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ABSTRACT

“Omics” studies generate long lists of genes, proteins, metabolites or other features which can be
difficult to decipher. Feature set enrichment analysis utilizing annotated groups/classes of features
(such as pathways, gene ontology terms or gene/metabolic modules) can provide a powerful gate-
way to associate data to phenotypes such as disease process or treatment progression. At the
same time, the increasing use of technologies to generate multidimensional omics data sets based
on specific cell types or responses to stimuli increases the number and breadth of annotated feature
sets available for enrichment analysis, facilitating the ability to draw biologically relevant conclusions.
However, existing tools and applications for enrichment analysis are adapted specifically to gene set
enrichment and lack functionalities to analyze rapidly growing amounts of metabolomics and other
data. Moreover, such tools often provide only a limited range of statistical methods, rely on permu-
tation tests, lack suitable visualization tools to facilitate result interpretation in complex experimental
setups, and lack standalone versions usable in semi-automatized workflows. Here, we present
tmod, an R package which implements powerful statistical methods for enrichment analysis. Tmod
includes definitions of widely used feature sets for transcriptomic and metabolomic profiling and also
allows use of custom user-provided feature sets. Moreover, it provides novel and intuitive visualiza-
tion methods which facilitate interpretation of complex data sets. The implemented statistical tests
allow the significance of enrichment within sorted feature lists to be calculated without randomization
tests and thus are suitable for combining functional analysis with multivariate techniques.
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INTRODUCTION
To begin to decipher the complex spatial, temporal and environmentally induced regulation and in-
teraction of genes, proteins, metabolites within a cell or organism, biologists continue to annotate
groups of molecules which are co-regulated, interact or have similar functions.
For example, there have been efforts to characterize functional associations between genes or metabo-
lites on the basis of common patterns of their regulation in response to environmental challenges
(Berry et al., 2010; Pascual, Chaussabel & Banchereau, 2010). These annotated “feature sets” equip
biologists with a powerful method for predicting programs activated by an organism in response to
a given stimulus, whereby novel data sets can be elucidated by detecting enrichments of previously
described feature sets. In the context of infectious diseases and immune responses, identifying tran-
scriptional signatures or metabolic profiles that allow discrimination between infected and healthy
individuals helps to monitor disease progression and response to treatment and can reveal defense
mechanisms activated by the organism.

In order to generate feature sets based on gene co-expression, several studies have attempted to
determine meaningful relationships between genes based on their regulation; by measuring changes
in gene expression under various environmental conditions in distinct organisms they have provided
models for the discovery of transcriptional modules (Bar-Joseph et al., 2003; Liu et al., 2007), result-
ing in a broad range of gene classification collections. Chaussabel et al. (Chaussabel et al., 2008)
developed a strategy for blood microarray data analysis which identified genes co-expressed across
multiple disease datasets and classified them into 28 blood transcriptional modules. The genes be-
longing to such functionally related clusters can be used to generate a disease-specific transcription
signature which may serve for diagnostics or treatment prognosis (Berry et al., 2010). In another ap-
proach, 334 blood transcriptional modules (BTMs) were annotated according to biological function
or tissue-specific expression by Li et al. (Li et al., 2014). Transcriptional modules were defined as
groups of highly connected genes belonging to context-specific sub networks. BTMs have proved
successful in immunological applications, e.g. for autoimmune diseases (Pascual, Chaussabel &
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Banchereau, 2010) or predicting response to pyogenic bacteria in patients carrying mutations in
pathways responsible for pathogen sensing (Alsina et al., 2014). Other widely used gene collections
useful for interpretation of transcriptome data sets include annotated gene sets used with GSEA
(Gene Set Enrichment Analysis) software available in the MSigDB database (Subramanian et al.,
2005), gene ontology (GO) annotations, and pathway annotations such as KEGG pathways.

