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Abstract
The availability of big data inmaterials science offers new routes for analyzingmaterials properties and
functions and achieving scientific understanding. Finding structure in these data that is not directly
visible by standard tools and exploitation of the scientific information requires new and dedicated
methodology based on approaches from statistical learning, compressed sensing, and other recent
methods from appliedmathematics, computer science, statistics, signal processing, and information
science. In this paper, we explain and demonstrate a compressed-sensing basedmethodology for
feature selection, specifically for discovering physical descriptors, i.e., physical parameters that
describe thematerial and its properties of interest, and associated equations that explicitly and
quantitatively describe those relevant properties. As showcase application and proof of concept, we
describe how to build a physicalmodel for the quantitative prediction of the crystal structure of binary
compound semiconductors.

1. Introduction

Big-data-driven research offers new routes towards scientific insight. This big-data challenge is not only about
storing and processing huge amounts of data, but also, and in particular, it is a chance for newmethodology for
modeling, describing, and understanding. Let us explain this by a simple, butmost influential, historic example.
About 150 years ago,D.Mendeleev and others organized the 56 atoms that were known at their time in terms of
a table, according to their weight and chemical properties.Many atomswere not yet identified, but from the
table, it was clear that they should exist, and even their chemical properties were anticipated. The scientific
reason behind the table, i.e., the shell structure of the electrons, was unclear andwas understood only 50 years
later when quantummechanics had been developed. Finding structure in the huge space ofmaterials, e.g., one
table (or amap) for each property, or function of interest, is one of the great dreams of (big-)data-driven
materials science.

Obviously, the challenge to sort allmaterials ismuch bigger than that of thementioned example of the
periodic table of elements (PTE). Up to date, the PTE contains 118 elements that have been observed. About

200 000 materials are ‘known’ to exist [1], but only for very few of these ‘known’materials, the basic properties
(elastic constants, plasticity, piezoelectric tensors, thermal and electrical conductivity, etc) have been
determined.When considering surfaces, interfaces, nanostructures, organicmaterials, and hybrids of these
mentioned systems, the amount of possiblematerials is practically infinite. It is, therefore, highly likely that new
materials with superior and up to now simply unknown characterstics exist that could help solving fundamental
issues in thefields of energy,mobility, safety, information, and health.
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Formaterials science it is already clear that big data are structured, and in terms ofmaterials properties and
functions, the space of all possiblematerials is sparsely populated. Finding this structure in the big data, e.g.,
asking for efficient catalysts for CO2 activation or oxidative coupling ofmethane, good thermal barrier coatings,
shapememory alloys as artery stents, or thermoelectricmaterials for energy harvesting from temperature
gradients, just to name a few examples,may be possible, even if the actuating physicalmechanisms of these
properties and functions are not yet understood in detail. Novel big-data analytics tools, e.g., based onmachine
learning or compressed sensing (CS), promise to do so.

Machine learning of big data has been used extensively in a variety offields ranging frombiophysics and drug
design to socialmedia and textmining. It is typically considered a universal approach for learning (fitting) a
complex relationship ( )=y f x . Some, though few,machine-learning (ML) basedworks have been done in
materials science, e.g., [2–17].Most of themuse kernel ridge regression (KRR) orGaussian processes, where in
both cases the fitted/learned property is expressed as aweighted sumover all or selected data points. A clear
breakthrough, demonstrating a ‘game change’, ismissing, so far, and a key problem, emphasized in [18], is that a
good feature selection for descriptor identification is central to achieving a good-quality, predictive statistically
learned equation.

One of the purposes of discovering structure inmaterials-science data, is to predict a property of interest for
a given complete class ofmaterials. In order to do this, amodel needs to be built, thatmaps some accessible,
descriptive input quantities, identifying amaterial, into the property of interest. In statistical learning, this set of
input parameters is called descriptor [18]. For ourmaterials science study, this descriptor (elsewhere also termed
‘fingerprint’ [5, 12]) is a set of physical parameters that uniquely describe thematerial and its function of interest.
It is important thatmaterials that are very different (similar)with respect to the property or properties of
interest, should be characterized by very different (similar) values of the descriptors.Moreover, the
determination of the descriptormust not involve calculations as intensive as those needed for the evaluation of
the property to be predicted.

Inmost papers published so far, the descriptor has been introduced ad hoc, i.e., without performing an
extensive, systematic analysis andwithout demonstrating that it is the best (in some sense)within a certain broad
class. The risk of such ad hoc approach is that the learning step is inefficient (i.e., verymany data points are
needed), the governing physicalmechanisms remain hidden, and the reliability of predictions is unclear. Indeed,
machine learning is understood as an interpolation and not extrapolation approach, and it will do sowell, if
enough data are available.However, quantummechanics andmaterials science are somultifaceted and intricate
thatwe are convinced that we hardly ever will have enough data. Thus, it is crucial to develop these tools as
domain-specificmethods and to introduce some scientific understanding, keeping the bias as low as possible.

In this paper, we present amethodology for discovering physicallymeaningful descriptors and for predicting
physically (materials-science) relevant properties. The paper is organized as follows: in section 2, we introduce
compressed-sensing [19–22] basedmethods for feature selection; in section 3, we introduce efficient algorithms
for the construction and screening of feature spaces in order to single out ‘the best’ descriptor. ‘Feature selection’
is a widespread set of techniques that are used in statistical analysis in different fields [23]. In the following
sections, we analyze the significance of the descriptors found by the statistical-learningmethods, by discussing
the interpolation ability of themodel based on the found descriptors (section 4), the stability of themodels in
terms of sensitivity analysis (section 5), and the extrapolation capability, i.e., the possibility of predicting new
materials (section 6).

As showcase application and proof of concept, we use the quantitative prediction of the crystal structure of
binary compound semiconductors, which are known to crystallize in zincblende (ZB), wurtzite (WZ), or
rocksalt (RS) structures. The structures and energies of ZB andWZare very close and for the sake of clarity we
will not distinguish themhere. Formanymaterials, the energy difference between ZB andRS is larger, though
still very small, namely just 0.001%or less of the total energy of a single atom. Thus, high accuracy is required to
predict this difference. The property P that we aim to predict is the difference in the energies betweenRS andZB
for the givenAB-compoundmaterial,DEAB. The energies are calculatedwithin theKohn–Sham (KS)
formulation [24] of density-functional theory [25], with the local-density approximation (LDA) exchange-
correlation functional [26, 27]. Since in this paperwe are concernedwith the development of a data-analytics
approach, it is not relevant that also approximations better than LDA exist, only the internal consistency and the
realistic complexity of the data are important. The below describedmethodology applies to these better
approximations as well.

Clearly, the sign ofDEAB gives the classification (negative for RS and positive for ZB), but the quantitative
prediction ofDEAB values gives a better understanding. The separation of RS andZB structures into distinct
classes, on the basis of their chemical formula only, is difficult and has existed as a key problem inmaterials
science for over 50 years [28–38]. In the rest of the paper, wewill alwayswrite the symbolDE, without the
subscript AB, to signify the energy of the RS compoundminus the energy of the ZB compound.
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2. Compressed-sensing basedmethods for feature selection

Let us assume that we are given data points { } { }¼d dP P, , , ,N N1 1 , with ¼ Îd d, , N
M

1 and ¼ ÎP P, , .N1 We
would like to analyze and understand the dependence of the output P (for ‘property’) on the input d (for
‘descriptor’), that reflects the specificmeasurement or calculation. Specifically, we are seeking for an
interpretable equation ( )= dP f , e.g., an explicit analytical formula, where P depends on a small number of
input parameters, i.e., the dimension of the input vector d is small. Below, wewill impose constraints in order to
arrive at amethod forfinding a low-dimensional linear solution for ( )= dP f . Later, we introduce nonlinear
transformations of the vector d; dealingwith such nonlinearities is themain focus of this paper.

When looking for a linear dependence ( ) ·= =d d cP f , themost simple approach to the problem is the
method of least squares. This is the solution of

( ) 
 

å å- = -
Î = = Î

⎛
⎝⎜

⎞
⎠⎟ P DcP d cargmin argmin , 1

c cj

N

j
k

M

j k k
1 1

,

2

2
2

M M

where ( )= ¼P P P, , N
T

1 is the column vector of the outputs and ( )=D dj k, is the ( )´N M -dimensionalmatrix
of the inputs, and the column vector c is to be determined. The equality defines theℓ2 or Euclidean norm ( · 2)
of the vector -P Dc. The resulting functionwould then be just the linear relationship

( ) = á ñ = å =d d cf d c, k
M

k k1 . It is the function thatminimizes the error -P Dc 2
2 among all linear functions of

d . Let us point out a few properties of equation (1). First, the solution of equation (1) is given by an explicit
formula ( )= -c D D D PT T1 if D DT is a non-singularmatrix. Second, it is a convex problem, therefore the
solution could also be found efficiently even in large dimensions (i.e. ifM andN are large) and there aremany
solvers available [39]. Finally, it does not put anymore constraints on c (or f ) than that it is linear andminimizes
equation (1).

A general linear function f of d usually involves also an absolute term, i.e. it has a form
( ) = + å =df c d ck

M
k k0 1 . It is easy to add the absolute term (also called bias) to equation (1) in the form

( )
 

å å- -
Î Î = =
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⎞
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This actually coincides with equation (1) if we first enlarge thematrix D by adding a column full of ones.Wewill
tacitly assume in the following that thismodificationwas included in the implementation and shall not repeat
that anymore.

If pre-knowledge is available, it can be (under some conditions) incorporated into equation (1). For
example, wemight want to prefer those vectors c, which are small (in some sense). This gives rise to regularized
problems. In particular, the ridge regression

( ) ( )   


l- +
Î

P Dc cargmin 3
c

2
2

2
2

M

with a penalty parameter l > 0weights themagnitude of the vector c and of the error of the fit against each
other. The largerλ, the smaller is theminimizing vector c. The smallerλ, the better is the least square fit (thefirst
addend in equation (3)).More specifically, if l  0, the solutions of equation (3) converge to the solution of
equation (1). And if l  ¥, the solutions of equation (3) tend to zero.

2.1. Sparsity, NP-hard problems, and convexity of theminimization problem
The kind of pre-knowledge, whichwewill discuss next, is that wewould like ( )df depend only on a small
number of components of d . In the notation of equation (1), wewould like to achieve thatmost of the
components of the solution c are zero. Therefore, we denote the number of non-zero coordinates of a vector c
by

{ } ( )  = # ¹c j c: 0 . 4j0

Here, { }¹j c: 0j stands for the set of all the coordinates j, such that cj is non-zero, and { }# ¼ denotes the
number of elements of the set { }¼ . Thus, c 0 is the number of non-zero elements of the vector c, and it is often
called theℓ0 normof c.We say that Îc M is k-sparse, if  c k0 , i.e. if atmost k of its coordinates are not
equal to zero.

