bi, cj), decrease the flow across the edge
(bk, cj) by the same amount until either the latter flow
is zero or (*) holds. In the latter case, the construction

of f̂ is complete.

Lemma 5.6. When the algorithm in Figure 5 termi-
nates, either condition (*) holds for f̂ or there is at

least one buyer in S whose surplus with respect to f̂ is
one less than its surplus with respect to f ′.

Proof. Consider any new equality edge (bi, cj). If

condition (*) does not hold for f̂ , then all inflow to

cj in f̂ comes from bi and cj is completely sold. In f
there was no flow from bi to cj and hence the surplus

of bi with respect to f̂ is one less than its surplus with
respect to f ′.

In the construction of f̂ from f ′, the surpluses of
type 1 and 2 players do not increase, and the surpluses
of type 3 and 4 players do not decrease. Also, the
total decrease of the former surpluses is at least the

5The buyers incident to such equality edges had only equality

edges connecting them to Γ(S) before the price adjustment. These
equality edges carried no flow.

Let Enew be the set of new equality edges from S to C \ Γ(S);

Let f̂ = f ′;

If rmin(S, f̂) ≤ rmax(B3 ∪B4b, f̂), terminate the construction of f̂ ;

For every edge (bi, cj) ∈ Enew do

As long as cj is not completely sold, augment along (bi, cj) gradually until rmin(S, f̂) =

rmax(B3 ∪B4b, f̂) or cj is completely sold;

In the former case, terminate the construction;

For all flow-carrying edges (bk, cj) with bk ∈ S̄:

Augment along (bi, cj , bk) gradually until rmin(S, f̂) = rmax(B3 ∪ B4b, f̂) or the flow from
bk to cj becomes zero;

In the former case, terminate the construction;

Figure 5: New equality edges: the construction of f̂ from f ′.

total increase of the latter surpluses. Thus Lemma 5.1
applies. We have D ≥ R/(2(n + 1)) and ∆ ≥ D/2 if

condition (*) holds for f̂ and ∆ ≥ 1 otherwise. Thus

‖r̂‖2 − ‖r′‖2 ≤ − R

2(n+ 1)
min(

R

4(n+ 1)
, 1)

= − R2

8(n+ 1)2
,

since R ≤ n by Lemma 5.2.
Combining the bounds yields

‖r′′‖2 − ‖r‖2 ≤ ‖r̂‖2 − ‖r′‖2 +
3e2R2

Cn2

≤ − R2

8(n+ 1)2
+

3e2R2

Cn2

= −Ω(
1

n3
)‖r‖2.

We can now prove a bound on the number of
balancing phases.

Lemma 5.7. The number of balancing phases is
O(n4 log(nU)).

Proof. Let T be the number of balancing phases. The
2-norm of the initial balanced flow is no larger than√
n. In the xmax-phases, the 2-norm of the surplus

vector is multiplied by a factor of at most (nU)O(n).
We exit from the loop once |r| < ε. Thus |r| ≥ ε
and hence ‖r‖ ≥ ε/

√
n after T − 1 balancing phases.

Each balancing phase reduced the 2-norm by a factor of
1− Ω(1/n3). Therefore

√
n(nU)O(n)(1− Ω(1/n3))T−1 ≥ ε/

√
n.

The bound follows.

6 Balanced Flows for Nondegenerate Instances

We show that for nondegenerate instances, balanced
flows can be computed with one maxflow computation
and n maxflow computations in forest networks. It
is known [5] that balanced flows in equality networks
can be computed with n maxflow computations. All
computations are in graphs with O(n) edges.

Lemma 6.1. If Ep is a forest, a maximum flow in Np
can be computed with O(n) arithmetic operations.

Proof. For an edge e, we use cap(e) to denote its ca-
pacity. The following algorithm constructs a maximum
flow: As long as Ep is nonempty, let (bi, ck) be an equal-
ity edge such that either bi or ck has degree one in Ep.
We route q = min(cap((s, bi), cap(ck, t)) along the path
(s, bi, ck, t), reduce the capacities of the edges (s, bi) and
(cj , t) by q, and remove the edge (bi, ck) from the net-
work. Let (N ′, cap′) be the resulting network.

