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Introduction

Spontaneous folding of matter has long been the subject of disparate branches of research, 
from the earlier vitalistic view of Leibniz1 to the mathematical description of morphogenetic 
processes of D’Arcy Thompson.2 Today, scientific advancements have shown how folding 
is a common strategy adopted in biological systems to build up more and more complex 
structures – in proteins, from a peptide chain to a functional enzyme; in plants, from bud 
petals to a developed flower; in organisms, from layers of cells to diversified embryos. 
One might think that such folding processes require exceptionally complex biological 
machineries to orchestrate them. On the contrary, with this contribution, we will show 
that folding can result from remarkably simple processes – and equally applies to both 
natural and artificial systems. In the following we will introduce the reader to the necessary 
theoretical concepts that are needed to understand these phenomena, providing examples 
from the common experience enabling a more systematic understanding.

When we talk about self-folding 3 thin structures we refer to a broad class of spontaneous 
shape changes (that is not caused by an external load) that occur in thin bodies. The 
adjective thin here means that a three-dimensional body has at least one dimension much 
smaller than the other; that is, a rod can be considered one-dimensional since it has two 
small dimensions; a plate instead is two-dimensional since it has one small dimension. In 

1 Deleuze 1993.
2 Thompson 1953.
3 In this document the terms layer, sheet, film are used as synonyms for plate. Similarly, folding stands 

for a generic out-of-plane deformation of a plate; other terms adopted for it are: bending, shape change, 
morphing, wrinkling, pattern formation.
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particular we will refer to bodies that can be considered two-dimensional, that is plates 
(which are flat) and shells (which are curved). As will become clear in section 1, the fact 
that plates (and shells) are thin is at the base of the rich panorama of shape changes that 
are observed.

The goal of the present document is to provide an overview of some of the scientific 
literature dealing with shape changes in self-folding thin structures. Although these shape 
changes can be of a very different nature, size and origin – occurring in artificial as well 
as biological materials, and in systems that range from nanometer to centimeter sizes – all 
can be understood under some unifying concepts that will be introduced in the following. 
Thanks to our presentation, it becomes much easier to locate where research efforts have 
been focused until now and to identify new fields of interest that scientific research hasn’t 
addressed yet.

This document is organized as follows. In section 1 we introduce the reader to the basic 
concepts of the mechanics of a thin plate (the experienced reader can skip this part). In 
section 2 we will introduce many examples of self-folding systems, categorizing them 
on the base of how eigenstrains are distributed and orientated in the plate. In this section, 
we will discuss the folding (or more generally the morphing) of systems that: undergo 
confined expansion due to an attached elastic foundation (section 2.2); are subjected to 
the so-called edge growth (section 2.3); which change curvature (section 2.4). In section 
3 we will give some concluding remarks on the present work.

1 Mechanics of a thin plate: basic concepts and examples

In this section we introduce the reader to the mechanics of a thin plate through some guiding 
examples. In section 1.1 we will analyze simple deformation modes like stretching and 
bending, introduce the concept of buckling of a thin body and also clarify why these two 
modes cannot be separated for curved shells. In section 1.2 we will present the concept of 
eigenstrain and eigencurvature and some of the different strategies to generate these in 
natural and artificial materials.

1.1 Simple deformation modes of a thin body

1.1.1 What strains are
To be able to discuss any self-folding system, we need to “zoom” in the material that make 
up these objects and describe what happens locally when such shape changes occur. As 
a guiding example, we take a sheet of rubber (such as a deflated balloon), mark it with a 
circle enclosing a small portion and conduct a series of three “handheld” experiments on 
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it (fig. 1 a–c). If we stretch it, we see that the circle becomes elongated. If we now take 
half of the rubber piece and stretch it by the same amount we will see that the circle is 
now more elongated (the elongation is now double). Stretching the sheet along a different 
direction will cause the circle to elongate along that direction. A useful concept to group 
together these intuitive results is that of strain (usually associated to the greek letter Ɛ) in our 
examples the elongation of the circle with respect to its initial size. We see that the strain:

 › describes the shape change of the material locally
 › its magnitude can be evaluated from the ratio between the elongation and the size of 

the object – it is normalized
 › describes the shape change along all possible directions

Now let us draw two squares on the sheet, close together and in the center of the sheet, 
one with two sides parallel to the stretching direction and the other rotated by 45° degrees. 
After stretching the sheet one has become a rectangle, the other one a rhombus (fig. 1 d–e).

Fig. 1: Visualizing strain in a rubber sheet under increasing loading (a to c); strain depends on its frame of 
reference: the principal directions identify directions of pure “size-changing” strains (square to rectangle) 
whereas other frame orientations will give also “shape-changing” strain components (square to rhombus) 
(d –e); imposing a curvature to a bar generates extensional/compressive strains on its convex /concave sides (f ); 
differently from the rubber example, an aluminum foil deformed above a small critical strain does not recover 
its initial shape when loads are removed (g – i).
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It seems that the first square experiences normal strains, which measure a change in length, 
while the other shear strains, which quantify a pure change in shape with no change in 
volume: this is counterintuitive because we expect that the rubber is subjected to the same 
strain state (at least close to the sheet center). This evidence shows that the strains depend 
on the frame of reference. It also shows that in each point one can find an orientation of 
this frame that make the shear strains null. When this happens, the strain tensor has only 
components on the diagonal, and they are called principal strains.

1.1.2 What stresses are
The reason why the circle elongates can be made manifest by cutting the circle out of 
the stretched rubber: then the circle becomes round again. If we stretch two identical 
overlapping sheets of rubber, we will need double the force to elongate the circle by the 
same amount. These evidences can be unified by a quantity – the stress, usually associated 
to the greek letter σ – which:

1. describes the net internal forces acting on the material locally (along all possible 
directions)

2. results from (and balances) the external forces of the surrounding material acting on 
the circle

3. is a measure of the forces acting in the material, normalized by the area of the surface 
on which the forces apply (in our example the area of the sheets’ cross-section)

Coming back to our experiments, we notice that releasing the rubber sheet causes it to return 
to its initial shape, regardless of the amount of force or elongation we applied. This ability 
is due to the rubber’s property – it is said to be elastic. Also, in the second experiment 

-stretching a half sheet by the same amount- we realize that the force we had to put on the 
rubber was, most probably, double. Recalling that also the strain doubled, it appears that 
the stress is proportional to the strain. The relationship between stress and strain is called 
the constitutive law of the material.4 This constitutive law serves to define the mechanical 
behavior of the material, and is a function of the material’s microstructure and chemical 
composition. In the case of rubber and many other solid materials at low strains this rela-
tionship is linear, meaning that stress and strains are related by proportionality constant. To 
summarize, rubber has a linear elastic behavior (at least for not too large strains): it is also 
said that it follows the Hooke’s law.5 Other materials (like the foil we use to wrap food, for 
example) would deform irreversibly when deformed above a certain strain (see fig. 1 g –i).

4 Callister 2007.
5 The Hooke’s law describes how linear springs behave mechanically: the force needed to extend a spring 

increases with its extension. The proportionality factor between force and extension is the spring rigidity 
constant.
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1.1.3 Bending of a plate 6

Instead of stretching the sheet, we now bend it. To highlight the strain when the sheet is 
bent, we draw equidistant lines on the sheet’s profile perpendicularly to the sheet’s long 
axis. At the curved site, the lines are now more closely spaced on the convex side and more 
widely spaced on the concave side (see fig. 1f ). This means that an imposed curvature7 
results in normal strains that adopt a “butterfly” distribution, negative at the convex and 
positive at the concave side, instead of a flat one as in the simple elongation case. Also 
this means that the average strains in the thickness are zero: the length of the sheet does 
not change, just its curvature.

When considering very thin bodies, we can make the assumption that their thickness is 
zero and study them as surfaces in three-dimensional space. Therefore the strain definition 
simplifies to only in-plane components that equal their average across the thickness. If a 
thin body is deformed in pure bending, under the small thickness hypothesis we would 
have zero energy for the bent state, because the average in-plane strain for pure bending 
(that is of the “butterfly” distribution) is zero. Therefore, to be able to properly describe 
the strain state we must define the curvature of the surface: then the imposed curvature 
will be associated with a strain energy. Comparing the amount of force put to bend the 
rubber sheet rather than stretching it, we clearly see how it is much easier to bend: the 
energy involved in bending is lower than in stretching, or equivalently, that the bending 
rigidity of a sheet is much lower than its axial rigidity. It can be shown that such mechanical 
behavior depends on the thin geometry of the plate: the bending energy has a prefactor 
h3 and therefore will be much smaller than the stretching energy (with prefactor h) when 
the plate thickness h  is small.

