Supporting Information

Evaluation of spin-orbit couplings with linear-response TDDFT, TDA, and TD-DFTB

Xing Gao, Shuming Bai, Daniele Fazzi, Thomas Niehaus, Mario Barbatti, Walter Thiel

Table of Contents

SI-1.	BLOCK MATRIX TRANSFORMATION FOR GAUSSIAN 09	2
SI-2.	STO FITTING	3
SI-3.	BMT FOR ATOMIC INTEGRALS IN THE INTERFACE TO DFTB+	3
SI-4.	ENERGY OF EXCITED STATES	5
SI-5.	CARTESIAN COORDINATES	8

SI-1. Block Matrix Transformation for Gaussian 09

In this section, we discuss the block matrix transformation (BMT) for atomic integrals in the interface to Gaussian 09. In Gaussian 09, the output order for *d* orbitals is XX, YY, ZZ, XY, XZ, YZ; for *f* orbitals, it is XXX, YYY, ZZZ, XYY, XXY, XXZ, XZZ, YZZ, YYZ, XYZ. In MolSOC, the order for *d* orbitals is XX, XY, XZ, YY, YZ, ZZ; for *f* orbitals, it is XXX, XXY, XXZ, XYY, XYZ, XZZ, YYY, YYZ, ZZZ.

The transformation matrix for d orbitals is

$$\begin{pmatrix} \boldsymbol{\phi}_{d_{xx}} \\ \boldsymbol{\phi}_{d_{yy}} \\ \boldsymbol{\phi}_{d_{zz}} \\ \boldsymbol{\phi}_{d_{xy}} \\ \boldsymbol{\phi}_{d_{xz}} \\ \boldsymbol{\phi}_{d_{yz}} \end{pmatrix}^{T} = \begin{pmatrix} \boldsymbol{\phi}_{d_{xx}} \\ \boldsymbol{\phi}_{d_{yy}} \\ \boldsymbol{\phi}_{d_{xz}} \\ \boldsymbol{\phi}_{d_{yz}} \\ \boldsymbol{\phi}_{d_{yz}} \\ \boldsymbol{\phi}_{d_{yz}} \end{pmatrix}^{T} \mathbf{C}_{d,6\times6}^{T}, \mathbf{C}_{d,6\times6}^{T} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}^{T},$$

while for *f* orbitals, it is

$\begin{pmatrix} \phi_{x^3} \\ \phi_{y^3} \\ \phi_{z^3} \\ \phi_{zy^2} \\ \phi_{x^2y} \\ \phi_{x^2z} \\ \phi_{xz^2} \\ \phi_{yz^2} \\$	T =	$\begin{pmatrix} \phi_{x^3} \\ \phi_{x^2y} \\ \phi_{x^2z} \\ \phi_{xy^2} \\ \phi_{xyz} \\ \phi_{xyz} \\ \phi_{y^3} \\ \phi_{y^2z} \\ \phi \\ $	$\mathbf{C}_{f,10\times10}^{T}, \mathbf{C}_{f,10\times10}^{T} \equiv$	$ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	0 0 0 1 0 0 0 0	0 0 0 0 1 0 0 0 0	0 0 1 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 0 0	0 1 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 1	0 0 0 0 0 0 0 1 0	$\begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$
$\begin{bmatrix} \boldsymbol{\varphi}_{yz^2} \\ \boldsymbol{\phi}_{y^2z} \\ \boldsymbol{\phi}_{xyz} \end{bmatrix}$		$\left(egin{array}{c} \varphi_{y^2z} & \phi_{yz^2} & \phi_{z^3} & \phi_{z^3} \end{array} ight)$		$\begin{bmatrix} 0\\0\\0 \end{bmatrix}$	0 0	0 0	0 0	0 1	0 0	0 0	1 0	0 0	$\begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}$

For *s* and *p* orbitals, these matrices are identity matrices.

Suppose we have a matrix $\mathbf{H}_{10\times10}^{I}$ for atomic integrals obtained from MolSOC, which includes 1 *s*, 3 *p*, and 6 *d* orbitals. This matrix can be blocked as

$$\mathbf{H}_{10\times10}^{I} = \begin{pmatrix} \mathbf{H}_{ss,1\times1} & \mathbf{H}_{sp,1\times3} & \mathbf{H}_{sd,1\times6} \\ \mathbf{H}_{ps,3\times1} & \mathbf{H}_{pp,3\times3} & \mathbf{H}_{pd,3\times6} \\ \mathbf{H}_{ds,6\times1} & \mathbf{H}_{dp,6\times3} & \mathbf{H}_{dd,6\times6} \end{pmatrix}.$$

Applying the transformation matrix defined above, the atomic integral matrix $\mathbf{H}_{10\times10}^{II}$ used for the Gaussian 09 interface can be reconstructed as

$$\mathbf{H}_{10\times10}^{II} = \begin{pmatrix} \mathbf{1}_{s,1\times1} & & \\ & \mathbf{1}_{p,3\times3} & \\ & & \mathbf{C}_{d,6\times6} \end{pmatrix} \mathbf{H}_{10\times10}^{I} \begin{pmatrix} \mathbf{1}_{s,1\times1} & & \\ & \mathbf{1}_{p,3\times3} & \\ & & & \mathbf{C}_{d,6\times6}^{T} \end{pmatrix}$$

SI-2. STO Fitting

Some fits of Slater type orbitals (STOs) with Gaussian type orbitals (GTOs) are shown in Figure 1S. Fitting errors are usually on the order of $10^{-5} \sim 10^{-7}$ depending on the number of nodes in the wave function.

