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Life is a gamble at terrible odds. If it was a bet you wouldn’t take it.
Tom Stoppard (1967), ‘Rosencrantz and Guildenstern are dead’ (p. 115)

Bet your shirt on a horse, your retirement on GE, your premiums on disaster, your tuition
on a college ... your energy on a book. Birth is just anteing up; every action thereafter is

a bet.
Michael and Ellen Kaplan (2006) ‘Chances are ..." (p. 82)

In the interest of fairness, the CPS [Chicago Public School system] resorted to a lottery. ....
Imagine two students, statistically identical, each of whom wants to attend a new, better
school. Thanks to how the ball bounces in the hopper, one goes to the new school and the
other stays behind.

Steven Levitt & Stephen Dubner, (2005), ‘Freakonomics’ (p. 158)

Arguably one of the most successful metaphors guiding psychological theorizing is
not so much a metaphor of the mind, but of how the world presents itself to us. As
Goldstein and Weber (1997) pointed out the life as a gamble metaphor that enters
psychology via the work of von Neumann and Morgenstern (1947) and Savage (1954)
has roots dating back to Jacob Bernoulli’s (originally published 1713) Ars Conjectandi.
Relying strongly on monetary gambles, he pursued probability as ‘a general theory of
rational decisions under uncertainty’~—a theory that would apply to ‘choices about
witness (or creed) to believe, which venture to invest in, which candidate to elect,
what insurance premium to charge, which scientific theory to endorse’ (Daston, 1988,
pp. 40, 50). Savage proposed that virtually all alternative courses of actions have risky,
not perfectly predictable consequences, and that therefore everyday choices could be
seen as choices between monetary gambles. By making this analogy, Savage
sanctioned the future ubiquitous use of a very simple and convenient experimental
tool in economists’ and psychologists’ laboratories, namely, the investigation of
choices between monetary gambles.
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Choice between monetary gambles is the topic of this chapter. We will distinguish
between two different choice contexts, one in which a person can persue convenient
descriptions of gambles’ outcomes and probabilities, and one in which a person can
sequentially sample outcomes thus being able to form an impression of the gambles’
stakes and their probabilities. The former choice context gives rise to decisions fron
descriptions, the latter to decisions from experience. We will be concerned with
decisions from experience, and offer a simple explanation as to why people appear to
be content with small samples of experiences before they render their choice. First,
however, we illustrate both choice contexts.

Decisions from description and decisions from experience

If the Wason selection task is, as psychologists’ wisdom has it, indeed the most studied
‘fruit fly’ in cognitive psychology, then choice between monetary gambles must be a
close runner up. This particular Drosophila melanogaster can be studied in many
different strands. One involves representations in which people are provided with
convenient descriptions of possible alternatives, the possible consequences associated
with each alternative, and their respective likelihoods. Faced with such descriptions,
we can afford making what Knight (1921) called decisions under risk. Decisions under
risk are almost exclusively studied via decisions from description (Hertwig et al., 2004),
namely, situations in which individuals are fully informed about the possible out-
comes of each option and their probabilities, in either a visual or a numerical format.

Take Maurice Allais’ (1953/1979) famous article on ‘The foundations of a positive
theory of choice involving risk’ for illustration. Herein he described a person who ten-
ders successive choices between four independent prospects, which are described as
follows (p. 41):

$100 $1000

1 $100

') ®) 1 $300

(P()) (P'l)

0 0

N = Do

That is, the person encounters four prospects, each one involving explicitly stated out-
comes and likelihoods. There are real world analogies to these comprehensively
described choices in information sources such as weather forecasts, actuarial tables,
and mutual-fund brochures. But all the same, compare such fully described prospects
with those that we typically encounter once we step outside the confines of the exper-
imental laboratory. An admittedly drastic example is that of a patient who considers
participating in clinical trials on which basis the Food and Drug Administration
decides whether or not to approve an experimental drug. The development and test of
new drugs is a fiscal gamble of colossal proportions. By the time a drug reaches the
market the manufacturer is estimated to have spent nearly a billion dollars on its

i In a recent meta-analysis of all studies involving decisions between a two-outcome risky
prospect and a sure thing (with equal expected value), Weber et al. (2004) found that all 226
choice situations called for decisions from description.
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development, and nearly nine out of ten experimental drugs that enter the first stage
of a three-stage regime of clinical trials are eventually abandoned (Groopman, 2006).
For the drug manufacturers, the gamble of developing a drug is just about money,
albeit enormous amounts of money, and guesses of the likelihoods of success can be
garnered from the past.

For a patient, in contrast, entering a clinical trial can be a life-or-death wager, and
one in which the likelihoods remain unknown. For illustration, consider Torcetrapib,
an experimental cholesterol drug developed by Pfizer, the world’s largest drug maker.
Hailed as the company’s most promising experimental drug and—should it work—
potentially the ‘largest-selling pharmaceutical in history’ (Groopman, 2006), all
Torcetrapib trials were halted in December 2006 after it was found that it actually
caused an increase in deaths and heart problems. Eighty-two people had died so far in
a Stage III trial, versus 51 people in the same trial who had not taken it (Berenson,
2006). Partaking in the experimental trial is a gamble, but one in which, unlike in
Allais’ choice prospects, patients cannot simply consult a list of outcomes and precisely
specified likelihoods. Being unaware of the outcomes’ probabilities, their decision was
thus—in Knight’s (1921) terms—a decision under uncertainty. Uncertainty is a defin-
ing property of human existence, and unfortunately, more often than not there is no
reliable probability and outcome information (see also Knight, 1921; Lopes, 1983).

In the twilight of uncertainty, there are at least two strategies to fill the void of
knowledge. One is to turn to previous experience—experience that was gathered by
us, or others, when facing similar decisions—to thus simulate and anticipate the
future (e.g., Dudai & Carruthers, 2005). This ubiquitous strategy is used, for instance,
when we remember previous meetings to anticipate what might happen during
tomorrow’s big meeting. Or take one of the most uncertain of all businesses: predict-
ing the intentions of one’s enemy. The political scientist Alexander George (1959)
described in his book Propaganda Analysis how small groups of intelligence analysts
from the Allies successfully applied this strategy, reliance on past experience, during
World War II to uncover German secrets.

Cut off from normal sources of information about events in enemy territory,
the analysts’ task was to monitor everything that came over the radio waves from Nazi
Germany. In domestic broadcasts in 1943, Nazi propaganda boasted that the German
military had developed a secret ‘super weapon. Were those claims to be believed? The
analysts predicated their analysis on their past experience that ‘German propaganda
never deliberately misled the German people in questions involving an increase of
German power’ (George, 1959, p. 143). The likely reason was that propaganda was sup-
posed to boost morale. If the propagandists’ claims had been bluffs, their attempts at
manipulation would have swiftly become ineffective. So, if they broadcast that Germany
had a secret super weapon it meant, quite likely, that indeed they had one. Starting from
that premise, the intelligence analysts mined other German public pronouncements for
more insight, and as George described thus arrived at a surprisingly accurate sequence
of inferences about the super weapon. It turned out to be Nazi’s fabled V-1 rocket.