1.1.4 Buckling and stability: switching between stretching and bending modes
To understand how shape changes occur in thin bodies it is useful to introduce a simpler 
example of a bar subjected to an increasing axial compression. Initially the bar shortens: 
at every small increment of the axial load corresponds a small increment of the bar’s 
shortening. This fact is in accordance with the symmetry of the loading case: the bar is 
a one-dimensional body, the load is also directed along the bar’s axis. The deformation 
requires work to be done on the bar: this external work is stored as strain energy in the 
material. In other words, conservation of energy implies that we can equate this (external) 
energy to an (internal) strain energy that depends from the stresses and strains. Coming 
back to the bar loading experiment, if the load passes a certain threshold the bar will start 
to bend: at this point it becomes easier to bring the ends of the bar together (lower load 

6 Most of the concepts introduced in this and the next two sections have been taken from: Audoly/Pomeau 
2010.

7 For a definition of curvature refer to section 1.1.5.
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increments are required) and every increment in load will cause a large deflection from the 
straight axis. This phenomenon is called buckling. It shows that for a mechanical system 
more than one equilibrium configuration are possible 8 (in our case, both the straight and 
slightly deflected ones are indeed possible at the buckling load threshold). In general the 
system will choose a deformation path which corresponds to lower energy: for a thin body 
(such as the bar but also a plate) this lower energy path is the bending mode. Moreover, 
since such buckling events are eventually caused by the different deformation modes that 
the material experiences, they can surface even in absence of external loading: such is the 
case of shape changes in the examples that will be provided in section 3, where buckling 
events are triggered by differential eigenstrains.

1.1.5 Geometry of a thin body and implications for its mechanical behavior
From a geometrical perspective, thin bodies can be considered as surfaces. To describe the 
shape of a surface in three dimensions, we first step back and consider, for simplicity, a line 
drawn on a plane. Its shape is characterized by the curvature, defined as the inverse of the 
radius of the circle tangent to it. For every point of the line the curvature is single-valued. 
If we consider a point on a generic surface instead, we can draw an infinite number of lines 
passing through that point. In this case each point is associated with an infinite number of 
curvatures depending on the orientation of the corresponding line. In reality these curvatures 
are related together: similarly to what we have seen for strain and stress, it suffices to know 
the two principal curvatures (the maximum and minimum curvatures of all possible ones), 
which are oriented along perpendicular directions, to fully characterize the curvature state.

Inspecting the values of the principal curvatures for different regular surfaces is instructive. 
Then for a plane both are clearly 0. For a cylinder 9 these are 0 and 1/R, respectively parallel 
and perpendicular to a straight line drawn on its surface. For a sphere these are both 1/R. 
Defining the mean curvature H as the average between the principal ones, we have a way 
to measure the total “amount of curvature”: the sphere has a higher curvature than the 
cylinder, which is more curved than the plane. Another fundamental measure of curvature 
is the Gaussian curvature KG, defined as the product of the principal ones (fig. 2). The 
meaning of KG can be easily understood by comparing its value in the three surfaces we just 
presented. Plane and cylinder have same Gaussian curvature KG = 0. Indeed a cylinder can 
be cut and unrolled to a planar state applying a pure bending deformation. On the contrary, 
this does not apply to a sphere. Recalling that bending deformations produces zero average 
in-plane strains of the surface, it now becomes clear that Gaussian curvature is related to 
the in-plane strains of the surface. In particular, KG identifies a surface’s metric, which is 
the way we calculate distances and areas on it. To grasp the concept of a surface’s metric 
we refer to the following experiment. We draw a circle of radius r on a sphere, a plane or 

8 Gambhir 2004.
9 Pressley 2009.
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a saddle-shaped surface (which have respectively KG > 0, KG = 0, KG < 0). We do this with 
the help of a thread (of length r), attaching one extremity to a point on the surface and 
the other one to a pen, taking care of keeping the thread in contact with the surface while 
tracing the circle. The length of the resulting circle will be 2πr on the plane, but lower and 
higher in the sphere and the saddle, respectively. 

The condition of KG = 0 identifies a special class of surfaces called developable surfaces, 
that are flat up to a bending deformation. The developability condition (KG = 0) implies that 
one of the two principal curvatures is zero (recalling that KG is defined as their product). 
We already have seen that a cylinder is a developable surface: in this case the direction 
of zero curvature is the same everywhere besides cylinders there are two more types of 
developable surfaces: cones and the so-called tangent developables. In each point of a 
cone, the zero curvature direction points to the cone’s vertex. Tangent developables are 
the surfaces built by “extruding” a curve in the three-dimensional space along its tangent. 
Therefore, they are locally flat along the extrusion direction and hence developable.

From our standpoint, of studying surfaces that change shape, the Gaussian curvature has 
a fundamental relevance. Surfaces with same K are called isometric and (as we have seen 
for cylinder and plane) can be transformed to one another keeping the distances unchanged 
(this is the main result of Gauss’ Theorema Egregium10). In general ( just like what we 

10 Gauss 1902.

Fig. 2: A saddle, cylinder and sphere, respectively examples of surfaces with negative, zero and positive 
Gaussian curvatures (KG).

KG < 0 KG = 0 KG > 0
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have seen for the compressed bar) surfaces preferentially undergo some isometric shape 
change when subjected to a load (as we have seen thin bodies are much less rigid when bent 
than stretched). For developable surfaces (KG = 0) such isometric transformation is easy to 
predict because it involves only bending. Instead, for non-developable surfaces, bending is 
always coupled to stretching: in this case the transformation is not isometric and therefore 
the shapes that can be acquired will depend strongly on the relative amount of bending and 
stretching energies involved, and buckling events (switching from one mode to the other) 
can appear when these two energy contributions have similar magnitude. Therefore, we 
will describe the shape change of thin bodies in terms of both the in-plane strains and the 
curvature-changes of their mid-surface.

1.2 Fundamentals of spontaneous shape change

1.2.1 Generating forces and deformations: eigenstrain and eigencurvature.
Besides external mechanical loading, shape transformations can occur also due to other types 
of interaction of the body’s material with the environment. For example, when we soak water 
beads11 the hydrogel material of which the beads are made absorbs large amounts of water, and 
the beads increase in volume, undergoing large strains (identified by a zero at the subscript: 
Ɛ0, see also fig. 3a). We define this “non-mechanical” strain as the eigenstrain: it is the sponta-
neous or natural strain of a material which is sensitive to changes of the environment, such as 
temperature, light, humidity, electric or magnetic field. This character is well conveyed by the 
german word eigen which means own. The strain that we introduced previously is now called 
elastic strain, to highlight its mechanical origin. When both a mechanical and environmental 
stimuli are applied, for instance if we squeeze the swollen gel bead, the elastic strain is the 
difference between the total strain (this is the “visible” one that can be measured as described 
for the rubber sheet) and the eigenstrain; in other terms, the elastic strain is defined with respect 
to the swollen configuration that acts as a reference.

Even when only eigenstrains are present, residual stresses can develop and therefore elastic 
strains emerge. A typical example (fig. 3b) is a thin plate made of two identical layers except 
for different thermal expansion properties (one expands by Ɛ0 for a given temperature 
increase, the other one does not expand at all). As we could expect intuitively, when the 
temperature increases, the material cannot reach the local eigenstrain value because each 
layer constrains the other one. The expanding layer experiences a residual compressive 
stress while the passive layer a tensional one, being on average zero over the thickness.12 
As a result, the plate bends in order to fulfill the different expansions. 

11 These are used to irrigate plants over longer time, for instance during short holiday trips.
12 This scenario is not always granted: some eigenstrain distributions can also prevent the plate to possess a 

stress-free shape (on this point, see section 2.3.1).
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A natural bilayer has been described by Elbaum,13 in the awns of the wild wheat which 
foster the seed dispersal. Here, the bending is caused by differential expansion between 
the two layers that make up each awn due to changes in humidity between night and day.
Clearly, both the artificial and the natural systems can be easily described in terms of 
eigencurvature, that is a natural curvature that develops in the awn in absence of external 
mechanical loading. It becomes now clear that eigenstrain (intended as a local change 
of lengths in the material) is fundamental for shape changing systems: in particular a 
non-uniform distribution of spontaneous expansion in a body (differential eigenstrains) as 
in the bilayer example are among the strategies implemented in many biological self-folding 
systems.