Figure 1S. Radial part of the atomic wave function *versus* distance for orbitals: a. O 2p, b. Zn 4s, c. S 3s, d. S 3d

SI-3. BMT for atomic integrals in the interface to DFTB+

In DFTB+, the angular-dependent part of the atomic orbitals is of tesseral harmonic form^{S1}. Therefore, the transformation matrix between spherical $\phi_{l,m}$ ($l \in \{s = 0, p = 1, d = 2, f = 3\}$, $m = \{-l, -l + 1, ..., l - 1, l\}$) and Cartesian GTOs $\phi_{n,l}$ ($n = \{1, 2, ..., 2l + 1\}$) can be written as,

 $\boldsymbol{\phi}_{s,0} = \mathbf{C}_{s,1\times 1} \boldsymbol{\phi}_{1,s}^s,$

where $\mathbf{C}_{s,l\times l} \equiv (c_s), \ c_s = \frac{1}{\sqrt{4\pi}},$

$$\begin{cases} \phi_{p,-1} \\ \phi_{p,0} \\ \phi_{p,1} \end{cases} = \mathbf{C}_{p,3\times 3} \begin{pmatrix} \phi_{1,p_{z}} \\ \phi_{1,p_{z}} \\ \phi_{1,p_{z}} \end{pmatrix}, \\ \text{where } \mathbf{C}_{p,3\times 3} \equiv \begin{pmatrix} 0 & c_{p} & 0 \\ 0 & 0 & c_{p} \\ c_{p} & 0 & 0 \end{pmatrix}, \ c_{p} = \sqrt{\frac{3}{4\pi}} \quad , \\ \begin{pmatrix} \phi_{d,-2} \\ \phi_{d,-1} \\ \phi_{d,0} \\ \phi_{d,+1} \\ \phi_{d,+2} \end{pmatrix} = \mathbf{C}_{d,5\times 6} \begin{bmatrix} \phi_{1,d_{x}} \\ \phi_{2,d_{y}} \\ \phi_{3,d_{z}} \\ \phi_{5,d_{z}} \\ \phi_{5,d_{z}} \\ \phi_{5,d_{z}} \\ \phi_{5,d_{z}} \\ \phi_{0} & 0 & 0 & 0 \\ -c'_{d} & 0 & 0 & -c'_{d} & 0 & 2c'_{d} \\ 0 & 0 & c_{d} & 0 & 0 & 0 \\ c_{d}/2 & 0 & 0 & -c_{d}/2 & 0 & 0 \\ c_{d}/2 & 0 & 0 & -c_{d}/2 & 0 & 0 \\ \end{pmatrix}, \ c_{d} = \frac{1}{2}\sqrt{\frac{15}{\pi}}, c'_{d} = \frac{1}{4}\sqrt{\frac{5}{\pi}}, \\ \begin{pmatrix} \phi_{f,-3} \\ \phi_{f,-1} \\ \phi_{f,-1} \\ \phi_{f,-1} \\ \phi_{f,-2} \\ \phi_{f,-1} \\ \phi_{f,-2} \\$$

where,

$$\mathbf{C}_{f,7\times10} \equiv \begin{pmatrix} 0 & 3c_{f1} & 0 & 0 & 0 & 0 & -c_{f1} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2c_{f2} & 0 & 0 & 0 & 0 & 0 \\ 0 & -c_{f3} & 0 & 0 & 0 & 0 & -c_{f3} & 0 & 4c_{f3} & 0 \\ 0 & 0 & -3c_{f4} & 0 & 0 & 0 & 0 & -3c_{f4} & 0 & 2c_{f4} \\ -c_{f3} & 0 & 0 & -c_{f3} & 0 & 4c_{f3} & 0 & 0 & 0 \\ 0 & 0 & c_{f2} & 0 & 0 & 0 & 0 & -c_{f2} & 0 & 0 \\ c_{f1} & 0 & 0 & -3c_{f1} & 0 & 0 & 0 & 0 & 0 \end{pmatrix},$$

$$c_{f1} = \sqrt{\frac{35}{32\pi}}, c_{f2} = \sqrt{\frac{105}{16\pi}}, c_{f3} = \sqrt{\frac{21}{32\pi}}, c_{f4} = \sqrt{\frac{7}{16\pi}}.$$

Now, we can apply the MBT following the same strategy as in Section S1,

Suppose we have a matrix $\mathbf{H}_{14\times 14}^{I}$ for atomic integrals obtained from MolSOC, which includes 1 s, 3 p and 10 f orbitals. This matrix can be blocked as

$$\mathbf{H}_{14\times14}^{I} = \begin{pmatrix} \mathbf{H}_{ss,1\times1} & \mathbf{H}_{sp,1\times3} & \mathbf{H}_{sf,1\times10} \\ \mathbf{H}_{ps,3\times1} & \mathbf{H}_{pp,3\times3} & \mathbf{H}_{pf,3\times10} \\ \mathbf{H}_{fs,10\times1} & \mathbf{H}_{fp,10\times3} & \mathbf{H}_{ff,10\times10} \end{pmatrix}.$$

Applying the transformation matrix defined above, the atomic integral matrix $\mathbf{H}_{11\times 11}^{II}$ used for the DFTB+ interface can be reconstructed as

$$\mathbf{H}_{11\times11}^{II} = \begin{pmatrix} \mathbf{C}_{s,1\times1} & & \\ & \mathbf{C}_{p,3\times3} & \\ & & \mathbf{C}_{f,7\times10} \end{pmatrix} \mathbf{H}_{14\times14}^{I} \begin{pmatrix} \mathbf{C}_{s,1\times1} & & \\ & \mathbf{C}_{p,3\times3} & \\ & & & \mathbf{C}_{f,10\times7}^{T} \end{pmatrix}.$$

SI-4. Energy of Excited States

Table S1. Basis set effects on state energies for 2tThy at TDDFT/B3LYP level.