Resorting to past experience to anticipate the future, however, only works if there is a
past. Sometimes there is none. Contemplate, for instance, the analysts’ work at the begin-
ning of the war when they had no experience with the German propaganda machine.
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In other cases, the current problem is truly unique making the past a poor model for
the present or the future. In such cases, another strategy that, given its feasibility,
enables a person to deal with uncertainty is to garner novel experience before making
a decision. Novel experience can be collected through sampling information from the
payoff distributions under consideration. As Bernstein (1996) pointed out, many crit-
ical decisions would be impossible without sampling. And it is a fact of life’s limita-
tions (time, resources) that sampling needs to be limited as well. On basis of samples
we can make an educated guess as to which option is preferable (see also Gladwell,
2005). For instance, one sip of wine, perhaps even as little as a sniff or a look, deter-
mines whether the contents of the bottle are drinkable. Enjoying a two-week free trial
of a daily newspaper tells us whether it is to our political taste. A quick look on the
online traffic cams tells us which route to choose for the morning commute. Glancing
at the plates of the other guests helps us to determine which dish to choose from a
restaurant’s menu. Polling friends about which of two new movies they enjoyed ren-
ders our night at the movies more pleasurable.

Hertwig ef al. (2004) referred to decisions based on thus sampled experience as decisions
from experience. A number of studies have demonstrated that decisions from experi-
ence are distinct from decisions from description (e.g., Hau et al., in press; Hertwig
et al., 2004; Gottlieb et al., 2007; Weber et al., 2004), but see Fox and Hadar (2006).
Hertwig et al. argued that the key to their difference is people’s sampling behavior—
especially their tendency to rely on relatively small samples of information. Next, we
describe the context in which people rely on small samples of experience.

Decisions from experience: heeding small samples’ call

What do we know about the psychology of decisions from experience? Relatively lit-
tle. As mentioned earlier, this is because studies of human risky choice have almost
exclusively examined decisions from description. This situation, however, has been
changing rapidly. Recently, a number of studies have turned to environments in
which people are confronted with choices between initially unknown payoff distribu-
tions where they must overcome their ignorance by sampling from these distributions
(e.g., Barron & Erev, 2003; Busemeyer, 1985; Denrell, 2007; Hertwig et al., 2004;
March, 1996; Weber et al., 2004). By sampling they can form an impression of the dis-
tributions’ respective attractiveness.

In decisions from experience the environment and its structure play a substantial
role as opposed to the minimal role they play in decisions from description. As a result,
models of decisions from experience must adopt more of an ecological approach
(Anderson, 1991; Brunswik, 1943; Simon, 1956). To that end we must distinguish
between two ecologies when people sample from both distributions. One is
characterized by an inherent trade-off between exploiting and exploring options (see
Berry & Fristedt, 1985; Daw et al., 2006; Erev & Barron, 2005; March, 1996), and one
in which the agent’s only objective initially is exploration for information (Hertwig
et al., 2004; Weber et al., 2004). In the former ecology, the sampled outcomes simulta-
neously provide information and payoffs to the agent. He thus has to strike a balance
between exploring alternatives and exploiting them. This trade-off adds a different
dynamic to decision making, and makes such choices distinct from decisions from
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description. Specifically, a risk-neutral person may come to prefer a certain alternative
to an uncertain one with identical expected values, thus exhibiting risk aversion (see
Denrell, 2007; March, 1996). In addition, properties of the decision maker—such as
the tendency to probability match, memory constraints, and loss aversion—are likely
to shape such choices (Erev & Barron, 2005).

In this chapter we focus on the second information ecology, in which, much like
perusing the Gault-Millau or the Michelin Guide to select a restaurant, the sampled
outcomes only provide information. Exploitation of the options—dining at one of
the acclaimed two- or three-star gastronomic temples—only comes after the agent
has terminated search for information. Therefore, people can afford—disregarding
opportunity costs for the moment—to further explore a distribution even if the pre-
viously sampled outcomes were anything other than attractive. Sampling is thus like
testing the water without footing the bill: the sampled outcomes educate about the
possible payoffs but do not yet constitute actual earnings. This sampling dynamic in
turn makes decisions from experience different from decisions from description.

For illustration consider a study by Hertwig et al. (2004) where participants were
presented with several choices between two gambles. Not being told anything about
the gambles, they were afforded the opportunity to sample information about them.
Each respondent saw two boxes on a computer screen, with each box representing a
payoff distribution. Clicking on a given box triggered a random draw (with replace-
ment) of an outcome from its distribution. Respondents could sample outcomes in
whatever order and as often as they desired. They were encouraged to sample until
they felt confident enough to decide from which of the two boxes (‘decks’) they would
like to make one final draw with monetary consequences. After they had stopped
sampling they indicated this preference. On this choice and this choice only, respon-
dents received the monetary payoffs identified by their draw.

Hertwig et al. (2004) compared the choices found when a group of participants
made decisions from experience for six problems with those of a second group who,
although responding to the same problems, made decisions from description.
Although respondents in the experience and description groups faced structurally
identical problems their choices were drastically different. For instance, respondents
faced Problem 1:

Deck A: 4 with probability 0.8, 0 otherwise,
or
Deck B: 3 with certainty.

In this case, a large majority of respondents (88%) in the experience group selected A,
whereas only about a third of respondents in the description group did so. Choices in
the description group were consistent with prospect theory’s postulate that people
choose as if small-probability events (here $0 with probability 0.2 in option A) receive
more weight than they deserve according to their objective probabilities of occurrence
(Kahneman & Tversky, 1979; Tversky & Kahneman, 1992). In contrast, in decisions
from experience rare (small-probability) events appear to have less impact than they
deserve according to their objective probabilities.

Hertwig et al. (2004) argued that rare events are not duly appreciated in experience-
based decisions because decision makers tend to rely on small samples to make
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their choices. Two recent studies of decisions from experience have documented this
tendency. Hertwig et al. found that the typical number of draws respondents made—
with the outcome of each draw appearing immediately—was approximately 7 from
each deck (and 15 across both decks). In a similar study, Weber et al. (2004) reported
a median size of 17 total draws, collapsed across both decks. Reliance on genuinely
small samples proved to be complemented by reliance on functionally small samples
due to recency. In Hertwig et al’s study, the most recently experienced outcomes
tended to shape the final choice more than previously sampled ones (for more evi-
dence for this recency effect see Barron & Erev, 2003; Busemeyer & Stout, 2002; Erev &
Barron, 2005; Hertwig et al., 2006; Yechiam & Busemeyer, 2005).

Such small samples interact with the environment in interesting ways. Events in the
typical decisions from experience design (as described above) are binomially distrib-
uted, where # is the number of draws from a particular gamble or deck, and p is the
probability of the maximum outcome in the gamble. When 1 is small (i.e., few draws)
and p—or by implication, 1- p—is small (i.e., the event is rare) the binomial distribu-
tion is skewed for the number of times this rare outcome will be observed in 1 inde-
pendent trials. This, in turn, increases the probability that a frugal searcher will not
come across the distribution’s rare event, keeping her ignorant of its existence. But
even if she encounters the rare event in her small sample, she will tend to observe it
less frequently than expected (given its objective probability; see Hertwig et al., 2004,
for the detailed argument).