1.2.2 Some strategies to generate controlled eigenstrains and eigencurvatures
Analyzing the microstructure of biological materials can provide enough insight in the 
design strategies that have evolved in Nature to obtain shape changing materials. A fitting 
example for this is wood. When trees grow they produce new wood material. An idea of 
this process can be obtained by looking at the many rings in the cross section of a tree’s 
log: the tree grows in diameter by adding layers of cells to the log. Therefore this growth 
process is one-way: unlike animals where tissues can be reabsorbed or remodeled, plants 

13 Elbaum et al. 2007.

Fig. 3: Eigenstrain Ɛ0 and eigencurvature k0 are respectively spontaneous length and curvature changes. (a) 
Example of eigenstrain in a hydrogel: from the initial dry state (Ɛ0= 0) to the final swollen state (Ɛ0>0) a large 
volume increase due to swelling of water takes place. (b) Example of eigencurvature in the awns of the wild 
wheat: each awn is a bilayer made of a hygroscopic (white) and non-expanding (grey) materials. Due to the 
humidity difference between night and day, the awns’ shape changes from straight (𝜅0= 0) to bent (𝜅0> 0). 
Elbaum et al. 2007. 

a b
Ɛ0 = 0 𝜅0 = 0 𝜅0 > 0Ɛ0 > 0
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lack this ability. This can be problematic because adding more material increases the 
weight that the tree has to sustain. Moreover additional external loading can emerge (like 
a condition of persistent wind). A solution is found through some specialized tissues that 
can expand or contract, in this way counteracting situations of unbalanced loads and 
securing the structural stability of trees. As explained by Fratzl et al.14 to understand the 
mechanism of expansion /contraction generation it is sufficient to consider the wood cell 
walls architecture and composition15 (fig. 4a–c). These cells have a prismatic shape with 
walls made of a swellable matrix reinforced by almost inextensible cellulose fibrils spiralling 
around the cells’ main axis. Therefore swelling is possible only perpendicularly to the stiff 
non-swelling cellulose fibrils. By controlling the cellulose orientation (measured by the 
microfibril angle – MFA) during their development, plant cells can generate eigenstrains, 
and modulate them to tensile or compressive values. Such plant tissues are responsible not 
only for stress generation in trees but also in a variety of seed dispersal systems, such as 
the pine cone (fig. 4d) or the awns of the wild wheat (fig. 3b), that function in absence of 
any metabolic energy source. The energy needed to mechanically actuate and perform a 
shape change is harvested from the environmental changes in humidity – this is the reason 
why these systems are also called hygromorphs.
Another example of biologically developed eigenstrain is found in the seed capsule of a 
family of plants called Aizoaceae (commonly known as iceplants). They are remarkable 
because -unlike most hygromorphs where eigenstrains are typically in the 10% range-, their 
active tissue experiences a 400% eigenstrain as a result of water absorption. The origin of 
such large eigenstrains is found in the peculiar composition and architecture of the active 
tissue, as explained by Harrington16 and colleagues. At a microscopic scale it consists of 
a lignified honeycomb structure with diamond shaped cells whose walls are lined by a 
cellulose rich hygroscopic tissue (fig. 4e). As liquid water comes in contact with the tissue, 
the hygroscopic inner layer swells increasing its volume; the honeycomb structure directs 
this large volume increase in a large expansion along the cells’ short axis. 
Man-made materials are also subjected to eigenstrains. Hydrogels in particular are a special 
class of polymers undergoing large expansion (1000% in volume) upon water sorption. 
Hydrogels have a chemical structure that can be described as a network of long chains 
connected together at points called cross-links. These chains are hydrophilic (water liking) 
therefore they “attract” water molecules when soaked. The degree of expansion depends 
on the density of cross-links: less cross-links bring to higher expansion. Moreover, they 
can be chemically synthesized to modulate the swelling in response to a variety of different 
stimuli (temperature, light, magnetic and electrical fields). Technological advances have 
made possible to fine tune both the stimuli-sensitivity (for instance one can control the 

14 Fratzl /Elbaum /Burgert 2008.
15 Composition refers to the chemically different materials found in the tissue; architecture refers to the 

structure of the tissue at lower scales (microstructure, nanostructure, etc).
16 Harrington et al. 2011.
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temperature at which volume change occurs) and the spatial distribution of the cross-links 
in thin geometries (by lithographic techniques as shown, for example, by Klein and Kim,17 
see fig. 4f ). For these reasons, hydrogels have been the experimental system of choice to 
investigate the role of eigenstrains distribution onto the folding shape.

17 Klein /Efrati /Sharon 2007; Kim et al. 2012.

Fig. 4: Strategies to control eigenstrains in biological and artificial systems. (a–c) The cellulose microfibril 
angle (MFA) controls the mechanics and swelling of the plant cell wall. Dunlop 2016. (a) Schematic of a 
simplified cell wall, consisting of a soft swellable matrix reinforced by stiff fibres wrapped at an angle μ around 
the cell. (b) Schematic of how cells with different MFAs will respond to swelling of the soft matrix.  
(c) Tensional and compressive strains and stresses can be generated depending on the MFA. (d) A pine cone, 
an example of actuating biological structures responding to change in environmental humidity based on the 
plant cell wall model. (e) Larger directed expansions are achieved in the active tissue of the iceplant seed 
capsule through a different spatial arrangement of the swelling (pale blue) and non-swelling (red) materials. (f ) 
Schematic of halftone lithography: by changing the dimension of the low swelling black dots with respect to the 
high swelling green material fine spatial control of swelling properties in a hydrogel sheet is possible. Kim et 
al. 2012.
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1.2.3 Minimal triggers for spontaneously morphing systems
From what we have seen in this section, in order to achieve a shape change a self-folding 
system must possess two basic ingredients:
 › ability to deform in response to a non-mechanical stimulus (eigenstrain)
 › non-uniform distribution of eigenstrain across the body

Especially this second point is very relevant, as we will see, because the eigenstrain dis-
tribution influences which pattern of shape change arises. In reality the choice of this 
pattern or the evolution from one pattern to another is strictly subjected to the so-called 
boundary conditions. Mathematically speaking these are additional equations that have 
to be considered when searching for the equilibrium shape of a self-folding body. From a 
more practical perspective, these are physical constraints acting on the body: for instance, 
in the example of the spontaneously bending bilayer, boundary conditions describe how 
the extremities of the bilayer are treated (for example, if an extremity is glued to a support, 
and the other one is free to move along a carriage).

2. Exploring the manifold of thin structures undergoing  
  spontaneous folding

2.1 A classification of self-folding systems based on eigenstrains distribution

To properly distinguish among the various types of biological and artificial self-folding 
systems, we choose to categorize them on the basis of the eigenstrain distribution and 
orientation. Moving along the vertical axis of fig. 5, a first distinction is made between 
systems that behave as monolayer or bilayer systems, that is systems that are respectively 
homogeneous or not across the thickness (first or second row of examples in the fig.). 
From what we have shown in section 1.2.1, this is equivalent to endow the surface with 
an eigenstrain or eigencurvature. A second distinction is made depending on the in-plane 
direction and distribution of the eigenstrain (moving along the horizontal axis): the ei-
genstrain can expand /contract the layer mostly along one direction (and be null on the 
perpendicular one) or all directions (isotropic); they can be uniform in the whole layer or be 
differently distributed in the layer (for instance concentrated at the edge). In the following, 
eigenstrain and eigencurvature will be expressed in their principal frame of reference as 
vectors Ɛ0 =  [ Δ1  Δ2] and 𝜅0 = [𝜅1    𝜅2 ] . In this notation, the subscripts 1, 2 refer to the 
principal directions of the sheet (both flat and curved), indicated by the axes 1, 2 in fig. 5.
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Fig. 5: Different types of self-folding systems triggered by in-plane (horizontal axis) and through-thickness 
(vertical axis) distribution of eigenstrains. Top row, from left to right: monolayer systems characterized by a 
uniaxial, biaxial and edge confined eigenstrains distribution. Bottom row, left to right: bilayer systems charac-
terized by single, double and edge confined eigencurvature (eigencurvature derives from a through-thickness 
distribution of eigenstrains). The principal values of eigenstrains and eigencurvatures are directed along the 
white arrows. The geometry of the system (flat or doubly-curved) as well as the boundary conditions to which 
it is subjected (pale blue material schematizes a soft elastic foundation) have strong influence on the folding 
process.
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2.2 Soft matter with hard skin

In this section we present some examples of shape-changing systems formed by a thin and 
stiff sheet attached to a soft substrate (respectively schematized in fig. 5a – c by dark blue 
and pale blue materials). In all these cases the shape change is due to a differential strain 
between these two portions: this gives rise to a manifold of different shapes and patterns.