In order to show correctness, we construct a cut
D such that the value of the flow constructed by the
algorithm is equal to the capacity of D. We do so by
induction on the number of edges in Ep. If Ep is empty,
we take D = s ∪ B. Assume inductively, that f ′ is
a flow in (N ′, cap′) and D′ is a cut in this network
with val(f ′) = cap′(D′). Let f be obtained from f ′

by routing q units along the path (s, bi, ck, t). Then
val(f) = val(f ′) + q = cap′(D′) + q. If bi and ck belong
to the same side of the cut (either both belong or neither
belongs to D′), then cap(D′) = cap′(D′) + q, and we
take D = D′. If bi and ck belong to different sides of
the cut, we obtain D from D′ by moving the vertex of
degree one to the other side. Then exactly one of (s, bi)
and (ck, t) is cut by D, (bi, ck) is not cut, and no other
equality edge is cut, since we move the vertex of degree
one to the other side. Thus cap(D) = cap′(D′) + q.

Lemma 6.2. If Ep is a forest, a balanced flow in Np can
be computed with O(n2) arithmetic operations.

Proof. A balanced flow can be computed with at most n
maxflow computations. The maxflow computations are
on a network with reduced capacities and some edges
removed. Thus, the set of edges connecting buyers and
goods always form a forest.

Lemma 6.3. Let C0 ⊆ C be a set of goods. If Ep is a
forest and there is a maximum flow in which all goods
in C0 are completely sold, then a balanced flow in which
all goods in C0 are completely sold can be computed with
O(n2) arithmetic operations.

Proof. Let f be a balanced flow in Np. Let B1, B2, . . . ,
Bh be the partition of the buyers into maximal classes
with equal surplus. This partition is unique. Let ri be
the surplus of the buyers in Bi with r1 > r2 > . . . >
rh ≥ 0. If rh = 0, let h0 = h− 1. Otherwise, let h0 = h.
Let C ′ be the set of goods to which money from a buyer
in B′ = ∪i≤h0Bi flows. The goods in C ′ are completely
sold, there is no money flowing from Bh0+1 (Bh+1 = ∅)
to C ′ and there is no equality edge from B′ to C \ C ′.
Thus s ∪B′ ∪ C ′ is a minimum cut.

Let f ′ be a maximum flow in which all goods in C0

are completely sold. Then f ′ also sends no flow from
Bh0+1 to C ′ and f ′ saturates all edges in the minimum
cut. The flow f ′′ consisting of f on the edges in the
subnetwork spanned by s∪B′ ∪C ′ ∪ t and of f ′ on the
edges in s ∪Bh0+1 ∪C \C ′ ∪ t. It is a balanced flow in
which all goods in C0 are completely sold.

We can construct f ′′ as follows. We first construct
f . This requires O(n2) arithmetic operations by the
preceding Lemma and gives us Bh0+1 and C ′′ := C \C ′.
Let F be the value of a maximum flow in s∪Bh0+1∪C ′′∪
t and let P be the total price of the goods in C ′′ ∩ C0.
We introduce a new vertex t′, replace t by t′ in all edges
from C ′′ \ C0 to t, and introduce an edge (t′, t) with
capacity F − P , and compute a maximum flow in the
network s ∪ Bh ∪ C ′′ ∪ t′ ∪ t. In this flow the goods in
C ′′ ∩ C0 are completely sold.

Theorem 6.1. For nondegenerate instances, the algo-
rithm computes equilibrium prices with O(n6 log(nU))
arithmetic operations on rationals.

Proof. The number of phases is O(n4 log(nU)) and each
phase requires O(n2) arithmetic operations. Part B
requires O(n4 log(nU)) arithmetic operations.

