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Abstract

In this work the cross section of the high energy equivalent to the neutrinoless double
beta decay is investigated for the 𝜆 diagram contribution on the level of quark-quark
interaction. As a theoretical framework the Left Right symmetric model has been
adopted and is presented in the thesis. The cross sections are derived by analytical
considerations combined with numerical simulations with the particle interaction

simulator Mad Graph 5. As a result, upper limits on the expected signals are derived by
applying the restrictions resulting from the non observation of neutrinoless double

beta decay of xenon and electroweak precision measurements. The focus of this work
is on the 𝑡-channel diagram and it is found that the cross section in the quark-quark
interaction involving light neutrino propagators can be as large as 10−11 pb, whereas
the heavy neutrino contribution can reach up to 10−7 pb. For the case of a resonantly
produced 𝑊 −

𝑅 boson in the 𝑠-channel, a cross section 𝜎 ≤ 𝒪(10 pb) is possible in the
most promising case.

Zusammenfassung

In dieser Arbeit wird der Beitrag des 𝜆-Diagrams zum Wirkungsquerschnitt des
neutrinolosen Doppel-Betazerfalls bei hohen Energien untersucht. Die

Wechselwirkung wird auf Parton-Niveau betrachtet und der Fokus liegt auf dem
𝑡-Kanal. Als theoretisches Model wird das Links Rechts symmetrische Model

verwendet, welches in der Arbeit ausführlich eingeführt wird. Die Näherungen für die
Wirkungsquerschnitte werden mit Hilfe analytischer Betrachtungen, unterstützt von
numerischen Simulationen hergeleitet. Hierfür wird der Monte Carlo Simulator Mad
Graph 5 verwendet. Aus den Ergebnissen und unter Verwendung der Limits auf die

Halbwertszeit von Xenon, sowie den Daten aus Präzisionsmessungen zur
elektroschwachen Wechselwirkung werden obere Grenzen für das Signal berechnet.

Für den 𝑡-Kanal ergibt sich unter Einbezug von leichten Neutrinos ein
Wirkungsquerschnitt von maximal 10−11 pb, werden schwere Neutrinos berücksichtigt,

erhört sich dieser auf höchstens 10−7 pb. Im Falle eines resonant produzierten,
schweren 𝑊 −

𝑅 Bosons im 𝑠-Kanal ist 𝜎 ≤ 𝒪(10 pb) möglich.
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Chapter 1
Introduction

The Standard Model of Particle Physics successfully describes most of the phenomena
that we observe regarding particles and fundamental interactions. Many experiments in
low and high energy physics have formed this theory throughout the last century and
finally confirmed its validity up to high precision. The discovery of predicted particles
like the 𝑍- and the Higgs boson [1–3], as well as other mechanisms, have established it
beyond any doubt. Nevertheless, some questions still remain open: What is dark matter,
for example, how did Baryogenesis happen and how can gravity be quantized? Scientists
around the world work with great afford to solve these and many other problems.

The question we want to address in this thesis is another one: How do neutrinos ac-
quire their mass and why is it so small? The Standard Model does not include a mass
term for the three neutrinos 𝜈𝑒, 𝜈𝜇 and 𝜈𝜏. By the time the theory was formed, it was
believed that they are massless and experiments found that these particles have negative
helicity [4] in agreement with the V-A structure of the Standard Model’s weak interac-
tion. Consequently, neutrinos are strictly left-handed particles in the Standard Model
which forbids the usual mass term.

However, in the 1970s the solar neutrino problem arose with the measurements of
the Homestake experiment [5, 6]. It stated a deficit of electron neutrinos arriving from
the sun with respect to the theoretical expectations from calculations based on the stan-
dard solar model. Further experiments were carried out: Super-Kamiokande measured
flavour-oscillations in atmospheric neutrinos [7], KamLAND announced the disappear-
ance of reactor neutrinos [8, 9] and the K2K Collaboration examined oscillations in neu-
trinos emitted from accelerators[10]. The idea of oscillating neutrinos was actually not
new — Pontecorvo suggested it already in 1957 [11, 12]. However, a necessary criterion
for oscillation is neutrino mass. This was finally established by the SNO experiment in
2002 which measured a total solar neutrino flux compatible with theory[13]. The dis-
covery was just recently awarded with the Nobel Prize for physics in 2015[14].

Today the absolute masses of the three standard model neutrinos are still unknown,
but already constrained to be at most of 𝒪(eV)[15, 16]. The question therefore is, by
which mechanism such small masses are generated. In principle, the well known Higgs
Mechanism could give mass to the neutrinos just like to the other fermions. However,
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Chapter 1 Introduction

as neutrinos are lighter than their electroweak partners 𝑒, 𝜇 and 𝜏 by at least a factor of
10−6, this is regarded as unnatural as it would require very small Yukawa Couplings.

Many attempts have been made to find a model that can describe neutrino masses in
an elegant way. A common approach is to use an effective theory which reflects the low
energy manifestation of the high energy physics that is not accessible to us in full detail.
This means that some heavy field mediates the interaction but is not produced on-shell
and only acts on short distances — just like in the case of Fermi interaction. Assuming
order one couplings, the scale of the new physics is determined by the mass of the heavy
field which has to be integrated out. The operators of such effective field theories are of
dimension 𝑑 > 4 and thus are not renormalizable. Furthermore they are suppressed by
the new energy scale Λ as they are proportional to Λ−1.

Weinberg showed that the only dimension 5 operator being both invariant under the
Standard Model gauge groups and Lorentz invariant is the well-known Weinberg oper-
ator [17–19]

ℒ𝑑=5
eff = −

𝑐𝑖𝑗

Λ
𝐿𝑐

𝐿𝑖Φ̃∗Φ̃†𝐿𝐿𝑗 + h.c.
SSB

−−−−→ −𝑐𝑖𝑗
𝜐2

2Λ
𝜈𝑐

𝐿𝑖 𝜈𝐿𝑗 + h.c., (1.1)

with 𝐿𝐿 being the left-handed lepton doublet and 𝐿𝑐
𝐿 its charge conjugate. Φ̃ is the

conjugate Higgs doublet and 𝑐𝑖𝑗 the coupling coefficients in the lepton flavour space.1
After spontaneous symmetry breaking (SSB) the Higgs field acquires a non-vanishing
vacuum expectation value 𝜐/

√
2 and generates mass terms (𝑚𝜈)𝑖𝑗 = 𝑐𝑖𝑗𝜐2/Λ for the

neutrinos as given above.
Equation (1.1) suggests that this operator could couple neutrinos 𝜈 with its antiparti-

cles 𝜈𝑐 to form a mass term. In Section 2.3 we will see that this essentially leads to so-
called Majorana neutrinos, which are fermions and anti-fermions at the same time — as
opposed to usual Dirac Neutrinos which can be distinguished from their anti-particles.
The question about neutrino masses is therefore not only a question about the exact
value of their mass, but rather connects to many other topics such as Lepton Number
Violation, CP-Violation or the Hierarchy Problem.

With 𝜐 ≈ 246GeV being fixed by the Standard Model, two ways to generate small
neutrino masses from the above operator are possible: Either the coefficients 𝑐𝑖𝑗 are
small or the energy scale Λ is large — or something in-between. There are three dif-
ferent types of high energy tree level interactions that can lead to theWeinberg operator
at low energies[19]: The so-called seesaw mechanisms of type I, II and III which are
schematically shown in Figure 1.1.

In the type-I seesaw model, heavy right-handed neutrinos couple to the left-handed
Standard Model Neutrinos; the energy-scale in this case can be identified with the heavy
1 The nomenclature and conventions are rigorously explained in the introduction of the Left Right sym-
metric model in Section 2.3. Note that a left handed charge conjugate spinor behaves like a right handed
spinor.
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𝑦

⟨Φ⟩

⟨Φ⟩

(a) type-I

⟨Δ⟩

𝑦Δ𝜈𝐿 𝜈𝑐
𝐿
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𝜈𝑐
𝐿

𝜈𝐿 𝑦†
Σ Σ𝑅

𝑦Σ

⟨Φ⟩

⟨Φ⟩

(c) type-III

Fig. 1.1 – Type I, II and III seesaw mechanisms: The light neutrino 𝜈𝐿 acquires a mass
through the coupling to the Higgs field Φ and the heavy particle 𝜈𝑅, Δ or Σ𝑅, respec-
tively. By means of this mechanism the neutrino is connected to its antiparticle 𝜈𝑐

𝐿. The
corresponding Yukawa couplings are indicated as 𝑦𝑖.

neutrino mass Λ ∼ 𝑀𝑁. The type-II seesaw mechanism makes use of heavy scalar
triplet fields Δ coupling to the left handed fermions with Λ ∼ 𝑀Δ and the type-III
seesaw mechanism uses heavy fermionic triplets Σ; Λ ∼ 𝑀Σ in the last case. More rig-
orous calculations and explanations concerning the three types of seesaw mechanisms
are presented in Section 2.2.

Unfortunately, it is very difficult to probe small masses or very high energies experi-
mentally. Therefore, it is important to analyse the different scenarios both theoretically
and by means of simulations in order to be able to predict promising channels and ex-
pected signals. One of these possible channels to investigate the origin of the neutrino
masses is the neutrinoless double beta decay (0𝜈𝛽𝛽)[20, 21]. This process is only possi-
ble if the neutrino is a Majorana particle. In that case it can trigger the decay of certain
nuclei analogous to the usual beta decay, with the difference being that no neutrino is
emitted but only two electrons:

𝐴
𝑍𝑋

0𝜈𝛽𝛽
−−−→ 𝐴

𝑍+2 𝑋′ + 2𝑒−.

As Nature also allows for the 2𝜈𝛽𝛽 decay, in which two electrons and two neutrinos
are emitted andwhich is hard to distinguish from the above process due to the difficulties
in detecting neutrinos, there are only a few isotopes that are regarded candidates for the
observation of the 0𝜈𝛽𝛽 decay. The SNO+ experiment uses 130Te for example [22], a 76Ge
detector is used in GERDA [23] and SuperNEMO [24] studies 82Se decays. However, so
far no decay has been detected. The lower limits on the half-lives of the isotopes in this
decay thus result in stringent constraints on the physical quantities in seesaw models
[21].

The underlying particle interaction in the 0𝜈𝛽𝛽 decay involves quarks and can thus be
probed at particle colliders such as the Large Hadron Collider at high energies. The goal
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Chapter 1 Introduction

𝑊𝐿

𝑛

𝑊𝑅

𝑑𝐿 𝑢𝐿

𝑒𝐿

𝑒𝑅

𝑑𝑅 𝑢𝑅

1
Fig. 1.2 – The 𝜆-diagram contribution to the neutrinoless double beta decay at quark level.
Here, 𝑛 is the intermediate Majorana neutrino which interacts with one left-handed electron
𝑒𝐿 and one right-handed electron 𝑒𝑅. 𝑊𝐿 and 𝑊𝑅 are the gauge bosons mediating the
interaction.

of this work is to analyse one specific channel of the high energy equivalent of the 0𝜈𝛽𝛽
decay, namely the so-called 𝜆-diagram which describes the interaction of two quarks
with different chiralities in the desired process. The corresponding Feynman diagram is
shown in Fig. 1.2.

As a theoretical framework for this process, we choose the Left Right symmetric
model[25–29], which is a well understood and conceptually beautiful extension of the
Standard Model. Although it naturally contains the type-I and -II seesaw mechanisms,
we will restrict our calculations to the type-I case by choosing the parameters accord-
ingly.2

In order to predict the cross section of the 𝜆-diagram at high energies, we make use
of the Monte Carlo simulator Mad Graph 5 [30] and hereby derive an approximative
expression for the respective cross sections. Finally, we analyse the parameter space of
the neutrino mixing matrices and masses in order to find limits on the signal.