The Hindu fable of the elephant and the six blind men is famous precisely because
each one took a tiny sample of the entire animal (e.g., the tusk, the trunk, the ear) and
arrived at rather erroneous conclusions (e.g., the elephant was very much like a spear,
a snake, or a fan). By analogy, if small samples tend to give rise to inaccurate mental
models of events—for instance, by raising the risk of overlooking rare events—why
then do people rely on such small samples? Next, we put forth an explanation. It com-
plements but does not rule out other possible reasons such as memory constraints,
opportunity costs, and lack of motivation (see also Hau et al., in press). However,
rather than looking into people’s minds to explain their frugal sampling, we suggest
that their behavior is a reflection of how gambles present themselves to the player
through the windows of small samples.

Gambling in Smallville: why intuitive sampling may be
destined to be frugal"

In many domains, sampling in itself is a form of risk-taking. How representative are
the samples from which we draw inferences? When are the samples large enough to
render possible a good guess? When does further sampling just becomes a waste of
time? In Hertwig et al. (2004) and Weber et al’s (2004) studies, respondents could
have sampled for as long as they wanted without penalty, and each draw required
merely a few seconds. By sampling more they could have markedly enhanced their
chances of identifying the distribution with the higher expected value. For example,

ii The following exposition of the argument is an adapted extension of the analysis reported by
Hertwig and Pleskac (2007).
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in Problem 1 if respondents had calculated the observed sample mean for each deck
and deterministically chosen the gamble with the larger mean, the median sample size
of seven draws from each deck would have offered a meek chance of 58% to select the
higher expected value deck.5i Can small samples nevertheless be beneficial on some
other dimension? Not denying its cost, reliance on small samples can indeed have
benefits too. One is that they make it easier to choose. Moreover, to foreshadow a later
result, the risk of selecting the inferior gamble in a representative environment is by
no means as pronounced as one might fear, based on the analysis of Problem 1.

To appreciate the argument that small samples render choice simpler let us first
turn to a distinction discussed by Griffin and Tversky (1992), namely, that between
the strength and the weight of evidence. To illustrate both concepts, they used the fol-
lowing example that also involves a decision from experience:

[sJuppose we wish to evaluate the evidence for the hypothesis that a coin is biased in favor
of heads rather than tails. In this case, the proportion of heads in a sample reflects the
strength of evidence for the hypothesis in question, and the size of the sample reflects the
credence of these data. The distinction between the strength of evidence and its weight is
closely related to the distinction between the size of an effect (e.g., the difference between

two means) and its reliability (e.g., the standard error of the difference). (Griffin &
Tversky, 1992, p. 412)

Griffin and Tversky also suggested that ‘people focus on the strength of the
evidence—at least, as they perceive it—and then make some adjustment in response
to its weight’ (p. 413). Typically, this adjustment is insufficient and therefore ‘the
strength of the evidence tends to dominate its weight in comparison to an appropriate
statistical model’ (p. 413).

In choosing between two gambles about which one needs to sample information,
we also suggest that people focus primarily (but not exclusively) on the size of the
effect or the strength of the evidence.

As we will show the size of the effect is larger with smaller samples, thus rendering
choice easier. Before explaining this relationship, let us first propose a simple choice
rule that rests on the strength of evidence, measured in terms of the difference
between means. The natural mean heuristic consists of two steps:

Step 1. Calculate the sample mean for each deck, SM,, and SMj; by summing all the expe-
rienced (sampled) outcomes in the respective decks, and dividing by respective sample
sizes ny and ny, respectively. IV

Step 2. Choose the deck with the strictly larger sample mean; otherwise guess.

This choice strategy accounts well for people’s choices between payoff distributions
(henceforth decks). It predicted a total of 77% of people’s choices in Hertwig et al.
(2004), relative to 67% for cumulative prospect theory (Fox & Hadar, 2006). For a set
n, the strategy even maximizes expected earnings given the knowledge of the person.

i The sample mean equals the decks’ expected value as calculated on the basis of the sampled
outcomes and likelihoods.

I If the sample sizes for each deck are equal, then the rule only requires computing the sum of
the outcomes per deck.
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In addition, with increasingly larger ns, the rule grows more likely to select the gamble
with the highest objective expected value. With smaller samples, in contrast, the
heuristic runs the risk of selecting the inferior gamble. But resting one’s choice on the
sample means renders choice easier with small samples. To appreciate this, consider a
user of the natural mean heuristic who draws seven observations from deck A that
offers $32 with probability 0.1, $0 otherwise, and seven from deck B that offers $3 for
sure. She may encounter seven times a ‘0’ from deck A, and a ‘3’ each time from deck
B, amounting to a sample mean of 0 and 3, respectively. The experienced difference is
thus 15 times as large as the description difference (i.e., the objective difference
between the gambles’ expected values), 3 versus 0.2. That is, the experienced differ-
ence is amplified, relative to the description difference.

Amplification was the rule rather than the exception in Hertwig et al’s (2004) study.
In a reanalysis of their data, we found that in 121 (81%) of the total of 150 choices the
experienced differences were greater than those based on the gambles’ descriptions. In
merely 12 cases (8%), they were identical, and in 17 choices (11%) the experienced
difference was less than the description difference. On average, the experienced differ-
ence was 10.8 times larger than the description difference. This amplification is not a
coincidence but, as the following formal proof shows, a necessity. Before we turn
to the proof, however, one clarification is in order. We do not conjecture that
people exclusively attend to the strength of evidence and terminate sampling when the
experienced difference is largest, thus completely ignoring the reliability of the differ-
ence. Rather, we suggest that if—as Griffin and Tversky (1992) proposed—the
strength of the evidence tends to dominate its weight, strength can eclipse weight even
more by means of the amplification effect. As a consequence, early termination of
search is fostered.

The amplification effect: a simple proof

If we assume two options, A and B, of which A’s expected value is greater than
B’s, then the absolute expected difference between the sample means (or strength
of evidence), SM, and SMp, will always be as large or larger than the expected
or description difference, EV4 — EV. To arrive at this finding, we take the following
steps: Setting Y= SM,, — SMj, the expected value of ¥, E(Y), can be calculated as
follows:

E(Y) = P(Y 2 0)E(Y | Y 2 0)+ P(Y < 0O)E(Y | Y < 0)=EV, —EV,. (1)

The expected absolute difference of E(]Y]) can be found because using the absolute
values is tantamount to moving the area below ‘0, representing all ‘erroneous’
differences (i.e., suggesting B’s expected value to exceed A’s) in the distribution of
differences onto the positive reals. Consequently, the expected absolute difference
E(|Y]) can be stated:

E(jv]) = P(Y 2 0)E(Y | Y 20) - P(Y < 0)E(Y | Y < 0). 2
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Because E(Y |Y < O) is by definition negative (the expected value of Y given
that Y is smaller than 0), the second term in (2) becomes positive. Therefore, E(|Y]) is
at least as large as E(Y). Put differently, the experienced difference is, on average, larger
than the objective or description difference.