While transcriptomic studies focus on mRNA levels being produced in a tissue, metabolic profil-
ing focuses on metabolites that are the product of cellular processes providing an alternative snapshot
of the tissue’s state and condition. Whereas mRNAs cannot move outwith the cells in which they
are expressed, metabolites can be produced in one cell and subsequently be detected in other tissues
of the organism; for example metabolites produced at the site of infection (e.g. in the lung) can be
detected in blood. During infectious disease, the metabolic profile can change directly with pathogen
entrance as multiple host metabolic pathways are being altered. This, as well as the pathogen’s own
specific metabolites can already be detected before a pathology develops which carries a promise
for early detection of complex and slow progressing diseases, like tuberculosis (Weiner 3rd et al.,
2012). Metabolic profiling in the context of diagnostics and disease or treatment outcome prediction
is currently being broadly implemented thanks to advanced and sensitive methods for detecting and
classifying metabolites. Given a wide scope of meaningful biological annotation and manual cura-
tion, custom-created gene or metabolite sets can serve to i) functionally annotate observed changes
in gene or metabolite regulation, ii) pre-select transcripts or metabolites playing significant roles in
a disease, and as iii) a diagnostic tool for detection of disease (Berry et al., 2010), its progression,
possible treatment outcomes or best vaccination type.

For example, in patients suffering from systemic lupus erythematosus, follow-up transcriptional
studies based on blood transcriptional modules (BTMs) predicted the severity of disease more accu-
rately than the currently used SLEDAIC score ((Pascual, Chaussabel & Banchereau, 2010)), and in
tuberculosis patients anti-inflammatory, immunosuppressive and stress responses have been revealed
by changes in amino acid, lipid and nucleotide metabolism (Weiner 3rd et al., 2012).

The output from initial analysis of omics data is generally a long list of features (e.g. genes or
metabolites) with their associated fold-changes and p-values. Annotated feature classifications can
be applied to these data sets using feature set enrichment analysis (FSEA). Two main approaches
for FSEA exist. Firstly, a commonly used method divides genes or metabolites (later referred to
as ‘features’) into two sets: “foreground” with differentially regulated features and “background”
with all others, and than applies a hypergeometric test to test for enrichment. This approach has
been implemented in numerous packages for enrichment analysis (for example in the GOstats R
package (Falcon & Gentleman, 2007)). However, it requires setting of an arbitrary threshold based
on p-value and fold change. Changing these arbitrary thresholds can result in different enrichments.
Moreover, selecting the cutoffs is indeed very arbitrary since p-values depend on the sample size
and fold changes can be dependent on the platform used. This can have dramatic effects on the
enrichment statistics depending on the sample size used. A similar problem occurs if the enrichment
statistics is calculated based on statistics from differential gene analysis, for example by combining
the p-values obtained for genes using Fisher’s method or other related approaches (for example, as
implemented in the Piano package, (Vremo, Nielsen & Nookaew, 2013)).

Alternatively, initial list of features can be ordered and enrichment occuring towards the top of
the list can be detected using statistical methods. Statistics may be derived by ranking features by
their changes between experimental conditions or by the correlation with experimental groups. This
approach has been implemented in the widely-used GSEA analysis of MSigDB collections using ran-
domization tests to obtain p-values (Subramanian et al., 2005). Randomization tests are commonly
used as they can be applied to any statistics but they require sufficient sample size to work effectively.
GSEA uses sample-wise randomization tests for large samples, replaced by gene-wise randomiza-
tions for small samples. This results in poor performance for small sample sizes, and cannot be
applied in combination with multivariate processing. For integration in a high-throughput setting,
GSEA requires high memory and CPU requirements due to the high load required by randomiza-
tions. Moreover, GSEA does not allow an easy integration with differential expression analysis,
for example from the R package Limma (Ritchie et al., 2015), but in itself does not have the full
flexibility of Limma’s linear models.