2.2.1 Shape changes in a sheet subjected to uniaxial confinement
To start off we consider the shape transformation of a thin sheet that is attached to a soft 
substrate. This is a common schematization of many systems that appear at disparate 
length scales, both in biological and artificial systems,18 such as the shape of a polyester 
sheet resting on a liquid or a soft hydrogel (mm scale), or tri-colloidal systems and even 
surfactant-water-air interface in the lungs alveola (nm scale). All these systems start from 
a flat state that subsequently morphs into a wavy (wrinkled) configuration and eventually 
reach a convoluted, folded one. The morphing can be caused by a lateral compression of 
the sheet or, equivalently by a unidirectional expansion of the sheet subjected to a lateral 
confinement: both cases can be described by defining the normalized excess length of the 
sheet (fig. 5a). In mathematical formalism the sheet is subjected to an eigenstrain Ɛ0 = [Δ  0] 
with Δ >0 since the sheet expands with respect to the substrate.19 The progression of the 
shape change depends on the magnitude of Δ as we will show hereafter.

Ideally, compressing the sheet by Δ should shorten while keeping it flat. Instead, even for 
very minor compression, it starts wrinkling (fig. 6a). The wrinkling is the onset of a first 
mechanical instability which is in fact very similar to the buckling of an axially loaded 
slender bar: from our experience we know that it is very difficult to shorten the bar, which 
instead will preferentially deform by bending. The shape of the wrinkled sheet is a sine 
wave with a profile length λ0, where λ 0 depends both on the bending rigidity of the sheet 
B and the effective stiffness of the substrate K. This can be readily understand this if we 
first consider the sheet separately from the substrate. If we would compress the sheet alone, 
it would bend acquiring a single arched shape, pretty much like as for the axially loaded 
bar: this is because a single large arch has a smaller curvature than many smaller ones. On 
the other hand, a single arch would cause a large deformation of the substrate, since the 
latter is bonded to the sheet and follows its vertical displacement. Therefore the substrate 
switches to a configuration with many arches. Eventually the actual length of the sine 
profile λ0 is a tradeoff between these two competing processes.

18 Pocivavsek et al. 2008; Genzer/Groenewold 2006; Brau et al. 2013.
19 With reference to fig. 5a, considering a principal reference system aligned with the sheet sides, Δ is the 

eigenstrain component along the horizontal direction (marked by a white arrow), whereas the component 
along the perpendicular direction is zero. This notation is explained in section 2.1.
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As Δ increases the wrinkled configuration is not stable anymore: this can be observed in 
the plot of fig. 6b, showing the measured amplitudes of the central wrinkle A0 and the 
first flanking one A1 taken from a plastic foil floating on a liquid. When Δ increases until 
about one third of the profile length λ0, the wrinkled profile starts changing and the center 
wrinkle amplitude A0 starts increasing linearly at the expense of the flanking ones. This 
bifurcation point is the onset of the wrinkle-to-fold transition. In the limit of larger and 

Fig. 6: Wrinkling and folding in a sheet subjected to uniaxial eigenstrain Δ with respect to an elastic foundation. 
(a) The initial straight state is lost in favor of a periodic wrinkled pattern. (b) Wrinkle-to-fold transition when 
the foundation is a liquid: past a certain threshold, the central fold amplitude A0 grows at the expense of flanking 
wrinkles A1. (c) Wrinkle-to-fold transition when the foundation is a soft solid: flanking wrinkles do not disappear 
and the monolayer acquires a typical periodic profile with alternating deep folds and shallow wrinkles. Brau et al. 
2013; Pocivavsek et al. 2008.
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larger confinement, the center fold increases and all other wrinkles disappear. In reality 
this is not observed because the fold contacts itself when Δ = λ0

The reason why the fold appears depends on how the strain energy of the system scales 
with an increasing confinement Δ:20

U~(BK)⅟2 Δ – KΔ3

the first term, with degree one half, is related to the winkling, and, as said, depends on 
both the sheet bending rigidity B and substrate stiffness K; the second term with degree 
three is related to the folded state and depends only on K. When Δ is small the cubic term 
is negligible and the winkling solution is the most stable state. When Δ increases the cubic 
term lowers the total energy, favoring the folded state.

A slightly different folded configuration occurs when the substrate is a soft elastic material 
such as an elastomer (fig. 6c). Again in this case, when Δ is small the wrinkled shape is 
stable.21 Then, at a certain confinement δ2 the wrinkle-to-fold bifurcation is observed. In 
this case though, there are many deeper folds of amplitude A0 flanked by smaller wrinkles 
of amplitude A1 which don’t vanish even for very large Δ. This behavior is due to the 
elastic response of the substrate: whereas in the sheet-fluid system the sheet could freely 
flow on the fluid and the central fold grow at the expense of the other wrinkles, here such 
a horizontal deformation of the substrate has a “cost” in terms of strain energy. As a result 
the folded configuration has a typical period-doubling shape (see fig. 6c) with alternating 
small amplitude wrinkles and large amplitude folds. If even larger confinement Δ is applied 
a period-quadrupling folding occurs: this suggests that a cascade of spatial period-doubling 
bifurcations could happen at high enough confinements (more than period-quadruple 
foldings however are hard to be observed experimentally because the sheet can undergo 
self-contact).

2.2.2 Shape changes in a sheet subjected to biaxial confinement
As an extension of the previous uniaxial strain states we now consider a biaxial compression 
or, equivalently a biaxial growth of the sheet. This scenario is a good approximation of what 
happens when our skin ages. Aging triggers biological modifications that make the skin 
superficial layer (epidermis) stiffer, while the internal layer tends to lose water causing its 
shrinking. This results in an excess length of the epidermis: mathematically the sheet is 
subjected to an in-plane eigenstrain Ɛ0 = [Δ1  Δ2] with respect to the substrate (depicted 
by two perpendicular arrows in fig. 5b). We know from our daily lives that -from the 
unaesthetical orange peel appearance, to deep wrinkles- skin blemishes can be manifold. 

20 Pocivavsek et al. 2008, 915.
21 The amplitude is proportional to the square root of Δ as with a fluid substrate.
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Moreover this problem has more than a merely aesthetical interest. Indeed a similar sur-
face patterns appear in artificial material systems, for example depositing a thin metallic 
film 22 onto an elastomer 23 and letting the system cool down at room temperature, or by 
surface-modifying of polymers such as poly-dimetilsiloxane (PDMS) (see the examples 
described later).

In this case the buckling analysis has to account for all possible pairs of values Δ1,  Δ2. 
Audoly and Boudaoud 24 started studying this problem for values close to the critical 25 
threshold value ΔC. They showed that the sinusoidal wrinkled configuration (also called 
cylindrical) of frequency k arising as the first buckled configuration in the monodimen-
sional case is still a solution when the interfacial strain is small (below the critical value). 
For slightly larger eigenstrains Δ three additional possible patterns arise: the so-called, 
undulating, varicose and checkerboard patterns (fig. 7a). The undulating is obtained from 
straight wrinkles by lateral undulations of the crests and valleys. The varicose corresponds 
to a modulation of the amplitude of the straight wrinkles, along its crests and valleys. The 
checkerboard is obtained by superposition of two perpendicular sets of straight wrinkles. 
The hexagonal is obtained by superposition of three sets of straight wrinkles, at 2π /3 angles.

These patterns are perturbed configurations of the cylindrical one, with respect to which 
a periodical perturbation of frequency k’ along the longitudinal direction is superposed. 
Putting q = k’/k as the longitudinal wavevector relative to the cylindrical one, Audoly and 
Boudaoud present the stability of these patterns as a function of the two differential strains  
Δ1,  Δ2   and their wavelength. In the phase diagram of fig. 7b each portion of the plane 
is marked with the pattern that is more stable for the corresponding range of values of 
the two differential strains Δ1,  Δ2. In particular they showed that the undulating pattern 
with large wavelength (q = 0) are more stable than the wrinkled state as soon as the strain 
compressing the wrinkling pattern longitudinally is higher than the critical value Δ2  > ΔC. 
The transition from wrinkled to varicose pattern is not observed because it takes place at 
strains that are much larger than for undulating stripes or for the checkerboard mode. When 
the differential strain is equibiaxial (Δ1 = Δ2), the checkerboard pattern is the more stable 
state above the critical thresholds, especially for larger Δ. Remarkably, the equibiaxial case 
close to the initial buckling threshold (Δ1 = Δ2 = ΔC) is a special situation where the straight 
wrinkled state can coexist with all the other patterns. This is because all of the patterns 
(theoretically extrapolated or experimentally reported) can be seen as a superposition of 
straight wrinkles at different angles.