			ΔE (eV) (TD-B3LYP)	
	_	cc-pVDZ	aug-cc-pVDZ	cc-pVTZ
S ₀	¹ gs	0.00	0.00	0.00
T_1	$^{3}\pi\pi^{*}$	1.68	1.70	1.68
T_2	$^{3}n\pi^{*}$	1.89	1.92	1.90
S_1	$^{1}n\pi^{*}$	2.28	2.28	2.28

Table S2. Density functional e	effects on state energies for	2tThy at TDDFT/TZVP level.

 Table 52. Density functional effects on state energies for 2t my at 1DD1 1/12 v1 level.									
			ΔE	c (eV) (TZVP	')				
B3LYP	B3LYP	PBE0	CAM-B3LYP	ωB97XD	ωB97XD	M062X	PBE	TD-DFTB	
 TDDFT	TDA	TDDFT	TDDFT	TDDFT	TDA	TDDFT	TDDFT		

S ₀	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
T ₁	1.67	1.80	1.62	1.53	1.66	1.87	1.72	1.69	1.96
T ₂	1.88	1.96	1.90	1.94	2.00	2.07	2.00	1.86	2.08
S_1	2.26	2.28	2.33	2.36	2.38	2.41	2.29	2.15	1.99

Table S3. Vertical excitation energies and dominant excitations for formaldehyde and acetone at TDDFT/TZVP/(CAM-)B3LYP and TD-DFTB levels.

		B3LYP		С	AM-B3LYP	TD-DFTB		
		ΔE (eV)	dominant excitation	ΔE (eV)	dominant excitation	ΔE (eV)	dominant excitation	
formaldehyde	S_1	4.02	$n_{\rm H} \rightarrow \pi_{\rm L}^*(1.00)$	4.00	$n_{\rm H} \rightarrow \pi_{\rm L}^*(0.99)$	4.50	$n_{\rm H} \rightarrow \pi^*_{\rm L}(1.00)$	
	T_1	3.29	$n_{\rm H} \rightarrow \pi_{\rm L}^*(1.00)$	3.26	$n_{\rm H} \rightarrow \pi_{\rm L}^*(0.99)$	4.50	$n_{\rm H} \rightarrow \pi^*_{\rm L}(1.00)$	
	T_2	5.61	$\pi_{\text{H-1}} \rightarrow \pi_{\text{L}}^{*}(1.00)$	5.52	$\pi_{\text{H-1}} \rightarrow \pi_{\text{L}}^{*}(1.00)$	7.24	$\pi_{\text{H-1}} \rightarrow \pi_{\text{L}}^{*}(1.00)$	
acetone	S_1	4.48	$n_{\rm H} \rightarrow \pi_{\rm L}^*(0.99)$	4.52	$n_{\rm H} \rightarrow \pi_{\rm L}^*(0.98)$	4.72	$n_{\rm H} \rightarrow \pi^*_{\rm L}(1.00)$	
	T_1	3.84	$n_{\rm H} \rightarrow \pi_{\rm L}^*(0.99)$	3.88	$n_{\rm H} \rightarrow \pi_{\rm L}^*(0.98)$	4.71	$n_{\rm H} \rightarrow \pi^*_{\rm L}(1.00)$	
	T_2	5.73	$\pi_{\text{H-1}} \rightarrow \pi_{\text{L}}^{*}(0.94)$	5.69	$\pi_{H-1} \rightarrow \pi_{L}^{*}(0.91)$	6.79	$\pi_{\text{H-1}} \rightarrow \pi_{\text{L}}^{*}(1.00)$	

Table S4. State energies and dominant excitations for thymine (Thy), 4-thiothymine (4tThy), and 2,4-thiothymine (2,4tThy) from TD(A)DFT/TZVP (B3LYP, ω B97XD, and PBE), TD-DFTB, and CASPT2.