This proof also suggests what factors are moderating the amplification effect.
Specifically, anything reducing P(Y<0) will result in E(|Y|) approaching E(Y). Three
factors that do this are (a) increasing sample size n; (b) increasing the difference
between the expected values of the two options; and (c) reducing the pooled variance
across the two options. This simple proof, however, leaves several key questions unan-
swered: What is the magnitude of the amplification effect in a given uncertain envi-
ronment? How robust is it across different choice rules that people may use? What
price does the amplification effect and, by extension, the benefit of easier choice
exact? To find answers, we turned to a simulated environment of gambles.

The amplification effect: an analysis based on simulation

We assume that a person chooses between simple two-outcome payoff distributions
of the type ‘a probability p to win amount x; a probability (1 - p) to win amount y’
(x, p; »), using the natural mean heuristic. We analyzed a total of 12 different sample
sizes, consisting of 1, 2, 3,4, 5,6, 7, 8, 9, 10, 15, and 25 draws from either deck. For
each of these sizes, we calculated several statistics including the expected absolute
value and median absolute value of the experienced difference. For illustration, con-
sider choosing between the following two randomly generated decks (Problem 2):

A: 26 with probability 0.76, 0 otherwise,
or
B: 48 with probability 0.55, 0 otherwise.

Deck A has an expected value of 19.76, whereas B’s value is 26.4. With a difference of
6.64 points between the gambles’ expected values, choosing between them appears
fairly easy—especially if the choice comes in the form of a decision from description.
But how hard is the choice on the basis of a sample of, say, five draws from either
deck? In such a sample, a person could encounter k=0, 1, 2, 3, 4, or 5 occurrences of
the maximum gain (26 and 48, respectively), and n — k observations of the minimum
gain (i.e., 0 in each gamble). The binomial distribution provides the probability of
obtaining each k (and n — k, respectively). Table 10.1 lists the probability of each k, and
the resulting sample mean. For instance, the probability of the A’s maximum gain
(26) occurring twice in a sample of five draws equals 0.08. The sample mean for this
particular sample would be 10.4. Note that the likelihood of this mean mirrors the
likelihood of k =2 in five draws.

In the second step of the analysis, we determined all differences between all possible
sample means a person might experience. Table 10.2 lists for Problem 2 all possible
absolute experienced differences (assuming sample size of five), and the likelihood
with which they occur (values in parentheses). For example, the probability of experi-
encing a (absolute) difference of 1.6 equals 0.11. The latter value results from multi-
plying the probability of observing a sample mean of 20.8 in deck A, namely, p(SM,, =
20.8) = 0.40, with the probability of observing a sample mean of 19.2 in option B,
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Table 10.1. The probability of encountering the maximum outcome exactly k times out
of five draws and the resulting empirical means in samples of two payoff distributions:
Deck A (26 with probability 0.76, 0 otherwise) and deck B (48 with probability 0.55, 0
otherwise), respectively. The values are rounded.

Deck A Deck B
Frequency of Probability Sample Probability Sample
maximum outcome k of k Mean (n = 5) of k (n=5)
0 0.00 0.00 0.02 0.00
1 e e TR S
2008 1040 ............................... 028 .............................. e
3025 ................................... S T s
4040 .................................. o 021 ................................ R
5025 .................................. 2600 ................................ e e

namely, p(SMy = 19.2) = 0.28. By collapsing across the probabilities of observing each
absolute difference, one can determine the expected absolute value of the experienced
difference between two decks for a given sample size. In a sample of size 5, for
instance, this value is 10.98, 1.7 times larger than the description difference of 6.64.
The median absolute value of the experienced difference, 7.92, also exceeds the
description difference. Indeed, for 70% of the possible observations in our example
the experienced difference is greater than the description difference. Note that for the
purpose of analyzing the magnitude of the amplification effect we focus on the
absolute difference and ignore the direction of the amplification. Respondents who
sample outcomes from the two decks of cards, of course, experience a difference that
points toward one or the other. Moreover, we will shortly address how often the dif-
ference points toward the objectively better gamble.

To examine the degree to which this amplification effect generalizes to other gam-
bles it is necessary to establish an environment of gambles. To that end 1,000 pairs of

Table 10.2. The absolute values of all possible sample differences (assuming sample size
of five), and the likelihood with which they occur (values in parentheses) for Problem 2.

SMp/SMg 0 9.6 19.2 28.8 384 48
0 0 (0.00) 9.6 (0.00) 19.2 (0.00) 28.8(0.00) 38.4(0.00) 48 (0.00)

5.2 5.2 (0.00)  4.4(0.00) 14 (0.00) 23.6 (0.
10.4 (0.0

o.

26 26 (0.00) 16.4 (0.03) 6.8 (0.07) 2.8 (0.09) 12.4(0.05) 22 (0.01)




HOW ROBUST IS THE AMPLIFICATION EFFECT?

randomly generated two-outcome gambles were created (e.g., Problem 2). For each
gamble the probability values were randomly sampled from a uniform distribution
between 0 and 1. One payoff value was set to 0 whereas the other payoff value was
drawn from a uniform distribution between 0 and 100. None of the gamble pairs were
allowed to have stochastically dominating options.

How robust is the amplification effect?

As a function of increasing sample sizes, Fig. 10.1 plots the expected absolute values of
the experienced differences for the natural mean heuristic, across all gambles. The
straight line represents the average description difference (15.2). Assuming the natu-
ral mean heuristic, small samples substantially anplify the difference between gam-
bles. For instance, with two draws from each deck, the average expected experienced
difference is 23.1, 1.5 times larger than the description difference. Not surprisingly, as
sample sizes increase the expected experienced differences converge to the description
difference. With 10 draws the expected experienced difference (17.2) is merely
1.1 times larger than the description difference, and with 50 draws, they are nearly the
same. Figure 10.2 shows the same finding for the median experienced difference,
except that the amplification effect is smaller relative to Fig.10.1.

The basis for the amplification effect, as the formal proof above illustrates, is the pos-
itive skew of the distribution of possible experienced differences. The top panel in

3 — Natural mean
] ---Bayes quick
g ----- Bayes slow
B - Prospect theory
[
5
2 |
B 1 e LT 3
E K‘"«.H,,_ \EV Description difference
g 10t
)
% 5l "\ PT Description difference |
0 I 1 1 L
1 5 10 15 20 25

Sample size n per deck

Fig. 10.1. Experienced differences across 1,000 pairs of gambles as a function of sample
size (per deck). The four curves represent the mean of the expected absolute difference
for the natural mean heuristic, two Bayesian updating strategies (slow versus quick
updating), and cumulative prospect theory, respectively. The upper straight horizontal
line represents the average description difference based on expected value (15.2). The
lower straight horizontal line represents the average description difference after values
and probabilities have been transformed according to prospect theory's value and
weighting function (7.8).
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Fig. 10.2. Experienced differences across 1,000 pairs of gambles as a function of sample
size (per deck). The four curves represent the median of the experienced absolute
difference for the natural mean heuristic, two Bayesian updating strategies (slow versus
quick updating), and cumulative prospect theory, respectively. The upper straight horizontal
line represents the average description difference based on expected value (15.2). The
lower straight horizontal line represents the average description difference after values
and probabilities have been transformed according to prospect theory’s value and
weighting function (7.8).