The structure of this thesis is as follows:
Chapter 2 reviews the Standard Model particle content and mass generation mechanism
very briefly. Also an overview about the three types of seesaw models is presented
and a detailed discussion of the Left Right symmetric model including mass generation,
mixing and leptonic the weak interaction Lagrangian is given. The topic of Chapter 3
will be the low energy 0𝜈𝛽𝛽 decay. Here we list the relevant decay channels including
the constraints resulting from xenon experiments. Our main analysis is carried out in
Chapter 4. We first give the expressions for the cross sections determined by analytical
considerations, combined with the numerical simulations, and then discuss the different
scenarios relevant for the high energy cross section and derive upper limits for the dif-
2 This is done in order to avoid fine-tuning in the Higgs potential parameters [29], but also to simplify the
analysis.
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ferent cases under consideration. Hereby we focus on the 𝑡-channel contribution. Our
results and conclusions are summarized in Section 4.3.

TheAppendix is reserved for formulae used in our analysis, as well as the derivation of
the cross section approximation. Furthermore, a short introduction to the Monte Carlo
simulator Mad Graph 5 and details on the simulations carried out are given there.
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Chapter 2
Theory

In this chapter we describe the theoretical framework this work is based on. First, wewill
very briefly review the Standard Model of particle physics (SM) and sketch how fermion
masses are generated by the Higgs mechanism. The reader interested in a complete and
rigorous treatment of this theory is referred to [31, 32] and also to Section 2.3 which
explains the analogous details in the extended Left Right Symmetric Model (LRSM).

After that, we give an overview of the different types of seesaw mechanisms that
could give rise to the desired neutrino mass term and finally we describe the Left-Right
Symmetric Model in detail as it will serve as the theoretical framework in this thesis.
For the latter we will derive the expression for the fermionic and bosonic mass terms.
The mixing between different neutrino flavours is examined, as well as that between
the heavy gauge bosons. To conclude we give the expression for the leptonic weak
interaction which will be used in the following chapters.

2.1 The Standard Model of particle physics and
massive fermions

The Standard Model of particle physics describes the fundamental particles and their
interactions among each other. The particles, as well as their anti-particles are distin-
guished by their spin: fermions carry half-integer spin, scalars are spin-0 particles and
vector bosons are spin-1 particles. The latter are the force carriers and are also called
gauge bosons as they appear due to the special structure of the SM as a gauge theory.

The fermions can be grouped into four categories: charged leptons ℓ−, neutrinos 𝜈,
up-type quarks 𝑢 and down-type quarks 𝑑. Each of them appears in a three-fold way,
that is in three families, e.g. ℓ = 𝑒, 𝜇, 𝜏 for the charged leptons. The gauge bosons
contained in the SM are one massless photon 𝛾, 8 massless gluons 𝑔 and three massive
vector bosons: 𝑊 ± and 𝑍. The only scalar in the SM is the Higgs-Boson Φ which is
responsible for the particles to acquire their masses. The SM particle content is depicted
in Fig. 2.1.

As the SM is a gauge theory, the particles can be identified with the representations
of their group. The gauge group of the model is a product group of three subgroups:

7



Chapter 2 Theory

Fig. 2.1 – The Standard Model particle content

𝑆𝑈(3)𝐶 × 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌. 𝑆𝑈(3)𝐶 incorporates the quark color-representations and
their interactions via gluons. As this part of the theory is of no interest for us, we will
ignore it in what follows. 𝑆𝑈(2)𝐿 describes the behaviour of the left-handed (LH)1
particles and 𝑈(1)𝑌 is called the hypercharge group.

The structure of 𝑆𝑈(2)𝐿 requires LH fermions to be placed into doublets, whereas
right-handed (RH) spinors are singlets under 𝑆𝑈(2)𝐿 transformations, e.g.

𝐿𝑒 = ( 𝜈𝑒
𝑒− )

𝐿

∼ (2, −1)

𝑒−
𝑅 ∼ (1, −2)

(2.1)

Here, we already gave the conventional way to label the group-elements: (2, −1) in-
dicates that this object transforms as a doublet (2) under 𝑆𝑈(2)𝐿 transformations, i.e.
the components of the vector 𝐿𝑒 mix with each other under the group transformation —
similar to a usual two-dimensional vector under rotations. Its hypercharge eigenvalue is
given by −1, which means that the spinors acquires a complex phase e−𝑖𝛼 under 𝑈(1)𝑌
gauge transformations. On the other hand, RH particles do not transform under 𝑆𝑈(2)𝐿
gauge transformations; this is indicated by 1 which is used for singlets.
1 The chirality of a fermion spinor is defined via the eigenvalues of the 𝛾5 matrix. This property devides
the space of spinors in two seperate subspaces of left-handed and right-handed particles, which are not
connected via Lorentz transformations. Therefore they are the building-blocks of any fermion spinor.
For relativistic particles the chirality is equal to its helicity, i.e. the projection of its spin onto its direction
of motion.

8



2.1 The Standard Model of particle physics and massive fermions

The mass term of a fermion, e.g. the electron, is given by the interaction between one
LH and one RH particle spinor:

ℒ𝑚 ∝ −𝑚𝑒 𝑒𝐿𝑒𝑅 + h.c. (2.2)

However, as 𝑒𝐿 changes under 𝑆𝑈(2)𝐿 transformations, but 𝑒𝑅 does not, this term is
not invariant under gauge transformations and thus cannot be simply inserted into the
Lagrangian without spoiling gauge-invariance of the theory.2

Fortunately, the Higgs mechanism gives an elegant solution to this problem.
If we introduce a complex scalar fieldΦ, which transforms as𝑆𝑈(2)𝐿 doublet and carries
hypercharge 1, we can add the following, invariant term into the Lagrangian:

ℒ𝑌 = −𝑦 𝐿𝑒Φ 𝑒𝑅 + h.c. = −𝑦 ( 𝜈𝐿 𝑒𝐿 ) Φ 𝑒𝑅 + h.c. (2.3)

with

Φ = ( 𝜙+

𝜙0 ) ∼ (2, 1). (2.4)

Terms like these, which couple fermions to scalar fields, are called Yukawa coupling
terms. The constant 𝑦 is the Yukawa coupling.

The neutral scalar component 𝜙0 can acquire a vaccuum expectation value (VEV),
which means that the field’s value is different from zero even in the ground state:

⟨𝜙0⟩ = 𝜐√
2

> 0. (2.5)

This is possible only for electrically neutral fields for obvious reasons. In general, the
value of the VEV depends on the scalar potential of the corresponding fields 𝑉𝑆𝑐(Φ) and
was found to be 𝜐SM ≈ 246 GeV in the case of the standard model Higgs boson.

We then can rewrite the scalar field as

Φ = ( 𝜙+

𝜙0 ) = (
𝜙+

𝜐+ℎ√
2

) = ( 0
𝜐√
2

) + Φ′ (2.6)

The newfieldℎ is referred to as the physical Higgs field and has a vanishing VEV ⟨ℎ⟩ = 0,
but now new terms arise in the Lagrangian, Equation (2.3):

ℒ𝑌 = − 𝑦𝜐√
2

𝑒𝐿𝑒𝑅 + 𝑦 𝐿𝑒Φ′ 𝑒𝑅 + h.c. (2.7)

2 Note that 𝑒𝐿 = 𝑒†
𝐿𝛾0 corresponds to the anti-fundamental representation and therefore carries 𝑈(1)𝑌

hypercharge +1. Thus, this term is indeed invariant under 𝑈(1)𝑌-rotations.
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Chapter 2 Theory

Comparing this result with Equation (2.2), we find that we have just recovered the
electron-mass term with 𝑚𝑒 = 𝑦𝜐/

√
2.

This procedure, which we presented in a rather simplified way, reflects the so-called
spontaneous symmetry breaking (SSB) and happens when the scalar field Φ undergoes a
phase transition from high to low energy.3 Although this is not obvious, the Lagrangian
as a whole is still gauge invariant; by choosing the explicit parametrisation of Equation
(2.6) we have just rewritten it in a basis where this is not visible anymore. In the SM
the Higgs mechanism is not only responsible for generating the masses of all massive
fermions, but in a similar way also for the massive vector bosons 𝑊 ± and 𝑍 and the
Higgs field ℎ itself.

However, the Standard Model does not comprise RH particles for all the fermions:
As mentioned before, the neutrino is contained in the SM as LH particle only. Thus, it
cannot become massive in this framework.4

Nevertheless, oscillation experiments showed [13] that neutrinos posses a very small,
but not vanishing mass. One could therefore demand to simply add a RH neutrino to
the SM and adopt the same mechanism as explained above. In principle this is possible,
but it would raise another question: Why is the neutrino mass so small?

2.2 Extending the Standard Model: seesaw
mechanisms

As already pointed out in the introduction, the answer at hand is an effective low energy
theory with the mass term of the neutrino being suppressed by some high energy scale.
The corresponding operator of mass dimension 5 is called Weinberg operator [17]; it
reads

ℒ𝑑=5
eff = −

𝑐𝑖𝑗

Λ
𝐿𝑐

𝐿𝑖Φ̃∗Φ̃†𝐿𝐿𝑗 + h.c. (2.8)

with 𝐿𝑐
𝐿 = Ĉ 𝐿𝑇

𝐿 being the Dirac charge conjugate LH lepton doublet and Φ̃ = 𝑖𝜎2Φ∗

the conjugate Higgs doublet.5. The Pauli matrices are

𝜎1 = ( 0 1
1 0 ) , 𝜎2 = ( 0 −𝑖

𝑖 0 ) , 𝜎3 = ( 1 0
0 −1 ) . (2.9)

3 In a thermal bath the potential 𝑉Sc(Φ) depends on the temperature. At high energies it is symmetric
around |Φ| = 0, whereas at low energy it develops a manifold of minima at 𝜙0 = 𝜐e𝑖𝛼.

4 As was pointed out in the introduction, it is the smallness of neutrino masses and the 𝑉 − 𝐴 structure
of the weak interaction that made scientists believe that neutrinos exist as massless LH particles only.

5 𝜈𝑐
𝐿 = (𝜈𝐿)𝑐 = (𝜈𝑐)𝑅 in our convention. See Equation (2.35) and the discussion below for further

useful relations and identities.
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2.2 Extending the Standard Model: seesaw mechanisms

After the Higgs field Φ acquired its vacuum expectation value 𝜐 from Equation (2.6),
this term gives rise to a neutrino mass term of the form

ℒ𝜈
𝑚 = −𝑐𝑖𝑗

𝜐2

2Λ
𝜈𝑐

𝐿𝑖 𝜈𝐿𝑗 + h.c. (2.10)

The flavour-dependent coefficients 𝑐𝑖𝑗 are typically proportional to the Yukawa cou-
plings of some underlying interaction; the relevant energy scale can be identified with
the mass of some heavy particle Λ ∼ 𝑀. Therefore, we find the simple relation that
gives its name to this so-called seesaw mechanism:

𝑚𝜈 ∝ 𝜐2

𝑀
(2.11)

It is easy to see that a larger mass 𝑀 results in a smaller neutrinomass 𝑚𝜈 and vice versa.

Equation (2.10) implies that the neutrino mass can be generated through a coupling
of 𝜈𝐿 to its charge conjugate spinor 𝜈𝑐

𝐿. This is possible for neutrinos only as they are
electrically neutral particles; particles that receive their mass through such terms are
referred to as Majorana particles whereas Equation (2.2) generates Dirac particles.
For an electron and all the other SM leptons a Mojarana mass term would obviously
violate charge conservation and thus cannot be realized in Nature.

The possibility of such a Majorana neutrino is very interesting in many ways as it
explicitly violates lepton number by two units and thus could mediate non-standard
processes which result in interesting signals. Furthermore, it is not clear whether Equa-
tion (2.10) is invariant under CP conjugation. This depends on the complex phases of
the coefficients 𝑐𝑖𝑗/Λ and is also of interest in different scenarios.

We now want to understand the different types of seesaw mechanisms in more detail.
In the remainder of the section we therefore follow the descriptions of [18, 19, 33].