When trying to regularize equation (1) in such away that it prefers sparse solutions c, one has tominimize:

( ) ( )   


l- +
Î

P Dc cargmin . 5
c

2
2

0
M

This is a rigorous formulation of the problem that wewant to solve, but it has a significant drawback: it is
computationally infeasible whenM is large. This can be easily understood as follows. The naiveway of solving
equation (5) is to lookfirst on all index sets { }Ì ¼T M1, , with one element and try tominimize over vectors
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supported in such sets. Then one looks for all subsets with two, three, andmore elements. Unfortunately. their
number grows quickly withM and the level of sparsity k. It turns out, that this naiveway can not be improved
much. The problem is called ‘NP-hard’[40]. In a ‘non-deterministic polynomial-time hard’ problem, a good
candidate for the solution can be checked in a polynomial time, but the solution itself can not be found in
polynomial time. The basic reason is that equation (5) is not convex.

2.2.Methods based on the ℓ1 norm
Reaching a compromise between convexity and promoting sparsity ismade possible by the least absolute
shrinkage and selection operator (LASSO) [41] approach, inwhich theℓ0 regularization of equation (5) is
replaced by theℓ1 norm:

( )   


l- +
Î

P Dc cargmin . 6
c

2
2

1
M

The use of theℓ1 norm ( ∣ ∣  = åc ck k1 ), also known as the ‘Manhattan’ or ‘Taxicab’norm, is crucial here. On the
one hand, the optimization problem is convex [42]. On the other hand, the geometry of theℓ1-unit ball
{ }  Îx x: 1M

1 shows, that it promotes sparsity [21, 22].
Similarly to equation (3), the larger the l > 0, the smaller theℓ1-normof the solution of equation (6)would

be, and vice versa. Actually, there exists a smallest l > 00 , such that the solution of equation (6) is zero. Ifλ then
falls below this threshold, one ormore components of c become non-zero.

2.3. Compressed sensing
Theminimization problem in equation (6) is an approximation of the problem in equation (5), and their
respective results do not necessarily coincide. The relation between these twominimization problemswas
studied intensively [43–45] andwe summarize the results, developed in the context of a recent theory of CS
[19, 21, 22]. Thesewill be useful for justifying the implementation of ourmethod (see below). The literature on
CS is extensive andwe believe that the following notes are a useful compendium.

We are especially interested in conditions on P and D which guarantee that the solutions of equations (5)
and (6) coincide, or at least do not differmuch.We concentrate on a simplified setting, namely attempting to
find Îc M fulfilling =Dc P with fewest non-zero entries. This is written as

( ) 
=

cargmin . 7
c Dc P:

0

Asmentioned above, thisminimization is computationally infeasible, andwe are interested infinding the same
solution by its convex reformulation:

( ) 
=

cargmin . 8
c Dc P:

1

The answer can be characterized by the notion of the null space property (NSP) [46]. Let Î ´D N M and let
{ }W Î ¼ M1, , . Then D is said to have theNSP of orderΩ if

∣ ∣ ∣ ∣ { } ( )å å< " ¹ = " Ì ¼ # W
Î Î

v Dvv v T M T0 with 0 1, , with . 9
j T

j
j T

j

It is shown [46] that everyΩ-sparse vector x is the unique solution of equation (8)with =P Dx if, and only if, D
has theNSP of orderΩ. As a consequence, theminimization of theℓ1 norm as given by equation (8) recovers the
unknownΩ-sparse vectors Îc M from D and =P Dc only if D satisfies theNSP of orderΩ. Unfortunately,
when given a specificmatrix D, it is not easy to check if it indeed has theNSP.

However, the CS analysis gives us some guidance for the admissible dimensionM of D. It is known [22, 46]
that there exists a constant >C 0 such that whenever

( ) ( ) WN C Mln 10

then there existmatrices Î ´D N M withNSP of orderΩ. Actually, a randommatrix with these dimensions
satisfies theNSP of orderΩwith high probability. On the other hand, this bound is tight, i.e., ifN falls below this
bound no stable and robust recovery of c from D and P is possible, and this is true for everymatrix Î ´D .N M

Later on,Nwill correspond to the number of AB compounds considered andwill befixed toN=82.
Furthermore,Mwill be the number of input features, and equation (10) tells us that we can expect reasonable
performance ofℓ1-minimization only if their number is atmost of the order We .

N
C

Furthermore, the CS analysis sets forth that theNSP is surely violated already for W = 2 if any two columns
of D are amultiple of each other. In general, one can expect the solution of equation (8) to differ significantly
from the solution of equation (7) if any two columns of D are highly correlated or, in general, if any of the
columns of D lies close to the span of a small number of any other its columns.

Historically, LASSO appeared first in 1996 as aML technique, able to provide stable solutions to
underdetermined linear systems, thanks to theℓ1 regularization. Ten years later, the CS theory appeared,
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sharingwith LASSO the concept ofℓ1 regularization, but the emphasis is on the reconstruction of a possibly
noisy signal c from aminimal number of observations. CS can be considered the theory of LASSO, in the sense
that it gives conditions (on thematrix D) onwhen it is reasonable to expect that theℓ1 andℓ0 regularizations
coincide. If the data and a, typically overcomplete, basis set are known, then LASSO is applied as aML technique,
where the task is to identify the smallest number of basis vectors that yield amodel of a given accuracy. If the
setting is such that aminimal set ofmeasurements should be performed to reconstruct a signal, as in quantum-
state tomography [47], thenCS tells how the data should be acquired. As it will become clear in the following,
our situation is somewhat intermediate, in the sense that we have the data (here, the energy of the 82materials),
but we have a certain freedom to select the basis set for themodel. Therefore, we use CS to justify the
construction of thematrix D, andwe adopt LASSO as amean tofind the low-dimensional basis set.

2.4. A simple LASSO example: the energy differences of crystal structures
In this and following sections, wewalk through the application of LASSO to a specificmaterials-science
problem, in order to introduce step by step a systematic approach forfinding simple analytical formulas, that are
built from simple input parameters (the primary features), for approximating physical properties of interest.We
aim at predictingDEAB, the difference inDFT-LDA energy between ZB andRS structures in a set of 82 octet
binary semiconductors. Calculationswere performed using the all-electron full-potential code FHI-aims [48]
with highly accurate basis sets, k-meshes, integration grids, and scaled ZORA [49] for the relativistic treatment.

The order of the two atoms in the chemical formula AB is chosen such that element A is the cation, i.e., it has
the smallestMulliken electronegativity, ( )=- +EN IP EA 2. IP and EA are the ionization potential and
electron affinity of the free, isolated, spinless, and spherical symmetric atom. As noted, the calculation of the
descriptormust involve less intensive calculations than those needed for the evaluation of the property to be
predicted. Therefore, we consider only properties of the free atomsA andB, that build the binarymaterial, and
properties of the gas-phase dimers. In practice, we identified the following primary features, exemplified for
atomA: the ionization potential IP(A), the electron affinity EA(A), H(A) and L(A), i.e.,6 the energies of the
highest-occupied and lowest-unoccupiedKS levels, and rs(A), rp(A), and rd(A), i.e., the radii where the radial
probability density of the valence s, p, and d orbitals aremaximal. The same features were used for atomB.
Clearly, these primary features were chosen because it is well known since long that the relative ionization
potentials, the atomic radii, and sp-hybridization govern the bonding in thesematerials. Consequently, some
authors [50–52] already recognized that certain combinations of rs and rp—called rσ and rπ (see below)—may be
crucial for constructing a descriptor that predicts the RS/ZB classification. Note that just the sign ofDE was
predicted, while themodel we present here targets at a quantitative prediction ofDE. In contrast to previous
work, we analyze howLASSOwill perform in this task and howmuch better the corresponding description is.
We should also note that the selected set of atomic primary features contains redundant physical information,
namelyH(A) and L(A) contain similar information as IP(A) and EA(A). In particularH(A)–L(A) is correlated, on
physical grounds, to IP(A)–EA(A). However, since the values of these two differences are not the same (see
footnote 5), all four features were included. As it will be shown below and in particular in appendix A, the two
pairs of features are not interchangeable.

We start with a simplified example, in order to show in an easily reproducible way the performance of
LASSO in solving our problem. To this extent, we describe each compoundABby the vector of the following six
quantities:

( ( ) ( ) ( ) ( ) ( ) ( )) ( )=d r r r r r rA , A , A , B , B , B . 11s p d s p dAB

All this data collected gives a 82×6matrix D, one row for each compound.We standardize D to have zero
mean and variance 1, i.e. subtract from each column itsmean and divide by its standard deviation.
Standardization of the data is common practice[42] and aimed at controlling the numerical stability of the
solution.However, when non-linear combinations of the features and cross-validation is involved, the
standardization has to be performed carefully (see below). The energy differences are stored in a vector ÎP .82

Weare aiming at two goals:

• On the one hand, wewould like tominimize themean-squared error (MSE), ameasure of the quality of the
approximation, given by

( )å å-
= =

⎛
⎝⎜

⎞
⎠⎟N

P d c
1

. 12
j

N

j
k

M

j k k
1 1

,

2

In this tutorial example, the sizeN of the dataset is 82 and, with the above choice of equation (11),M=6.

6
Weused for IP (EA) the energy of the half occupiedKS orbital in the half positively (negatively) charged atom.
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• On the other hand, we prefer sparse solutions †c with smallΩ, as we like to explain the dependence of the
energy difference P based on a low-dimensional (smallΩ) descriptor †d .

These two tasks are obviously closely connected, and go against each other. The larger the coefficientλ in
equation (6), themore sparse the solution c will be; the smallerλ, the smaller theMSEwill be. The choice ofλ is
at our disposal and let usweight sparsity of c against the size of theMSE.

In the following, wewill rather report the rootmean square error (RMSE) as a qualitymeasure of amodel.
The reason is that the RMSEhas the same units as the predicted quantities, therefore easier to understand in
absolute terms. Specifically, when a sparse solution †c of equation (6) ismentioned, withΩ non-zero
components, we report the RMSE:

† *å å-
= =

W⎛
⎝⎜

⎞
⎠⎟P d c

1

82
,

j
j

k
j k k

1

82

1
,

2

where ( )† †=D dj k, contains the columns corresponding to the non-zero components of †c and ( )* *=c ck is the
solution of the least square fit:

† *
* 

-
Î W

P D cargmin .
c

2
2

Let usfirst state that theMSE obtainedwhen setting =c 0 is 0.1979 eV2, which corresponds to a RMSEof
0.4449 eV. Thismeans that if one ‘predicts’D =E 0 for all thematerials, the RMSEof such ‘model’ is 0.4449 eV.
This number acts as a baseline for judging the quality of newmodels.