Fig. 10.3 illustrates this skew for Problem 2 (A: 26 with probability 0.76, 0 otherwise, or
B: 48 with probability 0.55, 0 otherwise) when n = 5 samples are drawn from A and B,
respectively. As the figure shows, the expected absolute value of the experienced differ-
ence is markedly larger than the description difference. Moreover, the range of possible
differences is bounded at zero (i.e., the smallest experienced difference is zero), whereas
the largest experienced difference is over seven times larger than the description differ-
ence.

The primary reason for the change in the amplification effect as sample size
increases, as our proof suggested, is that as sample size increases a larger proportion of
the distribution’s mass gathers around the description difference, decreasing the dis-
tribution’s positive skew. Figure 10.3 shows this reduction in the skew for Problem 2.
Comparing the bottom panel to the top panel shows that the skew systematically
decreases as sample size increases. The other two factors that determine the amplifica-
tion effect, namely the magnitude of the difference between the expected values of the
two gambles and the pooled variance across the two options, can help explain
how changes in our environment of gambles would influence the amplification effect.
For example, what would happen if the gambles in each problem of our environment
had two non-zero outcomes rather than having one zero outcome and one non-zero
outcome? If both outcomes are equally likely to fall between 0 and 100 then each of
the gambles on average would have less variance in the experienced differences. This
is tantamount to decreasing the skew in the distribution of experienced differences.
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Fig. 10.3. The distribution of all possible experienced differences for Problem 2 (A: 26
with probability 0.76, 0 otherwise, or B: 48 with probability 0.55, 0 otherwise) when
n =5 samples are drawn from A and B, respectively (see upper panel). The distribution
has a positive skew causing the expected and median (absolute) value of the experi-
enced difference to be markedly larger than the description difference. Over 70% of the
possible experienced differences are larger than the description difference. The bottom
panel is the distribution for Problem 2 for n = 20 samples drawn from each deck. The
larger sample size decreases the skew of the distribution.

As a result there would be a smaller amplification effect. Our own analysis shows this
decreases the amplification effect from, for instance, 1.3 to 1.1 times the description
difference at n = 5. A similar result holds for mixed gambles with the same range of
possible outcomes.

How does more processing affect the amplification effect?

The natural mean heuristic bets on the observed sample and nothing else.
Alternatively, a person may aim to combine prior beliefs about the environment in
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which she finds herself with the newly sampled evidence. Or, alternatively, rather than
taking the sample at face value the sample’s parameters (i.e., outcomes and probabili-
ties) may be interpreted through prospect theory’s value and weighting function.
In what follows, we examine both of these computationally taxing alternatives to the
natural mean heuristic. We first turn to the possibility that a person combines new
data and existing beliefs through use of Bayes’ theorem.

Bayesian probability updating: will the amplification
effect persist?
To address this question we assumed that searchers started with the initial assumption
that in each deck there are two possible outcomes, a minimum and maximum.
Believing that there were two outcomes but having no a priori reason to believe that
one outcome was more likely than another, people could use Laplace’s principle of
indifference and treat the likelihoods for either payoff in both decks as equally likely.
To model this we worked with the probability of the maximum outcome for deck A
and B, Paand Ps. X

Specifically, we modeled the person’s belief in P4 with a beta distribution—often
used in Bayesian statistics because it is conjugate to the binomial distribution (see
Gelman et al., 2003)—that had a uniform distribution on the interval [0, 1]. Beta dis-
tributions are described with two parameters o and  and setting them equal to 1
reproduces this assumption for each deck. We used the mean of the beta distributions
as the person’s best estimate of P4 and P, For deck A, for instance, the estimate is

E(p,) = &%ﬁ = 05, 3)

and the chances of the minimum outcomes are then 1 — E(p,) 0.5 and 1~ E(py)=
0.5, respectively. Note that this is only an approximation of a Bayesian learner. In deci-
sions from experience decision makers are also ignorant of the payoffs. To bypass this
problem we stipulated that until they experienced the payoffs they assumed
them to be zero. More precise models would also account for the decision maker’s
uncertainty in the payoffs.

Under this model, two things occur when people draw a sample of size # from each
deck and observe k4 draws of the maximum outcome from deck A and ky from deck
B, respectively. First, they learn about the value of the maximum outcome. Second,
they use their sampling experience to update their prior opinions according to Bayes’
theorem. Because the beta distribution is conjugate to the binomial distribution, the
updated beliefs for both decks can be expressed as a function of the prior distribu-
tions and the experienced sample. In light of her sampled experience, an individual’s
updated estimate p, about deck A is
A o+k
E(pa L kaom) = g (4)
The same procedure takes place for deck B using the number of draws of the maxi-
mum outcome from it, k. The chances of the minimum outcomes are then
1- E(pA | kA,n) and 1 - B(pB | kB,n). Using their updated estimates people then




WEIGHTING OF QUTCOMES AND PROBABILITIES: WILL THE AMPLIFICATION EFFECT PERSIST?

determine the expected value for both decks, SEV, and SEVp, and choose the deck
with the (strictly) higher expected value (otherwise they guess).

Figures 10.1 and 10.2 show the experienced differences for two Bayesian updaters, a
slow and a quick updater. The quick updater represents a Bayesian with = 3= 1.
With such low values the person would be very sensitive to the observed data and
quickly update her beliefs in light of new evidence. By and large the experienced dif-
ference quickly tracks the description difference (see the horizontal line), the reason
being that the Laplacian assumption counteracts the possible extreme observations
seen in small samples by initially anchoring the decision maker at 50/50. We can also
assess how different levels of confidence in one’s prior beliefs might impact the ampli-
fication effect. By setting o= 8= 10, the variance of the beta distribution decreases
and becomes more peaked around the values of p4 = py = 0.5. In other words, the
individual is now more confident in her beliefs, and changes her beliefs at a slower
rate than the less confident Bayesian (2= = 1). Consequently, the slow updaters lean
more heavily toward their prior beliefs. As the slow updater lines in Figs. 10.1 and 10.2
show, the prior beliefs of the slow updater remove the amplification effect and in
some cases reverse it, making it harder for him to distinguish between the two decks.
It takes him over 100 observations to counteract his dulled discrimination.

Weighting of outcomes and probabilities: will the
amplification effect persist?

Cumulative prospect theory (Kahneman & Tversky, 1979; Tversky & Kahneman,
1992) is a Neo-Bernoullian theory. It retains the original expected utility scaffolding,
that is, the assumption that human choice can or should be modeled in the same
terms that Daniel Bernoulli (1738/1954) postulated: that people behave as if they
multiplied some function of probability and utility, and then maximized. Resting on
this core assumption, cumulative prospect theory assumes that the impact of proba-
bilities on choice is nonlinear such that small probabilities are overweighted and
moderate and large probabilities are underweighted. It also posits that the value (or
utility) function is S-shaped, and that the function is steeper for losses than for gains,
thereby yielding ‘loss aversion’ (i.e., the fact that a loss of size k has greater impact than
does a gain of size k). Cumulative prospect theory was developed to model decisions
from description, that is, risky choices involving stated probabilities. By entering the
sample probabilities and outcomes that Hertwig et al’s (2004) respondents encoun-
tered into cumulative prospect theory’s weighting and value function, Fox and Hadar
(2006) showed that this two-stage model (Tversky & Fox, 1995) could also be applied
to decisions from experience. In doing so, one can predict 67% of people’s choices
(compared with 77% by assuming the natural mean heuristic; see Hau et al.,in press).