2.2.1 Type-I seesaw

The relevant particle in this case is indeed a RH neutrino 𝜈′
𝑅 that is a singlet under the

SM 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌 gauge group. As it does not interact with the SM particles in an
otherway than the following, it is often called sterile neutrino. Here and in the following,
primes denote that we are working in the flavour- or gauge-eigenbasis, as opposed to un-
primed spinors, which are supposed to be mass eigenstates as derived in the following.
The mass mechanism in this case is schematically visualized in Figure 1.1a.

We introduce three copies of the new fields 𝜈′
𝑅𝑖 (𝑖 = 1, 2, 3) as for each light neutrino

11



Chapter 2 Theory

mass one heavy counterpart is needed.6 The resulting Yukawa interaction term is com-
pletely analogous to the SM term in Equation (2.3), except for the necessary replacement
Φ → Φ̃. For the RH neutrinos we can however add an additional Majorana mass term
which does not violate gauge invariance as these RH particles do not transform under
𝑆𝑈(2)𝐿, neither under 𝑈(1)𝑌. Although the origin of this term can be explained by
theories like the LRSM, here we simply take it as given.

After symmetry breaking the Lagragian reads

ℒ𝑚 = − 𝜐√
2

𝜈′
𝐿𝑖 ̃𝑦𝑖𝑗 𝜈′

𝑅𝑗 − 1
2

𝜈′𝑐
𝑅𝑖

(𝑀𝑅)𝑖𝑗 𝜈′
𝑅𝑗 + h.c.

= −1
2

( 𝜈′
𝐿 𝜈′𝑐

𝑅 )⏟⏟⏟⏟⏟
=𝑛′

𝐿

( 0 ̃𝑦𝜐/√
2

̃𝑦𝑇𝜐/√
2 𝑀𝑅

)
⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝑀𝜈

( 𝜈′𝑐
𝐿

𝜈′
𝑅

)
⏟

=𝑛′𝑐
𝐿

+h.c. (2.12)

We can now transform into the mass eigenbasis whose eigenvectors correspond to those
linear combinations of neutrino fields that have a definite mass and thus describes its
propagation through spacetime.

To do this, we diagonalize the mass matrix 𝑀𝜈 by a unitary 6 × 6 matrix 𝑊7 and label
the resulting mass eigenstates by 𝜈 for the light particles and 𝑁 for the heavier ones.
They are combined in the 6-vector 𝑛:

𝑛𝐿 = ( 𝜈𝐿
𝑁𝐿

) = 𝑊 †𝑛′
𝐿 = 𝑊 † ( 𝜈′

𝐿
𝜈′𝑐

𝑅
) , 𝑛𝑅 = 𝑛𝑐

𝐿 = 𝑊 𝑇𝑛′𝑐
𝐿 . (2.13)

With �̂�𝜈 = 𝑊 †𝑀𝜈𝑊 ∗ being diagonal, the Lagrangian (2.12) takes a simple form:

ℒ𝑚 = −1
2

𝑛𝐿 �̂�𝜈 𝑛𝑅 + h.c.

= −1
2

3

∑
𝑖=1
light

𝑚𝑖 𝜈𝐿𝑖 𝜈𝑅𝑖 − 1
2

3

∑
𝑖=1
heavy

𝑀𝑖 𝑁𝐿𝑖𝑁𝑅𝑖 + h.c.
(2.14)

Block-diagonalizing 𝑀𝜈 gives the famous seesaw-formula for the light and heavy neu-
trino masses and is correct up to mixing within the light and heavy neutrinos, respec-
tively. It is therefore a useful indication for the expected order of magnitude of the

6 Of course it is possible to investigate the addition of only one heavy particle or evenmore than three. Our
choice is motivated by means of symmetry: The left right symmetric model studied in the next section
naturally requires one RH partner for each LH neutrino. Note furthermore that the observed neutrino
oscillations call for at least two massive light neutrinos and thus two RH partners in this scenario.

7 For the case of the LRSM, the explicit form of 𝑊 will be given below.

12
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masses.

𝑚 ∼ 1
2

(𝑀𝑅 − √𝑀2
𝑅 − 4 𝑀𝐷 𝑀𝑇

𝐷) ≈ −𝑀𝐷 𝑀−1
𝑅 𝑀𝑇

𝐷, (2.15)

𝑀 ∼ 1
2

(𝑀𝑅 + √𝑀2
𝑅 − 4 𝑀𝐷 𝑀𝑇

𝐷) ≈ 𝑀𝑅 + 𝑀𝐷 𝑀−1
𝑅 𝑀𝑇

𝐷 ≈ 𝑀𝑅. (2.16)

Here, 𝑀𝐷 = ̃𝑦𝜐/
√

2 is the Dirac mass matrix from the usual SM mass term. Comparing
this result with the mass term in Equation (2.10) stemming from the Weinberg operator,
we find that indeed

𝑚𝜈 ∼ 𝜐2 ̃𝑦2

2𝑀𝑅
. (2.17)

Finally, it is worth noting how the Majorana nature of the neutrino is manifested in
the seesaw scenarios: Themass term in Equation (2.14) is built out of a LH spinor 𝑛𝐿 and
its charge conjugate 𝑛𝑅 = 𝑛𝑐

𝐿. Therefore, the combined particle spinor 𝑛 = 𝑛𝐿 + 𝑛𝑅
represents both, particle and antiparticle:

𝑛𝑐 = 𝑛𝑐
𝐿 + 𝑛𝑐

𝑅 = 𝑛𝑅 + 𝑛𝐿 = 𝑛. (2.18)

This is precisely what makes the Majorana neutrino so special: By propagating through
spacetime, it can interact either as particle or antiparticle. As we will see later, processes
in which it interacts both as particle and antiparticle, are suppressed by its mass term
due to the insertion of the propagator.

2.2.2 Type-II seesaw

The type-II seesawmechanism is conceptually somewhat simpler than the type-I. Instead
of a massive fermion which couples to the neutrino, a heavy scalar triplet Δ ∼ (3, 2)
with an electrically neutral component 𝛿0 is used. 𝛿0 can then develop a VEV 𝜐Δ similar
to the SM Higgs boson. This essentially generates the neutrino mass; it is indicated in
Figure 1.1b.

Canonically, the triplet is given by

Δ⃗ = ⎛⎜
⎝

Δ1

Δ2

Δ3

⎞⎟
⎠

(2.19)

However, to couple it to the 𝑆𝑈(2)𝐿 leptonic doublets, it is more convenient to use the

13



Chapter 2 Theory

2 × 2 matrix representation:

Δ = �⃗� ⋅ Δ⃗ = ( Δ3 Δ1 − 𝑖Δ2

Δ1 + 𝑖Δ2 Δ3 ) =
√

2 ( 𝛿+/√
2 𝛿++

𝛿0 −𝛿+/√
2

) , (2.20)

where we used the Pauli matrices 𝜎𝑖 and the triplet charge eigenstates 𝛿+ = Δ3 and
𝛿±± = (Δ1 ∓ 𝑖Δ2)/

√
2.

The invariant Yukawa coupling term and the resultingmass term after SSBwith ⟨𝛿0⟩ =
𝜐Δ/

√
2 reads8

ℒ𝑌 = −(𝑦Δ)𝑖𝑗 𝐿′𝑐
𝐿𝑖 𝑖𝜎2Δ 𝐿′

𝐿𝑗 + h.c.
SSB

−−−−→ −1
2

𝜈′
𝐿 2𝑦∗

Δ𝜐Δ⏟
=𝑚𝜈

𝜈′𝑐
𝐿 + h.c. (2.21)

In order to recover a mass term of the form predicted by the Weinberg operator
(Equation (2.10)), one has to take into account that the triplet couples to the SM Higgs
boson in the scalar potential 𝑉𝑆𝑐(Φ, Δ). [19, 34] give the hereof resulting relation
𝜐Δ = 𝜇𝜐2/2𝑀2

Δ with 𝑀Δ being the triplet mass 𝜇 the coupling between Φ and Δ.9

Using this, the neutrino mass matrix reads

𝑚𝜈 = 𝜇𝜐2

𝑀2
Δ

𝑦∗
Δ (2.22)

and the the energy scale Λ and the coupling coefficients 𝑐𝑖𝑗 are given by Λ = 𝑀2
Δ/𝜇𝜐2

and 𝑐𝑖𝑗 = 𝑦∗
Δ𝑖𝑗.

Although the theory of type-II seesaw is quite simple, it has a richer phenomenology
to offer: The components of the scalar triplet Δ also couple to the charged leptons and
gauge bosons and can thus mediate lepton number violating interactions at tree level.
This opens up attractive possibilities, but as it has not been observed yet, it also places
strong limits on the couplings and masses of the triplet (see [19, 34, 35] for constraints
and limits).

2.2.3 Type-III seesaw

In this type of seesawmechanism, illustrated in Figure 1.1c, we re-encounter heavy neu-
trinos suppressing the light neutrino mass similar to type-I seesaw. They couple to the
SM particles as RH triplets Σ ∼ (1, 0).

8 Note that the Yukawa coupling becomes conjugate by use of the hermitian conjugate h.c.:
(𝜈′𝑐

𝐿 𝑦Δ 𝜈′
𝐿)

†
= 𝜈′

𝐿 𝑦∗
Δ 𝜈′𝑐

𝐿 + h.c.
9 This relation is true if 𝑀Δ ≫ 𝜐 ≫ 𝜐Δ [34].
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2.2 Extending the Standard Model: seesaw mechanisms

We introduce three copies of the new field (𝑗 = 1, 2, 3) just like in the type-I case and
rewrite them in the 2 × 2 representation in the charge eigenbasis as we have done for
the scalar triplet Δ:

Σ⃗𝑗 = ⎛⎜
⎝

Σ1
𝑗

Σ2
𝑗

Σ3
𝑗

⎞⎟
⎠

Σ𝑗 = �⃗� ⋅ Σ⃗𝑗 = ( Σ3
𝑗 Σ1

𝑗 − 𝑖 Σ2
𝑗

Σ1
𝑗 + 𝑖 Σ2

𝑗 −Σ3
𝑗

) = ( Σ0
𝑗

√
2 Σ+

𝑗√
2 Σ−

𝑗 −Σ0
𝑗

) .

(2.23)

Again, we used Σ±
𝑗 = (Σ1

𝑗 ∓ 𝑖 Σ2
𝑗 )/

√
2 and Σ0

𝑗 = Σ3
𝑗 . The charged fermions Σ±

𝑗 form
Dirac particles 𝐸′

𝑗 , whereas the neutral components are of Majorana nature and will be
called 𝜈′

𝑅𝑗 in analogy to type-I seesaw. They are defined as

𝐸′
𝑗 = Σ−

𝑗 + Σ+𝑐
𝑗 𝜈′

𝑅𝑗 = Σ0
𝑗 . (2.24)

The different triplets can now be coupled among each other via a Majorana mass term

ℒΣ
𝑀 = −1

2
(𝑀Σ)𝑖𝑗 Σ⃗𝑐

𝑖 Σ⃗𝑗 + h.c. (2.25)

= −1
2

(𝑀Σ)𝑖𝑗 𝜈′
𝑅𝑖

𝑐 𝜈′
𝑅𝑗 − 1

2
(𝑀Σ)𝑖𝑗 𝐸′

𝑖 𝐸′
𝑗 + h.c., (2.26)

and to the LH SM doublets via a Yukawa coupling

ℒ𝑌 = −(𝑦Σ)𝑖𝑗 𝐿′
𝐿𝑖 (�⃗� ⋅ ⃗Σ𝑗) Φ̃ + h.c. (2.27)

SSB
−−−−→ −

(𝑦Σ)𝑖𝑗 𝜐
√

2
𝜈′

𝐿𝑖 𝜈′
𝑅𝑗 − (𝑦Σ)𝑖𝑗 𝜐 ℓ′

𝐿𝑖 𝐸′
𝑅𝑗 + h.c. (2.28)

Using equations (2.26) and (2.28), we arrive at a neutrino mass term which looks very
much like in the type-I case:

ℒ𝜈
𝑚 = −1

2
( 𝜈′

𝐿 𝜈′
𝑅

𝑐 ) ( 0 𝑦Σ𝜐/√
2

𝑦𝑇
Σ𝜐/√

2 𝑀Σ
) ( 𝜈′

𝐿
𝑐

𝜈′
𝑅

) + h.c. (2.29)

Diagonalizing this Lagrangian results in expressions for the mass eigenstates and their
masses analogous to equations (2.13), (2.15) and (2.16).