22 Here and throughout the rest of the text the term film is synonym of thin sheet.
23 Bowden et al. 1998.
24 Audoly/Boudaoud 2008a.
25 The critical threshold is the value of Δ1,  Δ2 beyond which the system switches to a buckled state.
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When the differential strain increases (see fig. 7c), the undulating pattern evolves smoothly 
(without a well-defined buckling threshold) towards a developable surface obtained by 
folding a cylindrical shape along sinusoidal ridges (pattern D in fig. 7c). This pattern (de-
rived theoretically) is very close to the so-called herringbone (or zig-zag) pattern observed 
experimentally. In this pattern the spacing between the ridges along the transversal and 
longitudinal direction (with respect to the initial straight wrinkling) are comparable. By 
studying the energy of the developable pattern at very large differential strains, Audoly 
and Boudaoud showed that this configuration is far from the global minimum of energy.26 

26 The global minimum is obtained when the spacing between ridges is much smaller than the wavelength of 
these sinusoidal ridges.

Fig. 7: Complex pattern formation and evolution in a monolayer subjected to increasing biaxial confinement 
resting on an elastic foundation. (a) Cylindrical, undulating and checkerboard patterns. (b) Phase diagram of 
the most stable patterns depending on the extent of eigenstrain along two perpendicular directions. Audoly/
Boudaoud 2008a. (c) Evolution of pattern in case of an increasing equibiaxial confinement: planar, cylindrical, 
undulating and developable patterns. Audoly/Boudaoud 2008b. (d) Influence of rate of change of confinement 
onto the pattern evolution: slow increase cause “trapping” from hexagonal pattern into disordered labyrinthine 
one; fast increase enable reaching the more stable herringbone pattern. (e) Relative strain energy of different 
patterns at increasing biaxial confinements: lower energies mean more stable patterns. Cai et al. 2011.
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This means that experimentally the system is trapped in a non-optimal state (herringbone 
pattern with comparable transversal and longitudinal wrinkling periodicity) although a more 
stable configuration could be possible. This so-called trapping mechanism depends on the 
history of loading of the system: if the differential strain beyond the secondary buckling 
threshold (from straight to undulated wrinkles) is increased slowly, the developable pattern 
inherits the wavelengths typical of the undulating pattern because this is a smooth change; if, 
instead, the change is fast, the system can reach the global minimum. The idea that loading 
history of the system has significance in the shape selection is also crucial in self-folding 
bilayered systems. Finally, at even larger Δ the developable pattern smoothly tends to a 
Miura-ori folding pattern.27 Again since this is a smooth transition trapping is possible.

Trapping in real experimental systems (as can be seen in fig. 7d) has an utmost impor-
tance because it constitutes a way to select different pattern under similar experimental 
conditions. For example, Cai and Hutchinson 28 were able to show this in specimens of 
poly-dimethylsiloxane (PDMS) substrates that were treated with a chemical oxidative 
process that cause the stiffening of a thin superficial layer. These PDMS samples were 
then exposed to ethanol vapor: the ethanol would be absorbed first in the thin layer thus 
generating an equi-biaxial differential swelling. Moreover, by controlling the duration of 
exposure and the concentration of ethanol in the vapor, they were also able to control the 
speed and amount of differential swelling. Being able to inspect how the system would 
behave under a controlled equibiaxial differential strain Ɛ0 = [Δ  Δ], they compared the 
pattern formation due to a large increase in Δ, with slow and fast dynamics. With slow 
dynamics the system started from a pure hexagonal pattern, then isolated hexagons would 
coalesce with neighbors producing an extended local groove. Such groove formation was 
also triggering the coalescing of a neighboring pair into another groove that was not 
parallel to the original pair, in order to accommodate the local stress in an equi-biaxial 
manner. The overall result of such a sequence of individual buckling events was a pattern 
that locally resembles a segmented labyrinth, or a herringbone pattern with no global 
orientation (as observed by Huang and Lin 29). In contrast, with a fast increase of domains 
of herringbone pattern were developed from the beginning and subsequently refined in 
extremely well-defined and larger domains.

To understand such a behavior, they derived upper bounds for the theoretical strain energy 
at low Δ of different patterns: the straight wrinkled, the checkerboard, hexagonal and 
herringbone. While close to the critical threshold all different patterns have similar energies 
(see fig. 7e), these become more separated at higher levels of differential eigenstrains. 

27 Audoly/Boudaoud 2008c; a Miura-Ori folding pattern is a traditional folding in artistic origami, where the 
creases are zig-zag lines oriented as the crests and valleys of the developable pattern of fig. 7c.

28 Cai et al. 2011.
29 Huang /Hong /Suo 2005; Lin /Yang 2007.
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Their predictions clearly show that for higher Δ the more stable (lower energy) patterns 
were the checkerboard (square) and herringbone one followed by the straight wrinkled 
and hexagonal ones. While this result confirms the same conclusions drawn by Audoly 
and Boudaoud, it was striking that the theory could not explain the system’s dominant 
preference for the hexagonal pattern when D was increased slowly. To explain this oddity 
the basic assumptions of the theory were reconsidered. In particular the authors questioned 
the assumption of a perfectly flat film. Indeed before any pattern formation, the films 
would show (even if very minor) an initial curvature. In fact, by introducing in the theory 
an outward curvature of the film, it could be shown that the hexagonal buckled mode is 
the more stable configuration (lower elastic energy minimum) in presence of a positive 
spherical curvature of the film. Moreover the curvature introduces a clear asymmetry in 
the buckling response: this was confirmed by the evidence that the hexagonal patterns on 
PDMS always showed inwardly oriented dimples.30

2.2.3 Shape changes in a curved sheet subjected to equibiaxial confinement
These results show how important the surface curvature is in the selection of a specific 
pattern. Moving on from this point, many researchers focused on the effects of curvature 
both theoretically31 and experimentally32 when the curved sheet is subjected to an homo-
geneous in-plane eigenstrain Ɛ0 = [Δ  Δ] (see fig. 5c). The main outcome of these studies is 
that the surface curvature acts as an additional parameter to control the pattern formation: 
large changes of the film curvature (at a given level of differential strain) can push the 
system to a different pattern, exactly as does the critical strain far above the critical value. 
From the phase diagram in fig. 8a, it can be seen that the hexagonal pattern is stable when 
the differential strain Δ and /or the radius of curvature R are low. Increasing R (relatively 
to the shell thickness h) or Δ produces a so-called labyrinthine pattern with domains of 
curved ridges and valleys. Intermediate values of these parameters produce configurations of 
stable coexistence of the aforementioned patterns. At a closer inspection, these patterns are 
not trivial. Intuitively we would expect that for a very large radius of curvature.33 The film 
assumes the herringbone pattern observed by Cao and Hutchinson instead of the labyrinthine 
one (see fig. 8a). But the planar periodicity of the herringbone pattern is incompatible 
with a spherical domain. Similarly, the hexagonal pattern observed at low radius is not 
perfect: some dimples have only 5 neighbouring dimples, demonstrating the existence of 
pentagonal topological defects (disclinations) as required by Euler’s polyhedral theorem.34

The wrinkling at the surface of a drying pea is a perfect system to observe such interplay 
between pattern formation and surface curvature (fig. 8b). They have an almost spherical 

30 A symmetric buckling would equally produce inward or outward dimples; instead the experiments showed 
only inwardly oriented dimples: in fig. 7d the inward dimples have a darker shade of grey.

31 Cao et al. 2008; Li et al. 2011; Stoop et al. 2015.
32 Breid /Crosby 2013.
33 That is in the limit of a flat film.
34 From Euler polyhedral theorem in the sphere there must be 12 dimples with 5 neighbors. 
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shape and, when drying, the softer inner core shrinks more rapidly than the stiff outer shell: 
also in this case there is a positive differential strain Δ between shell and core. Typically, due 
to the high shell thickness and the high stiffness ratio between shell and core, the dimples 
that are formed are quite large compared to the pea size. Therefore when Δ increases past 
a critical threshold a typical buckyball pattern appears, which shows a clear arrangement 
of hexagonal-pentagonal dimples. At even larger Δ neighboring dimples coalesce together 
forming a groove, in a secondary wrinkle-to-fold bifurcation. In this case since the groove 
length is comparable with the sphere radius, a true labyrinthine pattern is unfavored and 
grooves show a scattered orientation.

2.3 Torn plastic bags and growing leaves: shape changes due to edge growth

In this section we present some examples of systems where the shape change is caused by 
a positive differential strain of the edge with respect to the core of the sheet (see fig. 5d– e). 
As the reader could already understand from the title of this section, this scenario has a 
very broad relevance, since it is applicable to a variety of different systems, both biological 
and artificial.