In order to overcome some of the pitfalls of GSEA and other approaches, we set out to design a
FSEA solution with the following features:

• statistical test for enrichment in ordered lists of features (thus requiring no arbitrary cutoffs),
• based on an analytical solution rather than permutation or randomization tests, with acceptable

sensitivity and specificity, suitable for integration with multivariate approaches;
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• straight-forward integration of user-defined sets in the analysis, especially of BTM’s and
metabolic profiling feature sets;

• testing independent of the method used for differential analysis (in order to combine with
methods such as limma or edgeR);

• implementation which allows semi-automatized processing (preferably as in the R language);
• integration with multivariate methods (e.g. using FSEA to interpret principal components);
• visualization strategy giving an overview over several enrichment analyses (e.g. for tracking

changes of enrichment in a time series analysis).

We have integrated the above concepts in a novel package, tmod, an open, standalone framework
implemented in R, containing set definitions for transcriptional modules from both Li et al. and
Chaussabel et al. (Chaussabel et al., 2008; Li et al., 2014) and metabolite sets based on metabolic
profiles published by Weiner et al. (Weiner 3rd et al., 2012).

Importantly, tmod provides a choice of statistical methods to assign the significance of enrich-
ment analysis. Aside from an implementation of hypergeometric tests, tmod includes Mann-Whitney
non-parametric U test and the highly sensitive CERNO test (Yamaguchi et al., 2008), which is a new
application of Fisher’s method for ranked list in FSEA. Unlike the Fisher’s method implementa-
tion in packages such as Piano, here feature ranks, scaled by the number of features, are treated as
probabilities and combined with Fisher’s method to calculate the statistics.

Both U and CERNO tests can be performed on ranked lists of features, eliminating the need to
apply arbitrary log-fold change or p-value cutoffs. The included feature set definitions allow the use
of any other test for the analysis. Moreover, tmod can be used to combine multivariate analyses of
the datasets with functional enrichment analysis. Calculation results are returned in a form of clear,
interpretable visualizations, which are calibrated to illustrate multiple-group comparisons, changes
in regulation over time and interactions. Finally, tmod allows the user to directly analyse and vi-
sualize results returned by functions from the Limma package (Ritchie et al., 2015). Our package
has already proven to be a valuable tool in the analysis of heterologous and multivariate data sets
(Esterhuyse et al., 2015).

RESULTS
Tmod functionality
The tmod package includes three basic functions to test the enrichment of metabolite or gene sets.
The tmodHGtest function performs a hypergeometric test on two groups of features, foreground and
background, defined by the user on the basis of differential regulation analysis. tmodUtest operates
on a ranked set of features and tests the significance of the area under the curve (AUC) statistics
by performing a nonparametric Mann-Whitney test on groups of features belonging, as well as not
belonging to a set. This approach allows analysis of enrichment independent of arbitrary choice
of threshold p- or logarithm of fold change (logFC) value for defining the set of regulated features.
Furthermore, we have implemented the CERNO test based on Fisher’s method (Fisher’s combined
probability test) in the tmodCERNOtest function, which is the first implementation of this powerful
statistical method (Yamaguchi et al., 2008). Both U and CERNO are statistics with known distri-
butions and therefore do not require a randomization approach to calculate the p-values. However,
randomization tests can also be conveniently used with tmod if required, as described in the package
vignette. The functions return data frame objects of variables enriched in subsequent modules to-
gether with their p-values, as well as test-specific statistics (the number of features in the foreground,
background and the total number of features from the analyzed dataset belonging to listed modules
for tmodHGtest, calculated U statistics for tmodUtest and statistic for tmodCERNOtest).