In order to run this and all the numerical tests in this paper, we havewritten PYTHON scripts and used the
linear-algebra solvers, including the LASSO solver, from the scikit_learn (sklearn) library (see appendixD for
the actual script used for this section).We like to calculate the coefficients for a decreasing sequence of a hundred
λ values, starting from the smallest l l= 1, such that the solution is =c 0. l1 is determined by

∣ ∣l = á ñd PN max ,
i

i1 [42]. The sequence ofλ values is constructed on a log scale, and the smallestλ value is set

to l l= 0.001100 1. In our case, l = 0.31691 and thefirst non-zero component of c is the second one,
corresponding to ( )r Ap . At l = 0.090319 , the second non-zero component of c appears, corresponding to ( )r Bd

(see equation (11)). For decreasingλ, more andmore components of c are different from zero until, from the
column corresponding to l = 0.003267 down to l = 0.0003100 , all entries are occupied, i.e. no sparsity is left.
Themethod clearly suggests ( )r Ap to be themost useful feature for predicting the energy difference. Indeed, by
enumerating all six linear (least-square)models constructedwith only one of the components of vector d at a
time, the smallest RMSE is given by themodel based on ( )r Ap .We conclude that LASSO reallyfinds the
coordinate best describing (in a linear way) the dependence ofP on d .

Let us nowproceed to the best pair. The second appearing non-zero component is rd(B). The RMSE for the
pair ( ( ) ( ))r rA , Bp d is 0.2927 eV. An exhaustive search over all the fifteen pairs of elements of dAB reveals that the
pair ( ( ) ( ))r rA , Bp d , indeed, yields the lowest (least-square)RMSE among all possible pairs in dAB.

The outcome for the best triplet reveals theweak point of themethod. The third non-zero components of d
is ( )r Bp , and the RMSEof the triplet ( ) ( ) ( )r r rA , B , Bp p d is 0.2897 eV, while an exhaustive search over all the
triplets found, suggests ( ( ) ( ) ( )r r rB , A , Bs p p ) to be optimal with a RMSE error of 0.2834, i.e., some 2%better.
The reason is that equation (6) is only a convex proxy of the actual problem in equation (5). Their solutions have
similar performance in terms of RMSE, but they do not have to coincide. Now let us compare the norm c 1of
both triplets, for *c obtained by the least square regressionwith standardized columns. For the optimal triplet,
( ( ) ( ) ( ))r r rB , A , Bs p p ,  =c 2.9011 and for ( ( ) ( ) ( ))r r rA , B , Bp p d ,  =c 0.4781 . Herewe observe, that the first

one needs higher coefficients for a small -P Dc 2
2, while the second one provides a better compromise

between a small -P Dc 2
2 and a small  l c 1 in equation (6). The reason for the large coefficients for the former

is that considering the 82-dimensional vectors whose components are the values of ( )r Bs and ( )r Bp for all the
materials (in the same order), these vectors are almost parallel (their Pearson correlation coefficient is 0.996).7
In order to understand this, let us have a look at both least squaremodels:

( ) ( ) ( ) ( )ℓD = + - - +E r r r1.272 B 0.296 A 1.333 B 0.106, 13s p p0

( ) ( ) ( ) ( )ℓD = - - - +E r r r0.337 A 0.044 B 0.097 B 0.106. 14p p d1

In the optimalℓ0model, the highly correlated vectors ( )r Bs and ( )r Bp appear approximatively as the difference
( ) ( )-r rB Bs p (their coefficients in the linear expansion have almost the samemagnitude,∼1.3, and opposite

7
Differently fromH− L and IP−EA,which are expected, and are, correlated on physical grounds for all atoms, rs is not necessairly expected

to be correlated to rp. This is true for all the atoms considered in this work, but it couldwell be that such strong correlation is not valid for all
atoms. This situation is somewhat reminiscent of the Berkson paradox, i.e., when a spurious correlation is found due to a biased selection of
the data set.
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sign). The difference of these two almost collinear vectors with the samemagnitude (due to the applied
standardization) is a vectormuch shorter than both ( )r Bs and ( )r Ap , but alsomuch shorter than ( )r Bp andP,
therefore ( ) ( )-r rB Bs p needs to bemultiplied by a relatively large coefficient in order to be comparable with the
other vectors. Indeed, while the coefficient of ( ) ( )-r rB Bs p is about 1.3, all the other coefficients, in particular in
theℓ1 solution, aremuch smaller. Such large coefficient is penalized by the  l c 1 term and therefore a sub-
optimal (according toℓ0-regularizedminimization) triplet is selected. This examples shows howwith highly
correlated features,  l c 1may not be a good approximation for  l c 0.

Repeating the LASSOprocedure for thematrix D consisting once only of elements of the first triplet and
once of the second triplet, shows that only for l 0.00079 thefirst triplet has a smaller LASSO-error, since then
the contribution of the high coefficients to the LASSO-error are sufficiently small.When D contains all features,
at thisλ already all coefficients are non-zero.

For the sake of completeness, let us justmention that the RMSE for the pair of descriptors defined by John
andBloch [31] as

∣( ( ) ( )) ( ( ) ( ))∣ ( )= + - +sr r r r rA A B B , 15p s p s

∣ ( ) ( )∣ ∣ ( ) ( )∣ ( )= - + -pr r r r rA A A A 16p s p s

is 0.3055 eV. For predicting the energy difference in a linearway, the pair of descriptors ( ( ) ( ))r rA , Bp d is already
slightly better (by 4%) than this.

2.5. Amore complex LASSO example: non-linearmapping
Until this point, we have treated only linearmodels, i.e., where the function ( )= dP f is a linear combination of
the components of the input vector d . This is a clear limitation. In this section, we describe howone can easily
introduce non-linearities, without loosing the simplicity of the linear-algebra solution. To the purpose, the
vector d ismapped by a (in general nonlinear) function  F : M M1 2 into a higher-dimensional space, and
only then the linearmethods are applied in M2. This idea is well known inℓ2-regularized kernelmethods [53],
where the so-called kernel trick is exploited. In our case, we aim at explicitly defining and evaluating a higher
dimensional-mapping of the initial features, where each newdimension is a non-linear function of one ormore
initial features.

We stay with the case of 82 compounds. To keep the presentation simple, we leave out the inputs ( )r Ad and
rd(B). Hence, every compound isfirst described by the following four primary features,

( ( ) ( ) ( ) ( )) ( )=d r r r B r BA , A , , . 17s p s pAB

Wewill construct a simple, but non-trivial non-linearmapping * F : M4 (withM* to be defined) and
apply LASSO afterwards. The construction ofΦ involves some of our pre-knowledge, for example, on
dimensional grounds, we expect that expressions like ( ) ( )-r rA As p

2 have no physicalmeaning and should be
avoided. Therefore, in practice, we allow for sums and differences only of quantities with the same units.We
hence consider the 46 features listed in table 1: the 4 primary plus 42 derived features, building ( )F dAB ,
represented by thematrix D.

The descriptors of John andBloch [31], rπ and rσ, are both included in this set, with indexes 41 and 46,
respectively. The data are standardized, so that each of the 46 columns of D hasmean zero and variance 1.Note
that for columns 5–46, the standardization is applied only after the analytical function of the primary features is
evaluated, i.e., for physical consistency, the primary features enter the formula unshifted and unscaled.

Applying LASSO gives the result shown in table 2, wherewe list the coordinates as they appear whenλ
decreases.Wherewe have truncated the list, at l = 0.028, the features with non-zero coefficient are:

Table 1.Definition of the feature space for the tutorial example described in section 2.5.

Columns of D Description Typical formula

1–4 Primary features ( ) ( ) ( ) ( )r r r B r BA , A , ,s p s p

5–16 All ratios of all pairs of rʼs ( ) ( )r rA As p

17–22 Differences of pairs ( ) ( )-r rA As p

23–34 All differences divided by the remaining rʼs ( ( ) ( )) ( )-r r r BA As p s

35–40 Absolute values of differences ∣ ( ) ( )∣-r rA As p

41–43 Sums of absolute values of differences

with no r appearing twice ∣ ( ) ( )∣ ∣ ( ) ( )∣- + -r r r B r BA As p s p

44–46 Absolute values of sums of differences

with no r appearing twice ∣ ( ) ( ) ( ) ( )∣- + -r r r B r BA As p s p
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Let us remark, that the features 2 and 3 and the features 3 and 5 are strongly correlated, with covariance greater
than 0.8 for both pairs8. This results in a difficulty for LASSO to identify the right features.

With these five descriptor candidates, we ran an exhaustiveℓ0 test over all the 5 · 4/2=10 pairs.We
discovered that the pair of the second and third selected features, i.e. of

( )
( )

( ) ( )
( )

( )
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r

r r

r

B

A
,

B B

A
18s

p

s p

p

achieves the smallest RMSE of 0.1520 eV, improving on John andBloch’s descriptors [31] by a factor 2.We also
ran an exhaustiveℓ0 search for the optimal pair over all 8 features that were singled out in the LASSO sweep, i.e.,
including also ( )r Ap , rπ, and ( )r As . The best pair was still the one in equation (18).We then also performed a full
search over the 46·45/2=1035 pairs, where the pair in equation (18) still turned out to be the one yielding the
lowest RMSE.We conclude that even though LASSO is not able tofind directly the optimalΩ-dimensional
descriptor, it can efficiently be used for filtering the feature space and single out the ‘most important’ features,
whereas the optimal descriptor is then identified by enumeration over the subset identified by LASSO.

The numerical test discussed in this section shows the following:

• Apromising strategy is to build an even larger feature space, by combining the primary features via analytic
formulas. In the next section, wewalk through this strategy for systematically constructing a large feature
space.

• LASSO cannot alwaysfind the bestΩ-dimensional descriptor as the firstΩ columns of D with non-zero
coefficient by decreasingλ. This is understood as caused by features that are (nearly) linearly correlated.
However, an efficient strategy emerges: First using LASSO for extracting a numberQ > W of ‘relevant’
components. These are thefirstΘ columns of D with non-zero coefficients foundwhen decreasingλ. Then,
performing an exhaustive search over all theΩ-tuples that are subsets of theΘ extracted columns. The latter is
in practice the problem formulated in equations (4) and (5). In the next section, we formalize this strategy,
whichwe call henceforth LASSO+ ℓ0, because it combines LASSO (ℓ1) andℓ0 optimization.

The feature-space construction and LASSO+ ℓ0 strategies presented in the next section, are essentially those
employed in our previous paper [18]. The purpose of this extended presentation is to describe a general
approach for the solution of diverse problems, where the only requisite is that the set of basic ingredients (the
primary features) is known. As a concluding remark of this section, we note that CS and LASSOwere successfully
demonstrated to help solving quantum-mechanics andmaterials-science problems in [54–58]. In all those
papers, aℓ1 based optimizationwas adopted to select from awell defined set of functions, in some sense the
‘natural basis set’ for the specific problem, aminimal subset of ‘modes’ thatmaximally contribute to the accurate

Table 2.Bookkeeping of (decreasing)λ values at which either a new
feature gets non-zero coefficients (marked by a ‘+’ in column action)
or a feature passes fromnon-zero to zero coefficient (marked by a
‘−’). The value ofℓ0 counts the non-zero coefficients at each reported
λ value. In a rather non-intuitive fashion, the number of non-zero
coefficients fluctuates with decreasingλ, rather thanmonotonically
increasing; this is an effect of linear correlations in the feature space.