Although the new charged leptons couple to the SM particles, they do not mix with
them as one might have guessed.10 In fact they decouple from most processes due to

10 In our case we find ℒℓ ⊃ − ( ℓ′
𝐿 𝐸′

𝐿 ) ( 𝑦𝜐/√
2 𝜐𝑦Σ

0 𝑀Σ
) ( ℓ′

𝑅
𝐸′

𝑅
)+h.c.. Due to the zeromatrix

in the left bottom corner of the mixing matrix, the upper right couplings 𝜐𝑦Σ do not contribute to the
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Chapter 2 Theory

their heaviness. Therefore, the resulting mass mixing and particle content in the ef-
fective low energy theory is basically identical to the type-I seesaw case and type III is
rarely considered.

In the above we demonstrated three different mechanisms leading to small neutrino
masses via suppression through some heavy intermediate particle.
One crucial ingredient shared by all of thesemodels is themixingmatrix 𝑊 mentioned in
Equation (2.13). Its elements determine the interaction strength of both, light and heavy
neutrinos with the SM gauge bosons. Consequently, they also appear in the context of
neutrino oscillations and are already being measured for the LH sector.

In the subsequent section we introduce the LRSM including the type-I and -II seesaw
mechanisms. In this context we will further discuss the mixing and coupling to gauge
bosons. However, in our actual calculations in Chapter 4 weworkwith the type-I seesaw
only.

2.3 The Left Right symmetric model

The Left Right Symmetric Model was originally introduced in order to explain parity
violation by restoring a symmetry between LH and RH sector at higher energies [25–
27]. Fortunately, it also implements the seesaw I and II mechanisms to generate the tiny
neutrino masses in a very elegant way.

In the following we introduce the model with its particle content. We discuss the
neutrino and gauge boson mass generation, their mixing as well as the weak interaction
Lagrangian. The section is mainly based on [29] and [28] which give a very detailed
introduction into the model.

2.3.1 Particle content, couplings and symmetry

The gauge group of the LRSM is 𝑆𝑈(2)𝐿 × 𝑆𝑈(2)𝑅 × 𝑈(1)𝑌
11 with the electric charge

being defined as 𝑄𝑒𝑙 = 𝑇 3
𝐿 + 𝑇 3

𝑅 + 𝑌 /2.12 The model extends the Standard Model
particle content such that for each LH particle a RH counterpart exists. Therefore, RH
gauge bosons are introduced and RH fermions are organized into doublets in complete
analogy to the LH sector.

mass eigenvalues. This might be different if further particle content and/or symmetries are included.
11Note that we are mainly interested in the weak sector of the model. Therefore we will not include strong
interactions into our discussion.

12 𝑇 𝑎
𝐿/𝑅 = 𝜎𝑎/2 (𝑎 = 1, 2, 3) are the generators of 𝑆𝑈(2)𝐿/𝑅; 𝑌 is the hypercharge operator.

16



2.3 The Left Right symmetric model

Fermions

The fermion gauge eigenstates read as follows:

𝐿′
𝐿𝑖 = ( 𝜈′

𝐿
ℓ′

𝐿
)

𝑖

∼ (2, 1, −1), 𝐿′
𝑅𝑖 = ( 𝜈′

𝑅
ℓ′

𝑅
)

𝑖

∼ (1, 2, −1),

𝑄′
𝐿 = ( 𝑢′

𝐿
𝑑′

𝐿
)

𝑖

∼ (2, 1, 1/3), 𝑄′
𝑅 = ( 𝑢′

𝑅
𝑑′

𝑅
)

𝑖

∼ (1, 2, 1/3).
(2.30)

As usual, the index 𝑖 runs over the three flavours13 and ′ denotes flavour-eigenstates.
Similar to the discussion in Section 2.1, the representation is indicated by the values in
the parenthesis. They are ordered according to the gauge groups as (L,R,Y).

Combining the LH and RH particle spinors, 𝜓 = 𝜓𝐿 + 𝜓𝑅, one can define projection
operators, recovering the LH or RH part respectively:

𝑃𝐿 = 1−𝛾5

2 , 𝑃𝐿𝜓 = 𝜓𝐿,
𝑃𝑅 = 1+𝛾5

2 , 𝑃𝑅𝜓 = 𝜓𝑅,
𝑃𝐿 ⋅ 𝑃𝑅 = 0, 𝑃𝐿/𝑅𝛾𝜇 = 𝛾𝜇𝑃𝑅/𝐿.

(2.31)

The Dirac charge-conjugate spinor 𝜓𝑐 is defined as 𝜓𝑐 = Ĉ ̄𝜓𝑇, with Ĉ being the
charge conjugation operator which fulfils the following relations:

Ĉ−1 = Ĉ† = −Ĉ and Ĉ†𝛾𝜇Ĉ = −𝛾𝜇𝑇. (2.32)

In the above, 𝛾𝜇 are the gamma matrices which can be written in terms of the Pauli
matrices in Equation (2.9) as

𝛾0 = ( 𝟙2 0
0 −𝟙2

) , 𝛾𝑖 = ( 0 𝜎𝑖

−𝜎𝑖 0 ) (𝑖 = 1, 2, 3),

𝛾5 = 𝑖𝛾0𝛾1𝛾2𝛾3.

(2.33)

The charge conjugation operator is then explicitly given by

Ĉ = 𝑖𝛾2𝛾0. (2.34)

Note especially that LH spinors become RH spinors under charge conjugation and vice

13 I.e. 𝑖 = 1, 2, 3 or 𝑖 = 𝑒, 𝜇, 𝜏. The latter is sometimes used in combination with the charged leptons
and the light neutrinos to stress that they are part of the flavour eigenbasis.
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versa; our convention for the definition of 𝜓𝑐
𝐿/𝑅 is as follows:

𝜓𝑐
𝐿/𝑅 = (𝜓𝐿/𝑅)

𝑐
= Ĉ 𝜓𝐿/𝑅

𝑇 = Ĉ 𝑃𝑅/𝐿𝜓𝑇 = 𝑃𝑅/𝐿Ĉ 𝜓𝑇 = (𝜓𝑐)𝑅/𝐿 ,

𝜓𝑐
𝐿/𝑅 = (𝜓𝐿/𝑅)

𝑐
= (𝜓𝑐)𝑅/𝐿 = 𝑃𝑅/𝐿 (𝜓𝑐) = (𝜓𝑐)𝑃𝐿/𝑅.

(2.35)

Frequently used identities, relating fermion currents to the charge conjugate ones, are

𝜓 𝜑 = 𝜑𝑐 𝜓𝑐, 𝜓 𝛾𝜇 𝜑 = −𝜑𝑐 𝛾𝜇 𝜓𝑐. (2.36)

Scalars

The scalar sector is also augmented with respect to the SM. The SM Higgs doublet is
promoted to be an hypercharge-0 Higgs bidoublet 𝜙 which couples to both LH and RH
fermions. Furthermore, two heavy scalar triplets Δ𝐿 and Δ𝑅 are introduced, one for
each chirality:

Δ𝐿 = ( 𝛿+
𝐿/√

2 𝛿++
𝐿

𝛿0
𝐿 −𝛿+

𝐿/√
2

) ∼ (3, 1, 2),

Δ𝑅 = ( 𝛿+
𝑅/√

2 𝛿++
𝑅

𝛿0
𝑅 −𝛿+

𝑅/√
2

) ∼ (1, 3, 2),

𝜙 = ( 𝜙0
1 𝜙+

2
𝜙−

1 𝜙0
2

) ∼ (2, 2, 0),

̃𝜙 = 𝜎2𝜙∗𝜎2 = ( 𝜙0∗
2 −𝜙+

1
−𝜙−

2 𝜙0∗
1

) ∼ (2, 2, 0).

(2.37)

Gauge Bosons and Covariant Derivatives

In order to make the theory gauge-invariant, gauge bosons are introduced which couple
through covariant derivatives to the scalars and fermions. For both 𝑆𝑈(2)𝐿 and 𝑆𝑈(3)𝑅
three vector bosons, 𝑊 𝑎

𝐿𝜇 and 𝑊 𝑎
𝑅𝜇 (𝑎 = 1, 2, 3), are present, whereas 𝑈(1)𝑌 contributes

one gauge field 𝐵𝜇. The covariant derivatives are:

𝐷𝜇𝜓𝐿 = 𝜕𝜇𝜓𝐿 − 𝑖𝑔𝐿𝑊𝐿𝜇𝜓𝐿 − 𝑖𝑔𝑌𝐵𝜇
𝑌
2 𝜓𝐿,

𝐷𝜇𝜓𝑅 = 𝜕𝜇𝜓𝑅 − 𝑖𝑔𝑅𝑊𝑅𝜇𝜓𝑅 − 𝑖𝑔𝑌𝐵𝜇
𝑌
2 𝜓𝑅,

𝐷𝜇Δ𝐿 = 𝜕𝜇Δ𝐿 − 𝑖𝑔𝐿 [𝑊𝐿𝜇, Δ𝐿] − 𝑖𝑔𝑌𝐵𝜇Δ𝐿,
𝐷𝜇Δ𝑅 = 𝜕𝜇Δ𝑅 − 𝑖𝑔𝑅 [𝑊𝑅𝜇, Δ𝑅] − 𝑖𝑔𝑌𝐵𝜇Δ𝑅,

𝐷𝜇𝜙 = 𝜕𝜇𝜙 − 𝑖𝑔𝐿𝑊𝐿𝜇𝜙 + 𝑖𝑔𝑅𝜙𝑊𝑅𝜇.

(2.38)
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2.3 The Left Right symmetric model

Here, 𝑔𝑅 is the RH coupling constant, 𝑔𝐿 the LH one and 𝑔𝑌 the 𝑈(1)𝑌 gauge coupling,
with the latter two being inherited from the SM. 𝑊𝜇 is the sum over the gauge bosons
times their associated generators 𝑇 𝑎 which act as operators:14

𝑊𝜇 =
3

∑
𝑎=1

𝑊 𝑎
𝜇T𝑎

𝜇 =
3

∑
𝑎=1

𝑊 𝑎
𝜇

𝜎𝑎

2
= 1√

2
( 𝑊 3

𝜇/√
2 𝑊 +

𝜇
𝑊 −

𝜇 −𝑊 3
𝜇/√

2
) . (2.39)

In the last equality we used the definition of the charged 𝑊-Bosons: 𝑊 ±
𝜇 = (𝑊 1

𝜇 ∓
𝑖𝑊 2

𝜇)/
√

2.