		¹ (n-	$\rightarrow \pi^*$) S ₁ or S ₂		$^{3}(\pi \rightarrow \pi^{*}) T_{1}$	³ (1	$\mathbf{n} \rightarrow \pi^*$) T ₂
		ΔE (eV)	dominant excitation	ΔE (eV)	dominant excitation	ΔE (eV)	dominant excitation
Thy	TD-B3LYP	3.93	$n_{H-1} \rightarrow \pi_{L}^{*}(0.96)$	1.88	$\pi_{\rm H} \rightarrow \pi_{\rm L}^*(1.00)$	3.60	$n_{H-1} \rightarrow \pi_{L}^{*}(0.93)$
	TD-ωB97XD	4.44	$n_{H-1} \rightarrow \pi_{L}^{*}(0.90)$	1.80	$\pi_{\rm H} \rightarrow \pi_{\rm L}^*(1.00)$	4.06	$n_{H-1} \rightarrow \pi_{L}^{*}(0.84)$
	TD-PBE	3.21	$n_{H-1} \rightarrow \pi_{L}^{*}(1.00)$	2.07	$\pi_{\rm H} \rightarrow \pi_{\rm L}^*(1.00)$	2.97	$n_{H-1} \rightarrow \pi_{L}^{*}(1.00)$
	TDA-B3LYP	3.94	$n_{H-1} \rightarrow \pi_{L}^{*}(0.97)$	2.16	$\pi_{\rm H} \rightarrow \pi_{\rm L}^*(0.98)$	3.63	$n_{H-1} \rightarrow \pi_{L}^{*}(0.94)$
	TD-DFTB	2.93	$n_{H-1} \rightarrow \pi_{L}^{*}(0.87)$	2.64	$\pi_{\rm H} \rightarrow \pi_{\rm L}^*(0.94)$	2.93	$n_{H-1} \rightarrow \pi_{L}^{*}(0.94)$
	CASPT2	4.20	$n_{H-2} \rightarrow \pi_{L}^{*}(0.58)$	2.56	$\pi_{\rm H} \rightarrow \pi_{\rm L}^*(0.76)$	4.17	$n_{H-2} \rightarrow \pi_{L}^{*}(0.41)$
			$n_{H-1} \rightarrow \pi_{L}^{*}(0.15)$				$n_{H-1} \rightarrow \pi_{L}^{*}(0.20)$
4tThy	TD-B3LYP	2.51	$n_{\rm H} \rightarrow \pi^*_{\rm L}(0.99)$	2.11	$\pi_{\text{H-1}} \rightarrow \pi_{\text{L}}^{*}(0.98)$	2.20	$n_{\rm H} \rightarrow \pi_{\rm L}^{*}(1.00)$
	TD-ωB97XD	2.79	$n_{\rm H} \rightarrow \pi^*_{\rm L}(0.96)$	2.08	$\pi_{\text{H-1}} \rightarrow \pi_{\text{L}}^{*}(0.95)$	2.49	$n_{\rm H} \rightarrow \pi_{\rm L}^{*}(1.00)$
	TD-PBE	2.24	$n_{\rm H} \rightarrow \pi_{\rm L}^{*}(1.00)$	1.95	$n_{\rm H} \rightarrow \pi_{\rm L}^*(1.00)$	2.22	$\pi_{\text{H-1}} \rightarrow \pi_{\text{L}}^{*}(1.00)$
	TDA-B3LYP	2.52	$n_{\rm H} \rightarrow \pi_{\rm L}^*(0.99)$	2.22	$n_{\rm H} \rightarrow \pi_{\rm L}^*(0.98)$	2.29	$\pi_{\text{H-1}} \rightarrow \pi_{\text{L}}^{*}(0.98)$
	TD-DFTB	1.91	$n_{\rm H} \rightarrow \pi^*_{\rm L}(1.00)$	1.91	$n_{\rm H} \rightarrow \pi_{\rm L}^*(1.00)$	2.22	$\pi_{\text{H-1}} \rightarrow \pi_{\text{L}}^{*}(1.00)$
	CASPT2	2.72	$n_{\rm H} \rightarrow \pi^*_{\rm L}(0.89)$	2.67	$\pi_{\text{H-1}} \rightarrow \pi_{\text{L}}^{*}(0.8)$	2.70	$n_{\rm H} \rightarrow \pi_{\rm L}^*(0.81)$
2,4tThy	TD-B3LYP	2.48	$n_{\rm H} \rightarrow \pi_{\rm L}^*(0.86)$	2.09	$\pi_{\text{H-3}} \rightarrow \pi_{\text{L}}^{*}(0.89)$	2.17	$n_{\rm H} \rightarrow \pi_{\rm L}^*(0.78)$
			$n_{H-2} \rightarrow \pi_{L}^{*}(0.13)$				$n_{H-2} \rightarrow \pi_{L}^{*}(0.19)$
	TD-ωB97XD	2.76	$n_{\rm H} \rightarrow \pi_{\rm L}^*(0.72)$	2.05	$\pi_{\text{H-3}} \rightarrow \pi_{\text{L}}^{*}(0.75)$	2.45	$n_{\rm H} \rightarrow \pi_{\rm L}^*(0.69)$
			$n_{H-2} \rightarrow \pi_{L}^{*}(0.24)$		$\pi_{\text{H-1}} \rightarrow \pi_{\text{L}}^{*}(0.25)$		$n_{H-2} \rightarrow \pi_{L}^{*}(0.26)$
	TD-PBE	2.13	$n_{\rm H} \rightarrow \pi_{\rm L}^*(0.95)$	1.91	$n_{\rm H} \rightarrow \pi_{\rm L}^*(0.97)$	2.20	$\pi_{\text{H-3}} \rightarrow \pi_{\text{L}}^{*}(0.84)$
	TDA-B3LYP	2.49	$n_{\rm H} \rightarrow \pi_{\rm L}^*(0.86)$	2.19	$n_{\rm H} \rightarrow \pi_{\rm L}^*(0.78)$	2.28	$\pi_{\text{H-3}} \rightarrow \pi_{\text{L}}^{*}(0.85)$
			$n_{H-2} \rightarrow \pi_{L}^{*}(0.13)$		$n_{H-2} \rightarrow \pi_{L}^{*}(0.19)$		$\pi_{\text{H-1}} \rightarrow \pi_{\text{L}}^{*}(0.13)$
	TD-DFTB	1.83	$n_{\rm H} \rightarrow \pi_{\rm L}^*(1.00)$	1.83	$n_{\rm H} \rightarrow \pi_{\rm L}^*(1.00)$	$2.20(T_3)$	$\pi_{\text{H-3}} \rightarrow \pi_{\text{L}}^{*}(0.89)$
	CASPT2	2.64	$n_{\rm H} \rightarrow \pi^*_{\rm L}(0.49)$	2.60	$\pi_{\text{H-1}} \rightarrow \pi_{\text{L}}^{*}(0.81)$	2.62	$n_{\rm H} \rightarrow \pi_{\rm L}^{*}(0.46)$
			$n_{H-2} \rightarrow \pi_{L}^{*}(0.37)$		· · · · · · · · · · · · · · · · · · ·		$n_{H-2} \rightarrow \pi_{L}^{*}(0.36)$