Does the amplification effect continue to exist even if the sampled experience is
fed into cumulative prospect theory’s value and decision weighting functions?
To investigate this issue, we turned to all 1,000 pairs of gambles investigated earlier.
As a function of increasing sample size, we used the observed relative frequencies of
minimum and maximum outcomes, respectively, as a proxy for people’s subjective
beliefs. In addition, we calculated prospect theory’s value for each gamble (and given
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sample size), assuming Tversky and Kahneman’s (1992) median estimates for the
three parameters describing the value function and the two parameters describing
the decision weighting function. Across all pairs of gambles, we then calculated the
expected experienced difference and the median experienced difference, respectively.
Because the value and weighting function are transformations on the original values
the amplification effect remains and in fact approximates the one seen for the
natural mean heuristic (Figs. 10.1 and 10.2). However, all the values are shifted
down for both the experienced differences and the description differences. This is a
result of the value and weighting functions mitigating the impact of extreme payoffs
and probabilities.

Qur concern in this section was whether the amplification effect continues to exist
even if people process the sampled information in a cognitively more taxing way. We
found two results. First, if respondents update their beliefs starting with a Laplacian
assumption, then the amplification effect will disappear. Consequently, Bayesian
updaters will forego the ‘benefit’ of having more dissimilar alternatives. Second, if
respondents behave as though they weighted outcomes and probabilities according to
prospect theory, then the amplification will continue to exist.

Fine: small-sample choices are easier, but how competitive
are they?

The old adage of economists goes, ‘There’s no such thing as a free lunch.’ In line with
this wisdom, searchers do not get to enjoy for free the simultaneous advantages of
small search costs, small opportunity costs, and amplified differences. The price
comes in terms of unreliable representations of the gambles’ parameters, and less than
optimal choices. As Fig. 10.1 shows, the larger the sample, the more veridically the
experienced difference reflects the objective difference between the gambles.
Therefore, searchers who sample extensively-—say, 25 draws per deck—could thus
maximize their earnings by being able to consistently select the gamble with the larger
objective payoff. To find out how good or, perhaps, how bad choices based on small
samples are, we calculated, using the aforementioned framework, per sample size and
across all 1,000 pairs of gambles the proportion of times a respondent would choose
the deck with the objectively larger expected value.

Figure 10.4 depicts the results of this analysis. Several striking results emerge. First,
choices derived from small samples are clearly not optimal, but they are also far from
being disastrous. With a sample as tiny as one draw from each deck a person has an
approximate chance of 60% of selecting the higher-expected value gamble. Second,
the information value garnered from each draw is subject to a diminishing return.
Using the natural mean heuristic a person can, for instance, reap an 18-percentage
point performance increase from 60% to 78% by increasing the sample from 1 to 5.
By doubling the sample size from 5 to 10 draws, one achieves another 6-percentage
point performance boost to 84%. By again doubling the sample size from 10 to 20
draws, accuracy increases by a mere 4 percentage points. If a person drew 100 rather
than 20 observations from each deck, the expected accuracy would amount to
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Fig. 10.4. Choice proportions across 1,000 pairs of gambles of the deck with the higher

expected value as a function of sample size (per deck) for the four choice rules analyzed
here. In the long run, the natural mean heuristic and the Bayesian strategies will

choose the better gamble 100% of the time, relative to prospect theory's long run
accuracy of 92%.

95% (compared to 81% at n = 7). Although accuracy continues to increase with each
further draw, it increases at a diminishing rate.

Third, as Fig. 10.4 also shows, with small samples a person who does without com-
plex calculations and bets on the sample means to choose between the decks either
exceeds (slow updating) or equals (quick updating or cumulative prospect theory) the
level of accuracy reached by a Bayesian updater. After a large number of draws from
each deck the Bayesian and the natural mean strategies converge. This occurs for the
two Bayesian strategies and the natural mean heuristic at around 100 draws from each
deck where all three have an expected accuracy of approximately 95%. In the limit
these strategies would choose the higher expected value gamble 100% of the time.
Interestingly, people who perceive values through the lenses of prospect theory and
draw larger and larger samples do not converge to this accuracy. Instead, they make
systematic mistakes in the gambling environment and converge at 92% accuracy in
the long run, the proportion of times the higher expected value gamble is chosen in
decisions from description.

To conclude, betting on small samples exacts costs. At worst, small samples can give
rise to mental representations in which the higher-value gamble appears inferior, and
the lower-value gamble superior. In our environment of randomly selected gambles,
however, small samples—even as small as one draw per deck—resulted in markedly
more accurate than inaccurate choices. Drawing as few as seven times from each deck
secured an 86% chance to select the gamble with the higher expected value. To avoid
misunderstandings: We do not conjecture that reliance on small samples is the optimal
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strategy—and in fact, it is not clear to us how to compute the optimal solution for
decisions from experience. Yet, as our analysis has shown, relatively small samples

-afford a surprisingly high probability of choosing the gamble with the higher expected

value.

If life is a gamble, then it is not one but many

At any given time, our ancestors played a myriad of gambles. They had to wager on
what they could eat, what they could capture, what could capture them, and whom
they could trust, to name just a few (see Buss, 2005, for many others gambles). In
light of the many dicey choices that our ancestors faced, and, by the same token, we
face every day, a key issue emerges: How much information should we forage in each
of the choices? And, when does the cost of more choice outweigh the benefits? There

- is no simple answer because any answer depends on multiple factors such as the costs

of wrong decisions, and the cost of search. Without the pretension of having an
answer to these questions, our analytical frame enables us to take a first, simple step
toward an answer.

Let us assume the following simplified world. People encounter in the course of
their lives a total of 100 pairs of payoff distributions, each pair representing one of
life’s gambles. Before making a decision, they can sample from the distributions
(about which they initially are ignorant) as many times as they wish before decid-
ing which one they prefer to play once for real money. In realistic models, search
must be limited because real people have only a finite amount of time, knowledge,
attention, or money to spend on a particular decision. In our microworld, limited
search is represented in terms of a finite budget of draws that each person can
afford to sample across all gambles. How should people employ the budget across
decisions?

There is no simple answer. Because the parameter of the payoff distributions can be
estimated better the larger the number of draws, people stand to increase their
expected payoffs per decision with more observations. However, the increase in
expected payoffs diminishes with larger sample sizes. In addition, the strategy of max-
imizing accuracy per decision may ultimately decrease average earnings across many
decisions, simply because once the budget of draws is used up one cannot help but to
choose randomly.