Parity symmetry

Finally, the LRSM allows to define a discrete symmetry between the RH and LH sectors.
In this thesis we work with a discrete parity symmetry, that is:15

𝑥𝜇 = ( 𝑡
⃗𝑥 )

�̂�
−−−−−→ 𝑥𝜇

𝑃 ∶= ( 𝑡
− ⃗𝑥 )

𝜓𝐿/𝑅 (𝑥)
�̂�

−−−−−→ 𝜓𝑅/𝐿 (𝑥𝑃)

𝜙 (𝑥)
�̂�

−−−−−→ 𝜙† (𝑥𝑃)

Δ𝐿/𝑅 (𝑥)
�̂�

−−−−−→ Δ𝑅/𝐿 (𝑥𝑃)

𝐵𝜇 (𝑥)
�̂�

−−−−−→ 𝜖 (𝜇) 𝐵𝜇 (𝑥𝑃)

𝑊 𝑎
𝐿/𝑅𝜇 (𝑥)

�̂�
−−−−−→ 𝜖 (𝜇) 𝑊 𝑎

𝑅/𝐿𝜇 (𝑥𝑃) 𝜖 (𝜇) = { +1, 𝜇 = 0
−1, 𝜇 = 1, 2, 3

(2.40)

Lagrangian

The most general Lagrangian invariant under gauge transformations and respecting
Lorentz invariance can be decomposed as:

ℒ = ℒ𝑌 + ℒ𝐹 + ℒ𝑆𝑐 + ℒ𝑔𝑎𝑢𝑔𝑒 − 𝑉𝑆𝑐 (2.41)

TheYukawa-Lagrangianℒ𝑌 = ℒ𝐿
𝑌 +ℒ𝑞

𝑌 describes the coupling of the various fermions
with the scalar fields and will be responsible for the generation of fermion masses in the
following. In ℒ𝐹 the fermions’ kinetic terms, as well as their interaction with the gauge
14Wherever a statement is valid for both sectors, LH and RH, we drop the subscripts 𝐿 and 𝑅.
15Note that one could instead impose a discrete charge symmetry[28]: 𝐶: 𝑊𝐿 → 𝑊 †

𝑅, 𝜓𝐿 → 𝜓𝑐
𝑅.
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bosons is defined. ℒ𝑆𝑐 contains the scalar kinetic terms and their coupling to gauge
bosons; gauge-boson mass terms arise from this Lagrangian after symmetry breaking.
ℒ𝑔𝑎𝑢𝑔𝑒 is responsible for the kinetic terms of the gauge bosons and their coupling among
each other. Finally, 𝑉𝑆𝑐 is the scalar potential which contains the interaction between the
various scalar fields, including their mass terms. Minimizing this part of the Lagrangian
gives the vacuum expactation values of the neutral scalar fields.

Details about ℒ𝑔𝑎𝑢𝑔𝑒 and the potential 𝑉𝑆𝑐 are given in [29]. We are mainly inter-
ested in ℒ𝑌 and ℒ𝐹 as these parts give rise to neutrino masses and mixing. For the
gauge bosons this is determined by ℒ𝑆𝑐 which will therefore also be subject to our in-
vestigation.

The procedure is as follows: first we give expressions for the scalar VEVs. We then
derive the neutrino mass eigenvalues and -states, as well as their mixings. After com-
menting on neutrino oscillations, we continue examining the gauge bosons in their mass
eigenbasis and finally the leptonic weak interactions.

2.3.2 Generating masses

The Vacuum Expectation Values

When the fields enter the low energy regime, the LRSM gauge groups are broken spon-
taneously,

𝑆𝑈(2)𝐿 × 𝑆𝑈(2)𝑅 × 𝑈(1)𝑌
SSB

−−−−→ 𝑆𝑈(2)𝐿 × 𝑈(1)𝑌
SSB (SM)

−−−−−−→ 𝑈(1)𝑒𝑚,
(2.42)

and the minimum of the scalar potential 𝑉𝑆𝑐 determines the value of the neutral scalar
components in the vacuum. This can be parametrised by four phases 𝜃1, 𝜃2, 𝜃𝐿 and 𝜃𝑅
and 𝜅1, 𝜅2, 𝜐𝐿, 𝜐𝑅 ∈ ℝ+

0 as follows:

⟨Δ𝐿⟩ = 1√
2

( 0 0
𝜐𝐿𝑒𝑖𝜃𝐿 0 ) , ⟨𝜙⟩ = 1√

2
( 𝜅1𝑒𝑖𝜃1 0

0 𝜅2𝑒𝑖𝜃2
) ,

⟨Δ𝑅⟩ = 1√
2

( 0 0
𝜐𝑅𝑒𝑖𝜃𝑅 0 ) , ̃⟨𝜙⟩ = 1√

2
( 𝜅2𝑒−𝑖𝜃2 0

0 𝜅1𝑒−𝑖𝜃1 . )
(2.43)

As we have seen in Section 2.2, the triplet VEVs 𝜐𝐿 and 𝜐𝑅 induce a Majorana mass
term through the type-II seesaw for the the LH and RH neutrinos, respectively. The
bidoublets VEVs 𝜅1 and 𝜅2 then mediate the coupling between LH and RH sector and
thereby result in the type-I seesaw mechanism.
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2.3 The Left Right symmetric model

It is now possible to eliminate two of the four complex phases by fixing the 𝑆𝑈(2)𝐿
and 𝑆𝑈(2)𝑅 gauges and absorbing the resulting overall phases in the fermion-sector
into the definition of the particle spinors. By convention 𝜃𝑅 and 𝜃1 are set to zero,

𝜃𝑅 = 0 = 𝜃1. (2.44)

Furthermore, the authors of [29] argue that the vacuum expectation value 𝜐𝐿 and the
complex phase 𝜃2 have to vanish unless the various parameters of the potential are fine-
tuned. This will make the LH type-II seesaw mechanism impossible in our model and
reduce the discussion to type-I seesaw. For the remainder of this chapter we will keep
𝜐𝐿 and 𝜃2 finite, but set it to zero in our actual calculations in Chapter 4.

The Yukawa Lagrangian

As the scalar triplets Δ have 𝑈(1)𝑌- hypercharge 2, they can only couple to leptons,
more specifically to one lepton and one charge conjugate lepton. 𝜙 and ̃𝜙 on the other
hand couple equally to quarks and leptons. Yukawa matrices ℎ𝐿, ℎ𝑅, 𝑓, ̃𝑓, 𝑓𝑞 and ̃𝑓𝑞 are
introduced to parametrise the coupling to the different fermion flavours:16

ℒ𝐿
𝑌 = −𝐿′𝑐

𝐿 𝑖𝜎2Δ𝐿ℎ𝐿 𝐿′
𝐿 − 𝐿′𝑐

𝑅 𝑖𝜎2Δ𝑅ℎ𝑅 𝐿′
𝑅−

− 𝐿′
𝐿 (𝑓𝜙 + ̃𝑓 ̃𝜙) 𝐿′

𝑅 + h.c.,
(2.45)

ℒ𝑞
𝑌 = −𝑄′

𝐿 (𝑓𝑞𝜙 + ̃𝑓𝑞
̃𝜙) 𝑄′

𝑅 + h.c. (2.46)

Requiring the Lagrangian to be invariant under parity transformations of Equation (2.40)
yields the following relations for the Yukawa matrices and the 𝑆𝑈(2) couplings [21, 29]:

ℎ𝐿 = ℎ∗
𝑅, 𝑔 = 𝑔𝐿 = 𝑔𝑅,

𝑓 = 𝑓†, 𝑓𝑞 = 𝑓†
𝑞 ,

̃𝑓 = ̃𝑓†, ̃𝑓𝑞 = ̃𝑓†
𝑞 .

(2.47)

After spontaneous symmetry breaking, when the scalar fields acquire their VEVs of

16The matrix notation in the following denotes a summation over the flavour indices, i.e. 𝐿′
𝐿𝑓𝜙𝐿′

𝑅 =
∑3

𝑖,𝑗=1 𝐿′
𝐿𝑖𝑓𝑖𝑗𝜙𝐿′

𝑅𝑗
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Equation (2.43), the above Lagrangian contains mass terms for the fermions:

ℒ𝜈
𝑚 = − 1√

2 (𝜈′𝑐
𝐿 𝜐𝐿𝑒𝑖𝜃𝐿ℎ𝐿 𝜈′

𝐿 + 𝜈′𝑐
𝑅 𝜐𝑅ℎ𝑅 𝜈′

𝑅+

+𝜈′
𝐿 (𝑓𝜅1 + ̃𝑓𝜅2𝑒−𝑖𝜃2) 𝜈′

𝑅) + h.c.
(2.48)

ℒℓ
𝑚 = − 1√

2 ℓ′
𝐿 (𝑓𝜅2𝑒𝑖𝜃2 + ̃𝑓𝜅1) ℓ′

𝑅 + h.c. (2.49)

ℒ𝑞
𝑚 = − 1√

2 𝑢′
𝐿 (𝑓𝑞𝜅1 + ̃𝑓𝑞𝜅2𝑒−𝑖𝜃2) 𝑢′

𝑅−

− 1√
2 𝑑′

𝐿 (𝑓𝑞𝜅2𝑒𝑖𝜃2 + ̃𝑓𝑞𝜅1) 𝑑′
𝑅 + h.c.

(2.50)

The Yukawa matrices are in general not diagonal and the mass eigenstates are therefore
not equal to the gauge eigenstates. To find the physical states with definite masses,
which describe the propagation of the fields, the mass matrices have to be diagonalized
via (bi-)unitary matrices.

Neutrinos

Aswe aremainly interested in neutrinos in this work, we proceed with their mass matrix
in detail and continue with the charged leptons and quarks in afterwards.

The neutrino mass Lagrangian (2.48) can be written in a more compact form as

ℒ𝜈
𝑚 = −1

2 𝑛′
𝐿 𝑀𝜈 𝑛′

𝑅 + h.c. (2.51)

The 6-component vector 𝑛′
𝐿, its charge conjugate 𝑛′

𝑅 = 𝑛′𝑐
𝐿 and the 6 × 6 mass matrix

𝑀𝜈 are

𝑛′
𝐿 = ( 𝜈′

𝐿
𝜈′𝑐

𝑅
) , 𝑛′

𝑅 = 𝑛′𝑐
𝐿 = ( 𝜈′𝑐

𝐿
𝜈′

𝑅
) , (2.52)

𝑀𝜈 = ( 𝑀𝐿 𝑀𝐷
𝑀𝑇

𝐷 𝑀𝑅
) , 𝑛′ = 𝑛′

𝐿 + 𝑛′
𝑅 = 𝑛′𝑐. (2.53)

with

𝑀𝐿 =
√

2𝜐𝐿𝑒−𝑖𝜃𝐿ℎ∗
𝐿, 𝑀𝑅 =

√
2𝜐𝑅ℎ𝑅

𝑀𝐷 = (𝑓𝜅1 + ̃𝑓𝜅2𝑒−𝑖𝜃2) /
√

2 (2.54)

In this notation the Majorana nature of the neutrino becomes obvious: Equation (2.53)
indicates that the neutrino is identical to its own anti-particle. The same will be true for
the mass eigenstates as we will see later.
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2.3 The Left Right symmetric model

TheLH and RHmass matrices are symmetric: 𝑀𝑇
𝐿 = 𝑀𝐿 and 𝑀𝑇

𝑅 = 𝑀𝑅.17 Therefore
𝑀𝜈 is also symmetric:

𝑀𝑇
𝜈 = 𝑀𝜈 (2.55)

It can be diagonalized by a unitary 6 × 6 matrix 𝑊, from which we get the masses of the
physical states:

�̂�𝜈 ∶= 𝑊 †𝑀𝜈𝑊 ∗ = diag (𝑚1, 𝑚2, 𝑚3, 𝑀1, 𝑀2, 𝑀3) = diag (𝑚, 𝑀) (2.56)

with 𝑚 and 𝑀 being the light and heavy diagonal 3 × 3 mass matrices. To distinguish
notationally between the masses of the light and heavy neutrinos, we denote the light
masses by 𝑚𝑖, whereas the heavy masses are denoted by 𝑀𝑖.

Plugging Equation (2.56) into Equation (2.51) yields

ℒ𝜈
𝑚 = −1

2
𝑛′

𝐿 𝑊�̂�𝜈𝑊 𝑇 𝑛′
𝑅 + h.c. = −1

2
𝑛𝐿 �̂�𝜈 𝑛𝑅 + h.c., (2.57)

and the physical neutrino fields therefore read

𝑛𝐿 = 𝑊 †𝑛′
𝐿, 𝑛𝑅 = 𝑛𝑐

𝐿 = 𝑊 𝑇𝑛′
𝑅. (2.58)

A useful parametrisation of the mixing matrix 𝑊 which frequently will be used in the
following can be found in [36]:18

𝑊 = ( 𝑉 𝜈
𝐿

𝑉 𝜈
𝑅

) = ( 𝑈 𝑆
𝑇 𝑉 )

≃ ( 1 − 1
2𝑅𝑅† 𝑅

−𝑅† 1 − 1
2𝑅†𝑅 )

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=𝑂𝑅

( 𝑈𝐿 0
0 𝑈𝑅

)
(2.59)

𝑉 𝜈
𝐿 and 𝑉 𝜈

𝑅 are the 6 × 3 unitary matrices describing the composition of the LH and RH
flavour neutrinos in terms of the six mass eigenstates respectively. 𝑅 is a small-valued
3 × 3 complex matrix, parametrising the mixing between LH and RH neutrinos and 𝑈𝐿
and 𝑈𝑅 are unitary matrices mixing the LH and RH neutrinos within their chiral sector.
The latter are the well-known PMNS19 matrix and its RH analogue. They are usually

17This follows from 𝑖𝜎2Δ in Equation (2.45) being symmetric.