	_	I	B3LYP		ωB97XD	TD-DFTB		
		ΔE (eV)	dominant excitations	ΔE (eV)	dominant excitations	ΔE (eV)	dominant excitations	
psoralenOO	S_1	3.82	$\pi_{\rm H} \rightarrow \pi_{\rm I}^*(0.92)$	4.30	$\pi_{\rm H} \rightarrow \pi_{\rm I}^*(0.89)$	3.09	$n_{H_{-1}} \rightarrow \pi_{I}^{*}(1.00)$	
1	S_2	4.40	$\pi_{H_{-1}} \rightarrow \pi_{L}^{*}(0.85)$	4.78	$\pi_{H_{-1}} \rightarrow \pi_{I}^{*}(0.78)$	3.41	$\pi_{\rm H} \rightarrow \pi_{\rm I}^*(0.99)$	
					$\pi_{\rm H} \rightarrow \pi^*_{\rm I+1}(0.17)$		n 2()	
	S_3	4.51	$n_{H_{2}} \rightarrow \pi_{I}^{*}(0.95)$	4.96	$n_{H_2} \rightarrow \pi_1^*(0.80)$	4.04	$\pi_{\rm H_2} \rightarrow \pi_{\rm I}^{*}(0.99)$	
	T_1	2.85	$\pi_{H_{-1}} \rightarrow \pi_{I}^{*}(0.62)$	2.85	$\pi_{H_{-1}} \rightarrow \pi_{L}^{*}(0.64)$	2.96	$\pi_{\rm H} \rightarrow \pi_{\rm I}^*(1.00)$	
			$\pi_{\rm H} \rightarrow \pi_{\rm I}^*(0.26)$		$\pi_{\rm H} \rightarrow \pi^*_{\rm L+1}(0.14)$		····· ···· ···· · ···· · · ··· · · · ·	
					$\pi_{\rm H} \rightarrow \pi_{\rm I}^{*}(0.13)$			
	T_2	3.04	$\pi_{\rm H} \rightarrow \pi_{\rm I}^{*}(0.62)$	3.23	$\pi_{\rm H} \rightarrow \pi_{\rm L}^{*}(0.61)$	3.09	$n_{H_{-1}} \rightarrow \pi_{I}^{*}(1.00)$	
			$\pi_{\rm H} \rightarrow \pi^*_{\rm I+1}(0.17)$		$\pi_{\rm H} \rightarrow \pi^*_{\rm L+1}(0.21)$			
			$\pi_{\rm H_{1}} \rightarrow \pi_{\rm I}^{*}(0.13)$		······································			
	T ₃	3.68	$\pi_{\mu} \rightarrow \pi^*_{\mu+1}(0.65)$	4.03	$\pi_{\rm H} \rightarrow \pi^*_{\rm I+1}(0.44)$	3.34	$\pi_{\rm H} \rightarrow \pi_{\rm I}^{*}(1.00)$	
	5		$\pi_{\rm H} \rightarrow \pi_{\rm L}^{*}(0.17)$		$\pi_{\rm H_{1}} \rightarrow \pi_{\rm L^{+1}}^{*}(0.19)$		M _{H-2} M _L (100)	
			\mathcal{M}_{H} -1 $\mathcal{M}_{\mathrm{L}}(0.17)$		$\pi_{\text{H}-1} \rightarrow \pi_{\text{L}}^{*}(0.14)$			
	T₄	4 1 5	$n_{\rm H} \rightarrow \pi^*(0.90)$	4 4 4	$\pi_{\rm H} \rightarrow \pi_{\rm L}^* (0.29)$	3 99	$\pi_{\rm V} \rightarrow \pi^*$ (1.00)	
	-4		$m_{\rm H^{-2}} \to m_{\rm L}(0.90)$		$\pi_{\text{H-1}} \rightarrow \pi_{\text{L+1}}^*(0.15)$	0.77	$n_{\rm H} \rightarrow n_{\rm L+l}(1.00)$	
					$\pi_{\text{H-4}} \rightarrow \pi_{\text{L}}^* (0.14)$			
	Τr	4 31	$\pi_{\cdots} \rightarrow \pi^* (0.61)$	4 54	$n_{H-1} \rightarrow \pi^*(0.75)$	4 19	$n \rightarrow \pi^*$	
	13	1.01	$m_{\rm H-1}$ $m_{\rm L+1}(0.01)$	1.0 1	$n_{\rm H-2} \to \pi^*$ (0.16)	1.19	(1.00)	
nsoralenOS	S.	3 56	$\pi_{1} \rightarrow \pi^{*}(0.95)$	4 04	$\pi_{H-2} \to \pi^*(0.90)$	2 79	(1.00)	
psorateneos	S ₁	3 91	$n_{\rm H} \rightarrow n_{\rm L}(0.95)$	4 21	$n_{\rm H} \rightarrow \pi^*_{\rm L}(0.82)$	3.05	$\pi_{\rm H} \rightarrow \pi_{\rm L}^{*}(1.00)$	
	S ₂	4 19	$\pi_{\text{H-2}} \rightarrow \pi_{\text{L}}^*(0.75)$	4 57	$\pi_{\text{H-2}} \rightarrow \pi_{\text{L}}^*(0.32)$	3.63	$\pi_{\rm H-1} \to \pi^*(0.88)$	
	03	7.17	$\pi_{\text{H-1}} \rightarrow \pi_{\text{L}}(0.73)$	ч.97	$\pi_{\text{H-1}} \rightarrow \pi_{\text{L}}(0.70)$	5.05	$n_{\text{H-2}} \rightarrow n_{\text{L}}(0.00)$	
	Т.	2 76	$\pi_{\mathrm{H}} \rightarrow \pi_{\mathrm{L}+1}(0.19)$	2 75	$\pi_{\mathrm{H}} \rightarrow \pi_{\mathrm{L}+1}(0.23)$	2 73	$\pi \rightarrow \pi^*(1.00)$	
	11	2.70	$\pi_{H-1} \rightarrow \pi_L(0.48)$	2.15	$\pi_{H-1} \rightarrow \pi_L(0.03)$	2.15	$n_{\text{H-1}} \rightarrow n_{\text{L}}(1.00)$	