λ ℓ0 Feature Action

0.317 1 ( )r Ap +

0.257 2 ∣ ( ) ( )∣ ∣ ( ) ( )∣- + -r r r rA A B Bp s p s +

0.240 3 ( ) ( )r rB As p +

0.147 4 ( ) ( )r rA As p +

0.119 3 ∣ ( ) ( )∣ ∣ ( ) ( )∣- + -r r r rA A B Bp s p s −

0.111 4 ( )r As +
0.104 3 ( )r Ap −

0.084 4 ∣ ( ) ( )∣-r rB Bs p +

0.045 5 ( ( ) ( )) ( )-r r rB B As p p +

0.034 6 ∣ ( ) ( )∣-r rA Bs p +

0.028 5 ( )r As −

8
‘Having a large correlation’ is clearly not a transitive relationship, i.e., if the vector a is highly correlatedwith b (the absolute value of the

covariance is close to 1), and b is highly correlated to c , c is not necessarily highly correlated to a.
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approximation of the property under consideration. In our case, the application of theℓ1 (and subsequentℓ0)
optimizationmust be preceded by the construction of a basis set, or feature space, for which a construction
strategy is not at all a priori evident.

In the discussed numerical tests until this point, we have always looked for the low-dimensionalmodel that
minimizes the square error (the square of theℓ2 normof thefitting function). Another quantity of physical
relevance that onemaywant tominimize is themaximumabsolute error (maxAE) of thefit. This is called
infinity norm and, for the vector x, it is written as ∣ ∣  =¥x xmax k . Theminimization problemof equation (6)
then becomes

( )   


l- +
Î

¥P Dc cargmin . 19
c

1
M

This is still a convex problem as in equation (6).We have looked for themodel that gives the lowestMaxAE,
starting from the feature space of size 46 defined in table 1.

For the specific example presented here, wefind (see table 3) that the 2Dmodel is the same for both settings,
i.e., themodel thatminimizes the RMSE alsominimizes theMaxAE. This is, of course,not necessarily true in
general. In fact, the 1Dmodel thatminimizes the RMSEdiffers from the 1Dmodel thatminimizes theMaxAE.

3.Generation of a feature space

For the systematic construction of the feature space, we first divide the primary features in groups, according to
their physicalmeaning. In particular, necessary condition is that elements of each group are expressedwith the
same units.We start from atomic features, see table 4.

Next, we define the combination rules.We note here that building algebraic function over a set of input
variables (in our case, the primary features) by using a defined dictionary of algebraic (unary and binary)
operators andfinding the optimal functionwith respect to a given cost functional is the strategy of symbolic
regression [59]. In thisfield of statistical learning, the optimal algebraic function is searched via an evolutionary
algorithm,where the analytic expression is evolved by replacing parts of the test functionswithmore complex
functions. In otherwords, in symbolic regression, the evolutionary algorithm guides the construction of the
algebraic functions of the primary features. In our case, we borrow from symbolic regression the idea of
constructing functions by combining ‘building blocks’ inmore andmore complexway, but the selection of the
optimal function (in our language, the descriptor) is determined by the LASSO+ ℓ0 algorithmover thewhole
set of generated functions, after the set of candidate functions is generated.

Our goal is to create ‘grammatically correct’ combinations of the primary features. Thismeans, besides
applying the usual syntactic rule of algebra, we add a physicallymotivated constraint, i.e., we exclude linear

Table 3.Comparison of descriptors selected byminimizing theℓ2-normof the
fitting function (the usual LASSOproblem) or the ℓ¥ (maximumnorm) over the
feature space described in table 1. Reported is also the performance of themodels in
terms of RMSE andMaxAE.

Ω Type RMSE MaxAE Descriptor

1 ℓ2 0.32 1.93 ( )r Ap

1 ℓ¥ 0.36 1.70 ( ) ( )r rA Bs s

2 ℓ2 0.15 0.42 ( ) ( ) ( ( ) ( )) ( )-r r r r rB A , B B As p s p p

2 ℓ¥ 0.15 0.42 ( ) ( ) ( ( ) ( )) ( )-r r r r rB A , B B As p s p p

Table 4. Set of atomic primary features used for constructing the feature
space, divided in groups. The ‘ID’ labels the group and ‘#’ indicates the
number of features in the group.

ID Description Symbols #

A1 Ionization potential (IP) and
electron affinity (EA)

IP(A), EA(A),
IP(B), EA(B)

4

A2 Highest occupied (H) and low-
est unoccupied (L)

H(A), L(A),
H(B), L(B)

4

Kohn–Sham levels

A3 Radius at themax. value of s, p,

and d

( )r As , ( )r Ap , ( )r Ad 6

valence radial radial probability

density

( )r Bs , ( )r Bp , ( )r Bd

9
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combinations of inhomogeneous quantities, such as ‘IP+ rs’ or ‘rs+ rp
2
’. In practice, quantities are

inhomogeneous when they are expressedwith different units. Except this exclusions of physically unreasonable
combinations, we produce asmany combinations as possible. However, compressed-sensing theory poses a
limit on themaximum sizeM of the feature space fromwhich the best (low-)Ω-dimensional descriptor can be
extracted by sampling the feature spacewith the knowledge ofN data points: ( )= WN C Mln [19, 60, 61], when
theM candidate features are uncorrelated.C is not a universal constant, however it is typically estimated to be in
the range between 4 and 8 (see [22]). For W = 2 andN=82, this implies a range ofM between∼200 and
∼30000. Therefore, we regarded values of a few thousand as an upper limit forM. Since the number of thinkable
features is certainly larger than few thousands, we proceeded iteratively in several steps, by learning from the
previous stepwhat to put andwhat not in the candidate-feature list of the next step. In the following, we describe
how a set of∼4500 features was created. In appendixes A andB,we summarize howdifferent feature space can
be constructed, starting fromdifferent assumptions.

First of all, we form sums and absolute differences of homogeneous quantities and apply some unary
operators (powers, exponential), see table 5.

Next, the above combinations are further combined, see table 6.
LASSOwas then applied to this set of∼4500 candidate features. If the features had low linear correlation, the

first two features appearing upon decreasingλwould be the best 2D descriptor, i.e., the one thatminimizes the
RMSE9.Unfortunately, checking all pairs of features for linear correlationwould scale with sizeM as
unfavorably as just performing the brute force search for the best 2Ddescriptor by trying all pairs. Furthermore,
such a screeningwould require the definition of a threshold for the absolute value of the covariance, for the
decisionwhether or not any two features are correlated, and then possibly discarding one of the two. A similar
problemwould appear in casemore refined techniques, like singular-value decomposition, were tried in order
to discard eigenvectors with low eigenvalues. Still a threshold should be defined and thus tuned.

We adopted instead a simple yet effective solution: the best W = 30 features with non-zero coefficients that
emerge from the application of LASSO at decreasingλ are grouped, and among them an exhaustiveℓ0
minimization is performed (equations (4) and (5) for  =c 1, 2, 3,0 K). The single features, pairs, triplets, etc
that score the lowest RMSE are the outcome of the procedure as 1D, 2D, 3D, etc, descriptors. The validity of this
approachwas tested by checking that running it on smaller feature spaces ( ~M few hundreds), where the direct
search among all pairs and all triples could be carried out, gave the same result.

Our procedure, applied to the above defined set of features (tables 4–6), found both the best 1D, 2D, and 3D
descriptor, as well as the coefficients of the equations for predicting the propertyDE as shown below (energies
are in eV and radii are inÅ):

Table 5. First set of operators applied to the primary features (table 4). Each group, labeled by a different ID, is formed by starting from a
different group of primary features and/or by applying a different operator. The label A stays for bothA andB of the binarymaterial.

ID Description Prototype formula #

B1 Absolute differences ofA1 ∣ ( ) ( )∣-IP A EA A 6

B2 Absolute differences ofA2 ∣ ( ) ( )∣-L A H A 6

B3 Absolute differences and sums ofA3 ∣ ( ) ( )∣r rA Ap s 30

C3 Squares ofA3 andB3 (only sums) ( ) ( ( ) ( ))+r r rA , A As p s
2 2 21

D3 Exponentials ofA3 andB3 (only sums) ( ( )) ( ( ) ( ))r r rexp A , exp A As p s 21

E3 Exponentials of squaredA3 andB3 (only sums) [ ( ) ] [( ( ) ( )) ]r r rexp A , exp A As p s
2 2 21

Table 6. Second set of operators applied to the groups defined in tables 4 and 5.

ID Description Prototype formula #

{ }F F F1, 2, 3 Abs. differences and sums of ∣∣ ( ) ( )∣ ∣ ( ) ( )∣∣ r r r rA A B Bp s p s
a 72

{ }B B B1, 2, 3 , without repetitions

G ratios of any of { } =Ai Bi i, , 1, 2, 3 ∣ ( ) ( )∣ ( ( ) ( ))- +r r r rB B A Bp s d s
2 ∼4300

with any of { }A C D E3, 3, 3, 3

a With signs (–,+, –) this is St. John&Bloch’s rπ, with signs (+, –,+) it is rσ.

9
Correlation between pairs of featuresmeans in this context that the absolute value of the covariance (i.e., the scalar product of the 82-

dimensional vectors containing the values of features i and j, with each vector subtracted of itsmean value and divided by its standard
deviation) is close to 1. If their covariance is close to zero, the two features are uncorrelated.
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We removed the absolute value from ‘ ( ) ( )-IP B EA B ’ as this difference is always negative. Infigure 1, we
show a structuremap obtained by plotting the 82materials, wherewe used the two components of the 2D
descriptor (equation (21)) as coordinates.We note that the descriptor we found contains physicallymeaningful
quantities, like theHOMO-LUMOgap of B in the numerator of the first component and the size difference
between valence s- and p-orbitals (numerators of the second and third component).

In closing this section, we note that the algorithmdescribed above can be dynamically run in aweb-based
graphical application at:https://analytics-toolkit.nomad-coe.eu/tutorial-LASSO_L0.

4. Cross validation (CV), sensitivity analysis, and extrapolation

In this section, we discuss in detail a series of analyses performed on our algorithm.We start with the adopted
CV scheme. Then, we investigate how theCV error varies with the size of the feature space (actually, its
‘complexity’, as will be defined below).We proceed by discussing the stability of the choice of the descriptor with
respect to sensitivity analysis. Finally, we test the extrapolation capabilities of themodel.

In the numerical test described above, we have always used all the data for the training of themodels; the
RMSE given asfigure ofmerit were therefore fitting errors. However, in order to assess the predictive ability of a
model, it is necessary to test it on data that have not been used for the training, otherwise one can incur the so-
called overfitting [42]. Overfitting is in general signaled by a noticeable discrepancy between the fitting error (the
RMSEover the training data) and the test error (the RMSEover control data, i.e., the data that were not used
during the fitting procedure). If a large amount of data is available, one can just partition the data into a training
and a test set, fully isolated one fromanother. In our case, that is not so unusual, the amount of data is too little
for such partitioning, therefore, we adopted aCV strategy.