Fig. 8: Influence of curvature of the monolayer on the selection of buckling pattern. (a) Theoretical phase 
diagram and relative patterns (hexagonal, bistable and labyrinthine) as a function of surface curvature 
(normalized by monolayer thickness: R/h) and in-plane eigenstrains (beyond the onset of buckling: Δ /ΔC – 1. 
Points correspond to real experiments on artificial system. Stoop et al. 2015. (b) Pattern formation on the skin 
of drying peas and relative numerical predictions as a function of skin-core modulus ratio and confinement. Li 
et al. 2011.
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2.3.1 Non-uniform in-plane eigenstrain distributions
All the examples introduced until now show that surface curvature, eigenstrains magnitude 
and to a certain extent also speed of deformation are possible means to control the pattern 
of shape change. As we have seen, such patterns consist of out of plane deflections from the 
sheet initial configuration that can be considered large in comparison with the sheet thickness, 
but are small with respect to the sheet size. Another line of research investigates large shape 
changes in finite size sheets through a reasoned distribution of the in-plane eigenstrain. This 
forward problem (given a three-dimensional target shape, find the corresponding in-plane 
eigenstrain distribution) has been dealt with for ideal surfaces (with vanishing thickness): 
the field of map projections provides a number of well-established conformal mappings 35 of 
three-dimensional shapes onto flat surfaces (for example it is possible to almost completely 
map a sphere to a flat surface with the exception of a point).

The reverse problem, from a geometrical perspective, is to find the three-dimensional shape 
of a thin body corresponding to a given distribution of in-plane eigenstrains. This problem 
(as realized by Efrati, Sharon and Kupferman 36) is not trivial and has been solved analyt-
ically only under simplifying axisymmetry assumptions.37 A thin body loses its intrinsic 
geometry as a result of a generic growth process. For example, let us assume, for simplicity, 
the thin body is flat: the growth process leads to an in-plane eigenstrain distribution. If the 
elastic plate is capable of satisfying the prescribed metric, then there exists a stress-free 
configuration, which is unique. That is the prescribed metric transforms the flat body to a 
curved one. If this is not possible, a residual in-plane stress will arise in the deformed plate, 
regardless of the assumed shape. Efrati and coauthors called such bodies non-Euclidean 
to highlight their impossibility to obtain a stress-free shape. Here non-Euclidean means 
that their internal geometry (prescribed by the metric) cannot be described only in terms 
of distances between points since such a pure geometrical description would overlook 
the presence of residual stress. In mathematical terms it is said that such bodies are not 
immersible in the three-dimensional Euclidean space, or, alternatively, the prescribed 
metric has no embedding in the Euclidean space.

2.3.2 Edge growth in a flat sheet
To explain such reverse problem, we once again resolve to a hand-held experiment, where 
we take a piece of plastic bag (flat in its resting configuration) and tear it apart (fig. 9a). A 
travelling crack is formed: the material flows perpendicularly to the crack as a result of the 
large extensional stresses. These material deformations close to the newly formed edges 
are not recovered after the load has been removed: the material has deformed plastically. 

35 Ivanov/Trubetskov 1995.
36 Efrati /Sharon /Kupferman 2009a; Efrati /Sharon /Kupferman 2009b; Efrati /Sharon /Kupferman 2011; 

Efrati /Sharon /Kupferman 2013.
37 Dias/Hanna /Santangelo 2011.
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Hence we have prescribed a unidirectional eigenstrain along the edges. To be concise let 
us name this type of eigenstrain distribution as edge growth. The evident consequence of 
this can readily be seen: the edges have now assumed a rippled shape. Strikingly similar 
shapes are also observed in the shape of salad and kale leaves (fig. 9b): also in this case the 
edges grow more than the center of the leaf. The question is then: can we predict the edge 
shape corresponding to a given edge growth profile? Sharon 38 et al. analyzed the shape of 
such torn plastic sheets and realized that the wrinkles at the sheet’s edge are self-similar 
(or fractal): each bigger wave contains along its profile 3.2 smaller waves sharing the same 
amplitude-to-wavelength ratio, with wavenumbers according to a sequence:

k, αk, α2k, α3k, …

where α =3.2 and k being the wavenumber of the first largest wave. Measuring the contour 
length of the sheet close to the edge, they could observe a contour excess length (with 
respect to the flat contour length) with a rapid decay moving from edge to center of the 
sheet (fig. 9c) which is mathematically equivalent to an eigenstrain Ɛ0 = [Δ  0] aligned 
with the sheet’s sides (see fig. 5d). That is, each narrow strip parallel to the edge is in-
plane compressed by the flanking one closer to the center. Recalling section 2.2.1, this is 
compatible with a straight wrinkling pattern with wavelength λ (depending on the sheet 
stiffness and thickness). Therefore the cascade of waves is due to the superposition of many 
such wrinkling patterns with increasing wavenumber α ik as one moves closer to the edge. 
Then the question arises: why is the cascade scaling factor about 3.2?

Audoly and Boudaoud 39 showed that such period tripling waves are the most stable (lowest 
energy) types of wrinkling that can be achieved in a plate with a growing edge. To achieve 
this conclusion, he first realized that growth profile on the edge prescribes a given Gaussian 
curvature to the plate, on which the stretching energy depends. To minimize the elastic 
energy, the sheet assumes configurations that respect this prescribed curvature. In the limit 
of an infinitely thin plate, two families of embeddings (that is configurations respecting 
the growth profile) are possible, either with a unique wrinkling frequency or a cascade of 
superposed wrinkles. Because of the mathematical form of the elastic energy, its solutions 
must be invariant to a sign change.40 This means that the “self- similarity factor α  must 
map odd integers to odd integers, [leaving] only odd integers (3, 5, etc.) as eligible values”.41 
Among these, fractal wrinkling patterns with α =3 yields the most stable solutions and 
therefore are chosen.

38 Sharon et al. 2002.
39  Audoly/Boudaoud 2003.
40 The sign invariance mentioned here expresses the equivalence of two wrinkles which are specular with 

respect to the sheet plane.
41 Ibid, 3.
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Fig. 9: Edge rippling induced by edge growth in monolayer systems. (a) When we tear a plastic bag, ripples 
arise at the newly formed edge which are strikingly similar to those observed in kale and salad leaves (b).  
(c) Self-similar edge wrinkles in a torn plastic bag and measured growth strain. Sharon et al. 2002. (d) Influ-
ence of finite sheet size on the type of edge ripples in monolayers with “blade” geometry. Liang /Mahadevan 
2009. (e) The blooming of a lily results from edge growth and its doubly curved geometry: in a first stage edge 
growth causes curvature inversion of the petal, that is blooming (1 to 2) and at a later stage ripple formation  
(2 to 3). Liang/Mahadevan 2011.
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2.3.3 Edge growth in narrow flat sheets
Liang and Mahadevan 42 studied a special case of edge growth in a narrow plate, a scenario 
that is more similar to what happens in algal blades and lily leaves.43 Whereas in the previous 
examples of a torn plastic bag or a salad leaf the depth of the growth profile was much smaller 
than the sheet size, in these cases the finite width (w) of the plate has an influence on the 
type of shapes that can be achieved: algal blades can have both a saddle shape characterized 
by a negative Gaussian curvature everywhere or a flat configuration with rippled edges. 
To unravel the process of shape selection in growing blades, the authors calculated how 
bending and stretching energies scale in three possible configurations in presence of a large 
edge growth Δ confined close to the edge. The onset of a buckling mode happens when a 
critical growth ΔC is reached, where bending and stretching energies are in the same order 
of magnitude. Their analysis showed that three types of periodic buckling modes can arise 
depending on the ratio between the ripple wavelength 1/k (itself depending on the max 
value of Δ) and the blade width w. In particular (fig. 9d), for kw≪1 a one-dimensional 
buckling would occur where the blade wrinkles along the longitudinal direction and stays 
flat along the transversal one; for kw~1, the blade undergoes a doubly-curved buckling 
where the longitudinal wrinkling is accompanied by transversal curvature of opposite 
sign (a sequence of saddles); and finally an almost flat blade with an edge rippling of large 
wavenumber k is favored when kw≫1.

2.3.4 Edge growth in curved sheets
The blooming process of a flower has similarities with the morphogenesis of leaves but it is 
worth considering since it sheds light on the role of initial shell curvature in the shape change 
process (fig. 5e). The traditional explanation is that the central midrib is responsible for the 
blooming of the lily: the leafy half of the midrib, growing more than the woody half, would 
generate the required outward bending. By excising the midrib from the petals when the 
lily is in the bud stage, Liang and Mahadevan 44 observed that still an almost physiological 
blooming could occur. Moreover they observed ripples at the petal edges typical of edge 
growth, both in the bud and bloomed state. These evidences lead them to postulate an 
blooming mechanism driven by edge growth. In accordance to their measurements, they 
considered an edge growth Δ reaching farther towards the center of the petal (differently 
from the previous case of the “blade” leaves). Moreover, natural curved petals have a 
positive Gaussian curvature with a weak longitudinal curvature and strong lateral one, their 
ratio being m = 𝜅x0/𝜅y0 ∊ [0,1]. This is a major departure from previous examples of edge 
growth in flat systems: as we have seen in section 1.1.5, in a surface with non-zero Gaussian 

42 Liang /Mahadevan 2009.
43 Since only the shape of the plate changes, we still refer to an eigenstrain distribution as in fig. 5d.
44 Liang /Mahadevan 2011.
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curvature bending and stretching are coupled. As the growth strain increases from zero 
(fig. 9e), the shell unfolds slowly decreasing both curvatures. Past a certain critical value, 
the lower longitudinal curvature reverses, that is, the petal blooms. The theory shows that 
for the typical petal shape where 𝜅 x0 is low (that is m≪1), the curvature reversal is not 
sudden and the petal opens smoothly. Although no real buckling occurs (the blooming 
happens smoothly), the critical value has still a mechanical significance: it separates the 
stretching dominated and bending dominated regimes. Indeed after that value is passed, 
pure bending deformations in the form of edge-localized ripples arise.
 