			$n_{\rm H} \rightarrow n_{\rm L}(0.42)$		$\pi_{\mathrm{H}} \rightarrow \pi_{\mathrm{L}+1}(0.14)$			
	т	2 00	$ ^{*}(0.50)$	2 1 5	$\pi_{\rm H} \rightarrow \pi_{\rm L}(0.10)$	2 70	-*(1.00)	
	12	2.90	$\pi_{\rm H} \rightarrow \pi_{\rm L}(0.30)$	5.15	$\pi_{\rm H} \rightarrow \pi_{\rm L}(0.62)$	2.19	$n_{\rm H} \rightarrow \pi_{\rm L}(1.00)$	
			$\pi_{\text{H-1}} \rightarrow \pi_{\text{L}}(0.24)$		$\pi_{\mathrm{H}} \rightarrow \pi_{\mathrm{L}+1}(0.21)$			
	т	2 20	$\pi_{\rm H} \rightarrow \pi_{\rm L^{+1}}(0.18)$	261	* (0.42)	2 17	* (1.00)	
	13	5.50	$\pi_{\rm H} \rightarrow \pi_{\rm L^{+1}}(0.05)$	5.04	$\pi_{\rm H} \rightarrow \pi_{\rm L^{+1}}(0.42)$	3.17	$\pi_{\text{H-2}} \rightarrow \pi_{\text{L}}(1.00)$	
			$\pi_{\text{H-1}} \rightarrow \pi_{\text{L}}(0.19)$		$\pi_{\text{H-1}} \rightarrow \pi_{\text{L}}(0.19)$			
	т	2 55	*(0.01)	2.00	$\pi_{\rm H} \rightarrow \pi_{\rm L}(0.18)$	2 4 2	*	
	14	3.33	$n_{\text{H-2}} \rightarrow \pi_{\text{L}}(0.91)$	5.80	$n_{\text{H-2}} \rightarrow \pi_{\text{L}}(0.78)$	3.43	$\begin{array}{c} \pi_{\text{H-1}} \rightarrow \pi_{\text{L+1}} \\ (1.00) \end{array}$	
	T ₅	4.15	$\pi_{\mathrm{H-1}} \rightarrow \pi_{\mathrm{L+1}}(0.77)$	4.34	$\pi_{\text{H-1}} \rightarrow \pi_{\text{L+1}}(0.43)$	3.54	$n_{\rm H} \rightarrow \pi_{\rm L+1}(1.00)$	
psoralenSO	\mathbf{S}_1	3.64	$\pi_{\rm H} \rightarrow \pi_{\rm L}^*(0.96)$	4.22	$\pi_{\rm H} \rightarrow \pi_{\rm L}(0.66)$	2.96	$n_{H-1} \rightarrow \pi_L(1.00)$	
	~		*		$\pi_{\text{H-1}} \rightarrow \pi_{\text{L}}(0.20)$			
	S_2	4.11	$\pi_{\text{H-1}} \rightarrow \pi_{\text{L}}^{*}(0.82)$	4.52	$\pi_{\text{H-1}} \rightarrow \pi_{\text{L}}^{*}(0.62)$	3.13	$\pi_{\rm H} \rightarrow \pi_{\rm L}^*(1.00)$	
	~		$\pi_{\mathrm{H}} \rightarrow \pi_{\mathrm{L+1}}(0.13)$		$\pi_{\rm H} \rightarrow \pi_{\rm L}^{(0.21)}$			
	S_3	4.47	$n_{\text{H-2}} \rightarrow \pi_{\text{L}}^{*}(0.95)$	4.93	$n_{\text{H-2}} \rightarrow \pi_{\text{L}}^{*}(0.80)$	3.57	$\pi_{\text{H-2}} \rightarrow \pi_{\text{L}}^*(0.93)$	
	T_1	2.77	$\pi_{\text{H-1}} \rightarrow \pi_{\text{L}}^{*}(0.66)$	2.76	$\pi_{\text{H-1}} \rightarrow \pi_{\text{L}}^{*}(0.59)$	2.84	$\pi_{\rm H} \rightarrow \pi_{\rm L}^*(1.00)$	
			$\pi_{\mathrm{H}} \rightarrow \pi^{*}_{\mathrm{L+1}}(0.12)$		$\pi_{\mathrm{H}} \rightarrow \pi^*_{\mathrm{L+1}}(0.15)$			
			$\pi_{\rm H} \rightarrow \pi_{\rm L}^*(0.10)$					
	T_2	2.99	$\pi_{\rm H} \rightarrow \pi_{\rm L}^*(0.66)$	3.21	$\pi_{\rm H} \rightarrow \pi_{\rm L}^*(0.38)$	2.96	$n_{H-1} \rightarrow \pi_L^*(1.00)$	
			$\pi_{\text{H-1}} \rightarrow \pi_{\text{L}}^{*}(0.20)$		$\pi_{\mathrm{H}} \rightarrow \pi^*_{\mathrm{L+1}}(0.27)$			
					$\pi_{\text{H-1}} \rightarrow \pi_{\text{L}}^{*}(0.22)$			
	T_3	3.42	$\pi_{\mathrm{H}} \rightarrow \pi^{*}_{\mathrm{L^{+}1}}(0.70)$	3.72	$\pi_{\rm H} \rightarrow \pi^*_{\rm L^{+1}}(0.43)$	3.05	$\pi_{\text{H-2}} \rightarrow \pi_{\text{L}}^{*}(1.00)$	
			$\pi_{\rm H} \rightarrow \pi_{\rm L}^*(0.18)$		$\pi_{\rm H} \rightarrow \pi_{\rm L}^*(0.37)$			
	T_4	4.11	$\pi_{\text{H-1}} \rightarrow \pi^{*}_{\text{L+1}}(0.89)$	4.37	$\pi_{\text{H-1}} \rightarrow \pi^*_{\text{L+1}}(0.76)$	3.41	$\pi_{\rm H} \rightarrow \pi^*_{\rm L+1}(1.00)$	
	T_5	4.12	$n_{H-2} \rightarrow \pi_{L}^{*}(0.90)$	4.51	$n_{H-2} \rightarrow \pi_{L}^{*}(0.75)$	3.61	$n_{H-1} \rightarrow \pi^*_{L+1}$	
				(T_6)	(T_6)		(1.00)	

