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Quantum gate learning in qubit networks: Toffoli gate without
time-dependent control
Leonardo Banchi1, Nicola Pancotti2,3 and Sougato Bose1

We put forward a strategy to encode a quantum operation into the unmodulated dynamics of a quantum network without the
need for external control pulses, measurements or active feedback. Our optimisation scheme, inspired by supervised machine
learning, consists in engineering the pairwise couplings between the network qubits so that the target quantum operation is
encoded in the natural reduced dynamics of a network section. The efficacy of the proposed scheme is demonstrated by the
finding of uncontrolled four-qubit networks that implement either the Toffoli gate, the Fredkin gate or remote logic operations. The
proposed Toffoli gate is stable against imperfections, has a high fidelity for fault-tolerant quantum computation and is fast, being
based on the non-equilibrium dynamics.
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INTRODUCTION
Computational devices based on the laws of quantum mechanics
hold promise to speed up many algorithms known to be hard for
classical computers.1 The implementation of a full-scale computa-
tion with existing technology requires an outstanding ability to
maintain quantum coherence (i.e., isolation from the environment)
without compromising the ability to control the interactions
among the qubits in a scalable way. Among the most successful
paradigms of quantum computation, there is the ‘circuit model’,
in which the algorithm is decomposed into an universal set of
single- and two-qubit gates,2 and, to some extent, the so-called
adiabatic quantum computation (AQC),3 in which the output of
the algorithm is encoded in the ground state of an interacting
many-qubit Hamiltonian. A different approach4 is based on the
use of always-on interactions, naturally occurring between
physical qubits, to accomplish the computation. Compared with
the circuit model, this scheme has the advantage of requiring
minimal external control and avoiding the continuous switch off
and on of the interactions between all but two qubits, whereas
compared with AQC it has the advantage of being faster, being
based on the non-equilibrium evolution of the system. Quantum
computation with always-on interactions is accomplished by
combining the natural couplings with a moderate external control,
e.g., with a smooth shifting of Zeeman energies,5 via feed-forward
techniques,6 using measurement-based computation7 or quantum
control.8,9 Most of these approaches are based on the assumption
that the natural couplings are fixed by nature and not tunable,
whereas local interactions can be modulated with external fields.
However, the amount of external control required can be
minimised if the couplings between the qubits can be statically
tuned10—e.g., during the creation of the quantum device.
The recent advances in the fabrication of superconducting

quantum devices has opened up to the realisation of interacting
quantum networks. In a superconducting device, the qubits are
built with a Josephson tunnel element, an inductance and a

capacitor,11 whereas local operations and measurements are
performed by coupling the qubit to a resonator.12 The interactions
can be designed using lithographic techniques by jointly coupling
two qubits via a capacitor13 or an inductance,14 and can be
modelled via an effective two-body Hamiltonian

P
αJασα � σα

15,16

where σα are the Pauli matrices. Because of the flexibility in wiring
the pairwise interactions among the qubits, it is possible to
arrange them in a planar graph structure, namely a collection of
vertices and links, in which the vertices correspond to the qubits
and the links correspond to the two-body interactions between
them. Moreover, thanks to the development of three-dimensional
superconducting circuits,17 it may be possible in the near future
to wire also non-planar configurations, namely a general qubit
network.
Motivated by the above, we ask the following question: is it

possible to encode a quantum algorithm into the unmodulated
dynamics of a suitably large quantum network of pairwise
interacting qubits? This would be extremely interesting, as it
would enable quantum computation by simply ‘waiting’, without
the need of continuously applying external control pulses or
measurements. Even when sequential operations cannot be
avoided, our scheme can enable the in-hardware implementation
of recurring multi-qubit operations of a quantum algorithm (see
e.g., Figure 1), such as quantum arithmetic operations,18 and
possibly also the quantum Fourier transform or error-correcting
codes.1 We focus on two-body interactions, as they are the most
common in physical setups, and we consider an enlarged network
in which auxiliary qubits enrich the quantum dynamics. The
important question analysed in this paper is as follows: given a
target unitary operation UQ on a given set of qubits Q, we consider
an extended network Q∪A in which A is a set of auxiliary qubit
(ancillae), and we ask whether it is possible to engineer the
pairwise interactions in Q∪ A, modelled by the time-independent
Hamiltonian HQA, such that eitHQA ¼ UQ � VA after some time t
(VA may be an extra unitary operation on the auxiliary space). More
generally, the target operation can depend also on the ancillae
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initial state: if eitHQA ¼
P