In general, the data set is still partitioned into training and test data, but this procedure repeated several
times, choosing different test data, in order to achieve a good statistics. In our case, we adopted a leave-10%-out
CV scheme, where the data set is divided randomly into a∼90%of training data (75 data points, in our case) and
a∼10%of test data. Themodel is trained on the training data and the RMSE is evaluated on the test set. By
‘training’, wemean thewhole LASSO+ ℓ0 procedure that selects the descriptor and determines themodel (the

Figure 1.Energy differences betweenRS andZB structures of the 82 octet binary ABmaterials, as predicted by thefittedmodel,
arranged according to our optimal two-dimensional descriptor. The parallel straight lines are isolevels of the predictedmodel, from
left to right, at−0.2, 0, 0.2, 0.5, 1.0 eV. The distance from the 0 line is proportional to the difference in energy betweenRS andZB. The
color/symbol code is for the reference (DFT-LDA) energies.

11

New J. Phys. 19 (2017) 023017 LMGhiringhelli et al

https://analytics-toolkit.nomad-coe.eu/tutorial-LASSO_L0


coefficients of the linear equation) as in equations (20)–(22). Anotherfigure ofmerit that wasmonitored is the
maximumabsolute error over the test set. The random selection, training, and error evaluation procedure was
repeated until the average RMSE andmaximumabsolute errors did not change significantly. In practice, we
typically performed 150 iterations, but the quantities were actually convergedwell before.We note that, at each
iteration, the standardization is applied by calculating the average and standard deviation only of the data points
in the training set. In this way, no information from the test set is used in the training, while if the standardization
were computed once and for all over all the available data, some information on the test set would be used in the
training. In fact, it can be shown [42] that such approach can lead to spurious performance.

TheCV test can serve different purposes, depending on the adopted framework. For instance, inKRR, for a
Gaussian kernel, thefitted property is expressed as aweighted sumofGaussians (see also section 5):

( ) ( )  s= å - -=d d dP c exp 2i
N

i i1 2
2 2 , whereN is the number of training data points, i.e., there are asmany

coefficients as (training) data points. The coefficients ci are determined byminimizing
( ( ) ) ( ) l så - + å - -= =d d dP P c c exp 2i

N
i i i j

N N
i j i j1

2
, 1

,
2
2 2 , where ( ) - = å -a a a=

Wd d d di j i j2
2

1 , ,
2 is the

squaredℓ2 normof the difference of descriptors of differentmaterials. A recommended strategy [42] is to use the
cross validation to determine the optimal value of the so-called hyper-parameters,λ andσ, in the sense that it is
selected the pair ( )l s, thatminimizes the average RMSEupon cross validation. In our scheme, we can regard
the dimensionalityΩ of the descriptor and the sizeM of the feature space as hyper-parameters. By increasing both
parameters, we do not observe aminimum, butwe rather reach a plateau, where no significant improvement on
theCV average RMSE is achieved (see below).

Since in our procedure, the descriptor is found by the algorithm itself, a fundamental aspect of the CV
scheme is that all the procedure, including the selection of the descriptor, is repeated from scratchwith each
training set. Thismeans that, potentially, the descriptor changes at each training-set selection.We found a
remarkable stability of the 1D and 2Ddescriptors. The 1Dwas the same as the all-data descriptor (equation (20)
for 90%of the training sets, while the 2Ddescriptor was the same as in equation (21) in all cases. For 3D and
higher dimensionality, as expected from the ( )= WN C Mln relationship, the selection of the descriptor
becomesmore unstable, i.e., for different training sets, the selected descriptor often differs in at least one of the
three components. The RMSE, however, does not changemuch fromone training set to the other, i.e., the
instability of the descriptor selection just reflects the presence ofmany competingmodels.We show in table
table 7 theCV figures ofmerit, average RMSE andmaximumabsolute error, as a function of increased
dimensionality.We also show in comparison thefitting error.

4.1. Complexity of the feature space
Our feature space is subdivided in 5 tiers.

• In tier zero, we have the 14 primary features as in table 4.

• In tier one, we group features obtained by applying only one unary (e.g., ( ) , exp2 ) or binary (e.g.,
∣ ∣ - ) operation on primary features, where and stand for any primary feature. Note that in this
scheme the absolute value, applied to differences, is not counted as an extra operation, i.e., we consider the
operator ∣ ∣ - as a single operator.

• In tier two, two operations are applied, e.g., ( ) ( ) ( )        + - -, , , exp2 2 .

• In tier three, we apply three opera-
tions: ∣ ∣ ( ) ∣ ∣ ∣ ∣ ( ) ( )           +   - + ¼B , , exp , ,2 2 .

• Tier four: ∣ ∣ ( ) ∣ ∣ ( ( ))       +  - + ¼, exp ,2 .

Table 7.Rootmean square error (RMSE) and
maximumabsolute error (MaxAE) in eV for the fit of
all data (first two lines) and of the test set in a leave-
10%-out cross validation (L-10%-OCV), averaged
over 150 random selections of the training set (last two
lines), according to our LASSO + ℓ0 algorithm.

Descriptor 1D 2D 3D 5D

RMSE 0.14 0.10 0.08 0.06

MaxAE 0.32 0.32 0.24 0.20

RMSE, CV 0.14 0.11 0.08 0.07

MaxAE, CV 0.27 0.18 0.16 0.12
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• Tier five: ∣ ∣ ( ( ) )    - + ¼exp ,2 .

Our procedure was executedwith tier 0, thenwith tier 0AND1, thenwith tiers from0 to 2, and so on. The
results are shown in table 8. A clear result of this test is that little is gained, in terms of RMSE,when going beyond
tier 3. The reasonwhyMaxAEmay increase at larger tiers is that the choice of the descriptor becomesmore
unstable (i.e., different descriptorsmay be selected) the larger the feature space is. This leads to less controlled
maximal errors, and is a reflection of overfitting.

Incidentally, while for the 1D and 2Ddescriptor, the results presented in equations (20) and (21) contain
only features up to tier 3, the third component of the 3Ddescriptor shown in equation (22) belongs to tier 4. The
3Ddescriptor andmodel limited to tier 3 is:

( ) ( )
( )

∣ ( ) ( )∣
( ( ))

∣ ( ) ( )∣
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+
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s p
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p s
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This is the same as presented in [18]. TheCVRMSEof the 3Dmodel compared to the one in equation (22) is
worse by less than 0.01 eV.

4.2. Sensitivity analysis
Cross validation tests if the foundmodel is good only for the specific set of data used for the training or if it is
stable enough to predict the value of the target property for unseen data. Sensitivity analysis is a complementary
test on the stability of themodel, where the data are perturbed, typically by randomnoise. The purpose of
sensitivity analysis can befinding outwhich of the input parametersmaximally affect the output of themodel,
but also howmuch themodel depends on the specific values of the training data. In practice, the training data
can be affected bymeasurement errors even if they are calculated by an ab initiomodel. This is because numerical
approximations are used to calculate the actual values of both the primary features and the property. Since,
through our LASSO+ ℓ0methodology, we determine functional relationships between the primary features
and the property, applying noise to the primary features and the property is away offinding out howmuch the
found functional relationship is affected by numerical inaccuracies; in otherwords, if it is an artifact of the level
of accuracy or a deeper, physicallymeaningful, relationship.

4.2.1. Noise applied to the primary features
In this numerical test, each of the 14 primary features of table 4was independentlymultiplied byGaussian noise
withmean 1 and standard deviation s = 0.001, 0.01, 0.03, 0.05, 0.1, 0.13, 0.3, respectively. The derived
features are then constructed by using these primary features including noise.We also consideredmultiplying by
Gaussian noise (same level as for the independent features) all features at once. The test with independent
features reflects the traditional sensitivity analysis test (see e.g., [62]), where the goal is to single outwhich input
parametersmaximally affect the results yielded by amodel. The test with all features perturbed takes into
account that all primary features (aswell as thefitted property) are evaluatedwith the same physicalmodel and
computational parameters. Therefore, inaccuracies related to not fully converged computational settings are
modeled as noise.

Table 9 summarizes the results. It reports the fractional number of times, in%, inwhich the 2Ddescriptor of
equation (21) is found by LASSO+ ℓ0 as a function of the noise level. For each noise level, 50 random

Table 8.Errors after L-10%-OCV. ‘Tier x’means that all tiers up to tier x are included
in the feature space.

Tier 0 Tier 1 Tier 2 Tier 3 Tier 4 Tier 5

W = 1

RMSE,CV 0.31 0.19 0.14 0.14 0.14 0.14

MaxAE,CV 0.67 0.37 0.32 0.28 0.29 0.30

W = 2

RMSE,CV 0.27 0.16 0.12 0.10 0.10 0.10

MaxAE,CV 0.60 0.39 0.27 0.18 0.19 0.22

W = 3

RMSE,CV 0.27 0.12 0.10 0.08 0.08 0.08

MaxAE,CV 0.52 0.39 0.27 0.16 0.18 0.20
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extractions of theGaussian-distributed randomnumberwere performed. For the leave-one-out CV (LOOCV)
scheme, 82 iterations were performed for each randomnumber, i.e. eachmaterials was once the testmaterial.
For the leave-10%-out (L-10%-OCV) 50 iterationswere performed, with 50 random selections of 74materials
as training and 8materials as test set. As expected, for the 9 primary features that do not appear in the 2D
descriptor of equation (21), the noise does not affect thefinal result at any level, i.e., the 2Ddescriptor of the
noiselessmodel is always found, together with the fitting coefficients.

When one of the 5 features appearing in the 2Ddescriptor is perturbed, the result is affected by the noise
level. For noise applied to some features, the percent of selection of the 2Ddescriptor of the noiselessmodel
drops faster with the noise level than for others. Of course, evenwhen the 2Ddescriptor of the noiselessmodel is
found, thefitting coefficients differ from iteration to iteration (each iteration is characterized by a different value
of the randomnoise). For the LOOCV, the RMSE goes from0.09 eV (s = 0.001) to 0.12 eV (s = 0.3), while for
the L-10%-OCV the RMSE goes from0.11 to 0.15 eV. So, evenwhen, at the largest noise level, the selected
descriptormay vary each time, the RMSE is onlymildly affected. This reflects the fact thatmany competitive
models are present in the feature space, and therefore amodel yielding a similar RMSE can always be found. It is
interesting to note that upon applying noise to IP(B) in all cases the new 2Ddescriptor is

( )
( )

∣ ( ) ( )∣
( ( ))

( )
-⎛

⎝⎜
⎞
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r r
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, 24
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i.e, the very similar to the descriptor in equation (21), but here IP(B) is simplymissing. It is also surprising that
for quite large levels of noise (10%–13%) applied to EA(B), the descriptor containing this feature is selected. In
general, up to noise levels of 5%, the descriptor of the noiselessmodel is recovered themajority of times ormore.
Therefore, we can conclude that themodel selection is not very sensitive to the noise applied to isolated features.
When the noise is applied to all features, however, the frequency of recovery of the 2Ddescriptor of equation (21)
drops quickly. Still, for noise levels up to 1%, that could be related, e.g., to computational inaccuracies (non fully
converged basis sets, or other numerical settings), themodel is recovered almost always.