To investigate this trade-off between maximizing accuracy per decision and across
decisions, we investigated the expected earnings of players who used the natural mean
heuristic in 100 pairs of gambles in the gain domain with a zero-outcome as a second
payoff in both gambles. In addition, we let the players set different aspiration levels
for identifying the gamble with the highest expected value ranging from 50% to 95%
accuracy. The aspiration levels determined the sample size agents took based on the
analysis presented in Fig. 10.4. So, for instance, recall that with # = 100 participants
can expect 95% accuracy and setting n = 0 they can expect 50% accuracy. We also
assumed that once the budget of draws is exhausted players resort to choosing
randomly between the options. This budget was varied and ranged from R = 100,
200, ..., to 1,000 draws per decks A and B, respectively.
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Table 10.3 summarizes the average earnings as a function of the aspiration level
(and corresponding sample size), and the available number of draws per deck.’ To
interpret the results let us first point out that if respondents chose to learn nothing
about the gambles and guessed they would, on average, earn 2,390 points. If instead,
they had access to the gamble descriptions and chose according to expected value,
they would, on average, earn 3,164 points. Three results deserve to be highlighted.

First, the analysis gives new meaning to the phrase, ‘Jack of all trades, master of
none, though ofttimes better than master of one.’ That is in our analysis agents do
best—regardless of how tight or generous their resources are—by distributing the
draws equally among the gambles and being content with limited knowledge rather
than allocating resources to just a few selected gambles. This conclusion is supported
by the values in the diagonal: They represent the highest average earnings within a
given budget, and they coincide with a strictly equal distribution of draws across
decks. Take, for instance, the value 2,929. It corresponds to making three draws per
deck for each of the 100 A and B decks, respectively. Any other strategy that aims to
invest more resources in some gambles (thus striving for a high level of accuracy) and,
as a consequence, fewer in others is outperformed by an equal-sampling policy (com-
pare 2,929 to all other values in the ‘300’ row). Second, the results again demonstrate
that the increase in information value across sample size is subject to diminishing
return. Whereas the average earnings increase by 6 percentage points when increasing
the budget from 100 to 200 draws for decks A and B, respectively, this increase shrinks
to 0.3 percentage points when increasing the budget from 900 to 1,000 draws. Third,
the average earnings, assuming seven draws per deck (and a corresponding accuracy
of identifying the higher-expected value option of about 80%), amount to 96% of the
maximum earning, 3,039 versus 3,164 points, respectively.

Our implementation of the life-as-a-gamble metaphor suggests that relying on a
small sample proves to be a competitive strategy in the long run. One reason for this
result in our microworld of gambles, and, perhaps, by extension in life’s gambles, is
that players are faced with the problem of flat maximum (Winterfeldt & Edwards,
1986). The problems in which decision makers stand to gain the most via more
observations are also the ones in which sampling produces the least marginal gain.
The reason is that these problems involve gambles that are close in their expected
values. In some cases, two gambles might be so close together that one might just as
well flip a coin to decide. In contrast, the natural mean heuristic only needs a small

v The expected earnings for each problem can be calculated in the following manner. For each
problem we can calculate the probability of choosing the higher expected value gamble, C(n),
for a player who uses the natural mean after drawing a sample size n from each gamble. With
some level of resources, R, the player can sample from R/n of the 100 gambles, where n <
R/100. In the long run this means that for each problem there is a probability of
r = R/(100n) of using natural mean with sample size n to make a choice, and a probability
of (1-r) to guess. The expected earnings for all 100 gambles is then [C(n)r +0.5(1~r)]EV, +
[(1=C(M)r +0.5(1~r)]EV;, where EV4 and EVj are the expected values of the two gambles.
Gamble A is assumed to have a higher expected value then 8.
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SOME POTENTIAL BENEFITS OF SMALL SAMPLES

number of observations to choose relatively accurately between gambles when the
difference between their expected values is large.

Some potential benefits of small samples

Why do people rely on small samples? Standard accounts implicate (cognitive and
economic) costs such as those involved in internal and external search, opportunity
costs, lack of appreciation for the empirical law of large numbers, or they attribute
frugal search to limits in our cognitive architecture. It is only recently that cognitive
psychologists and cognitive ecologists have begun to explain frugal information
search in terms of potential benefits of small samples. Some of these benefits are less
disputed than others. One advantage is, for instance, the enhanced ability to detect
environmental change. An organism remembering only a small number of recent
events—tantamount to drawing small samples from memory rather than from the
environment-—is better equipped to detect a change in its environment than it would
be if it remembered all of its history (e.g., Heinrich, 1979; McNamara & Houston,
1985, 1987; Shafir & Roughgarden, 1998). The optimal number of items to be remem-
bered depends on the rate of the changes in the environment, but perfect memory
appears to be a liability rather than an advantage in a world that continues to change.

Real (1992) investigated the foraging behavior of bees across different floral reward
distributions, and concluded that ‘bees frame their decisions on the basis of only a few
visits’ (p. 133). He then argued that calculating reward probabilities based on small
frame lengths could prove advantageous under several scenarios, one of which takes
the structure of bees’ natural habitat into account:

Short-term estimation may be adaptive when there is a high degree of spatial autocorrela-
tion in the distribution of floral rewards. In most field situations, there is intense local
competition among pollinators for floral resources. When ‘hot’ and ‘cold’ spots in fields of
flowers are created through pollinator activity, then such activity will generate a high
degree of spatial autocorrelation in nectar rewards. If information about individual flow-
ers is pooled, then the spatial structure of reward distributions will be lost, and foraging
over the entire field will be less efficient. In spatially autocorrelated environments
(‘rugged landscapes’), averaging obscures the true nature of the environment (p. 135).

In psychology, Kareev (1995, 2000) advanced the argument that the cognitive system—
more precisely, working memory—may have evolved so as to increase the chance for early
detection of covariation. In Kareev (2000), he argued that the experienced sample size
most conducive to the detection of useful binary correlations (i.e., value 2 0.5) is close
to Miller’s (1956) estimate of the limited capacity of working memory. This conjecture
of the evolutionary advantage of small samples (or, more precisely, a limited working
memory) has fueled a controversial debate (Anderson et al., 2005; Juslin et al., 2006;
Juslin & Olsson, 2005; Kareev, 2005; and see also Fiedler & Kareev, 2006). Among other
issues, it focuses on the question of what elements should enter the payoff function in
determining the benefits or lack thereof of small samples (e.g., false alarms).

We do not conjecture that small samples provide a more veridical picture of
the gambles in our environment. They do not (see Fig. 10.4). Our key points are:
(a) Drawing small samples from payoff distributions leads to experienced differences
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of sample means that are larger than the objective difference; (b) such biased differ-
ences may make the choice between payoff distributions simpler, and may thus
explain the frugal sampling behavior observed in decisions from experience investi-
gated by Hertwig et al. (2004) and Weber et al. (2004); (c) sampling larger samples,
ceteris paribus, gives rise to more accurate knowledge of the objective parameters of
the payoff distributions; (d) more accurate knowledge derived from larger samples,
however, yields surprisingly modest gains in terms of the probability of selecting the
higher-value distribution (diminishing return of the value of information); and
(e) choices based on small samples although not optimal are surprisingly competitive.
Last but not least, our analysis, although conducted in the domain of monetary
gambles, generalizes to other realms of life that can be modeled in terms of the bino-

mial distribution.