nU
nð Þ
Q � Anj i Anh j, where Anj if g forms a

basis of the ancillae Hilbert space and, e.g., UQ ¼ U 1ð Þ
Q , then the

target operation is implemented when A is initialised in A1j i. Our
method is particularly useful for implementing quantum gates,
which requires k-body interactions (k42), such as the Toffoli or
Fredkin gates1,19,20 where UQ≠eitHQ for any two-local HQ, and for
remote logic, namely for applying a gate to qubits that are not
directly connected but are rather interacting via intermediate
systems. Our approach is completely different from the simulation
of k-local Hamiltonians with pairwise interactions discussed in the
AQC literature,21,22 being based on the unmodulated dynamics.
Moreover, being based on unmodulated (time-independent)
interactions and ancillary qubits, it is significantly different from
quantum optimal control.23

Our quantum network design procedure is inspired by
supervised learning in feed-forward networks,24 in which the
training procedure involves the optimisation of the network
couplings (i.e., the weights between different nodes) such that the
output corresponding to some input data has a desired functional
form (e.g., for data classification). Although there are many recent
developments about using a quantum device to speed up
machine learning algorithms25–29 or storing data,30 our optimisa-
tion procedure is entirely classical, but specifically developed for
quantum hardware design. Our scheme is completely different
from other recent proposals31–33 because it avoids measurements
or active feedbacks and requires minimal external control.

RESULTS
Supervised quantum network design
Supervised learning is all about function approximation: given a
training set {(I1, O1), (I2, O2), …}, namely a collection of inputs Ik
and the corresponding known outputs Ok, the goal is to find a
function f with two desired properties: (i) OkC f(Ik) for any training
pair, and (ii) f should be able to infer the unknown output of an
input not contained in the training set. In classical feed-forward
networks, the function f is approximated with a directed graph
organised in layers, where the first layer is the input register and

the last one encodes the output. The value s ‘ð Þ
k of the k-th node in

layer ‘ is updated via the equation sð‘Þk ¼ A‘½
P

jλ
‘ - 1ð Þ
kj s ‘ - 1ð Þ

j �; where
A‘ is an appropriate (typically non-linear) activation function and

λ
‘ - 1ð Þ
kj is the weight between node k in layer ‘ and node j in ‘ - 1.
The training procedure consists in finding the optimal weights λ

by minimising a suitable cost function such as C ¼
P

k Ok - f Ikð Þj j2.
A quantum network consists, on the other hand, of an

undirected graph (V, E) of vertices V and links E described by a
two-local Hamiltonian

H ¼
X

n;mð ÞA E

X
α;β

Jαβnm
σα
nσ

β
m

4
þ

X
nAV

X
α

hαn
σα
n

2
; ð1Þ

where σα
n, α= x, y, z, are the Pauli matrices acting on qubit n and,

to simplify the notation, we call λ ¼ Jαβnm; h
α
n

� �
the set of

parameters. The vertices are composed of two disjoints sets
V=Q∪A, where Q consists of register qubits and A consists of
auxiliary qubits. Given a separable initial state ψQ

�� �
� ψAj i, the

time evolution according to Hamiltonian (1) generates a quantum
channel1 Eλ ψQ

�� �
ψQ

� ��� �
¼ TrA½e - iH~t ψQ

�� �
ψQ

� ��� ψAj i ψAh jeiH~t � on
subsystem Q—as we are interested in a fixed operational time ~t
for simplicity we set ~t ¼ 1, reabsorbing ~t into the definition of the
definition of H. Depending on the flexibility of the experimental
apparatus in reliably initialising the auxiliary qubits, one can add
ψAj i to the set λ. Network design consists in the following
procedure: given a target unitary operation UQ that we want to
implement, the goal is to find the parameters λ, if they exist, such
that Eλ ρQ

� �
¼ UQρQU

y
Q for any ρQ. To simplify the notation, we

assume that the gate output is encoded in Q but it is
straightforward to generalise the formalism when the output
sites differ from the input ones.
Motivated by the similarity with classical supervised learning,

where the weights λ are tuned to maximise the ability of the
network to reproduce a known output given the corresponding
input, we create a training set T with a random set of initial input
states. For each input ψj iAT the expected known output is
UQ ψj i, whereas the output of the network evolution is Eλ½ ψj i ψh j�.
The ‘learning’ procedure involves the minimisation of the
difference between the output of the network and the expected
output, and corresponds to the maximisation of the fidelity