4.2.2. Adding noise to = DP E
Wehave added uniformly distributed noise of size d =   ¼0.01, 0.03, eV to theDFTdata ofDE. Here, we
have selected two feature spaces of size 2924 and 1568, constructed by two different set of functions, but always
including the descriptors of equations (20)–(22). The results are shown in table 10. For W = 2, we report the
fraction of trials for which the 2Ddescriptor of the unperturbed datawas found in a L-10%-OCV test. (10
selection of randomnoisewere performed and for each selection L-10%-OCVwas run for 50 random selections
of the training set, so the statistic is over 500 independent selections.)The selection of the descriptor is
remarkably stable up to uniformnoise of±0.1 eV (incidentally, at around the value of the RMSE), then it drops

Table 9.Number of times the 2Ddescriptor of the noiselessmodel (see equation 21) is foundwhen noise is
applied to the primary features. The noise ismeasured in terms of the standard deviation of theGaussian-
distributed set of randomnumbers thatmultiply the feature. Only for the 5 features contained in the 2D
noiselessmodel, the noise affects the selection of the descriptor, therefore only 5 out of 14 primary features are
listed. The last line shows the effect of noise applied to all primary features simultaneously. The results are
displayed for both leave-one-out (LOOCV) and leave-10%-out CV schemes, as indicated by the ‘CV scheme’
column.

Feature CV scheme
Measure ofGaussian noise,σ

0.001 0.010 0.030 0.050 0.100 0.130 0.300

IP(B) LOOCV 99 99 98 70 4 0 0

IP(B) L-10%-OCV 84 84 71 51 10 1 0

EA(B) LOOCV 99 99 99 98 91 86 30

EA(B) L-10%-OCV 86 84 84 84 80 72 28

( )r As LOOCV 99 99 99 99 96 61 0

( )r As L-10%-OCV 83 87 84 86 72 38 0

( )r Ap LOOCV 99 98 86 64 2 0 0

( )r Ap L-10%-OCV 85 85 67 42 0 0 0

( )r Bp LOOCV 99 99 99 99 81 50 1

( )r Bp L-10%-OCV 86 85 86 83 72 53 2

All 14 LOOCV 99 98 70 11 0 0 0

All 14 L-10%-OCV 85 82 52 15 0 0 0

14

New J. Phys. 19 (2017) 023017 LMGhiringhelli et al



rapidly.We note that the errors stay constant when the noise is in the ‘physicallymeaningful’ regime, i.e., the
relative ordering of thematerials along theDE scale is notmuch perturbed. Onlywhen the noise startsmixing
the relative order of thematerials, then the prediction becomes also less and less accurate in terms of RMSE.

4.3. Extrapolation: (re)discovering diamond
Most ofMLmodels, in particular kernel-basedmodels, are known to yield unreliable performance for
extrapolation, i.e., when predictions aremade for a region of the input data where there are no training data.We
note that, in condensed-matter physics, the distinction betweenwhat systems are similar and suitable for
interpolation andwhat are not is difficult if not impossible.We test the extrapolative capabilities of our
LASSO+ ℓ0methodology, by setting up two exemplary numerical tests. In the first test, we remove from the
training set the twomost stable ZBmaterials, namely C-diamond andBN (the two rightmost points infigure 1),
and then calculate for both of themDE, as predicted by the trainedmodel. Although the prediction errors of 1.2
and 0.34 eV for C andBN, respectively, are very large, as can be seen in table 11 for the 2Ddescriptor, themodel
still predicts C andBNas themost stable ZB structures. Thus, in a setupwhere C andBNwere unknown, the
model would have predicted them as good candidates to be themost stable ZBmaterials.

In the other test, we remove from the training set all four carbon-containingmaterials, namely C-diamond,
SiC,GeC, and SnC, and then calculate for all of themDE, as predicted by the trainedmodel. The results are
reported in table 12 for themodel based on the 2Ddescriptor. The prediction error for C-diamond is
comparable to thefirst numerical test, and also the other errors are relatively large.However, the remarkable
thing, here, is that the trainedmodel does not know anything about carbon as a chemical element, nevertheless,
it is able to predict that it will formZBmaterials, and the relativemagnitude ofDE is respected.

We conclude that a LASSO+ ℓ0 basedmodel is likely to have good, at least qualitative, extrapolation
capabilities. This is owing to the stability of the linearmodel and the physicalmeaningfulness of the descriptor,
which contains elements of the chemistry of the chemical species building thematerial.

In closing this section, that we cannot draw general conclusions from the particularly robust performance of
the descriptors that are found by our LASSO+ ℓ0 algorithmwhen applied to the features space constructed as
explained above. The tests described in this section, however, form a useful basis for assessing the robustness of a
foundmodel.We regard such or similar strategy to be good practice. Two criteria give us confidence that the
foundmodelsmay have a physicalmeaning: these are the particular nature of themodels found by our
methodology, i.e., they are expressed as explicit analytic functions of the primary features, and the evidence of
robustness with respect to perturbations on the training set and the primary features.We also note that the

Table 10.Performance of themodel for increasing uniformnoise added to the calculatedDE . Besides the
RMSE and the AveMaxAE,we report the number of times, the 2Ddescriptor of the unperturbed data is
recovered.

Number of features Quantity Measure of uniformnoise, δ (eV)

±0.0 ±0.01 ±0.03 ±0.10 ±0.20

1536 %best 2Ddescriptor 100 99 99 93 63

RMSE (eV) 0.10 0.11 0.11 0.12 0.17

AveMaxAE (eV) 0.18 0.18 0.18 0.23 0.32

2924 %best 2Ddescriptor 96 94 93 86 68

RMSE (eV) 0.11 0.11 0.12 0.13 0.18

AveMaxAE (eV) 0.19 0.20 0.22 0.24 0.34

Table 11.Performance of themodel
found by LASSO + ℓ0 when diamond
andBN are excluded from the
training. The rightmost column
reports the LDA cohesive energy per
atom of the ZB structure, referred to
spinless atoms as used for determining
the primary features in this work.

DE (eV) Ecoh (eV)

LDA Predicted LDA

−2.64 −1.44 −10.14

−1.71 −1.37 −9.72
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functional relationships between a subset of the primary features and the property of interest that are found by
ourmethodology cannot be automatically regarded as physical laws. In fact, both the primary features andDE
are determined by theKohn-Sham equationswhere the physically relevant input only consists of the atomic
charges.

5. Comparison toGaussian-KRRwith various descriptors

In this section, we useGaussian-KRR to predict theDFT-LDADE for the 82 octet binaries, with various
descriptors built fromour primary features (see table 4) or functions of them. The purpose of this analysis is to
point out pros and cons of using KRR,when compared to an approach such as our LASSO+ ℓ0. In the growing
field of data analytics applied tomaterials-science problems, KRR is perhaps theMLmethod that ismost widely
used to predict properties of a given set ofmolecules ormaterials [5, 8, 63, 64].

KRR solves the nonlinear regression problem:

( ) ( ) ( )å å ål- +
= = =

⎛
⎝⎜

⎞
⎠⎟d d d dP c k c k cargmin , , , 25
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where Pj are the data points, ( )d dk ,i j is the kernelmatrix built with the descriptor d , andλ is the regularization
parameter, with a similar role asλ in equations (3), (5), and (6). In KRR,λ is determined byminimizing theCV
error. Thefitting function determined byKRR is therefore ( ) ( )= å =d d dP c k ,i

N
i i1 , i.e. a weighted sumover all

the data points. The crucial steps for applying thismethod are the selection of the descriptor and of the kernel.
Themost commonly used kernel is theGaussian kernel: ( ) ( )  s= - -d d d dk , exp 2i j i j 2

2 2 . The parameter
determining thewidth of theGaussian,σ, is recommended [42, 65] to be determined togetherwithλ, by
minimizing theCV error, and this is the strategy used here. The results are summarized in table 13. In each case,
the optimal ( )l s, was determined by running LOOCV.

Wemake the following observations:

Table 12.Performance of themodel found by
LASSO + ℓ0 when the carbon atom is excluded from
the training, i.e., C-diamond, SiC, GeC, SnC are
excluded from the training.The rightmost column
reports the LDA cohesion energy per atom of the ZB
structure, referred to spinless atoms as used for
determining the primary features in this work.

Material
DE (eV)

Ecoh (eV)
LDA Predicted LDA

C −2.64 −1.37 −10.14

SiC −0.67 −0.48 −8.32

GeC −0.81 −0.46 −7.28

SnC −0.45 −0.23 −6.52

Table 13.Performance of theKRRmethodwith various descriptors, in terms of theminimum
cross-validationRMSE over a grid of 30×30 ( )l s, values. Descriptor 4 is built with the
IUPACgroup (G, from1 to 18) and period (R from row, to avoid confusionwith the property
(P)) of the elements in the PTE; performance of this set of four possible primary features with
LASSO + ℓ0 is discussed in appendix B.1. Descriptors 5 contains the 4 primary features used for
building descriptor 2. Similarly, descriptor 6 contains the 5 primary features found in descriptor
3.Descriptor 7 contains all 14 atomic features listed in table 4. Descriptor 8 contains the 14
atomic features plus 9 dimer features (see table A1 in appendix A).

ID Dim. Descriptors ( )l s, RMSE (eV)

1 2D Z Z,A B ( · )-1 10 , 0.0086 0.13

2 2D John andBloch’s rσ and rπ ( · )-7 10 , 0.0086 0.09

3 2D our 2D ( · )-7 10 , 0.736 0.10

4 4D G(A), G(B), R(A), R(B) ( · )-1 10 , 0.146 0.09

5 4D ( ) ( ) ( ) ( )r r r rA , A , B , Bs p s p ( · )-2 10 , 0.146 0.08

6 5D IP(B), EA(B), ( ) ( ) ( )r r rA , A , Bs p p ( · )-7 10 , 0.146 0.07

7 14D All atomic features ( · )-1 10 , 0.426 0.09

8 23D All atomic and dimer features ( · )-1 10 , 6.726 0.24
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• With several atomic-based descriptors, KRRfits reach levels of RMSE comparable to or slightly better than
ourfit with the LASSO+ ℓ0.

• However, the performance of KRR is not improvingwith the dimensionality of the descriptor: descriptor 7
contains the same features as descriptor 5 or 6, plus other, possibly relevant, features. One thus expects a better
performance, which is not the case. The same happens when going to all 23 atomic and dimer features
(descriptor 8).

5.1. Prediction test withKRR
Wehave repeated the tests as in section 4.3, i.e., we have trained aKRRmodel for allmaterials except C andBN
and for allmaterials except all four carbon compounds. Thenwe have evaluated the predictedDE for the
excludedmaterials. This test was done by using descriptors 1, 2, 4, 5, and 7 from table 13. Furthermore, the 2D
LASSO+ ℓ0 descriptors were evaluated for the two datasets described above (details on these descriptors are
given in appendix C). These two 2Ddescriptors are analytical functions of five primary features each and these
were also used as a 5Ddescriptor. In all cases, we have determined the dimensionless hyperparametersλ andσ
byminimizing the RMSEover a LOOCV run, and the descriptors are normalized component by component.
Each component of the descriptor is normalized by theℓ2 normof the vector of the values of that component
over thewhole training set. The results are shown in tables 14 and 15.