7 Perturbation

A perturbation of the utilities replaces each nonzero
utility uij by a nearby utility ũij(ε), where ε is a positive

parameter and limε→0+ ũij(ε) = uij . We will usually
write ũij instead of ũij(ε). The solution to a perturbed
problem may or may not give information about the
solution to the original problem. An example, where
it does not is the following version of the convex hull
problem. We are given a set of points in the plane;
the task is to compute the number of points on the
boundary of the convex hull (if points lie on the interior
of hull edges, this number may be more than the number
of vertices of the convex hull). A perturbation may move
a point from the boundary into the interior and hence
the number computed for the perturbed problem may
be smaller than the number for the original problem.
For the computation of equilibrium prices the situation
is benign and the limit of solutions to the perturbed
problem is a solution to the original problem.

An equilibrium price vector p gives rise to a n × n
linear system Ax = X of equations of full rank; the
price vector p is the unique solution to this system.
The entries of A depend on the utilities uij and X is
a unit vector. The solution p̃ to a perturbed problem
gives rise to a linear system Ãx = X. The entries of
Ã depend on the perturbed utilities ũij . We will show
in Section 7.1 that for sufficiently small perturbations,
a system Ax = X with solution p can be constructed
from the system Ãx = X by simply reversing the
perturbation, i.e., by replacing occurrences of ũij by
uij . This implies limε→0+ p̃(ε) = p. Once p is known,
the computation of the money flow is tantamount to
solving a maxflow problem.

In the Appendix, we will review the perturbation
suggested in [13] and argue that the description is
incomplete. In Section 7.2, we introduce a novel
perturbation. It is inspired by [14]. In Section 7.3 we
review how phases are implemented in [6]. Finally, in
Section 7.4, we combine the ingredients and show how
to handle degenerate inputs efficiently.

7.1 Continuity for Sufficiently Small Perturba-
tions. Let p be a set of prices. The extended equality
graph Ĝp has edge set Ep ∪ {(bi, ci) | 1 ≤ i ≤ n}. We
call a set of prices canonical if the extended equality
graph is connected and the minimum price is equal to
one.

Lemma 7.1. Let p be any equilibrium price vector.
Then there is a canonical equilibrium price vector p̂ such
that Ep ⊆ Ep̂.

Proof. Let f be a feasible money flow with respect
to p. We first multiply all prices and flows by a
suitable constant so as to make all prices at least one.
As long as the extended equality graph contains more
than one component, we choose one of them subject

to the constraint that it is not the only component
that contains a good with price one. Let K be the
component chosen. We increase the prices of all goods
in K and the flows between the buyers and goods in
K by a common factor x until a new equality edge
between a buyer in K and a good outside K arises.
This reduces the number of components. Continuing in
this way, we obtain a canonical equilibrium price vector
and the corresponding money flow.

Let p be a canonical equilibrium price vector and
let T be a spanning forest of the equality graph Gp.
Consider the following system of equations. For a buyer
bi with neighbors cj1 to cjk in T we have equations

(7.4) uij1pj` − uij`pj1 = 0 for 2 ≤ ` ≤ k.

For all but one component K of the equality graph (not
the extended equality graph), we have the equation

(7.5)
∑

bi∈B∩K

pi =
∑

cj∈C∩K
pj .

Note that {i | bi ∈ B ∩K} 6= {j | cj ∈ C ∩K} since
otherwise K would be a component of the extended
equality graph. If the equality graph has only one
component, there is no equation of type (7.5). Finally,
we have the equation

(7.6) pi = 1

for one of the goods of price 1.

Lemma 7.2. The equation system (7.4), (7.5), (7.6)
has full rank and p is the unique solution.

Proof. Shown in [6].

Let ũ be a set of perturbed utilities and let p̃ be a
canonical solution with respect to ũ. Then p̃ satisfies a
system of equations consisting of equations of the form
(7.4), (7.5) and (7.6). The utilities in the equations
of type (7.4) are the perturbed utilities ũ. This is
system Ãx = X; it has solution p̃. We next construct a
system Ax = X ′, still with solution p̃, by replacing the
equations of type (7.4) by the equivalent equations

(7.7) uij1pj`−uij`pj1 = (uij1−ũij1)pj` +(ũij`−uij`)pj1

and keeping the other equations.