Table S5. Vertical excitation energies and dominant excitations for psoralens from TDDFT/TZVP/B3LYP, ωB97XD, TD-DFTB.

			B3LYP	CAM-B3LYP		
		$\Delta E (eV)$	dominant excitations	$\Delta E (eV)$	dominant excitations	
BODIPY	S_1	2.58	$\pi_{\rm H} \rightarrow \pi_{\rm L}^*(0.99)$	2.69	$\pi_{\rm H} \rightarrow \pi_{\rm L}^*(0.98)$	
	T_1	1.34	$\pi_{\rm H} \rightarrow \pi_{\rm L}^*(1.00)$	1.15	$\pi_{\rm H} \rightarrow \pi_{\rm L}^*(1.00)$	
	T_2	2.70	$\pi_{\text{H-1}} \rightarrow \pi_{\text{L}}^{*}(0.87)$	2.83	$\pi_{\text{H-1}} \rightarrow \pi_{\text{L}}^{*}(0.54)$	
					$\pi_{\rm H} \rightarrow \pi^*_{\rm L+1}(0.17)$	

Table S6. Vertical excitation energies and dominant excitations for BODIPY at TDDFT/TZVP/(CAM-)B3LYP level.

SI-5. Cartesian coordinates

Cartesian coordinates in Angstrom, for all molecules investigated in this work.

formaldehyde

С	-0.132229	-0.000002	0.000010
0	1.064400	0.000002	-0.000012
Н	-0.717794	0.939142	0.00000
Н	-0.717798	-0.939142	0.000039
acetone			
С	-0.166195	0.001194	-0.173304
0	0.995476	0.002610	-0.496361
С	-0.968665	1.278406	-0.070441
Н	-0.314973	2.141560	-0.175067
Н	-1.722697	1.297114	-0.861767
Н	-1.501870	1.323562	0.881793
С	-0.902277	-1.278207	0.154427
Н	-1.095277	-1.316243	1.230069
Н	-1.871297	-1.310577	-0.347823
Н	-0.301731	-2.139413	-0.130635

2-thiothymine

Ν	-1.812458	-0.393339	0.564053
С	-3.193236	-0.497647	0.446440
Ν	-3.844849	0.727222	0.400820
С	-3.182787	1.890877	0.147251
С	-1.838212	1.960323	0.056073
С	-1.069971	0.745890	0.326133
S	-3.900754	-1.711592	-0.613819
0	0.152551	0.704996	0.383914
С	-1.102378	3.229382	-0.235122
Η	-3.812160	2.766764	0.047198
Н	-0.389778	3.462163	0.559503

Η	-0.533579	3.151194	-1.165183
Н	-1.799275	4.062677	-0.331434
Н	-4.844612	0.746269	0.519835
Н	-1.281199	-1.231706	0.748732

thymine

С	-2.909875	-0.629050	-0.750426
С	-0.969207	0.789501	-0.288958
С	-1.853272	1.844318	0.067623
С	-3.262872	1.547385	0.254145
Н	-3.983226	2.239771	0.660440
0	-3.385348	-1.615949	-1.278475
0	0.248383	0.881498	-0.508213
С	-1.400473	3.243296	0.147397
Н	-1.641309	3.662743	1.134181
Н	-0.331135	3.324808	-0.036402
Н	-1.941543	3.870633	-0.574804
Ν	-1.583501	-0.490619	-0.420219
Н	-0.982147	-1.215500	-0.786819
Ν	-3.713370	0.446397	-0.387742
Н	-4.702890	0.311532	-0.560634

4-thiothymine

Ν	-1.849545	-0.436139	0.362328
С	-3.213053	-0.450129	0.523403
Ν	-3.827070	0.740518	0.284492
С	-3.150749	1.901485	-0.101755
С	-1.808952	1.903194	-0.257845
С	-1.110224	0.694914	-0.019118
0	-3.814395	-1.461620	0.856259
S	0.589846	0.528584	-0.157243
С	-1.058533	3.135119	-0.669847
Н	-3.767423	2.772650	-0.261638
Н	-0.316476	3.413561	0.083639
Н	-0.530266	2.975915	-1.614157
Н	-1.739102	3.976314	-0.801042
Н	-4.827252	0.751073	0.393826
Н	-1.391740	-1.316080	0.538097