F ¼
P

ψj iAT

Fψ

Tj j; Fψ ¼ ψh jUy
QEλ ψj i ψh j½ �UQ ψj i : ð2Þ

If the average is performed over all possible states, then equation
(2) can be substituted by the average gate fidelity F ¼

R
Fψdψ

Figure 1. Schematic transposition of a quantum circuit to a trained quantum network. (a) An example seven-qubit circuit in which the gates
G1 and G2 are sequentially applied. Many important circuits can be cast into the scheme a, such as those for quantum arithmetics.18

(b) Quantum network implementation of a: each qubit network in the green boxes implements either G1 or G2 on the input/output qubits (the
three qubits in the bottom row). The quantum bus sequentially transfers the state of three qubits from the register, on which the gate G1 or G2
has to be applied, to the input/output qubits of the gate network. After the gate network has implemented its transformations, the state is
transferred back to the original three qubits of the register.
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where the formal integration can be explicitly evaluated10,34,35

yielding

F ¼ 1
Dþ 1

þ 1
D Dþ 1ð Þ

X
ijkl

U�
ikE

ij;kl
λ Ujl; ð3Þ

where E ij;kl
λ ¼ qih jEλ qkj i qlh j½ � qj

�� �
, Uij ¼ qih jUQ qj

�� �
and qj

�� �� �
form

the computational basis of the D-dimensional Hilbert space of
qubits Q. The typical value of the fidelity for a random non-optimal
evolution of the qubit network is F ¼ D - 1, obtained using Haar
integration techniques.36 This value is independent of the details
of the ancillae, as it depends only on the dimension of the target
Hilbert space, and provides an estimate for the initial fidelity of an
untrained network.
The gate-learning procedure corresponds to a global maximisa-

tion of the fidelity (3). However, because of the many parameters
in the Hamiltonian (1), F can have many local maxima, making the
global optimisation extremely complicated. As most global
optimisation algorithms introduce stochastic strategies, rather
than introducing unphysical random jumps, we take advantage of
the explicit stochastic nature of the problem (F is a uniform
average over random states) and we propose the following
learning algorithm to design the interactions of the quantum
network.
1: Choose an initial parameter set λ (e.g., at random), and

choose an initial learning rate ϵ;
2: Repeat
3: Generate a random ψj i;
4: Update L times the coupling strengths as

λ-λþ ϵ∇λ ψh jUy
QEλ ψj i ψh j½ �UQ ψj i; ð4Þ

5: Decrease ϵ (see Materials and methods);
6: Until convergence (or maximum number of operations).
Specifically, we combine the above algorithm with the

maximisation of the average fidelity (see below) and we observe
a drastic speed up of the optimisation process. The parameter L
tunes the number of deterministic steps in the learning procedure,
and can be set to the minimum value L= 1, so that after each
interaction the state is changed or to a higher value. In our
simulations, we use L= 1, for simplicity. Our algorithm is an
application of the stochastic gradient descent (SGD) method37 to
the maximisation of the function (2). In classical feed-forward
networks, SGD is the de facto standard algorithm for network
training24,37 and is specifically used for large training data sets,
when the evaluation of the cost function and its gradient are
computationally intensive. On the other hand, the average in
equation (2) can be evaluated explicitly over a uniform distribution
of an infinite number of initial states, giving equation (3). Although
Fψ is easier than F to compute, the major advantage of SGD for
quantum network design comes from its ability to escape local
maxima. The crucial observation to show the latter point is that
the statistical variance over random states VarF ¼ F 2 -F 2

vanishes when F ¼ 1 (see e.g., refs 34 and 35)—indeed,
intuitively, as both F and Fψ are bounded in [0, 1], F can
achieve its maximum only if Fψ ¼ 1 for all the states, apart from a
set of measure zero. On the other hand, if 0<F <1, then VarF > 0
and the fluctuations can be so high that a local maximum of F
may not correspond to a maximum of Fψ for some state ψ. This is
indeed shown in Figure 2 with a real example for the
implementation of the Toffoli gate (see the application section
below). In Figure 2, the average fidelity F has three local maxima
at λloc:k (k= 1, 2, 3) and a single global maximum at λgl., namely the
optimal parameters, whereas the fidelities Fψ for different random
states ψ have a more complicated behaviour. In view of the
argument discussed above, all the state fidelities Fψ have a global
maximum at λgl., whereas, remarkably, at least one fidelity Fψ has
no local maximum at λloc:k . Our stochastic learning algorithm uses a
gradient descent technique for locally maximising the function