Lemma 7.3. The system (7.7), (7.5), (7.6) has full
rank. Let p∗ be a solution to the system Ax = X
obtained from Ax = X ′ by replacing the right hand
side of equations (7.7) by zero. If δ = maxij |ũij − uij |
satisfies 2U2(nU)2n + 2((nU)n + 6(nU)2nδ)δ < 1 and
2n(nU)2nδ < 1/2, then p∗ is an equilibrium price vector
for the original utilities.

Proof. We need to show that (s,B∪C∪t) is a minimum
cut in the equality network Np∗ . To this end, we first
show that equality edges with respect to p̃ are also
equality edges with respect to p∗, i.e., Ep̃ ⊆ Ep∗ .

The following argument was essentially given in [6],
although in a different context. Since prices are
bounded by (nU)n, the right hand sides in equations
(7.7) are bounded by 2(nU)nδ. The vector p∗ is a ratio-
nal vector with a common denominatorD = |detA|, say
p∗i = qi/D with qi ∈ N>0. Since ‖X−X ′‖∞ ≤ 2(nU)nδ,
we have p̃−p∗ = A−1(X−X ′) = B−1(X−X ′)/(detA),
where B−1 is an integral matrix whose entries are
bounded by n!Un. Thus

|p̃i − p∗i | = |p̃i − qi/D| ≤
(nU)n2(nU)nδ

D
=

2(nU)2nδ

D
.

Let ε′ = 2(nU)2nδ. Consider any bi ∈ B and cj , ck ∈ C
and assume ũij/p̃j ≤ ũik/p̃k. Then

uijqk ≤ (ũij + δ)(p̃kD + ε′)

≤ ũij p̃kD + δ(p̃kD + ε′) + ũijε
′

≤ ũikp̃jD + δ(p̃kD + ε′) + ũijε
′

≤ (uik + δ)(qj + ε′) + δ(qk + 2ε′) + ũijε
′

≤ uikqj + uikε
′ + δ(qj + ε′) + δ(qk + 2ε′) + ũijε

′

< uikqj + 1,

since uikε
′+δ(qj+ε

′)+δ(qk+2ε′)+ũijε
′ ≤ (2U2(nU)2n+

2((nU)n + 6(nU)2nδ))δ < 1.
Let Q =

∑
i qi. The cut (s,B∪C ∪ t) is a minimum

cut in Np̃. Its capacity is at least
∑
i p̃i ≥ (Q−nε′)/D.

The cut (s,B ∪C ∪ t) has capacity Q/D in Np∗ . If it is
not a minimum cut, there is a cut of capacity at most
(Q−1)/D. Since Ep̃ ⊆ Ep∗ , this cut is also a cut in Np̃.
Its capacity in Np̃ is at most (Q − 1 + nε′)/D. This is
less than (Q− nε′)/D, a contradiction.

7.2 Our Perturbation. R. Seidel [14] discusses the
nature and meaning of perturbations in computational
geometry. His advice is also applicable here. First,
determine a set of inputs which are nondegenerate, i.e.,
a set of utilities for which

U(D) :=

∏
e∈D1

ue∏
e∈D0

ue
6= 1

for every cycle D; here D0 and D1 are the two classes
of D. This is easy. We choose for each edge e = ij a
distinct prime qe. Then

Q(D) :=

∏
e∈D1

qe∏
e∈D0

qe
6= 1

for every cycle D. Second, one defines the perturbed
utilities by combining the original utilities and the non-
degenerate utilities by means of a positive infinitesimal

ε. Since our quantity of interest combines the utilities
by multiplications and divisions, a multiplicative com-
bination is appropriate, i.e., we define

ũij(ε) = uijq
ε
ij .

Lemma 7.4. For a cycle D, let

Ũ(D) :=

∏
e∈D1

ũe∏
e∈D0

ũe
= U(D)Q(D)ε.

Then, for all sufficiently small positive ε,
sign(ln Ũ(D)) 6= 0 and sign(ln Ũ(D)) = sign(lnU(D))
if sign(lnU(D)) 6= 0.

Proof. Clearly, ln Ũ(D) = lnU(D) + ε lnQ(D). If
U(D) 6= 1, sign(ln Ũ(D)) = sign(lnU(D)) for every
sufficiently small ε. If U(D) = 1, sign(ln Ũ(D)) =
sign(lnQ(D)) for every positive ε.