CERNO statistic: a powerful approach to FSEA
In the tmodCERNOtest, we have implemented and tested a modification of Fisher’s method of com-
bining probabilities to FSEA, described by (Yamaguchi et al., 2008). The method uses scaled ranks
of features and combines them in a statistic which is directly used to compute the p-values. Com-
pared to a U-test, this method weights low-ranking features more than intermediate, resulting in
higher p-values for feature sets which have a low effect size, but a large number of features. Natu-
rally, it does not require a randomization approach. Using a randomization approach, we have tested
the specificity and sensitivity of this method compared to the GSEA and found that its performance
is similar, but faster by several orders of magnitude in terms of computation time, for large sample
sizes; for small sample sizes we see a marked improvement in performance over GSEA. Importantly,
the results from tmod/CERNO were more robust and less dependent on the sample size (Figure 1).
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The tmod/CERNO results for small samples derived from a large pool of samples were simlar to
those derived directly from a large sample (Spearman’s > 0.9 for sample size of 5), whereas the
results for GSEA for small sample sizes were variable (Spearman’s rho < 0.1 for sample sizes of
five or less).
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Figure 1. Performance of tmod/CERNO compared to GSEA. Boxplots summarize the results of
10 random replicates. Dotted vertical line denote the difference in the permutation method for
GSEA for small sample sizes. A, Spearman’s coefficient between the results derived for the small
subsample compared with results generated for the full sample set; B AUC for a given sample
calculation relative to a set of “true” positives and negatives defined by conservative threshold and
detected by both methods on the full sample set.

For reporting the effect size in enrichment, we have decided to use area under curve (AUC), as
it has a straightforward interpretation and visualization, and is similar to the U-statistic.

Visualization of results
The visualization of results includes the receiver-operator characteristic (ROC) curve allowing de-
tailed investigation of enrichment of specific sets. The ROC curve is a graphical method which
assesses significance of enrichment visualizing it on a simple and straightforward plot (Figure 2).

T cell differentiation (Th2)

T cell activation (II)

enriched in T cells (I)

enriched in NK cells (I)

T cell activation (I)

chemokines and inflammatory molecules in myeloid cells

innate antiviral response

enriched in activated dendritic cells (II)

type I interferon response

antiviral IFN signature

enriched in monocytes (II)

regulation of antigen presentation and immune response

immune activation - generic cluster

0h 2h 4h 6h 9h 24
h

Effect size: P value:

0.5 0.96 0.01 0.001 10�4 10�5 10�6

0 5000 10000 15000

List of genes

Fr
ac

tio
n 

of
 g

en
es

 in
 m

od
ul

e

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

innate antiviral response
T cell activation (I)
enriched in activated dendritic cells (II)

A B

Figure 2. Serial FSEA using limma and tmod. Whole blood samples from patients after endotoxin
injection have been analysed at 5 different time points. A, enriched gene modules at every time
point. Red represents up-regulated and blue down-regulated genes. B, ROC curves for three
selected modules significantly enriched at time point 4h.

The data objects included in the tmod package can also be used to analyze enrichment with one
of the many other methods published, including geneSetTest and CAMERA from the limma package
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or maxmean method from the GSA package (Smyth, 2005; Efron & Tibshirani, 2007; Wu & Smyth,
2012).

Single genes or metabolites enriched in a given module can be visualized using the evidencePlot
function. The output is a ROC curve, where the area under the curve corresponds to the Mann-
Whitney test statistics reported by tmodUtest (Figure 2, B). Another visualization method is the
panel plot, which allows the depiction of module enrichment on the span of measured time points
and conditions (Figure 2, A). For each module or variable set, it shows its enrichment in each of the
performed analyses in terms of effect size and p-value, simultaniously showing numbers of up- or
down-regulated features.

Modules and Gene sets
The tmod package provides gene module definitions based on HGNC (HUGO Gene Nomenclature
Committee) and metabolite set definitions based on HMDB (Wishart et al., 2012) identifiers. The
classification of 260 BTMs created by Chaussabel et al. (Chaussabel et al., 2008) was downloaded
from the online resource and is based on studies of 9 datasets from 410 patients suffering from 9 dif-
ferent diseases. The classification of 334 BTMs created by Li et al. was downloaded from the supple-
mentary information to the original publication (Li et al., 2014) and is based on 30000 transcriptome
profiles of human blood samples from over 500 publicly available studies. The metabolome mod-
ules were defined by Weiner et al. (Weiner 3rd et al., 2012). Objects used for data storage in the
package include two data frames (MODULES and GENES) containing original module and general
gene information, and two lists (MODULES2GENES and GENES2MODULES) containing module
mapping to genes and gene mapping to modules, respectively.