18More accurately, it can be parametrised as 𝑊 = (
√1 − 𝜌𝜌† 𝜌

−𝜌† √1 − 𝜌†𝜌
) ( 𝑈𝐿 0

0 𝑈𝑅
), with

some small matrix 𝜌 and the square root being understood as a Taylor series.
19Pontecorvo – Maki – Nakagawa – Sakata
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parametrised as follows:20

𝑈𝐿/𝑅 = ⎛⎜
⎝

1 0 0
0 𝑐23 𝑠23
0 −𝑠23 𝑐23

⎞⎟
⎠

⎛⎜
⎝

𝑐13 0 𝑠13𝑒−𝑖𝛿

0 1 0
−𝑠13𝑒𝑖𝛿 0 𝑐13

⎞⎟
⎠

⎛⎜
⎝

𝑐12 𝑠12 0
−𝑠12 𝑐12 0

0 0 1
⎞⎟
⎠

= ⎛⎜
⎝

𝑐12𝑐13 𝑠12𝑐13 𝑠13e−𝑖𝛿

−𝑠12𝑐23 − 𝑐12𝑠23𝑠13e𝑖𝛿 𝑐12𝑐23 − 𝑠12𝑠23𝑠13e𝑖𝛿 𝑠23𝑐13
𝑠12𝑠23 − 𝑐12𝑐23𝑠13e𝑖𝛿 −𝑐12𝑠23 − 𝑠12𝑐23𝑠13e𝑖𝛿 𝑐23𝑐13

⎞⎟
⎠

.

(2.60)

Here, 𝑠𝑖𝑗 = sin 𝜃𝑖𝑗 and 𝑐𝑖𝑗 = cos 𝜃𝑖𝑗 are used as abbreviations and 𝛿 is the CP-violating
complex Dirac phase. For 𝛿 ∉ {0, 𝜋} CP symmetry is violated directly in the neutrino
sector.

The unitarity-relations 𝑊 †𝑊 = 𝟙3 and 𝑊𝑊 † = 𝟙3 give interesting relations among
𝑈, 𝑆, 𝑇 and 𝑉:

𝑈𝑈 † + 𝑆𝑆† = 𝟙3 𝑇 𝑇 † + 𝑉 𝑉 † = 𝟙3
𝑈 †𝑈 + 𝑇 †𝑇 = 𝟙3 𝑆†𝑆 + 𝑉 †𝑉 = 𝟙3
𝑈𝑇 † + 𝑆𝑉 † = 0 𝑈 †𝑆 + 𝑇 †𝑉 = 0

(2.61)

From Equation (2.59) it is clear that the absolute value of the elements of 𝑈 and 𝑉 must
be close to one, whereas the elements of 𝑆 and 𝑇 are of the same order of magnitude as
the elements of 𝑅, which we will find to be 𝒪(10−2) at most. More accurate analyses of
this will be the subject of Chapter 4.

To distinguish between light and heavy mass eigenstates, we denote them by 𝜈𝑖 and
𝑁𝑖, respectively. The transformation between flavour and mass eigenstates then reads

𝑛′
𝐿 = ( 𝜈′

𝐿
𝜈′𝑐

𝑅
) = 𝑊𝑛𝐿 = ( 𝑉 𝜈

𝐿
𝑉 𝜈

𝑅
) 𝑛𝐿 = ( 𝑈 𝑆

𝑇 𝑉 ) ( 𝜈𝐿
𝑁𝐿

) , (2.62)

𝑛′
𝑅 = 𝑛′𝑐

𝐿 = ( 𝜈′𝑐
𝐿

𝜈′
𝑅

) = 𝑊 ∗𝑛𝑅 = ( 𝑉 𝜈∗
𝐿

𝑉 𝜈∗
𝑅

) 𝑛𝑅 = ( 𝑈 ∗ 𝑆∗

𝑇 ∗ 𝑉 ∗ ) ( 𝜈𝑅
𝑁𝑅

) .

(2.63)

As only the light neutrinos have been experimentally observed up to now, it is worth
commenting on the light neutrino part separately from the heavy one. Using Equation
(2.59) once more, it is possible to express the neutrino mass term in Equation (2.51) as

20Possible Majorana phases can be taken to be included in 𝑅 here for simplicity.
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block diagonalized:

ℒ𝜈
𝑚 ≃ −1

2
𝑛′

𝐿 𝑂𝑅 ( 𝑚𝜈 0
0 𝑚𝑁

) 𝑂𝑇
𝑅 𝑛′

𝑅 + h.c.

= −1
2

𝜈𝐿 𝑈 †
𝐿 𝑚𝜈 𝑈𝐿 𝜈𝑅 − 1

2
𝑁𝐿 𝑈 †

𝑅 𝑚𝑁 𝑈𝑅 𝑁𝑅 + h.c.
(2.64)

The matrices 𝑚𝜈 and 𝑚𝑁 are not diagonal, but result from block diagonalizing 𝑀𝜈 in
Equation (2.53). Thus they can be expressed through the seesaw formula, Equations
(2.15) and (2.16):

𝑚𝜈 ≈ 𝑀𝐿 − 𝑀𝐷𝑀−1
𝑅 𝑀𝑇

𝐷, 𝑚𝑁 ≈ 𝑀𝑅 − 𝑀𝐷𝑀−1
𝑅 𝑀𝑇

𝐷 ≈ 𝑀𝑅. (2.65)

Finally, 𝑈𝐿 is precisely the matrix responsible for light neutrino oscillations. It therefore
links the experimental values with the fundamental masses and parameters from the
LRSM:21

diag (𝑚1, 𝑚2, 𝑚3) = 𝑈 †
𝐿𝑚𝜈𝑈𝐿 = 𝑈 †

𝐿 (𝑀𝐿 − 𝑀𝐷𝑀−1
𝑅 𝑀𝑇

𝐷) 𝑈𝐿,
𝑅 ≈ 𝑀𝐷𝑀−1

𝑅 + 𝒪 (𝑀3
𝐷𝑀−3

𝑅 ) .
(2.66)

The last equation can be found by considering 𝑀𝜈 = 𝑂𝑅diag(𝑚𝜈, 𝑚𝑁)𝑂𝑇
𝑅 together with

the seesaw relations above.

Charged Lepton andQuark Masses

We are now going to briefly repeat the procedure of deriving the mass eigenstates for the
charged leptons and quarks. The mass term for the charged leptons in Equation (2.49)
can be written in matrix form as

ℒℓ
𝑚 = −ℓ′

𝐿 𝑀ℓ ℓ′
𝑅 + h.c. = −ℓ𝐿 �̂�ℓ ℓ𝑅 + h.c. (2.67)

with the mass matrix and the bi-unitary transformation used to diagonalize it being
defined by

𝑀ℓ = 1√
2 (𝑓𝜅2𝑒𝑖𝜃2 + ̃𝑓𝜅1) , �̂�ℓ = diag (𝑚𝑒, 𝑚𝜇, 𝑚𝜏) = 𝑉 ℓ†

𝐿 𝑀ℓ 𝑉 ℓ
𝑅. (2.68)

The corresponding eigenvectors read

ℓ′
𝐿 = 𝑉 ℓ

𝐿 ℓ𝐿, ℓ′
𝑅 = 𝑉 ℓ

𝑅 ℓ𝑅. (2.69)

The 3 × 3 matrices 𝑉 ℓ
𝐿 and 𝑉 ℓ

𝑅 are unitary and describe the composition of the LH and
21 See Equation (2.109) and Equation (2.110) for the corresponding best-fit values.
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RH charged lepton flavour states in terms of their corresponding mass eigenstates.

As will be understood when examining the weak interaction in the mass basis, the
matrices 𝑉 ℓ

𝐿 and 𝑉 ℓ
𝑅 itself have no physical meaning. It’s rather the combination 𝑉 ℓ

𝐿𝑉 𝜈†
𝐿

that is a physically observable. Therefore, we will absorb the charged lepton mixing
matrices into the neutrino mixing matrices by an appropriate redefinition of 𝑉 𝜈

𝐿/𝑅 and
will afterwards regard 𝑉 ℓ

𝐿/𝑅 as being equal to unity.

Finally, the mass terms for the quarks in Equation (2.50) are given by the matrix equa-
tion

ℒ𝑞
𝑚 = −𝑢′

𝐿 𝑀𝑢
𝑞 𝑢′

𝑅 − 𝑑′
𝐿 𝑀𝑑

𝑞 𝑑′
𝑅 + h.c. = −𝑢𝐿 �̂�𝑢

𝑞 𝑢𝑅 − 𝑑𝐿 �̂�𝑑
𝑞 𝑑𝑅 + h.c.,

(2.70)

where we used

𝑀𝑢
𝑞 = 1√

2 (𝑓𝑞𝜅1 + ̃𝑓𝑞𝜅2𝑒−𝑖𝜃2) , �̂�𝑢
𝑞 = 𝑉 𝑢†

𝐿 𝑀𝑢
𝑞 𝑉 𝑢

𝑅 = diag (𝑚𝑢, 𝑚𝑐, 𝑚𝑡) ,
𝑀𝑑

𝑞 = 1
2 (𝑓𝑞𝜅2𝑒𝑖𝜃2 + ̃𝑓𝑞𝜅1) , �̂�𝑑

𝑞 = 𝑉 𝑑†
𝐿 𝑀𝑑

𝑞 𝑉 𝑑
𝑅 = diag (𝑚𝑑, 𝑚𝑠, 𝑚𝑏) ,

(2.71)

and

𝑢′
𝐿 = 𝑉 𝑢

𝐿 𝑢𝐿, 𝑑′
𝐿 = 𝑉 𝑑

𝐿 𝑑𝐿,
𝑢′

𝑅 = 𝑉 𝑢
𝑅 𝑢𝑅, 𝑑′

𝑅 = 𝑉 𝑑
𝑅 𝑑𝑅. (2.72)

The mixing in the quark sector is analogous to the mixing in the neutrino sector, except
for the quarks not being of Majorana nature.