Since there are at least Q/(2 lnQ) primes less than
Q for any integer Q, we can choose the qe’s such that
qe ≤ Q := 8n2 log n. The primes less than Q can be
determined in time O(Q lnQ) = O(n2 log2 n) by use of
the Sieve of Eratosthenes.6

We come to the implementation of the perturbation.
The perturbed utilities are of the form ABε with A
and B positive rational numbers. We will also restrict
prices to numbers of this form; we will discuss below how
this can be achieved in the balanced flow computation.
We can either choose ε as a sufficiently small numerical
value or, more elegantly, treat ε as a symbolic positive
infinitesimal.

Lemma 7.5. Let A, B, C, and D be positive rationals.
Then ABε > CDε for all sufficiently small ε iff A > C
or A = C and B > D. Also, ABε/CDε = (A/C) ·
(B/D)ε.

Proof. Obvious.

So prices and utilities are pairs (A,B) with A and
B positive rationals. The pair (A,B) stands for ABε

and comparisons are lexicographic.

7.3 The Implementation of a Phase: A Review
of [6, Section 3]. Duan and Mehlhorn [6] already used
perturbation in their algorithm, but for the purpose
of keeping the cost of arithmetic low and not for the
purpose of removing degeneracies. Fortunately, their
perturbation extends to what is needed here. We

6We initialize all entries of an array A[2..Q] to true. Then, for
i ∈ [2, Q], we do: if A[i] is true, we output i as prime and set all

multiples A[` · i], for 2 ≤ ` ≤ Q/i to false. All of this takes time
O(

∑
i≤Q Q/i) = O(Q lnQ).

review their use of perturbation adapted to our modified
definition of S.

Let L = 128n5n+5U4n. A real number b is an ad-
ditive 1/L-approximation or simply additive approxima-
tion of a real number a if |a−b| ≤ 1/L. It is a multiplica-
tive (1 + 1/L)-approximation or simply multiplicative
approximation if a/b ∈ [1/(1 + 1/L), 1 + 1/L]. [6] ap-
proximates utilities by powers of (1+1/L). For a utility
uij ∈ [1..U], let eij ∈ N be such that ũij := (1 + 1/L)eij

is a multiplicative approximation of uij . Moreover, for
part A of the algorithm, [6] restricts prices to the form
(1 + 1/L)k, 0 ≤ k ≤ K, where K is chosen such that
(nU)n ≤ (1 + 1/L)K . This choice of K guarantees
that the full range [1..(nU)n] of potential prices is cov-
ered. Then K = O(nL log(nU)). They represent a price
pi = (1 + 1/K)ei by its exponent ei ∈ N. Here, N de-
notes the natural numbers including zero. The bitlength
of ei is logK = O(n log(nU)).

The surplus vector with respect to p is computed
only approximately. To this end, they replace each price
pi by an approximation p̂i with denominator L (note
that the denominator of pi might be as large as LK) and
compute a balanced flow in a modified equality network
N(p, p̂). The approximation p̂i is a rational number with
denominator L and an additive and a multiplicative
approximation of pi.

For two price vectors p and p̂, the equality network
N(p, p̂) has its edge set determined by p and its edge
capacities determined by p̂, i.e., it has

– an edge (s, bi) with capacity p̂i for each bi ∈ B,
– an edge (ci, t) with capacity p̂i for each ci ∈ C,

and
– an edge (bi, cj) with infinite capacity whenever
ũij/pj = max` ũi`/p`. We use Ep to denote this
set of edges.

Let f̂ be a balanced flow in N(p, p̂). For a buyer

bi, let r̂(bi) = p̂i − f̂si be its surplus, for a good ci,

let r̂(ci) = p̂i − f̂it be its surplus. We define S as in
Section 3 except that we use the surplus vector r̂ instead
of the surplus vector r. Recall that [6] uses simpler
definition. Since prices are now restricted to powers
of 1 + 1/L, the update factor x has to be a power of
1 + 1/L, and hence they need to modify its definition
and computation. They compute x in two steps. They
first compute a factor x̂ from p̂ as in Section 3 and then
obtain x from x̂ by rounding to a near power of 1+1/L.
They use x to update the price vector p. The prices of
all goods in Γ(B(S)) are multiplied by x.