Functionality of tmod includes integration of other feature sets for the enrichment analyses, no-
tably the MSigDB collections. Once an MSigDB collection file is downloaded, tmod integrates it
into a compatible R object with tmodImportMSigDB function. The object is then ready for enrich-
ment testing with tmod.

Manual definition of feature sets
Although multiple collections of annotated modules are available online, broad scope of biological
contexts in which enrichment can be studied may favor another approach than the annotated sets. For
this purpose tmod provides tools to manually create desired module sets. Accordingly, any signaling
pathway, interaction, disease association or other collection from external or user-supported source
can be tested with tmod. The exact guide for module creation is described in detail in the vignette
for the package and contains an example of implementing the WikiPathways (Kelder et al., 2012)
pathway.

Functional multivariate analyses
Multivariate transformations are broadly implemented in analyses of multidimensional data. Prin-
cipal component analysis (PCA) or Independent Component Analysis (ICA) highlight main factors
influencing variability in gene and metabolite regulation. Feature set annotation can help to under-
stand the biological meaning of calculated multivariate transformations. Using tmod, components
can be tested for how well they correspond to specific feature sets taking advantage of the fact that
variables which influence the position of a sample along a given component have a larger absolute
weight for that component. One of the applications of tmod that proves useful for PCA interpretation
is to sort variables by their weight in a given component, and use the tmodUtest or tmodCERNOtest
function to test for the enrichment of modules. However, tmod offers also a robust tmodPCA func-
tion which automatically analyzes PCA results and visualizes the result on an annotated plot (Figure
3). For example, using data from (Weiner 3rd et al., 2012) we applied tmodPCA, and, using this
streamlined approach, confirmed the findings originally obtained using manual evaluation of hun-
dreds of statistical tests.

Serial FSEA with limma
To facilitate analysis of complex experimental set ups and of results of multivariate analyses such as
PCA, tmod includes several functions for serial analysis and visualization of set enrichments. For
transcriptional data, the functions tmodLimmaTest and tmodLimmaDecideTests allows the user to
quickly analyze the enrichment in all coefficients included in a limma differential analysis (Smyth,
2005). The functions tmodSummary and tmodPanelPlot allow the creation of, respectively, a tabular
or a visual summary of the results of enrichment analysis respectively (Figures 2 and 3). The output
of tmodPanelPlot function is tailored to visualize changes in transcriptomic/metabolomic data over
time and in complex comparisons and allows applying custom p-value or effect size thresholds.
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Figure 3. Multivariate functional analysis of serum metabolic profiles of TB patients and healthy
controls (data from (Weiner 3rd et al., 2012)). A, tmod panel plot showing FSEA for the first 5
components in a PCA analysis of the data set. Width of the squares corresponds to the effect size
(AUC), color corresponds to sign of the PCA score and shading reflects the p-value as shown in the
legend. Components 1 and 2 correspond to the differences between TB patients and healthy
individuals, showing changes in lipid metabolism, amino acids and a cluster including cortisol and
kynurenine. B, PCA plot augmented by FSEA enrichment tag clouds. Components 1
(corresponding to differences between TB patients and healthy controls) and 5 (corresponding to
the differences between males and females) were selected for visualization. Blue, females; yellow,
males; circles, healthy; triangles, TB.

Usage example
As an illustration of the package’s featured attributes, we present an example of functional inter-
pretation of PCA using tmodCERNOtest together with resulting plots generated with the tagcloud
package [18] (Figure 3). The data has been published by Weiner et al. (Weiner 3rd et al., 2012)
and was generated from samples taken from tuberculosis (TB) patients and healthy controls. Here,
for each of the first five components, metabolites were ordered by their absolute loadings and tested
for enrichment using tmod/CERNO (Figure 3, A). While the first three components correspond to
the previously described differences between TB patients and healthy controls (notably including a
cluster of amino acids in component 1 and kynurenine/cortisol cluster in component 3), component
5 corresponds to gender differences. This has been visualized on a plot of components 1 and 5
(Figure 3, B), where the plot axes have been annotated by tag clouds corresponding to the results of
enrichment tests. In tmod, this plot is generated with the command tmodPCA.