Fψ λð Þ. Therefore, if we are around the slopes of a local maximum
of Fψ λð Þ (say λloc:k from the previous example) and the state ψj i is
randomly changed to ϕj i, that local maximum may disappear
from Fϕ λð Þ, allowing the algorithm to escape from this non-
optimal region when the parameters are updated via equation (4).
On the other hand, when the algorithm is probing the
neighbourhood of a true optimal point for which F λð Þ ¼ 1 (e.g.,
λgl. in the previous example), then the maximum of Fψ λð Þ does
not disappear when the state ψ is changed, allowing the ‘climbing’
procedure to continue.
The above stochastic algorithm may be combined with a

deterministic maximisation of equation (3). In our simulations, we
use stochastic learning for the initial global span of the parameter
manifold, and if it reaches a suitably high fidelity (e.g., F > 95%)
then it is reasonable to suppose that the algorithm has found a
global maximum. Starting from this point, we perform a local
maximisation of equation (3), and if FC1 is reached the learning
has been successful. Otherwise, we repeat the procedure.
It is worth emphasising that given a target gate U it is an open

question to understand a priori whether a solution may exist for a
graph with a certain set of interactions (e.g., Heisemberg, Ising and
so on). Unlike in quantum control, where given a time-dependent
Hamiltonian H tð Þ ¼ H0 þ β tð ÞV one can check in advance
whether U ¼ T ½expð - i

R 1
0 H tð ÞdtÞ� for some control profile β(t):

such a profile can exist only if U is contained in the group
associated with the algebra generated by the repeated commu-
tators of H0 and V . Although no complete algebraic characterisa-
tion is known for our case (see, however, the Materials and
methods for a necessary condition) and we have to study each
problem numerically, in the next sections we find some structures
that enable the implementation of important quantum gates. All
numerical simulations have been obtained in a laptop computer
using QuTiP.38

Application: Toffoli gate
The Toffoli gate is a key component for many important quantum
algorithms, notably the Shor algorithm,39 quantum error
correction,20 fault-tolerant computation40 and quantum arithmetic
operations,18 and, together with the Hadamard gate, is universal
for quantum computation.41 Experimental implementations of this
gate have been obtained with trapped ions,42 superconducting
circuits19,43 or photonic architectures.44 Toffoli gate is a controlled-
controlled-not (CCNOT) operation acting on three qubits. It can be
implemented in a circuit using five two-qubit gates,1 or it can be
obtained in coupled systems via quantum control techniques.45,46

Figure 2. Average fidelity F and fidelity Fψ for some random states ψ
for implementing the Toffoli gate in a four-qubit network (see
discussion in the text). All the parameters are set to the optimal ones,
except Jxx35 in the abscissa. The region around the only global peak is
filled in green.
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Efficient schemes require higher dimensional system (i.e., qudits).44

On the other hand, the direct implementation using natural
interactions is complicated, as the Hamiltonian HCCNOT corre-
sponding to the gate, i.e., CCNOT ¼ eiHCCNOT , has three-body
interactions, which are unlikely to appear in nature.
By applying our quantum hardware design procedure, we show

that the Toffoli gate can be implemented in a four-qubit network
using only pairwise interactions and constant control fields. Our
findings enable the construction of a device that implements the
Toffoli gate with a fidelity F ¼ 99:98% by simply ‘waiting’ for the
natural dynamics to occur, without the need for external control
pulses. We consider a four-qubit network as displayed in Figure 3,
in which the control qubits are labelled by the indices 1,2, the
target is qubit 3 and the ancilla is qubit 4. We start our analysis by
considering a fully connected graph in which each qubit interacts
with the others using XX- and ZZ-type pairwise interactions, as this
kind of interaction can be obtained in superconducting circuits.15

Because of the symmetries of the Toffoli gate (see Materials and
methods), we consider the two control qubits to be equally
coupled to the target and the ancilla: Jαβ1m ¼ Jαβ2m, for m= 3, 4 and
similarly we set hα1 ¼ hα2. Moreover, as the Toffoli gate is real,
we only consider local fields in the X and Z directions and
set ψAj i ¼ cos η mj i þ eiξ sin η kj i. By combining SGD with the
maximisation of equation (3), we find the following optimal
parameters,