Vector Boson Masses

After spontaneous symmetry breaking, the gauge bosonmass terms arise from the scalar
kinetic Lagrangian

ℒ𝑆𝑐 = Tr [(𝐷𝜇𝜙)† (𝐷𝜇𝜙)] + Tr [(𝐷𝜇Δ𝐿)† (𝐷𝜇Δ𝐿)] + Tr [(𝐷𝜇Δ𝑅)† (𝐷𝜇Δ𝑅)] .
(2.73)

Using the covariant derivatives given in Equation (2.38) and the VEVs from Equation
(2.43), one can extract the terms coupling two gauge bosons (e.g. 𝑊 3†

𝐿𝜇𝑊 3
𝑅𝜇) from Equa-
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2.3 The Left Right symmetric model

tion (2.73). For the charged bosons 𝑊 ±
𝐿/𝑅𝜇 they can be organized as

ℒ𝑊 ±
𝑚 = ( 𝑊 +

𝐿𝜇 𝑊 +
𝑅𝜇 ) 𝑀2

𝑊 ( 𝑊 −𝜇
𝐿

𝑊 −𝜇
𝑅

)

= ( 𝑊 +
1𝜇 𝑊 +

2𝜇 ) ( 𝑚2
𝑊1

𝑚2
𝑊2

) ( 𝑊 −𝜇
1

𝑊 −𝜇
2

)
, (2.74)

with the mass matrix and the transformation, leading to the eigenvectors 𝑊 ±
1/2𝜇 reading

𝑀2
𝑊 = 𝑔2

4
( 𝜅2

+ + 2𝜐2
𝐿 −2𝜅1𝜅2𝑒𝑖𝜃2

−2𝜅1𝜅2e−𝑖𝜃2 𝜅2
+ + 2𝜐2

𝑅
) , (2.75)

( 𝑊 ±
𝐿𝜇

𝑊 ±
𝑅𝜇

) = ( cos 𝜉 sin 𝜉 𝑒±𝑖𝜃2

−sin 𝜉 𝑒∓𝑖𝜃2 cos 𝜉 ) ( 𝑊 ±
1𝜇

𝑊 ±
2𝜇

) . (2.76)

Here we introduced 𝜅2
+ = 𝜅2

1 + 𝜅2
2 which has to be equal to the Standard Model VEV in

the case of Standard Model alignment 𝜅+ ≈ 𝜐SM ≈ 246GeV. The mixing angle and the
physical masses of the 𝑊 bosons are then found to be

tan 2𝜉 = − 2𝜅1𝜅2
𝜐2

𝑅 − 𝜐2
𝐿

, (2.77)

𝑚2
𝑊1/2

= 𝑔2

4
(𝜅2

+ + 𝜐2
𝑅 + 𝜐2

𝐿 ∓ √4𝜅2
1𝜅2

2 + 𝜐4
𝑅 + 𝜐4

𝐿 − 2𝜐2
𝑅𝜐2

𝐿) . (2.78)

For 𝜐2
𝑅 ≫ 𝜅2

+ and negligible 𝜐2
𝐿, these values can be approximated as

𝜉 ≈ −𝜅1𝜅2
𝜐2

𝑅
, 𝑚2

𝑊1
≈ 𝑔2

4
𝜅2

+ (1 − 2 𝜅2
1𝜅2

2
𝜅2

+𝜐2
𝑅

) , 𝑚2
𝑊2

≈ 𝑔2

2
𝜐2

𝑅. (2.79)

If we additionally require 𝜅2 ≫ 𝜅1, the mixing parameter becomes

𝜉 ≈ −2 𝜅2
𝜅1

𝑚2
𝑊1

𝑚2
𝑊2

≪ 1. (2.80)

For the neutral gauge bosons the same procedure yields

ℒ𝐵,𝑊 3
𝑚 = 1

2
( 𝑊 3

𝐿𝜇 𝑊 3
𝑅𝜇 𝐵𝜇 ) 𝑀2

0
⎛⎜
⎝

𝑊 3𝜇
𝐿

𝑊 3𝜇
𝑅

𝐵𝜇

⎞⎟
⎠

= 1
2

( 𝑍1𝜇 𝑍2𝜇 𝐴𝜇 ) ⎛⎜
⎝

𝑚2
𝑍1

𝑚2
𝑍2

0
⎞⎟
⎠

⎛⎜
⎝

𝑍𝜇
1

𝑍𝜇
2

𝐴𝜇

⎞⎟
⎠

,

(2.81)
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with the massless SM photon 𝐴𝜇 and

𝑀2
0 = 1

2
⎛⎜⎜⎜
⎝

𝑔2 (2𝜐2
𝐿 + 𝜅2

+
2 ) −𝑔2 𝜅2

+
2 −2𝑔𝑔𝑌𝜐2

𝐿

−𝑔2 𝜅2
+

2 𝑔2 (2𝜐2
𝑅 + 𝜅2

+
2 ) −2𝑔𝑔𝑌𝜐2

𝑅

−2𝑔𝑔𝑌𝜐2
𝐿 −2𝑔𝑔𝑌𝜐2

𝑅 2𝑔2
𝑌 (𝜐2

𝐿 + 𝜐2
𝑅)

⎞⎟⎟⎟
⎠

, (2.82)

𝑚2
𝑍1/2

= 1
4

[𝑔2𝜅2
+ + 2𝑔2

+𝜐2
+

∓√(𝑔2𝜅2
+ + 2𝑔2

+𝜐2
+)2 − 4𝑔2 (𝑔2

+ + 𝑔2
𝑌) (4𝜐2

𝐿𝜐2
𝑅 + 𝜅2

+𝜐2
+) ] .

(2.83)

As abbreviation we defined 𝑔+ = 𝑔2 + 𝑔2
𝑌 and 𝜐2

+ = 𝜐2
𝐿 + 𝜐2

𝑅. The rotation leading to
the mass eigenbasis in Equation (2.81) can be found in [29]:

⎛⎜
⎝

𝑊 3
𝐿𝜇

𝑊 3
𝑅𝜇

𝐵𝜇

⎞⎟
⎠

= ⎛⎜
⎝

𝑐𝑊 𝑐 𝑐𝑊 𝑠 𝑠𝑊
−𝑠𝑊 𝑠𝑀 𝑐 − 𝑐𝑀 𝑠 −𝑠𝑊 𝑠𝑀 𝑠 + 𝑐𝑀 𝑐 𝑐𝑊 𝑠𝑀
−𝑠𝑊 𝑐𝑀 𝑐 + 𝑠𝑀 𝑠 −𝑠𝑊 𝑐𝑀 𝑠 − 𝑠𝑀 𝑐 𝑐𝑊 𝑐𝑀

⎞⎟
⎠

⎛⎜
⎝

𝑍1𝜇
𝑍2𝜇
𝐴𝜇

⎞⎟
⎠

.

(2.84)

With 𝑒 being the electric charge and 𝜃𝑊 the SM Weinberg angle, the mixing angles are
given by

𝑠𝑊 = sin 𝜃𝑊 = 𝑒
𝑔 , 𝑐𝑊 = cos 𝜃𝑊,

𝑠𝑀 = tan 𝜃𝑊, 𝑐𝑀 = √cos 2𝜃𝑊
cos 𝜃𝑊

= 𝑒
𝑔𝑌𝑐𝑊

,
𝑠 = sin 𝜙, 𝑐 = cos 𝜙.

(2.85)

The angle 𝜙 parametrises the mixture between the different chiralities and is given in
terms of the mass-squared difference Δ𝑚2 = 𝑚2

𝑍2
− 𝑚2

𝑍1
:

sin 2𝜙 = 𝑔2

2Δ𝑚2𝑐2
𝑊

(4𝑠2
𝑊𝜐2

𝐿 − cos 2𝜃𝑊 𝜅2
+) . (2.86)

Again, for 𝜐𝐿 ≈ 0 and 𝜐𝑅 ≫ 𝜅2
+, we have

𝑚2
𝑍1

≈ 𝑔2

4
𝑔2 + 2𝑔2

𝑌
𝑔2 + 𝑔2

𝑌
𝜅2

+, 𝑚2
𝑍2

≈ (𝑔2 + 𝑔2
𝑌) 𝜐2

𝑅, (2.87)

sin 2𝜙 ≈
−𝑔2𝜅2

+cos 2𝜃𝑊
2Δ𝑚2𝑐2

𝑊
. (2.88)
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2.3 The Left Right symmetric model

2.3.3 Charged weak interactions with neutrinos

Having derived the general expressions relevant for the generation of mass and mixing,
we are now able to derive expressions for the charged weak interactions involving neu-
trinos. For this we will separate the interaction part included in the fermion Lagragian
in Equation (2.41) which reads

ℒ𝐹 = 𝐿′
𝐿 𝑖 /𝐷 𝐿′

𝐿 + 𝐿′
𝑅 𝑖 /𝐷 𝐿′

𝑅⏟⏟⏟⏟⏟⏟⏟⏟⏟
=ℒ𝐿

𝐹

+ 𝑄′
𝐿 𝑖 /𝐷 𝑄′

𝐿 + 𝑄′
𝑅 𝑖 /𝐷 𝑄′

𝑅⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=ℒ𝑞

𝐹

. (2.89)

Here, the slash denotes a contraction with the Dirac 𝛾 matrices: /𝐷 = 𝐷𝜇𝛾𝜇.

Now, the covariant derivatives given in Equation (2.38) can be inserted and ℒ𝐿/𝑞
𝐹 can

be split into the kinetic terms ℒ𝐿/𝑞
𝑘𝑖𝑛 , neutral current interactions (NC) ℒ𝐿/𝑞

NC and charged
current interactions (CC) ℒ𝐿/𝑞

CC . As Equation (2.89) contains a sum over the the flavour
indices, the mixing matrices derived above in general make the expression complicated
when changing to the mass basis. However, in the following we show that the NC part,22
and the kinetic part are free of mixing and then focus on the more interesting flavour
changing CC interactions.

First, consider the kinetic term for LH charged leptons in combination with the trans-
formations given in Equation (2.69):

ℓ′
𝐿 𝑖/𝜕 ℓ′

𝐿 = ℓ𝐿 𝑉 ℓ†
𝐿 𝑖/𝜕 𝑉 ℓ

𝐿 ℓ𝐿 = ℓ𝐿 𝑖/𝜕 ℓ𝐿. (2.90)

The calculation is analogous for ℓ′
𝑅 and the quarks. For neutrinos, however, we have to

consider both chiralities simultaneously, because they are Majorana particles:

𝜈′
𝐿 𝑖/𝜕 𝜈′

𝐿 + 𝜈′
𝑅 𝑖/𝜕 𝜈′

𝑅 = 𝜈′
𝐿 𝑖/𝜕 𝜈′

𝐿 + 𝜈′𝑐
𝑅 𝑖/𝜕 𝜈′𝑐

𝑅

= 𝑛′
𝐿 𝑖/𝜕 𝑛′

𝐿 = 𝑛𝐿 𝑖/𝜕 𝑛𝐿 = 1
2

𝑛 𝑖/𝜕 𝑛,
(2.91)

where we used 𝜈′
𝑅 𝑖/𝜕 𝜈′

𝑅 = −𝜕𝜇𝜈′
𝑅 𝑖𝛾𝜇 𝜈′

𝑅 and Equation (2.36) in the first line and the
transformations from Equation (2.62) in the second line.

We can thus conclude that the kinetic terms do not depend on the mixing parameters.
Similarly, the neutral current interactions are free from mixing and do not change the

22 For the more complicated expression of the neutral current in the mass eigenbasis, we refer to [29].
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interacting flavour:

ℒNC ⊇ 1
2

( 𝜈′
𝐿 ℓ′

𝐿 ) 𝛾𝜇 [𝑔𝑊 3
𝐿𝜇 ( 1 0

0 −1 ) − 𝑔𝑌𝐵𝜇] ( 𝜈′
𝐿

ℓ′
𝐿

)

= 1
2

𝜈′
𝐿 𝛾𝜇 [𝑔𝑊 3

𝐿𝜇 − 𝑔𝑌𝐵𝜇] 𝜈′
𝐿 − 1

2
ℓ′

𝐿 𝛾𝜇 [𝑔𝑊 3
𝐿𝜇 + 𝑔𝑌𝐵𝜇] ℓ′

𝐿

= 1
2

𝑛𝐿 𝛾𝜇 [𝑔𝑊 3
𝐿𝜇 − 𝑔𝑌𝐵𝜇] 𝑛𝐿 − 1

2
ℓ𝐿 𝛾𝜇 [𝑔𝑊 3

𝐿𝜇 + 𝑔𝑌𝐵𝜇] ℓ𝐿

= 1
2

𝐿𝐿 𝛾𝜇 [𝑔𝑊 3
𝐿𝜇 ( 1 0

0 −1 ) − 𝑔𝑌𝐵𝜇] 𝐿𝐿.

(2.92)

For the charged current, however, the situation is different. In the case of LH flavour
eigenstates the CC Lagrangian for the leptons reads

ℒCC ⊇ 𝑔√
2

( 𝜈′
𝐿 ℓ′

𝐿 ) 𝛾𝜇 ( 0 𝑊 +
𝐿𝜇

𝑊 −
𝐿𝜇 0 ) ( 𝜈′

𝐿
ℓ′

𝐿
)

= 𝑔√
2

ℓ′
𝐿 𝛾𝜇 𝜈′

𝐿 𝑊 −
𝐿𝜇 + h.c.

= 𝑔√
2

ℓ𝐿 𝛾𝜇 𝑉 ℓ†
𝐿 𝑉 𝜈

𝐿 𝑛𝐿 𝑊 −
𝐿𝜇 + h.c.