They define x̂ as the minimum of xeq(S), x̂23(S),
x̂24(S), and xmax. The definition of xeq(S) is in terms

of the rounded utilities:

xeq(S) = min{ ũij
pj
· pk
ũik
|

bi ∈ B(S), (bi, cj) ∈ Ep, ck /∈ Γ(B(S))}.

By definition, xeq(S) is a power of 1 + 1/L. They
redefine xmax as a power of 1 + 1/L such that 1 +
1/(Rn3) ≥ xmax ≥ (1 + 1/R(n3))/(1 + 1/L)2. The
quantities x̂23(S), x̂24(S), and x̂2(S) are defined in
terms of the price vector p̂ and the surplus vector r̂,
e.g.,

x̂23(S) = min{ p̂i + p̂j − r̂(bj)
p̂i + p̂j − r̂(bi)

|

bi is type 2 and bj is type 3 buyer}

Then x23(S), x24(S), x2(S) are multiplicative ap-
proximations of x̂23(S), x̂24(S), and x̂2(S) and x =
min(xeq , x23(S), x24(S), xmax). Clearly, x is a multi-
plicative (1 + 1/L)-approximation of x̂. Finally, x is
used to update the prices: p′i = xpi for each good
ci ∈ Γ(B(S)) and p′i = pi for any ci 6∈ Γ(B(S)).

It was shown in [6] that the above can be imple-
mented with arithmetic (additions, subtractions, mul-
tiplications, divisions) on integers whose bitlength is
O(n log(nU)). The computation of multiplicative and
additive approximations takes O(n log(nU)) operations.
The following lemma summarizes the review:

Theorem 7.1. For nondegenerate inputs, the al-
gorithm computes equilibrium prices and requires
O(n6 log2(nU)) arithmetic operations (additions, sub-
tractions, multiplications, divisions) on integers of
bitlength O(n log(nU)). Its time complexity is
O(n7 log3(nU)).

Proof. The number of phases is O(n4 log(nU)). At the
beginning of a phase, we have the price vectors p and p̂
and know a balanced flow f in the network N(p, p̂). We
determine the set S, and the quantities xeq , x̂23, x̂24,
and x̂2. This requires O(n2) arithmetic operations. We
then compute x23, x24, and x2. This takes O(n log(nU))
arithmetic operations ([6, Lemma 17]). We then per-
form the price update (n arithmetic operations), com-
pute p̂new from the new price vector pnew . This takes
O(n log(nU)) arithmetic operations for each price ([6,
Lemma 16]) for a total of O(n2 log(nU)) arithmetic op-
eration. Finally, we compute a balanced flow in the
network N(pnew , p̂new) (n2 arithmetic operations). In
summary, each phase requires O(n2 log(nU)) arithmetic
operations on integers of bitlength O(n log(nU)). Since
the cost of arithmetic on a RAM with logarithmic word
length has cost linear in the bitlength, the time bound
follows.

7.4 Adaption to Degeneracy Removal. Recall
that we have chosen a distinct prime qe ≤ Q = 8n2 lnn
for every edge e ∈ B×C with ue > 0. Let L′ = 8ndQe2n.

For each edge e with ue > 0, let `e be such
that (1 + 1/L′)`e is a 1 + 1/L′-multiplicative approx-
imation of qe. Consider any cycle D and assume
w.l.o.g (

∏
e∈D0

qe)/
∏
e∈D1

qe > 1. Then the product

is at least Q2n/(Q2n − 1), and hence

1

ln(1 + 1
L′)

ln

(∏
e∈D0

(1 + 1
L′)

`e∏
e∈D1

(1 + 1
L′)

`e

)

≥ 1

ln(1 + 1
L′)

ln

(
Q2n

Q2n − 1
· 1

(1 + 1
L′)

2n

)
≥ 1

2

L′

Q2n
− 2n > 0,

where the next to last inequality follows from x/2 ≤
ln(1 + x) ≤ x for x ≤ 1, and the last inequality follows
from the definition of L′.