Jzz12 ¼ - 8:940; Jzz13 ¼ - 4:957; Jzz14 ¼ - 5:657;
hz1 ¼ - 2:428; hz3 ¼ Jzz13; hz4 ¼ - 0:165;
hx3 ¼ - 19:08; hx4 ¼ - 4:267; Jxx34¼ 15:06;
η¼ 0:8182; ξ¼ 0:0587;

ð5Þ

in which the other XX- and ZZ-type interactions not displayed in
equation (5) are found to be zero by the learning algorithm, so the
optimal configuration is the one summarised in Figure 3, where
the XX coupling is only between qubits 3 and 4. In more physical
terms, if the maximal allowed coupling is fixed to J/2π≈40 MHz,
then we find a gate time of 60 ns and

Jzz12 ¼ - 149:2 MHz; Jzz13 ¼ - 82:71 MHz; Jzz14 ¼ - 94:39 MHz;
hz1 ¼ - 40:52 MHz; hz3 ¼ Jzz13; hz4 ¼ - 2:751 MHz;
hx3 ¼ - 318:4 MHz; hx4 ¼ - 71:2 MHz; Jxx34¼ 251:3 MHz:

ð6Þ

With the optimal parameters of equations (5) and (6), we obtain an
average gate fidelity of 99.98%, above the threshold for
topological fault tolerance for single- and two-qubit gates,
whereas by avoiding the extra phase fixing ξ= 0 we still obtain
F ¼ 99:92%. Moreover, our gate fidelity is above the Toffoli gate

accuracy threshold (755/756C99.87%) for fault-tolerant compu-
tation in the limit in which Clifford gate errors are negligible.47

The optimal parameters (5) and (6) are stable against an
imperfect tuning of the interactions. Indeed, we considered a
perturbation λk-λk þ ϵrk , rk∈ [0. 1] being a random number and ϵ
being the strength of the static perturbation, and found that F >
99:9% if ϵ<0:04 (ϵ<0:7 MHzÞ and F > 99% if ϵ<0:18 (ϵ<3 MHz).

Application: Fredkin gate
Fredkin gate is a controlled-swap (CSWAP) operation acting on
three qubits, which is universal for reversible computation.1

We found that this gate can be obtained with perfect fidelity
(up to the numerical precision) in a four-qubit network
with Hamiltonian (1) where Jxx12 ¼ Jxx13 ¼ 13:60 (227.0 MHz),
Jαα23 ¼ - 4:712 (−78.62 MHz), Jxx24 ¼ Jxx34 ¼ 8:400 (140.2 MHz),
Jzz12 ¼ Jzz13 ¼ 11:15 (186.1 MHz, hx4 ¼ 1:025 (17.11 MHz), hz1 ¼ π
(54.42 MHz). The values in MHz correspond to a gate time of
60 ns. Moreover, e - iH¼ CSWAP123 � U4 so the gate is indepen-
dent of the initial state of the ancilla. As for the Toffoli gate, this
optimal configuration has been obtained by starting the training
procedure with a fully connected graph with all the interactions,
and thus the fact that some interactions are zero is a result of the
optimisation process.

Application: remote logic
We study a qubit network that implements a maximally
entangling gate between two sites that are not directly coupled.
Remote logic has been studied extensively in spin chains for
achieving entangling operations between the boundary
sites,4,10,48,49 and it is a building block for a proposed architecture
for solid-state quantum computation at room temperature.50

For simplicity, we consider a SU(2) invariant four-qubit
network, interacting with a Heisenberg Hamiltonian
H ¼

P4
i ≠ j¼1

P
α¼x;y;zJijσ

α
i σ

α
j =4 where there is no direct coupling

between qubits 1 and 4 (J14 = 0). Applying our learning algorithm,
we found that the

ffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p
gate, which is universal for quantum

computation when paired with single qubit operations,1 can be
achieved between qubits 1 and 4 with unit fidelity with different
choices of J12 = J24, J13 = J34 and J23 when the initial state of
ancillae is mkj i - kmj ið Þ=

ffiffiffi
2

p
. Given this simplification, one can

then find a solution analytically: J12 ¼ αþ π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nð Þ2 - 1