2.4 Systems with spontaneous curvature

In this section we will give an overview of thin bodies that change shape as a result of a 
differential expansion across the thickness: this situation is equivalent to consider them 
as simple surfaces with a given natural (or eigen-) curvature and is schematized in the 
cases of fig. 5f–j. 

2.4.1 Developable sheets with a single eigencurvature
In the most simple case, we consider a sheet which has at least one vanishing principal 
curvature, that is the sheet has a developable shape (as in fig. 5f where the sheet is flat). If 
an eigencurvature is prescribed, the sheet simply fulfills it through a bending deformation. 
This is the case, for instance, of the wild wheat awns (fig. 3b) and the pine cone in (fig. 4d) 
where the eigencurvature is caused by a differential hygroscopic expansion through the 
thickness. We will not pause longer on this class of morphing since no other shape changes 
occur when the eigencurvature increases. Indeed, since the sheet is developable, bending 
and stretching modes are decoupled: therefore a larger eigencurvature will only result in 
larger bending of the sheet.

2.4.2 Sheets with a non-developable initial or target shape 45

The situation gets more complicated if either the initial shape or target shape are not 
developable (see fig. 5g–i). A typical example of the first type (non-developable initial 
shape, fig. 5i) is the manifold of shapes that cells can acquire (from spherical to elongated 
to biconcave shape typical of red blood cells as in fig. 9a). Cells’ membranes are vesicles 
made of a bilayer of free flowing lipid molecules. This makes them quite similar to soap 
bubbles. On the other hand, the two monolayers do not exchange lipid molecules and 
therefore area differences between them can give rise to spontaneous curvature. These 
two aspects influence the kind of shape to be acquired. Firstly the surface tension which 

45 The target shape is the shape that is obtained (if possible) by fulfilling both the eigenstrain and 
eigencurvature. For example, a non-developable target shape is the saddle, corresponding to prescription of 
equal and opposite principal eigencurvatures to an initially flat sheet.
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(similarly to soap bubbles) tends to minimize the membrane area for a given volume: this 
drives towards spheres. The second is the spontaneous curvature: the larger the spontaneous 
curvature is, the more the vesicle will tend to satisfy it. Therefore surface tension and 
spontaneous curvature lead in general to contrasting shapes. Typically, spheres tend to 
buckle into prolate (elongated) and oblate (discoid) ellipsoids: from these shapes Helfrich,46 
Seifert and Lipowsky47 together with Svetina and Zeks 48 studied the types of possible 
evolutions as an increasing spontaneous curvature is ascribed. The shapes that were found 
could be placed in a geometric phase diagram with axes v relative volume and c0 relative 
spontaneous curvature (with respect to a sphere of same area). Already fixing a value of 
c0= 0 one can retrieve many shapes that are observed in real cells: starting from a sphere 
(v =1) as the internal volume is decreased, prolate ellipsoids transition to dumbell shapes. 
Than a discontinuous transition leads to biconcave symmetric shapes similar to those 
observed in the red blood cells. At even smaller volumes, simply concave shapes (like 
stomatocytes) are the most stable. If one allows spontaneous curvatures to range from 
negative to positive values, even more complex features can be explained. In particular, 
prolate shapes dominate for c0>2. At high values of c0 symmetric dumbbell configurations 
become unstable and pear-shaped, asymmetric ones appear. Approaching the limit line 
Lpear (the curved solid line at the top of fig. 10a) the dumbbells obtain narrow necks, which 
are loci of high and equal principal curvatures with opposite signs: past this limit line the 
neck collapses and the vesicle undergoes a so called budding (the smaller vesicle is ejected 
from the bigger one). At negative spontaneous curvatures instead oblate shapes dominate 
and can even lead to the inclusion of spherical cavities in the vesicle for large negative c0 
values. A remarkable transition is observed for oblate vesicles with slightly positive c0 that 
decrease in volume: the vesicle self-intersects (this happens crossing the lines SIob, SIsto 
from right to left) and acquires a toroidal shape.

46 Helfrich 1973.
47 Seifert /Lipowsky 1990; Seifert /Berndl /Lipowsky 1991.
48 Svetina /Zeks 1983; Svetina /Zeks 1989.
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Fig. 10: Shape changes in systems endowed with a spontaneous curvature. (a) Phase diagram of cell shapes. 
Depending on the cell volume v and its spontaneous curvature c0 a variety of shape changes is possible: 
prolate, oblate, concave, biconcave (like the red blood cells), toroidal cell shapes and even cell budding. Seifert /
Berndl/Lipowsky 1991. (b) Snapping closure of the Venus flytrap leaves is actively triggered by the plant (slow 
decrease of Gaussian curvature KG) but the high speed of the motion (fast increase of KG) is due to its doubly 
curved geometry (solid line, theoretical model; markers, experimental measurements). Forterre et al. 2005.  
(c) Chiral opening of the Bauhinia Variegata seed pods results from a competition between stretching and 
bending dominated behaviors, that eventually depend on the geometry of the pods (its width w) and non-de-
velopable target metric/curvature defined by the pod valves’ material structure. The pitch (p) and radius ( r ) 
of the pod valve mark two possible shapes: a twisted helix or a ribbon (solid line, theoretical model; markers, 
experimental measurements). Armon et al. 2011.
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Another example of thin shell with non-developable initial shape (fig. 5i) is the plant known 
as Venus flytrap. This plant has typical doubly curved leaves that are convex in the open 
state and concave in the closed state. The morphing between these two states happens 
through a fast snap that is used to trap a prey. Measuring the leaf Gaussian curvature KG 
as a function of time. Forterre and Mahadevan49 realized that it was not constant during the 
closure (see fig. 10b): it would first decrease slowly (when the leaf is still convex) and then 
increase very rapidly (when the leaf becomes concave). As we have seen for the blooming 
lily, because the leaf is doubly-curved, the curvature inversion (convex-to-concave) can 
only happen through an intermediate state in which the leaf is stretched. To achieve this, 
the internal (turgor) pressure of the cells on the external side of the leaf is actively increased 
until the leaf is close to a critical curvature value. In this stage elastic energy is stored in 
the stretched leaf. As the turgor pressure is generated by a slower biochemical process 
KG decreases slowly. When a prey stimulates the plant “sensors” (cilia on the leaf inner 
face) only an additional small increase in turgor pressure is needed: the critical threshold 
is passed, the elastic energy released and the leaf switches to the more stable concave 
configuration. Moreover, since the Gaussian curvature KG is tipically higher than in the lily, 
the curvature inversion happens rapidly through a snap-through buckling. Therefore the 
overall mechanism ensures fast actuation, which is crucial for its prey-catching effectiveness.