The performance of KRR in predicting theDE of selected subsets ofmaterials is strongly dependent on the
descriptor. In particular, whenKRR is used for extrapolation (descriptor CBN,where C andBNdata points are
distant from the other data points in themetric defined by this 2Ddescriptor), the performance is rather poor in
terms of quantitative error, even though still correctly predicting BNandC as very stable ZBmaterials. Some
descriptors expected to carry relevant physical information, such as the set ( ( ) ( ) ( ) ( )r r r rA , A , B , Bs p s p ), show
also good predictive ability in these examples.

In summary, KRR is a viable alternative to the analyticalmodels found by LASSO+ ℓ0 (as also noted in [14]),
but only when a good descriptor is identified. The strength of our LASSO ℓ+ 0 approach is that the descriptor is

Table 14.KRRprediction ofDE (all in eV) for C andBN,when these twomaterials are not included in the
training set for various descriptors, compared to the LASSO + ℓ0 result and the LDA reference. Descriptor
CBN is the same 2Ddescriptor found by LASSO + ℓ0 for this dataset (see table C1, row b) and descriptor CBN*

is built with the 5 primary features found in descriptor CBN.

Method Descriptor Dim. (l s, ) DE(BN) DE(C)

LDA −1.71 −2.64

LASSO + ℓ0 CBN 2 −1.37 −1.44

KRR CBN 2 ( · )-1 10 , 0.146 −2.85 −4.30

KRR CBN* 5 ( · )-7 10 , 0.246 −0.96 −1.35

KRR Z Z,A B 2 ( · )-1 10 , 0.00856 −0.68 −0.56

KRR G(A), G(B), R(A), R(B) 4 ( · )-1 10 , 0.0796 −0.50 −1.29

KRR rσ and rπ 2 ( )0.013, 0.045 −1.00 −1.17

KRR ( ) ( ) ( ) ( )r r r rA , A , B , Bs p s p 4 ( · )-1 10 , 0.146 −1.27 −2.31

KRR All atomic features 14 ( · )-1 10 , 0.426 −1.01 −1.91

Table 15.KRRprediction ofDE (all in eV) for all four carbon compounds, when thesematerials are not included in the training set for
various descriptors, compared to the LASSO ℓ+ 0 result and the LDA reference. Descriptor xC* is the same 2Ddescriptor found by
LASSO ℓ+ 0 for this dataset (see table C1, row d) and descriptor xC* is built with the 5 primary features found in descriptor xC.

Method Descriptor Dim. (l s, ) DE(C) DE(SiC) DE(GeC) DE(SnC)

LDA −2.64 −0.67 −0.81 −0.45

LASSO + ℓ0 xC 2 −1.37 −0.48 −0.46 −0.23

KRR xC 2 ( · )-1.3 10 , 0.0795 −3.05 −0.66 −0.71 −0.24

KRR xC* 5 ( · )-5.7 10 , 0.424 −2.28 −0.48 −0.44 −0.17

KRR Z Z,A B 2 ( · )-7.3 10 , 0.0153 −2.38 −0.22 −0.59 −0.29

KRR G(A),G(B),R(A),R(B) 4 ( · )-1 10 , 0.136 −2.28 −0.48 −0.47 −0.28

KRR rσ and rπ 2 ( · )-1.6 10 , 0.0794 −1.96 −0.67 −0.50 −0.31

KRR ( ) ( ) ( ) ( )r r r rA , A , B , Bs p s p 4 ( · )-1.3 10 , 0.0795 −3.06 −0.66 −0.70 −0.24

KRR All atomic features 14 ( · )-1 10 , 0.426 −1.55 −1.24 −0.31 −0.04
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determined by themethod itself.Most importantly, LASSO+ ℓ0 is not fooled by features that are redundant or
useless (i.e., carrying little or no information on the property). These features are simply discarded. In contrast,
KRR cannot discard components of a descriptor, resulting in decreasing predictive quality when amixture of
relevant and non-relevant features is naively used as descriptor.

6. Conclusions

Wehave presented a compressed-sensingmethodology for identifying descriptors (parameters that describe the
material and its properties of interest) based on physicallymeaningful quantities and for quantitatively
predicting properties relevant formaterials-science. Themethodology starts from introducing possibly relevant
primary features that are suggested by physical intuition and pre-knowledge on the specific physical problem.
Then, a large feature space is generated by listing nonlinear functions of the primary features. Finally, few
features are selectedwith a compressed-sensing basedmethod, that we call LASSO+ ℓ0 because it uses the
LASSO for a prescreening of the features, and anℓ0-normminimization for the identification of the fewmost
relevant features. This approach can deal well with linear correlations among different features.We analyzed the
significance of the descriptors found by the LASSO+ ℓ0methodology, by discussing the interpolation ability of
themodel based on the found descriptors, the robustness of themodels in terms of stability analysis, and their
extrapolation capability, i.e., the possibility of predicting newmaterials.
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AppendixA.More details on the construction of the feature space

In order to determine thefinal feature space as described in section 3, we proceeded in this way:

• As scalar features describing the valence orbitals, we use the radii at which the radial probability densities of
the valence s, p, and d orbitals have theirmaxima. This type of radii was, in fact, selected by our procedure, as
opposed to the average radii (i.e., the quantum-mechanical expectation value of the radius). To the purpose,
first two feature spaces starting fromboth sets of radii as primary features were constructed. In practice, in one
case we started from the same primary features as in table 4, butwithout groupA2 (in order to reduce the
dimensionality of the final space), in the other case we substituted the average radii in groupA3, againwithout
groupA2.We then constructed both spaces following the rules of tables 5 and 6. Finally, we joined the spaces
and applied LASSO+ ℓ0 to this joint space.Only features containing the radii atmaximumwere selected
among the best.

• Similarly, we also defined three other radii-derived features for the atoms: the radius of the highest occupied
orbital of the neutral atom, r0, and analogously defined radii for the anions, -r , and the cations, +r . r0 is either rs
or rp as defined above, depending onwhich valence orbital is theHOMO.As in the previous point, we
constructed a feature space containing both { }- +r r r, ,0 and { }r r r, ,s p d and their combinations, and found that
only the latter radii were selected among the best.

• Wehave considered in addition features related to the AA, BB andABdimers (see table A1). These new
features where combined in the sameway as the groupsA1,A2, andA3, respectively (see tables 4–6). After
running our procedure, we found that features containing dimer-related quantities are never selected among
themost prominent ones.

• Weconstructed in sequence several alternative sets of features, in particular varying systematically the
elements of groupG (see table 6).Multiplication of the { }Ai Bi Ei, , , ( )=i 1, 2, 3 , by the { }A B3, 3 was
included, as well as division of { } ( )=Ai Bi Ei i, , , 1, 2, 3 , by the { }A B3, 3 cubed (instead of squared ans in
table 6). Only division byC3were selected by LASSO. At this stage, a descriptor in the form
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was found. The persistence of theC3 group in the denominator suggested to try other decaying functions of r
and + ¢r r ; for instance, exponentials as defined inD3 andE3. Interestingly, when the set of features
containingC3,D3, and E3was searched, the second and third component of the above descriptor were
substituted by corresponding formswhere the denominator squared is replaced by exponentials of the same
atomic features (see below). This descriptor was therefore found by LASSO, in the sense that the substitutions

( ) ( ( )) -r r1 A exp As s
2 and ( ) ( ( )) -r r1 A exp Ad d

2 are an outcome of the LASSOprocedure, not of a
directly attempted substitution.

• The fact that all selected features belong to groupG (see table 6), which is themost populated, is not due to the
fact thatmembers of the other groups are ‘submerged’ by the large population of groupG and ‘not seen’ by
LASSO.Wehave run extensive tests on the groups excludingG and, indeed, the best-performing descriptors
yield RMSE larger than thosewe have found.

• By noticing that the features in groupA2 (see table 4)never appear in the selected descriptors, and that the
information carried by the features inA1 is similar to those inA2, we investigatedwhat happens ifA1 is
removed from the primary features (and therefore all derived features containing primary features fromA1
are removed from the feature space).Wefind the followingmodels

∣ ( ) ( )∣
[ ( ) ]

( )D =
-

-E
r

0.518
H A L B

exp A
0.174, A.2

p
2

( ) ( )
( ( ) ( ))

( )
[( ( ) ( )) ]

( )D =
-
+

+
+

-E
r r

r r

r

r r
4.335

A B

A A
16.321

B

exp A B
0.406. A.3d s

p d

s

p p
2 2

In practice, ∣ ( ) ( )∣-H A L B replaces ∣ ( ) ( )∣-IP B EA B in the 1Dmodel, with a similar denominator as in
equation (21). However, the 2Dmodel does not contain any feature fromA2 and it is all built with features
fromA3. The RMSEof the 1Dmodel of equation (A.2) is 0.145 eV, slightly worse than 0.142 eV for themodel
of equation (20). TheRMSE of the 2Dmodel in equation (A.3) is 0.109 eV, compared to 0.099 eV for
equation (21). Equation (A.3) is also the best LASSO+ ℓ0model if the features space is constructed by using
onlyA3 as primary features. In the latter case, the 1Dmodel would be (RMSE=0.160 eV):

( )
[( ( ) ( )) ]

( )D =
+

-E
r

r r
19.384

B

exp A B
0.257. A.4

p

s s
2

Appendix B.Other feature spaces

In this appendix, we show the performance of our algorithmwith feature spaces constructed from completely
different primary features than in themain text. The purpose is to underline the importance of the choice of the
initial set of features.We note that when combination rules are established, performing newnumerical tests
takes just the (human) time to tabulate the new set of primary features for the data set.

B.1. Primary features including valence and rowof the PTE
We included the ‘periodic-table coordinates’, period (labeled as R for row) and group (labeled asG, from1 to 18
according to the IUPACnumbering) as features. The reason for this test is to seewhether by introducingmore
information than just the atomic number ZA and ZB (see [18]), a predictivemodel forDE is obtained. The new
information is the explicit similarity between elements of the same group (they share coordinate G), that is not
contained in the atomic numberZ. First we startedwith only R(A), R(B), G(A), andG(B) as primary features and
constructed a features space using the usual combination rules.We note thatG(B) is redundant formany but not

Table A1. Set of primary features related to homo- and hetero-nuclear
(spinless) dimers.

ID Descriptor Symbols #

¢A1 Binding energy ( )E AAb , ( )E BBb , ( )E ABb 3

¢A2 HOMO-LUMOKS gap HL(AA), HL(BB), HL(AB) 3

¢A3 Equilibriumdistance d(AA), d(BB), d(AB) 3

19

New J. Phys. 19 (2017) 023017 LMGhiringhelli et al



all the cases, givenG(A). In fact, for sp octet binaries, the sumof the groups is 18, but for binaries containingCu,
Ag, Cd, andZn (16 out of 82), the sum is different and therefore the coordinates are effectively 4.Next, we
construct a feature space starting from the set of 14 primary fetures described in table 4—but where the groupA2
(theHOMOandLUMOKohn-Sham levels) are substitutedwith R(A), R(B), G(A), andG(B)—and then
following the rules summarized in tables 5 and 6.