q
=

ffiffiffi
8

p
,

J13 ¼ α - π
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nð Þ2 - 1

q
=

ffiffiffi
8

p
, J23 ¼ αþ - 1ð Þnπ, where n is an

integer. We find analytically that irrespective of α the above
choice gives perfect fidelity. Our strategy has not found any three-
qubit configurations that implement a remote

ffiffiffiffiffiffiffiffiffiffiffiffi
SWAP

p
gate, and

thus the four-qubit network is the minimal non-trivial example.
Remarkably, some of our four-qubit configurations are more stable
to noise than the direct implementation of the gate in a two-qubit
system (namely when J14 = π/2 and the other couplings are zero).
For instance, if Jij ¼ Joptimal

ij þ ϵ, Joptimal
ij being the optimal value for

implementing the gate, we found that when ϵ is randomly
distributed in [0, 1/2], then the four-qubit system with n= 1 still
has, on average, FC99.1%, whereas the direct two-qubit case
has FC98.8%.

Towards a scalable architecture for quantum computation
Current architectures for quantum computation, e.g., with super-
conducting qubits51 or ion traps,52 are based on an arrays of
interacting qubits that are continuously controlled via external
pulses to implement the desired operation. This approach may
suffer from scalability issues because, even assuming the ability to
maintain quantum coherence for a long time, extremely large
(classical) control units will be necessary to generate the

Figure 3. Network implementing the Toffoli gate. The gate acts on
the three external qubits (the top ones being the control qudits, and
the bottom one being the target), and has an additional auxiliary
qubit in the centre.
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sophisticated pulse sequences required to implement a full-scale
quantum algorithm. On the other hand, the approach that we
have in mind shares more similarities with integrated circuits in
present-day electronics, where a set of special-purpose logic units
(modules) are wired together to achieve computation (or other
tasks). In our vision, different modules can be fabricated with qubit
networks designed to produce a specific logic task, namely a
quantum gate, automatically without the need of external control.
As in Figure 1, the different logic and memory units can be
reciprocally connected using a quantum bus, whose purpose is to
transfer the qubit states between the quantum registers/memory
and the input/output qubits of the modules. In Figure 1, for
simplicity the input/output ports of the modules are designed in
the same physical qubits, although this can be easily extended to
more general cases. The quantum bus can be realised with
different technologies, e.g., with microwave resonators,53 or it can
also be implemented via quantum-state transfer in a qubit
network.54 The modules shown in Figure 1 can be designed to
produce either simple basic operations, such as the CNOT or the
Toffoli gate, or, in principle, they can directly implement larger
components of a quantum algorithm such as the Quantum Fourier
Transform or error-correcting codes.1 In this respect, to treat
systems with many parameters, one can easily combine our
optimisation strategy, based on fidelity statistics, with metaheur-
istic strategies,55 which simultaneously deals with many candidate
solutions and are known to be fast in global optimisation with
high-dimensional parameter spaces. Moreover, highly optimised
deep learning algorithms are already used to train neural networks
with 60 millions of parameters.56 However, given the difficulty in
numerically simulating large quantum systems, this approach may
be reasonable for networks up to, say, 20–30 qubits.

DISCUSSION
Inspired by classical supervised learning, we have proposed an
optimisation scheme to encode a quantum operation into the
unmodulated dynamics of a qubit register, which is part of a
bigger network of pairwise interacting qubits. Our strategy is
based on the static engineering of the pairwise couplings, and it
enables the creation of a quantum device, which implements the
desired operation by simply waiting for the natural dynamics to
occur, without the need of external control pulses. Our findings
show that machine learning-inspired techniques can be combined
with quantum mechanics not only for data classification speed
up25,26 or quantum black-box certification,57,58 but also for
quantum hardware design.
This paper opens up the topic of encoding quantum gates and

operations into the unmodulated dynamics of qubit networks.
Although we have focused on small systems, larger networks can
be considered using more efficient training schemes. These would
enable the simulation of larger components of a quantum
algorithm, as different multi-qubit gates can be combined into a
unique quantum operation, which can be simulated in a large
quantum network. Moreover, when combined with a quantum
bus as in Figure 1, our strategy can provide an alternative
approach to universal quantum computation, which avoids the
decomposition of the algorithm into one- and two-qubit gates.
Note that most quantum algorithms take classical inputs, and thus
the extra control required for initialisation demands the further
ability to fully polarise globally the spins. The latter step is,
however, typically much easier than the implementation of
entangling gates, which has been considered in this paper.
Moreover, in view of the recent experimental measures of the
average gate fidelity,59 it is tempting to predict an all-quantum
version of our learning procedure, where F is not classically
simulated, but rather directly measured. This would require a
further highly controlled system to infer the optimal parameters of
an uncontrolled quantum network, which can be used to