MATERIALS AND METHODS
We have developed and tested tmod using R version 3.2, as well as the development versions of R.
The tmod package is available from CRAN (http://cran.r-project.org/web/packages/tmod/) and from
the projects web site http://bioinfo.mpiib-berlin.mpg.de/tmod/.

For comparison with GSEA, we have used a large data set described by Kaforou et al. (2013)
derived from tuberculosis patients and healthy controls. We tested the performance of both methods
for small sample sizes (3-25 per group) compared to the full data set (over 50 samples / group),
using the full MSigDB (v. 5.0). First, we tested the Spearman correlation between the p-values
obtained for a given method for each of the small sample sizes compared with the full sample. Next,
for the full sample set, we have defined a list of bona fide true positives and negatives by choosing
gene sets which either had a q-value < 0.01 in both methods (“positive”) or > 0.2 in both methods
(“negative”). We then calculated the area under the receiver-operator curve (AUC) for each sample
size, as compared to the true positives / negatives in the full sample set.

Differential expression of transcriptome data (Figure 2) was calculated using limma for gene
expression changes between controls and individuals at time points 2, 4, 6, 9 and 24 hours after
endotoxin injection for study published by Calvano et al. (2005). Gene set enrichment analysis was
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performed using tmod and the module set annotated by Li et al. and visualized with tmodPanelPlot.
ROC curves for three of the enriched modules in time point 4h have been created using evidencePlot
function.

To demonstrate multivariate functional analyses, we have used the data set published by Weiner
et al. (2012), also provided with the tmod R package. To generate the plots, tmod functions tmod-
PanelPlot and tmodPCA were used.

DISCUSSION
We have created the R package tmod for enrichment analysis integrating transcriptomic and metabolomic
data and implemented a simple web interface which can be accessed at http://bioinfo.mpiib-berlin.
mpg.de/tmod/. The interface allows choice of set definitions (Chaussabel et al., 2008; Li et al., 2014)
or gene collections from MSigDB and different types of statistical tests provided by tmod package,
which enables quick comparison of those approaches, which are not available in any previously
published tools.

The R package for tmod is available online on CRAN and equipped with a vignette presenting
illustrative practical applications, including step by step instructions for enrichment analysis in an
built-in transcriptional dataset (Maertzdorf et al., 2011), use of other sets of modules, performing
functional multivariate analysis, visualization of results and application and creation of custom sets
of modules. As an illustration of the package’s featured attributes, we presented an example of
principal component analysis result interpretation with use of tmodUtest function.

Built-in BTM and metabolome sets are integrated as tmod objects. In contrary to previously avail-
able standalone tools for overrepresentation analyses (many of which are not directly compatible for
use with R) (Subramanian et al., 2005), tmod does not demand manual upload of set annotation. At
the same time, application of functions allowing easy and straightforward integration of other gene
or metabolite sets broadens the scope of biological analyses supported by this single package, which
otherwise would demand use of GSEA (Subramanian et al., 2005) software or manual transforma-
tions of each set derived from different source. In comparison to other tools, tmod first allows manual
creation of modules, which can be of extreme importance for scientists studying transcriptome or
metabolome regulation in very specific and not broadly explored biological contexts. Implementa-
tion of three statistical tests called by single functions makes statistical testing easily accessible for
biologists, and different test statistics shown imply easier interpretability of calculated gene enrich-
ment. In contrast to the statistic used in the GSEA approach (Subramanian et al., 2005), the U and
CERNO test are statistics with known distributions and therefore do not require a randomization
approach to calculate the p-values. This is advantageous in case of a low number of samples and in
other settings such as functional interpretation of principal components. We show that the CERNO
function within tmod outperforms GSEA in terms of speed for data sets with large sample sizes, and
in overall performance for datasets with less than 15 samples.