The second scenario (non-developable target shape, fig. 5h) is well depicted by the seed 
pods of the plant Bauhinia variegatae: when the pod dries the two valves split open 
with a spiralling movement. Cues to understand this movement can be found already in 
the structure of the valves. As observed by Armon,50 each valve consist of two fibrous 
layers oriented roughly at ± 45° with respect to the pod’s longitudinal axis: therefore (re-
calling how wood actuation works, see section 1.2.2) the two layers shrink uniaxially 
at perpendicular directions. While each individual layer would stay flat, when they are 
attached together they develop opposite principal curvatures along the ± 45° orientation 
of the fibers. With reference to fig. 5h where the principal directions are along the sheet 
sides, the valve behaves as a sheet with target metric51 a0 =  [0   0] (where 0 means that 
no expansion /contraction is allowed due to the presence of fibers at perpendicular di-
rections) and a target double curvature b0 =  [𝜅0       – 𝜅0]. But such a case is special: the 
valve locally assumes a saddle-like configuration to satisfy the target curvature with a 
negative Gaussian curvature, the target metric requires null in-plane strains of the sheet; 
that is there is a metric incompatibility, where target metric and target curvature can-
not be satisfied simultaneously. Therefore the strip will always have a residual stress.  
Such metric incompatibility is at the base of a strange behavior: despite having the same 
intrinsic curvature it was observed that wide strips adopt a ribbon shape (that is a cylindrical 

49 Forterre et al. 2005.
50 Armon et al. 2011.
51 Target metric and target curvature are equivalent to eigenstrain and eigencurvature. The notation used here 

was given in section 2.1.
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envelope shape) whereas narrow strips show a helical one (where the strip twists around 
its straight centerline). This can be deduced by the plot of fig. 10c where the experimentally 
measured pitch (p) is plotted versus radius (r) for many biological and artificial samples.
Which configuration will be acquired depends on the minimum of the total energy. From 
energy scaling arguments Armon showed that when the strip width w is large the system is 
stretching-dominated; this implies that to minimize the total energy one has to minimize the 
stretching energy, where the system satisfies the target metric a = a0 . Under this constraint 
the sheet assumes a curvature different from the target b ≠ b0, approximating it in one of 
the two principal directions while frustrating it (zeroing it) in the other: b  =  [𝜅0     0]. This 
corresponds to the ribbon shape. Conversely, when the strip is narrow the sheet is bending 
dominated, and the energy is minimized for b = b0. Under this constraint, a has to approximate 
a0. This corresponds to the helical configuration with twisted straight axis: at the midline the 
stretching energy is zero, but it increases with w. The switch from one regime to the other 
happens at a critical width wcr  ≈ 2.5  t/𝜅0 where stretching and bending terms are comparable.

A similar case of sheets with a non-developable target shape, is observed in rectangular 
polymer-metal bilayers activated by an electrical-driven uniform contraction of the polymer 
layer (fig. 11a). Remarkably Alben 52 observed that bilayers with a large length-to-width 
(aspect) ratio bend preferentially keeping the short side straight. Because the polymer 
contracts isotropically, the bilayer assumes a target spherical curvature b0 =  [𝜅0     𝜅0] (fig. 5g). 
As we know, such a double curvature implies in-plane stretching, which is an unfavorable 
mode of deformation. When the polymer contracts, the bilayer first assumes a shallow 
spherical shape; afterwards it frustrates one of the two curvatures and bends along the 
other, assuming a cylindrical rolled shape. So why the short-side rolling53 would be always 
preferred? Alben realized that the bilayer would not bend into a perfect cylinder, but 
would preserve narrow regions of double-curvature close to the rolled edges. Since these 
regions are closer to the target curvature, they lowered the elastic energy of the system. 
Therefore the system prefers to roll on the short-sides thus maximizing the regions of 
double-curvature to the long sides.

2.4.3 Sheets with a double eigencurvature confined at the edges
This section on bilayers deals with the morphing of edge activated bilayers (fig. 5j) where a 
spontaneous double curvature b0 =  [𝜅0     𝜅0] appears at the edges. In a set of experiments on 
swelling polymer bilayers of variable rectangular shape, Stoychev 54 observed a variety of 
rolling scenarios (fig. 11b): long side rolling in case of large aspect ratio bilayers; diagonal 
and all-side rolling in case of aspect ratios close to 1. Strikingly enough, short side rolling 
was not observed at all: Stoychev’s was in open contradiction with the experiments of 

52 Alben /Balakrisnan /Smela 2011.
53 In short-side rolling the short side stays flat and the long ones bends.
54 Stoychev et al. 2012.
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Alben. The main reason for the different behavior is due to the different activation. The 
polymer bilayers synthesized by Stoychev showed a swelling (active) layer attached to 
the substrate and a passive (non-swelling) layer on top. Since the active layer is confined 
between the substrate and the passive layer, water can diffuse in it only through the lateral 
faces (edges), and consequently swelling will occur first close to the edge and then reach 
more internal portions of the bilayer with time. Because swelling is confined to the edges, 
the bilayer does not transit through the shallow spherical shape. Therefore rolling starts 
at the corners first (where the diffusion depth is maximum) creating conical shapes; then 
two scenarios are possible. Long-side rolling is energetically favored for high aspect ratio 
because the costly in-plane stresses are relaxed (by bending) in a larger portion (the long 
edge). When instead the aspect ratio of the bilayer is about one, the bilayer can progress 
towards diagonal rolling (if rolling was initiated at two opposite corners) or all-side rolling 
(if it started at adjacent ones).

In a subsequent paper, Stoychev 55 investigated the folding of polymer bilayers with more 
general shapes, such as ellipses or star shapes with a round contour (fig. 11c). In the ear-
ly stages of swelling Stoychev observed the emergence of partially rolled ripples at the 
rounded edges, bestowing them with a characteristic “beer cap” contour. Moreover the 
number of ripples would decrease as the diffusion front travels deeper towards the center. 
Such edge rippling is in agreement with the edge growth in single sheets but, since the 
sheet is a bilayer, the edges preferentially bend in one out-of-plane direction, that is, the 
expected edge rippling will not be symmetric. At the same time it contradicts the formation 
of edge tubes observed in rectangular bilayers. In reality both processes occur, although 
at different time scales: the initial ripples would fuse together when the angle between 
them exceeds 130° (this happens always for edges that are not too convex) forming the 
familiar tubular edge. Once long rolls are formed, they make the bilayer more rigid. As 
a result, after the edge tube formation bilayers can only fold over the lines connecting 
weak points between tubular edges. These movements resemble the folding operations 
in artistic origami, in which a flat sheet of paper is folded along specific lines to obtain 
a three-dimensional figure. It is remarkable that such a simple system characterized by 
isotropic mechanical and swelling properties undergoes complex multi-step actuation: 
again, the eventual folded shape depends from the previous stages acquired during the 
progression of the morphing process.

55 Stoychev et al. 2013.
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Fig. 11: Shape selection and evolution in bilayer systems with a spontaneous curvature subjected to edge effects. 
(a) Short side rolling is the preferred deformation mode in narrow bilayer strips in case of double eigencurva-
ture: in this way the long edges maximize the extent of doubly curved edge portions. Alben/Balakrisnan/Smela 
2011. (b) Scheme of bilayer composition (top), edge activation Δ (colored square) and phase diagram of rolling 
modes when the eigencurvature is activated at the edges first: in this case long side rolling is preferred because 
a doubly curved state of the edges is prevented from the initial adhesion to a substrate. Stoychev et al. 2012.  
(c) Multistep asymmetric ripple formation and flap folding in swelling bilayers with complex star shapes: 
ripples form at the edges and (depending on their incident angles) fuse to rolls. When the edge is rolled the star 
arms are stiffened leaving only origami-like foldings as possible deformation. Stoychev et al. 2013.
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3.5 Self-folding origami

As a concluding remark we would like to at least mention a separate group of self-folding 
systems which is recently gaining more and more attention: the artificial self-folding 
origami. These systems are designed to experience extremely large eigenstrains and eig-
encurvatures at very narrow locations in the sheet: in fact a typical crease pattern appears, 
whereas the rest of the sheet is practically undeformed. This aspect makes such systems 
extremely convenient to be studied because their deformation depends only on the extent 
and time order of rigid body rotations at the creases. Bound to this is their success in robotic 
applications: to give an example, in a recent paper Felton 56 demonstrated a prototype of 
robot that is able to fold itself from a flat creased plate, hold its own weight and even walk.

4. Conclusion

Although the present work is far from being exhaustive, we hope we have shed light 
on the underlying mechanisms that govern spontaneous shape change in thin systems. 
Despite the governing equations of plates subjected to eigenstrain being known since one 
century 57, this branch of research is still quite active. This is due, in our opinion, to three 
main factors. First of all, these equations are scaleless: as we have seen in our examples 
many morphing processes could be explained regardless of their actual size, and therefore 
they can be applied to disparate systems. Second, the variety of patterns that can be 
predicted derives from the intrinsic nonlinearity of the elastic strain formulation 58: this 
makes the theory appealing to explain experimental observations in which little is known 
about the material properties (due to difficulties bound to the characterization methods or 
samples accessibility/availability). And third, especially relevant for theoretical research 
and simulation, is that there is a virtually infinite panorama of possible combinations 
of eigenstrains/eigencurvatures distributions, plate shapes and boundary conditions. In 
this perspective, the present paper is especially useful: presenting the folding of many 
different thin structures under the unifying concept of eigenstrain (and as consequence 
thereof ), it enables to easily locate where research efforts have been focused until now. As 
a consequence, the paper calls for an exploration of less explored eigenstrain distributions: 
in turn, this will foster a broader and deeper understanding of self-folding systems and 
lead to new exciting engineering applications.

56 Felton et al. 2014.
57 Föppl 1907; von Kármán 1910.
58 The reader can verify that in all the examples the plate material has always been considered linear elastic.
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