We now combine the perturbations described in
Sections 7.2, 7.3, and the paragraph above. We replace
a utility uij ∈ [1..U] by

ũij(ε) = (1 +
1

L
)eij (1 +

1

L′
)`ijε,

where eij is as in Section 7.3 and `ij is as in the
preceding paragraph. For part A of the algorithm,
prices are restricted to the form (1 + 1/L)a(1 + 1/L′)bε,
where a is a nonnegative integer and b is an integer.
For the computation of balanced flows, we proceed as
in Section 7.3. In particular, we replace each price pi by
an approximation p̂i (for this approximation, we ignore
the infinitesimal part of the prices, i.e., ABε is replaced
by A.) and then compute a balanced flow in the network
N(p, p̂). The results of Section 7.3 carry over. We only
have to replace U by max(U,O(n2 log n)) in the time
bounds.

Theorem 7.2. The algorithm computes equilibrium
prices with O(n6 log2(nU)) arithmetic operations on in-
tegers of bitlength O(n log(nU)). Its time complexity is
O(n7 log3(nU)).

8 A Real Implementation

Omar Darwish and Kurt Mehlhorn [3] have imple-
mented the algorithm by Duan and Mehlhorn and parts
of the improvements described in this paper. For ran-
dom utilities, the running time seems to scale signifi-
cantly better than n7.

References

[1] Kenneth J. Arrow and Gérard Debreu. Existence of an
equilibrium for a competitive economy. Econometrica,
22:265–290, 1954.

[2] Richard Cole and Vasilis Gkatzelis. Approximating the
nash social welfare with indivisible items. In Proceed-
ings of the Forty-Seventh Annual ACM on Symposium
on Theory of Computing, STOC ’15, pages 371–380,
New York, NY, USA, 2015. ACM.

[3] Omar Darwisch and Kurt Mehlhorn. An implementa-
tion of combinatorial algorithms for the computation
of equilibrium prices in the linear exchange market. in
preparation.

[4] Nikhil R. Devanur, Jugal Garg, and László A. Végh.
A rational convex program for linear Arrow-Debreu
markets. arXiv:1307.803, 2013.

[5] Nikhil R. Devanur, Christos H. Papadimitriou, Amin
Saberi, and Vijay V. Vazirani. Market equilibrium
via a primal–dual algorithm for a convex program. J.
ACM, 55(5):22:1–22:18, November 2008.

[6] Ran Duan and Kurt Mehlhorn. A Combinatorial
Polynomial Algorithm for the Linear Arrow-Debreu
Market. Information and Computation, 243:112–132,
2015. a preliminary version appeared in ICALP 2013,
LNCS 7965, pages 425-436.

[7] B. Curtis Eaves. A finite algorithm for the linear
exchange model. Journal of Mathematical Economics,
3:197–203, 1976.

[8] Martin Fürer. Faster integer multiplication. SIAM J.
Comput., 39(3):979–1005, 2009.

[9] David Gale. Price equilibrium for linear models of
exchange. Technical Report Report P-M56, Rand
Corporation, 1957.

[10] David Gale. The linear exchange model. Journal of
Mathematical Economics, 3:205–209, 1976.

[11] Jugal Garg, Ruta Mehta, Milind Sohoni, and Vijay V.
Vazirani. A complementary pivot algorithm for mar-
kets under separable, piecewise-linear concave utilities.
In Proceedings of the Forty-fourth Annual ACM Sym-
posium on Theory of Computing, STOC ’12, pages
1003–1016, New York, NY, USA, 2012. ACM.

[12] Kamal Jain. A polynomial time algorithm for com-
puting an Arrow-Debreu market equilibrium for linear
utilities. SIAM J. Comput., 37(1):303–318, April 2007.

[13] James B. Orlin. Improved algorithms for computing
Fisher’s market clearing prices. In Proceedings of the
42nd ACM symposium on Theory of computing, STOC
’10, pages 291–300, New York, NY, USA, 2010. ACM.