Finally, an otherwise rather complex PCA functional interpretation is contained in a single func-
tion, tmodPCA. No other online or standalone tools to our knowledge possess such a broad function-
ality, which makes tmod especially useful in application for biologists or immunologists investigat-
ing complex events such as disease diagnosis, progression or treatment, which require simple tools
giving robust and biologically significant results. The package contains efficient and intuitive data
visualization tools.

CONCLUSION
We have introduced tmod, a flexible R package for standalone analysis of enrichment analysis of
transcriptomic and metabolomics data. Considering widespread use of R by scientists, the package
provides a useful tool that otherwise has not yet been accessible for R users, containing useful
application of three statistical tests assessing significance of the enrichment, PCA analysis and data
visualization tools.

List of abbreviations
AUC – area under curve; BTM – blood transcriptional module; FSEA – Feature Set Enrichment
Analysis; GSEA – Gene Set Enrichment Analysis; HGNC - HUGO Gene Nomenclature Commit-
tee; ICA – independent component analysis; logFC - logarithm of fold change; PCA – principal
component analysis; ROC – receiver-operator characteristic.

Competing interests
Authors declare no conflicts of interests.

7/9

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2420v1 | CC BY 4.0 Open Access | rec: 4 Sep 2016, publ: 4 Sep 2016



tmod: an R package for general and multivariate enrichment analysis

Acknowledgements
We would like to thank Gayle McEwen for invaluable help with the manuscript and many important
insights, and Jeroen Maertzdorf and Stefan H.E. Kaufmann for helpful discussions.

REFERENCES
Alsina L., Israelsson E., Altman MC., Dang KK., Ghandil P., Israel L., Bernuth H von., Baldwin
N., Qin H., Jin Z., others. 2014. A narrow repertoire of transcriptional modules responsive to
pyogenic bacteria is impaired in patients carrying loss-of-function mutations in myd88 or irak4.
Nature immunology 15:1134–1142.

Bar-Joseph Z., Gerber GK., Lee TI., Rinaldi NJ., Yoo JY., Robert F., Gordon DB., Fraenkel E.,
Jaakkola TS., Young RA., others. 2003. Computational discovery of gene modules and regulatory
networks. Nature biotechnology 21:1337–1342.

Berry MP., Graham CM., McNab FW., Xu Z., Bloch SA., Oni T., Wilkinson KA., Banchereau
R., Skinner J., Wilkinson RJ., others. 2010. An interferon-inducible neutrophil-driven blood tran-
scriptional signature in human tuberculosis. Nature 466:973–977.

Calvano SE., Xiao W., Richards DR., Felciano RM., Baker HV., Cho RJ., Chen RO., Brownstein
BH., Cobb JP., Tschoeke SK., others. 2005. A network-based analysis of systemic inflammation in
humans. Nature 437:1032–1037.

Chaussabel D., Quinn C., Shen J., Patel P., Glaser C., Baldwin N., Stichweh D., Blankenship
D., Li L., Munagala I., others. 2008. A modular analysis framework for blood genomics studies:
Application to systemic lupus erythematosus. Immunity 29:150–164.

Efron B., Tibshirani R. 2007. On testing the significance of sets of genes. The annals of applied
statistics:107–129.

Esterhuyse MM., Weiner J., Caron E., Loxton AG., Iannaccone M., Wagman C., Saikali P., Stan-
ley K., Wolski WE., Mollenkopf H-J., others. 2015. Epigenetics and proteomics join transcriptomics
in the quest for tuberculosis biomarkers. mBio 6:e01187–15.

Falcon S., Gentleman R. 2007. Using gostats to test gene lists for go term association. Bioinfor-
matics 23:257–258.