For the case where the primary features are only R(A), R(B), G(A), andG(B), we generated a feature space of
size 1143 and then ran LASSO+ ℓ0. The outcome is shown in table B1.We conclude that R(A), R(B), G(A), and
G(B) alone do not contain enough information for building a predictivemodel, following our algorithm.

For the case where the primary features are 14, including R(A), R(B), G(A), andG(B), we constructed a
feature space of size 4605, and LASSO+ℓ0 found the following 1Doptimalmodel:

∣ ( ) ( )∣
( )

( )D = - +
-

E
r

0.376 0.0944
R B G B

A
. B.1

p
2

In essence, ∣ ( ) ( )∣-R B G B replaced ∣ ( ) ( )∣-IP B EA B in equation (20), while the denominator remained
unchanged. The RMSEof this new 1Dmodel is only sightly better than themodel in equation (20), namely
0.13 eV (versus 0.14 eV), but theMaxAE ismuchworse, i.e., 0.43 versus 0.32 eV.However, this finding is
remarkable as it implies some correlation between ∣ ( ) ( )∣-R B G B and ∣ ( ) ( )∣-IP B EA B , where the latter is a
DFT-LDAproperty while the former comes simply from the number of electrons and the Aufbau principle.
Indeed, there is a Pearson’s correlation of 0.87 between the two quantities, while, when both quantities are
divided by ( )r Ap

2, the Pearson’s correlation becomes as high as 0.98. The 2D and 3Doptimal descriptor, though,
are the same as in equations (21) and (22).

Even though it is expected that the difference IP−EA growswhenmoving in the PTE to the right, a linear
correlation between the difference ∣ ( ) ( )∣-R B G B and IP−EA it is unexpected. Figure 2 shows in the bottom
panel this correlation for the p elements (the anions B in the ABmaterials) of the PTE,while the top panel shows
an even stronger linear correlation between IP−EA and the groupG in the PTE, for each period.

B.2. Adding John andBloch’s rσ and rπ as primary features
Here, we added rσ and rπ [31] to the primary features, in order to seewhether combinedwith other features,
according to our rules, yielded amore accurate and/ormore robustmodeling. The feature space was reduced, as
plainly adding all the combinationswith these 2 extra features,made thewhole procedure unstable (remember
thatwe have only 82 data points). By optimizing over a feature space of size 2924 and using all 82materials for

Table B1. Feature spacewith primary features R (row
or period) andG (group) of the PTE. Performance
over thewhole set of 82materials.

W = 1 W = 2 W = 3

RMSE (eV) 0.20 0.19 0.17

MaxAE (eV) 0.69 0.71 0.62

Figure 2.Plot of the difference IP−EA for the anions (B atoms in theABmaterials) versus their group (top pane) or the difference
group—row (bottompane) in the PTE. The straight lines are linear least-square fit of the data points.
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learning and testing, LASSO+ ℓ0 identified the same 2Ddescriptor as in equation (21). In other words, no
function of rσ or rπwonover the known descriptor. For the L-10%-OCV, in about 10%of the cases, a descriptor
containing a function of rσ or rπwas selected.

B.3. Use of force constants derived from the tedrahedral pentamers AB4 andBA4 as primary features
Here, we build a feature space exploring the idea that the difference in energy betweenRS andZBmay depend on
themechanical stability of the basic constituent of either crystal structure. For instance, we choose ZB andwe
look at themechanical stability of the tetrahedral pentamers AB4 andBA4. In practice, we look at the elastic
constants for the symmetric and antisymmetric stretching deformations.

Wewrite the elastic energy of deformation of a tetrahedral pentamer XY4, for a symmetric stretch:

( ) ( )aD = DE r4 , B.2harm
SYMM

XY
2

where aXY is the bond-stretching constant (of one XYbond in the tetrahedral arrangement, which is not
necessarily the same value as the one of the XYdimer). The factor 4 comes from the fact that there are 4 bonds
equally stretched. The second derivative ofDEharm

SYMM with respect toDr is ( ) aD  =E 8harm
SYMM

XY. The left-hand
side is evaluated from the (LDA) calculated ( )D DE rharm

SYMM curve, fitted to a second order polynomial.
Considering an asymmetric stretch, whichmeans that wemoved the central atomX along one of the four XY

bonds, wewrite:

( ) ( ) ( ) ( )a b q b qD = D + +E r2 3 3 , B.3harm
ASYMM

XY
2

YXY 1
2

YXY 2
2

where q1 and q2 are the two different distortion angles, that the 6 angles formed by the atomsX–Y–X, undergo
upon the asymmetric stretch. After working out the geometrical relationship (( ) )q q= Dr1,2

2
1,2
2 2 , wefind:

( )( ) ( )a bD = + DE r2 4 . B.4harm
ASYMM

XY YXY
2

Since the asymmetric deformation is defined throughDr , for convenience, bYXY is referred to the linear
displacement, rather than the angular one. In practice, the relationship (( ) )q Dr2 2 was derived. The second
derivative of the above expression is equated to the second derivative of the calculated ( )D DE r curve. Since aXY

is known from equation (B.2), bYXY is then inferred.
We have 4 primary features for eachmaterial, now. Thefirst two, aAB and aABA, come from theAB4

tetrahedralmolecule, while the third and fourth ones, aBA and aBAB come from the BA4molecule. In addition,
by noting that aXY and bYXY enter the expressionDEharm

ASYMM, with a ratio of 1/4, two primary features were
added, i.e., a b+ 4AB ABA and a b+ 4BA BAB. These 6 primary features were combined in (some of) the usual
ways. Note that the above combination of aBA and aBAB opens a new level of complexity. At present, when
constructing the feature space, we apply operations like +A B and ∣ ∣-A B , but we do not allow for the freedom
of arbitrary linear combinations of them.Note also that the information about the two atoms here are
intermingled in all six primary features.

To give an idea, the so obtained 2Ddescriptor is:

[ ( )] ( )b a b a
a b a b

a a
- +

+ + +
+

⎛
⎝⎜

⎞
⎠⎟4 ,

4 4
. B.5AB

ABA BA BAB AB
AB ABA BA B

AB BA

The performance in terms of RMSE andCV is summarized in table B2.We conclude that the features based on
the elastic energy do not yield amodel with good predictive ability.

AppendixC.Numerical tests excluding selected elements

In this numerical test, we have removed several sets ofmaterials from the data set. In practice, we have removed:

(0) Nothing

(a) C-diamond (1material)

(b) C-diamond andBN (2materials)

Table B2.Performance of themodel built fromprimary features
based on force-constants.

Ω RMSE all RMSECV MAECV MaxAECV

1 0.1910 0.1809 0.1473 0.3583

2 0.1532 0.1797 0.1303 0.3836

3 0.1346 0.2195 0.1553 0.4810
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(c) BN (1material)

(d) All carbon compounds (4materials)

(e) All boron compounds (4materials)

(f) CdO (example of amaterial withD ~E 0 (1material))

(g) All oxygen-containing compounds (7materials)

(h) All cadmium-containing compounds (4materials)

After the removal, the usual L-10%-OCVwas performed on the remainingmaterials. The purpose was to
analyze the stability of themodel when some crucial (or less crucial) elements/materials are removed completely
from the data set. Also, we aimed of identifying outliers, i.e. data points whose removal from the set improve the
accuracy of thefit. The results for a tier-3 feature space of size 2420 are summarized in table C1.

The code for the descriptors is:

( ) ( )
( )

∣ ( ) ( )∣
( ( ))

∣ ( ) ( )∣
( ( ))

( )
[( ( )) ]

∣ ( ) ( )∣
( )

( )
( )

( )
[ ( ) ( )]

( )
[( ( )) ]

( )

- - -

-

+

r

r r

r

r r

r

r r r

r r r

:
IP B EA B

A
, :

A B

exp A
, :

B B

exp A
,

:
IP B

exp A
, :

H B L B

A
, :

H B

A
,

:
IP A

A A
, :

EA A

exp A
. C.1

p

s p

s

s p

d

p p p

s p d

2

2 2 2

2 2

A B C

D E F

G H

Wemake the following observations:

Table C1. Summary of the training andCV errors for 1-, 2-, 3-dimensional descriptors for different datasets. The
last column reports the descriptor found using all data in the dataset for the training and the column ‘Ratio’ reports
the fraction of times the same descriptor was found over the L-10%-OCV iterations. CCmeans C-diamond.

Set Dimension RMSE (eV) RMSE (eV) MaxAE (eV) Ratio Descriptor

all CV CV

0) all 1 0.14 0.15 0.28 0.85 A

2 0.10 0.11 0.18 0.99 ,A B

3 0.08 0.09 0.17 0.95 , ,A B C

a)noCC 1 0.12 0.14 0.29 0.91 D

2 0.10 0.13 0.26 0.39 ,B E

3 0.08 0.08 0.17 0.91 , ,D B C

b)noCC, BN 1 0.12 0.14 0.27 0.94 D

2 0.10 0.12 0.26 0.36 ,D C

3 0.08 0.08 0.16 0.91 , ,D C B

c)noBN 1 0.14 0.19 0.39 0.75 A

2 0.10 0.13 0.26 0.83 ,A B

3 0.08 0.11 0.24 0.87 , ,A B C

d)noC 1 0.12 0.13 0.27 0.76 F

2 0.09 0.12 0.23 0.74 ,B E

3 0.07 0.10 0.20 0.47 , ,D B C

e)noB 1 0.13 0.18 0.37 0.37 G

2 0.10 0.14 0.30 0.42 ,A B

3 0.08 0.12 0.24 0.38 , ,A B C

f)noCdO 1 0.14 0.18 0.38 0.77 A

2 0.10 0.12 0.23 0.86 ,A B

3 0.08 0.10 0.22 0.90 , ,A B C

g)noO 1 0.13 0.16 0.33 0.79 A

2 0.10 0.13 0.27 0.74 ,A B

2 0.08 0.12 0.25 0.33 , ,A B H

h)noCd 1 0.14 0.18 0.38 0.80 A

2 0.10 0.13 0.26 0.84 ,A B

3 0.08 0.11 0.24 0.89 , ,A B C
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• WhenC-diamond (andC-diamond together with BN) are excluded from the set, the errors aremarginally
smaller. However, the descriptor changes in both cases. In particular, the 3Ddescriptor is remarkably stable
both for (b) and (a).

• Removal or all 4 carbon compound leads to a similar behavior as in (a) and (b). However, upon removal of BN
or all boron compounds leads to afit similar to (0).

• Carbon can be thus considered as an anomaly, but it also carries important information for the stability of the
overall fit.

AppendixD.PYTHON script for running the LASSO algorithmwith the scikit_learn
library

fromsklearn importlinear_model

lasso=linear_model.Lasso(alpha=lambda)

lasso.fit(D,P)

coefficients=lasso.coef_

Heresklearn solves the problem in equation (6), with theℓ2-norm scaled by a factor
N

1

2
. The bias c0 is

included by default.
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