Sample size and choice difficulty: empirical evidence

Small samples amplify the difference between the options’ average rewards, thus, we
suggest, easing the difficulty of choosing between them. This thesis gives rise to sev-
eral testable predictions. One is that if people sample large samples before they
choose, the options will appear more similar and choice will be more difficult. One
indicator of more difficult choices is if choice proportions are closer to 50%. In
another study (Hau et al., in press) we conducted two experiments where people used
larger samples to make a choice. In the first experiment, as in Hertwig et al. (2004),
participants decided when to stop sampling and make a choice. Choice accuracy,
however, was stressed with two procedural changes from Hertwig et al. Stakes
were ten times higher and people were required to explicitly estimate the relative
frequencies of outcomes. People drew a median sample of 33 draws (relative to 15 draws
in Hertwig et al.) from both decks. In the second experiment, participants were
required to make 100 draws from both decks. Both experiments used the same six
problems as Hertwig et al. Consistent with the prediction that larger samples render
choice more difficult, in 10 out of 12 problems choice proportions were—relative to
Hertwig et al.—closer to 50% in Hau et al. Pr(10 or more by chance) < 0.02. Choice
proportions were 12 percentage points (median) closer.

The present account also sheds new light on research regarding people’s proclivity
to reason statistically in everyday problems. Fong et al. (1986) asked respondents to
consider everyday problems to which the law of large numbers could be brought to
bear. In one problem, people were asked to decide which of two car manufacturers,
Volvo or Saab, was more likely to produce cars free of troublesome repairs.
Respondents could resort to two pieces of information, namely, (a) objective informa-
tion in terms of the consensus of Consumer Reports’ experts and readers, and (b) per-
sonal experience of three friends who owned one of the cars. Fong et al. found that
most people did not spontaneously reason statistically, thus being guided more by
personal experience rather than the aggregate consensus. The amplification effect
offers one possible explanation as to why. The large sample, represented by the
aggregate consensus in Consumer Reports, suggests that ‘both cars were very sound
mechanically, although the Volvo felt to be slightly superior on some dimensions’
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(p. 285, emphasis added). The small sample, represented by the friends’ experience, in
contrast, reports a huge difference between both cars: ‘Both Saab owners reported
having had a few mechanical problems but nothing major. The Volvo owner exploded
when asked how he liked his car. ‘First that fancy fuel injection computer thing went
out: $250 bucks. [...]. I finally sold it after 3 years for junk” (p. 285). One way to inter-
pret the lure of personal experience is that the small sample amplifies the difference
between the two options, whereas the large sample reports only a slight difference.
The small sample thus renders the choice easier, albeit pointing to the option that is
likely to be inferior.

The generality of our analysis

One challenge to the generality of the current analysis is that it is predicated on the
assumption that people derive their choice from differences in the samples’ average
rewards. There are, however, numerous choice strategies that do not exploit this
dimension. Take, for instance, the minimax heuristic according to which the decision
maker selects the payoff distribution with the highest minimum payoff, irrespective of
any probability information. This heuristic was originally suggested for choice under
ignorance (see Luce & Raiffa, 1957), that is, for choice when probabilities are
unknown. In decisions from experience, probabilities are indeed initially unknown
and small samples can result in substantial estimation biases. Therefore resorting to a
strategy that ignores probabilities may be a justifiable strategy. Although the minimax
heuristic may not be unreasonable, people do not employ it, or many other strategies
for that matter in decisions from experience (Hau et al., in press).

As our analysis has revealed the amplification effect, however, is not restricted to
samples’ average rewards. It also occurs when the experienced outcomes and proba-
bilities per sample are entered into cumulative prospect theory’s value and weighting
function (Fig. 10.4). This is not surprising because a sample’s natural mean is quanti-
tatively (though not computationally) identical to the sample’s expected value
(assuming the experienced probabilities and outcomes). Any choice theory that
retains the Bernoullian framework scaffolding (see Brandstitter et al., 2006)—
namely, the assumption that people behave as if they multiplied some function of
probability and value, and then maximized—will entail some kind of the amplifica-
tion effect. In other words, all contemporary models that Selten (2001) subsumed
under the label ‘repair’ program—that is, models that introduce psychological
variables such as emotions, reference points, decision weights to rescue the original
multiplication scaffolding—imply amplification effects. Examples of such models
include disappointment theory (Bell, 1985; Loomes & Sugden, 1986), regret theory
(Bell, 1982; Loomes & Sugden, 1982), the transfer-of-attention exchange model
(Birnbaum & Chavez, 1997), decision affect theory (Mellers, 2000)—to name a few.

The amplification effect also generalizes to another class of descriptive choice mod-
els, namely, experiential-learning models (e.g., Busemeyer & Stout, 2002; March,
1996). They conceptualize human choice not in terms of a calculated expected utility,
but as a response gauged from experience. On this assumption people choose one
deck over the other on the basis of the experienced outcomes, which are integrated
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through an averaging operation and in which recent outcomes can have more weight
than previous ones. Due to this recency weighting (for example see Hertwig et al.,
2006), experiential-learning models would yield amplified differences in the gambles’
values regardless of the actual number of observations drawn. To conclude, the occur-
rence of the amplification effect can be expected to occur across a wide range of
descriptive choice models, ranging from Neo-Bernoullian modifications of expected
utility theory to experiential-learning models.

Admittedly, the difference in the samples’ average reward is not the only dimension
from which people can derive their decision. Alternatively, they can encode the
frequency of occurrence of different outcomes in each payoff distribution, and rest
their decision on those. Indeed, the human mind is often conceptualized as acutely
sensitive to frequency information (e.g., Zacks & Hasher, 2002). Of course, with event
frequencies, differences between them will, on average, increase as the sample grows
larger. In other words, here large rather than small samples would amplify differences.
Event frequencies, however, can hardly be the sole basis for the decision between
two payoff distributions for at least two reasons. One is that in payoff distributions
with more than one outcome (and each of our gambles had two outcomes), frequency
information may be inconclusive: For instance, one of gamble a’s two outcomes
may be more frequent and one less frequent than both of gamble b’s two outcomes.
So, which gamble is better? Second, a very frequent outcome may be small in say
monetary value, and a rare outcome’s value may be vast, thus ignoring outcome
information altogether can paint a quite misleading image of a gamble’s value.
Sample means, in contrast, integrate both value and frequency information into one
dimension. In addition, a person can arrive at sample means without the cognitively
demanding operation of weighing outcomes by the likelihood but merely by sum-
ming and dividing by the sample size; if sample sizes are identical, then just summing

suffices.

Conclusion

The life-is-a-gamble metaphor suggests that life’s decisions have the same structure
as games of chance. If they indeed do, investigating how people play those games
promises insight into how they play the game of life. Hundreds of studies in decisions
under risk have provided people with convenient descriptions of games of chance,
that is, their monetary outcomes and probabilities, thus giving rise to decisions
from description. Life’s decisions, however, do not often come nicely packaged.
Investigating how people make decisions in the absence of complete knowledge of
the gambles’ properties, that is, decisions from experience, turns out novel questions
and revives old unanswered ones. Understanding the psychology of decisions from
experience requires an ecological approach to cognition (see Anderson, 1991;
Brunswik, 1943; Simon, 1956), encompassing models of both the cognitive processes
and their interaction with the statistical structures of the environment. Early termina-
tion of information search and the tendency to rely on small samples in decisions
from experience can at least partly be understood in terms of the statistical structures
of the world.
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