2,4-thiothymine

Ν	-1.849597	-0.439399	0.257464
С	-3.197739	-0.498714	0.178537
Ν	-3.814670	0.659732	-0.097117
С	-3.143553	1.873525	-0.293316

С	-1.797095	1.931963	-0.217287
С	-1.095406	0.734827	0.066154
S	-4.031552	-1.942734	0.416010
S	0.607536	0.618256	0.175149
С	-1.043647	3.210682	-0.420485
Н	-3.770420	2.725984	-0.502749
Н	-0.469950	3.468154	0.474247
Н	-0.338645	3.119587	-1.251494
Н	-1.724296	4.032763	-0.639190
Н	-4.819327	0.632279	-0.157057
Н	-1.386158	-1.308939	0.468901

psoralenOO

0	-4.022976	0.983961	0.000000
С	-3.003331	0.354454	0.00000
0	-1.811019	1.055041	0.00000
С	-2.893000	-1.094271	0.00000
С	-1.697697	-1.707320	0.000000
С	-0.477245	-0.953034	0.000000
С	-0.595087	0.454056	0.000000
С	0.511143	1.287736	0.000000
С	0.785333	-1.547040	0.000000
С	1.909768	-0.737538	0.000000
С	1.737466	0.658321	0.000000
0	2.940243	1.278519	0.000000
С	3.333491	-0.942117	0.000000
С	3.882011	0.287390	0.000000
Н	-3.829527	-1.635518	0.000000
Н	-1.635709	-2.791427	0.000000
Н	0.867762	-2.628465	0.000000
Н	0.399029	2.363736	0.00000
Н	3.867102	-1.879343	0.000000
Н	4.904183	0.629340	0.00000

psoralenOS

0	-4.477112	0.621239	0.00000
С	-3.334935	0.233828	0.00000
С	-2.931630	-1.158396	0.00000
С	-1.664873	-1.610948	0.00000
С	-0.463569	-0.820333	0.00000
С	-0.513687	0.595613	0.00000
С	0.650336	1.358530	0.00000
С	0.775055	-1.471417	0.00000
С	1.942257	-0.727952	0.00000

С	1.843685	0.672996	0.00000
0	3.078216	1.230536	0.000000
С	3.352340	-1.008775	0.000000
С	3.964994	0.190491	0.000000
Н	-3.762942	-1.855206	0.000000
Н	-1.517347	-2.687597	0.000000
Н	0.802631	-2.555813	0.000000
Н	0.619675	2.441384	0.000000
Н	3.835735	-1.972817	0.000000
Н	5.004204	0.476804	0.000000
S	-2.031091	1.484315	0.000000

psoralenSO

0	-4.107347	0.881651	0.00000
С	-3.062861	0.294171	0.000001
0	-1.900266	1.040072	0.00000
С	-2.899047	-1.151174	0.00000
С	-1.682977	-1.720953	0.00000
С	-0.493379	-0.918241	0.00000
С	-0.662591	0.481833	0.00000
С	0.415133	1.345669	0.00000
С	0.791493	-1.450680	0.00000
С	1.898093	-0.609589	0.00000
С	1.686170	0.789992	0.00000
С	3.294341	-0.939253	0.00000
С	4.087971	0.150926	0.00000
Н	-3.815972	-1.725048	0.00000
Н	-1.579979	-2.801848	0.00000
Н	0.920954	-2.528125	0.00000
Н	0.243810	2.414823	0.00000
Н	3.671532	-1.953684	0.00000
Н	5.167591	0.183633	0.00000
S	3.199271	1.652304	0.00000

BODIPY

В	0.964140	-1.115596	0.015703
F	0.577677	-1.832741	1.132554
Ν	-1.954648	-1.949652	-0.493743
Н	-1.085747	-2.265180	-0.905943
С	-3.058036	-2.695328	-0.283564
F	0.700261	-1.875492	-1.146729
Ν	0.135194	0.232394	-0.070960
С	-4.011867	-1.907384	0.327021
Н	-4.994277	-2.225143	0.634301

Ν	2.450963	-0.745701	0.066669
С	-3.453183	-0.630430	0.476775
С	-2.162814	-0.672294	-0.039057
С	-1.188910	0.379731	-0.079218
С	-1.503388	1.792421	-0.136602
С	-2.711540	2.483789	-0.249689
Н	-3.654061	1.958497	-0.312641
С	-2.673677	3.860319	-0.310304
Н	-3.597118	4.418096	-0.398653
С	-1.452866	4.549794	-0.276214
Н	-1.455870	5.631623	-0.328166
С	-0.252506	3.875667	-0.200240
Н	0.686148	4.415586	-0.198362
С	-0.282938	2.483443	-0.137433
С	0.756446	1.493740	-0.098250
С	2.104548	1.633654	-0.058721
Н	2.529639	2.629020	-0.072794
С	2.971604	0.527951	0.014257
С	4.361125	0.440513	0.075417
С	4.679365	-0.916851	0.164995
Н	5.661819	-1.354300	0.232609
С	3.479631	-1.612878	0.157623
Н	5.044703	1.274885	0.058720
Н	3.299949	-2.674489	0.215219
Н	-3.909869	0.215591	0.961629
Н	-3.093189	-3.729422	-0.583598

Reference

[S1] Görrler-Walrand, C.; Binnemans, K. *Rationalization of Crystal-Field Parametrization*, In: *Handbook on the Physics and Chemistry of Rare Earths* Vol. 23, eds. Gschneidner, K. A. and Eyring, L. North Holland, 1996.