[14] R. Seidel. The nature and meaning of perturbations
in geometric computing. Discrete & Computational
Geometry, 19(1):1–17, 1998.

[15] A. Wald. Über einige Gleichungssysteme der mathema-
tischen Ökonomie. Zeitschrift für Nationalökonomie,
7:637–670, 1936. Translated: Econometrica, Vol.
19(4), p.368–403, 1951.

[16] Léon Walras. Elements of Pure Economics, or the
theory of social wealth. 1874.

[17] Yinyu Ye. A path to the Arrow-Debreu competitive
market equilibrium. Math. Program., 111(1):315–348,

June 2007.

Appendix: Orlin’s Perturbation

In [13], Orlin sketches a perturbation technique. He
suggests to replace a nonzero utility uij by7 ũij =

uij + εn
2i + εj , where ε is a positive infinitesimal. He

shows that for the perturbed utilities the equality graph
Ep for any price vector p is a forest. He does not discuss
how to maintain the prices and he suggests that the
perturbation can be implemented at no extra cost.

Consider the following example of a Fisher market.
We have two buyers b0 and b1 and two goods c0 and
c1. The budget of b0 is equal to 2 and the budget of
b1 is equal to one. The utilities are u00 = u10 = 2 and
u01 = u11 = 1. In an equilibrium, the prices are p0 = 2
and p1 = 1, and the equality graph Ep consists of all
four edges. Money flows either on all four edges, or on
edges (0, 0), (0, 1) and (1, 0) or on edges (0, 0) and (1, 1).
In any case, there is flow on the edge (0, 0).

The perturbation yields utilities u00 = 2, u01 =
1 + ε, u10 = 2 + ε4, u11 = 1 + ε4 + ε. Orlin writes: “If
E is the equality graph prior to perturbations, and if
E′ is the equality graph after perturbations, then E′ is
the maximum weight forest of E obtained by assigning
edge (i, j) a weight of in2 + j.” Thus E′ is Ep minus
the edge (0, 0). The equilibrium prices are p0 = 1 and
p1 = 2, and this is nowhere close to the true solution.

Orlin ignores that the prices after perturbation are
rational functions in ε. Assume p1 = 1. Then (0, 0)
belongs to the equality graph if 2/p0 ≥ (1 + ε)/1 or
p0 ≤ 2/(1 + ε), and (0, 0) and (0, 1) belong to the
equality graph if p0 = 2/(1 + ε). Edge (1, 0) belongs
to the equality graph if (2 + ε4)/p0 ≥ (1 + ε4 + ε)/1 or
p0 ≤ (2 + ε4)/(1 + ε4 + ε). Since (2 + ε4)/(1 + ε4 + ε) <
2/(1 + ε) for ε sufficiently small and positive, we have
the following possibilities:

1. p0 < (2+ε4)/(1+ε4+ε): The equality graph consists
of (0, 0) and (1, 0).

2. p0 = (2+ε4)/(1+ε4+ε): The equality graph consists
of (0, 0), (1, 0), and (1, 1).

3. (2 + ε4)/(1 + ε4 + ε) < p0 < 2/(1 + ε): The equality
graph consists of (0, 0), and (1, 1).

4. p0 = 2/(1 + ε): The equality graph consists of (0, 0)
and (0, 1) and (1, 1)

5. p0 > 2/(1 + ε): The equality graph consists of (0, 1)
and (1, 1).

Only cases 2, 3, and 4 lead to equality graphs for which
the original problem has an equilibrium solution. The
example demonstrates that prices must be maintained

7In the paper, he writes ũij = uij + εni + εj . In personal

communication, he corrected this to ũij = uij + εn
2i + εj .

as rational functions in ε in Orlin’s scheme. Alterna-
tively, that a concrete sufficiently small value is chosen
for ε. Both alternatives incur additional cost.

The equilibrium solution corresponds to case 4. The
prices are p1 = (3 + 3ε)/(3 + ε) and p0 = 2/(1 + ε) · p1.
The flow is 1 on the edge (1, 1), 2 on the edge (0, 0), and
2− p0 = p1 − 1 on the edge (0, 1).