Kaforou M., Wright VJ., Oni T., French N., Anderson ST., Bangani N., Banwell CM., Brent
AJ., Crampin AC., Dockrell HM., others. 2013. Detection of tuberculosis in hiv-infected and-
uninfected african adults using whole blood rna expression signatures: A case-control study. PLoS
Med 10:e1001538.

Kelder T., Iersel MP van., Hanspers K., Kutmon M., Conklin BR., Evelo CT., Pico AR. 2012.
WikiPathways: Building research communities on biological pathways. Nucleic acids research
40:D1301–D1307.

Li S., Rouphael N., Duraisingham S., Romero-Steiner S., Presnell S., Davis C., Schmidt DS.,
Johnson SE., Milton A., Rajam G., others. 2014. Molecular signatures of antibody responses derived
from a systems biology study of five human vaccines. Nature immunology 15:195–204.

Liu X., Jessen WJ., Sivaganesan S., Aronow BJ., Medvedovic M. 2007. Bayesian hierarchical
model for transcriptional module discovery by jointly modeling gene expression and chip-chip data.
BMC bioinformatics 8:283.

Maertzdorf J., Ota M., Repsilber D., Mollenkopf HJ., Weiner J., Hill PC., Kaufmann SH. 2011.
Functional correlations of pathogenesis-driven gene expression signatures in tuberculosis. PloS one
6:e26938.

Pascual V., Chaussabel D., Banchereau J. 2010. A genomic approach to human autoimmune
diseases. Annual review of immunology 28:535.

Ritchie ME., Phipson B., Wu D., Hu Y., Law CW., Shi W., Smyth GK. 2015. Limma pow-
ers differential expression analyses for rna-sequencing and microarray studies. Nucleic acids re-
search:gkv007.

Smyth GK. 2005. Limma: Linear models for microarray data. In: Bioinformatics and computa-
tional biology solutions using r and bioconductor. Springer, 397–420.

Subramanian A., Tamayo P., Mootha VK., Mukherjee S., Ebert BL., Gillette MA., Paulovich A.,
Pomeroy SL., Golub TR., Lander ES., others. 2005. Gene set enrichment analysis: A knowledge-
based approach for interpreting genome-wide expression profiles. Proceedings of the National
Academy of Sciences 102:15545–15550.

Vremo L., Nielsen J., Nookaew I. 2013. Enriching the gene set analysis of genome-wide data by
incorporating directionality of gene expression and combining statistical hypotheses and methods.
Nucleic acids research:gkt111.

Weiner 3rd J., Parida SK., Maertzdorf J., Black GF., Repsilber D., Telaar A., Mohney RP., Arndt-

8/9

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2420v1 | CC BY 4.0 Open Access | rec: 4 Sep 2016, publ: 4 Sep 2016



Submitted to the German Conference on Bioinformatics 2016 (GCB2016)

Sullivan C., Ganoza CA., Fa KC., others. 2012. Biomarkers of inflammation, immunosuppression
and stress with active disease are revealed by metabolomic profiling of tuberculosis patients. PloS
one 7:e40221.

Wishart DS., Jewison T., Guo AC., Wilson M., Knox C., Liu Y., Djoumbou Y., Mandal R., Aziat
F., Dong E., others. 2012. HMDB 3.0—the human metabolome database in 2013. Nucleic acids
research:gks1065.

Wu D., Smyth GK. 2012. Camera: A competitive gene set test accounting for inter-gene correla-
tion. Nucleic acids research 40:e133–e133.

Yamaguchi KD., Ruderman DL., Croze E., Wagner TC., Velichko S., Reder AT., Salamon H.
2008. IFN-β -regulated genes show abnormal expression in therapy-nave relapsing–remitting ms
mononuclear cells: Gene expression analysis employing all reported protein–protein interactions.
Journal of neuroimmunology 195:116–120.

9/9

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2420v1 | CC BY 4.0 Open Access | rec: 4 Sep 2016, publ: 4 Sep 2016