industrialise the production of unmodulated quantum devices
implementing the desired algorithm.
Our results demonstrate the efficacy of the proposed scheme in

designing four-qubit networks that implement the Toffoli and
Fredkin gates or remote logic operations. The proposed Toffoli
gate is fast, has high fidelity for fault-tolerant computation and
only uses static XX- and ZZ-type interactions, which can be
achieved in superconducting systems.15 The key advantage of our
method is in exploiting all the permanent interactions in the qubit
network without trying to suppress some of them sequentially to
implement pairwise gates. Moreover, being based on non-
equilibrium dynamics, our gate is fast: if J/2π≈40 MHz, then the
total operation time is ~ 60 ns, which matches the current gate
times for single- and two-qubit operations.51

MATERIALS AND METHODS
Learning rate
The choice of the learning rate ϵ is crucial. If the initial learning rate is too
small, it might not escape from the different ‘local maximum’ points,
whereas if it is too large it will continue to randomly jump without even
seeing the local maxima. To maximise the speed and precision of SDG, the
learning rate ϵ has to decrease as a function of the steps, a common choice
being ϵpm - 1=2 where m is the step counter.37 However, when the
gradient in equation (4) cannot be performed analytically, one can use
more sophisticated techniques60 in which both the learning rate and the
finite difference approximation of the gradient change as a function of m.

Symmetries
In the design of the quantum network and its couplings, the number of
parameters can be drastically reduced if the target unitary operation UQ

has some symmetries, namely if there exists some unitary matrix S such
that [UQ, SQ] = 0. This condition requires the quantum channel
Eλ ρ½ �¼ Tr A½e - iHρ� ρAe

iH� to satisfy EλðSQρSyQÞ ¼ SQEλ ρð ÞSyQ for each
state ρ, e.g., H; SQ � 1A� ¼ 0½ . Conversely, if the interaction type is fixed by
nature (for instance, only Ising or Heisenberg interactions are allowed),
then one has to check whether the Lie algebra spanned by the operators
in H contains the generators of UQ.

Bottom-up construction: Lie algebraic characterisation
All the numerical results presented in the main text are obtained using a
top-down approach: after selecting the interaction types (e.g., XX, ZZ,
Heisenberg and so on), the algorithm starts with a zero-bias fully
connected configuration in which all the qubit pairs of the network
interact with all possible interactions, each weighted with a different
parameter, and different local fields. As a result of the training procedure,
we found numerically that most of these parameters are indeed zero.
However, for larger networks it is better to use a bottom-up approach, in
which one starts with a minimal set of parameters and then adds other
parameters until a solution is found.
To construct a minimal set of parameters, one can use a Lie algebraic

characterisation inspired by quantum control. We write the Hamiltonian as
H ¼

P
jλjOj , where λj is the independent parameter and Oj is the

operator. If the parameters are time dependent, then there exist suitable
pulses λj(t) such that the dynamics implements the target gate G only if log
(G) is contained in the algebra generated by the repeated commutators
½Oj ; ½Ok ; ¼ ��. As our scheme is based on the particular choice where λj(t) is
constant, the above characterisation still provides a necessary condition.
As an example, we consider the Toffoli gate and the solution equation (5)
whereO1 ¼ σz1σ

z
2,O2 ¼ σz1σ

z
3 þ σz2σ

z
3 þ 2σz3,O3 ¼ σz1σ

z
4 þ σz2σ

z
4,O4 ¼ σx3σ

x
4,

O5 ¼ σz1 þ σz2, O7 ¼ σz4, O8 ¼ σx3, O9 ¼ σx4. It is simple to check that log G
(up to an irrelevant constant factor) is contained in the algebra generated
by the operators Oj, whereas this is not the case if the operator O8 is
removed from the Hamiltonian. Therefore, no solution is possible if λ8≡0.
Inspired by the above example, the bottom-up approach consists in the

following steps: (i) based on the symmetries of the target gate and on the
physically allowed interactions, one defines an initial set of operators;
(ii) other operators are added to the set until the dynamical algebra
contains log(G); (iii) one starts the numerical parameter training to check
for convergence (different runs may be required). Until the solution is
found, one can either adds new operators or changes the previous ones.
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