(2.93)

As was mentioned before, the physically observable parameters connected to mixing
are not the elements of 𝑉 𝜈

𝐿/𝑅, but rather the combination 𝑉 ℓ†
𝐿/𝑅𝑉 𝜈

𝐿/𝑅 above.
Therefore we define

𝐾𝐿 = 𝑉 ℓ†
𝐿 𝑉 𝜈

𝐿 , 𝐾𝑅 = 𝑉 ℓ†
𝑅 𝑉 𝜈∗

𝑅 . (2.94)

Note that for the RH sector the matrix 𝑉 𝜈
𝑅 appears as conjugate because of the charge

conjugation in the definition of 𝑁𝑅 in Equation (2.63).

Although 𝐾𝐿/𝑅 is the relevant quantity in processes involving mixing, for the actual
calculations we can nevertheless regard 𝑉 ℓ

𝐿/𝑅 as being equal to unity and thus work with
𝑉 𝜈

𝐿/𝑅 only and use the parametrisation given in Equation (2.59). This is possible as all
remaining parts of the Lagrangian are diagonal in the charged leptons. Because of that,
deviations from 𝑉 ℓ

𝐿/𝑅 = 𝟙 cannot be detected.

Finally, we also use Equation (2.76) to express the gauge bosons in their mass eigenba-
sis and give the complete expression for the leptonic charged current with both helicities
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2.3 The Left Right symmetric model

in the mass eigenbasis of all participating particles:

ℒ𝐿
CC = 𝑔√

2
ℓ 𝛾𝜇 (𝑊 −

𝐿𝜇𝐾𝐿𝑃𝐿 + 𝑊 −
𝑅𝜇𝐾𝑅𝑃𝑅) 𝑛 + h.c. (2.95)

= 𝑔√
2

ℓ 𝛾𝜇 𝑃𝐿 (𝑈𝜈 + 𝑆𝑁) (cos 𝜉 𝑊 −
1𝜇 + sin 𝜉 e−𝑖𝜃2 𝑊 −

2𝜇)

+ 𝑔√
2

ℓ 𝛾𝜇 𝑃𝑅 (𝑇 ∗𝜈 + 𝑉 ∗𝑁) (cos 𝜉 𝑊 −
2𝜇 − sin 𝜉 e𝑖𝜃2 𝑊 −

1𝜇) + h.c.
(2.96)

For completeness we note here that the mixing also occurs in the charged currents
containing quarks. The analogue to the 𝐾𝐿 and 𝐾𝑅 matrices above, is the familiar CKM-
matrix,23 which results from the mixing matrices 𝑉 𝑢

𝐿 and 𝑉 𝑑
𝐿 in Equation (2.72):

𝑈CKM
𝐿 = 𝑉 𝑢†

𝐿 𝑉 𝑑
𝐿 , 𝑈CKM

𝑅 = 𝑉 𝑢†
𝑅 𝑉 𝑑

𝑅 . (2.97)

For the LH sector this effect is already well known from the SM; the RH extension in the
LRSM further satisfies [29].

(𝑈CKM
𝐿 )𝑖𝑗 = ±(𝑈CKM

𝑅 )𝑖𝑗. (2.98)

2.3.4 Limits and constraints

To conclude this chapter, we give a short overview over the constraints on the parame-
ters of the LRSM that are relevant for this work.

In order to be in agreement with the Standard Model and the experimental obser-
vations, the mixing between the two charged gauge bosons must be small. From the
universality in weak decays and non-leptonic Kaon decays an upper limit on the mixing
angle 𝜉 in Equation (2.77) can be derived [37]:

|𝜉| ≲ 10−3. (2.99)

Thus, for all practical purposes the approximation

cos 𝜉 ≈ 1 and sin 𝜉 ≈ 𝜉 (2.100)

can be used, e.g. in the expression of the charged current interaction (2.96). Because of
the small mixing, the notation is frequently abused and the educated reader should be
aware that

𝑊 ±
1 ≃ 𝑊 ±

𝐿 , 𝑊 ±
2 ≃ 𝑊 ±

𝑅 ,
𝑚𝑊1

≃ 𝑚𝐿, 𝑚𝑊2
≃ 𝑚𝑅. (2.101)

23Cabbibo - Kobayashi - Maskawa
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As we consider the case of very small mixing 𝜉 ≈ 0 in our analysis, we will adopt this
notation in the following chapters as well.

Theoretical considerations on the vacuum stability require [38]

𝑚𝑊2
> 𝑀𝑖, (2.102)

with 𝑀𝑖 being the mass of any of the three heavy neutrinos; CP violation in meson
mixing results in a lower limit on the mass 𝑚𝑊2

[39]:

𝑚𝑊2
≳ 4 TeV. (2.103)

Furthermore, the hierarchy in the quark masses requires a hierarchy in the scalar VEVs
of Equation (2.43) [39]:

𝜐𝐿 ≪ 𝜅2 < 𝜅1 ≪ 𝜐𝑅; (2.104)

from neutral Kaon and B-meson mixing, the ratio of the bi-doublet VEVs is limited as
[39, 40]24

1 ≫ 𝜅2
𝜅1

≳ 0.02. (2.105)

However, to reproduce the Standard Model, it is necessary to have

𝜅2
+ = 𝜅2

1 + 𝜅2
2 = 𝜐SM ≈ 246GeV. (2.106)

with 𝜐SM being the vacuum expectation value of the SM.

Observations show [15, 16], that the light neutrino masses have to be smaller than
1 eV. This constraints the combination of heavy neutrino masses and mixings[41]:

∣
3

∑
𝑘=1

𝑆∗
ℓ𝑘𝑀𝑘𝑆∗

ℓ′𝑘∣ ≲ 1 eV, ℓ, ℓ′ ∈ {𝑒, 𝜇, 𝜏} . (2.107)

From electroweak precision experiments, the elements of the matrix 𝑅 in Equation
(2.59) which mediates the mixing between LH and RH sector, are constrained as fol-
lows[41]:

∣𝜂𝑖𝑗∣ ≤ ⎛⎜
⎝

2.0 × 10−3 0.6 × 10−4 1.6 × 10−3

0.6 × 10−4 0.8 × 10−3 1.0 × 10−3

1.6 × 10−3 1.0 × 10−3 2.6 × 10−3

⎞⎟
⎠𝑖𝑗

, 𝑅𝑅† = −2𝜂 = 𝑆𝑆†

(2.108)

24This applies in the case of parity as the discrete symmetry, which we haven chosen above.
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2.3 The Left Right symmetric model

Oscillation experiments constrain the values of the light neutrino mixing matrix 𝑈𝐿
in Equation (2.59). The best-fit values in the parametrisation given in Equation (2.60) are
[42]:

sin2𝜃12 = 2.97 × 10−1 (NH & IH),
sin2𝜃13 = 2.14 × 10−2 (NH), sin2𝜃13 = 2.18 × 10−2 (IH),
sin2𝜃23 = 4.37 × 10−1 (NH), sin2𝜃23 = 5.69 × 10−1 (IH),

𝛿 = 1.35 𝜋 (NH), 𝛿 = 1.32 𝜋 (IH).

(2.109)

As indicated above, the values depend on the hierarchy of the masses of the light neu-
trinos. In the case of normal hierarchy (NH) the masses are ordered as 𝑚1 < 𝑚2 < 𝑚3,
whereas an inverted hierarchy (IH) implies 𝑚3 < 𝑚1 < 𝑚2.

The squared mass differences 𝛿𝑚2 = 𝑚2
2 − 𝑚2

1 and Δ𝑚2 = 𝑚2
3 − (𝑚2

1 + 𝑚2
2) of the

light neutrino masses 𝑚𝑖 fit the experimental values best if they are

𝛿𝑚2 = 7.37 × 10−5 eV2 (NH & IH),
Δ𝑚2 = 2.50 × 10−3 eV2 (NH), Δ𝑚2 = 2.46 × 10−3 eV2 (IH). (2.110)

Further constraints and considerations, e.g. about the scalar components, can be found
in [34, 35, 43–45].
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Chapter 3
Neutrinoless double beta decay

In this chapter we give a short overview over the neutrinoless double beta decay contri-
butions in the LRSM. We first list the different amplitudes with their characteristics and
limits and then show how they combine to the resulting half life of the decay. As we are
mainly interested in the 𝜆 diagram, we will stress how the respective limit is obtained
from the half life. The information in this chapter are taken from [21], combined with
the current lower limit on the half life of xenon from [46].

Similarly to the ordinary beta decay, in which a neutron decays into a proton, an elec-
tron and an anti electron neutrino, in the 0𝜈𝛽𝛽 decay two neutrons decay. However, in
this case, the decay products are two protons and two electrons, but no neutrino. This
is only possible if the neutrino interacts as Majorana particle. Roughly speaking, the
neutrino emitted from one neutron can interact as anti neutrino with the other neu-
tron. Therefore, the discovery of this process would unambiguously prove the Majorana
nature of the neutrino.

In the low energy regime, the interaction happens inside an nucleus. Therefore, nu-
clear physical aspects have to be included, such as transition matrix elements. The re-
sults of the corresponding calculations vary by𝒪(1) factors depending on the calculation
scheme. Thus the limits obtained by the following considerations have to be taken with
care.

3.1 Contributing amplitudes in the Left Right
symmetric model

At the particle physics level, the relevant constituents of the 0𝜈𝛽𝛽 decay are weakly
interacting quarks, which have to be described by the Lagrangian given in Equation
(2.96). In the Left Right symmetric model different amplitudes give rise to the 0𝜈𝛽𝛽
decay. One main difference between these contributions is the chirality of the external
particles involved. Furthermore mass mixing in the bosonic currents can lead to dif-
ferent amplitudes with same chiralities, although in general they are suppressed due to
the smallness of the mixing (see Equation (2.99)).
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Chapter 3 Neutrinoless double beta decay

In order to estimate the cross section of the respective channel, one has to take into
account the 𝑊 propagators ∼ 𝑚−2

𝐿/𝑅, the neutrino propagator as described below and
the coupling of the neutrinos to the gauge bosons parametrised by the mixing matrices
𝐾𝐿 = (𝑈, 𝑆) and 𝐾𝑅 = (𝑇 ∗, 𝑉 ∗) given in Equation (2.94). Furthermore, the gauge
boson mixing ∼ tan 𝜉 might be included (2.76).

The chiralities of the outgoing electrons are connected to the neutrino propagator
contribution:

𝒜 ∝ 𝑃𝐿/𝑅
/𝑞 + 𝑚

𝑞2 − 𝑚2 𝑃𝐿/𝑅, (3.1)

with 𝑞 being the four-momentum carried by the neutrino, 𝑚 its mass (heavy or light)
and 𝑃𝐿/𝑅 the chirality projection operators introduced in Equation (2.31). The latter
depend on the chiralities of the outgoing electrons. First we consider them to be equal.
The expression simplifies as follows:

𝒜 ∝ 𝑃𝐿
/𝑞 + 𝑚

𝑞2 − 𝑚2 𝑃𝐿 = 𝑚
𝑞2 − 𝑚2 𝑃𝐿. (3.2)

As the momentum dependency of the nominator vanishes by use of the identities in
Equation (2.31), processes like this are called mass-dependent. In theories without RH
gauge bosons, e.g. minimal extensions to the SM, these are the only contributions to the
0𝜈𝛽𝛽 decay.

For the case of two different chiralities in the outgoing electrons, we find

𝒜 ∝ 𝑃𝐿
/𝑞 + 𝑚

𝑞2 − 𝑚2 𝑃𝑅 = /𝑞
𝑞2 − 𝑚2

𝑖
𝑃𝑅, (3.3)

and call such amplitudes momentum-dependent.

For neutrinoless double beta decay in nuclei, the energies involved are rather small
and as an estimate we can use 𝑞2 ≈ 104 MeV2. Depending onwhether we are considering
light or heavy neutrinos in the propagator — both have to be summed up in general — the
amplitude might be larger for momentum-dependent or mass-dependent mechanisms.

Standard left handed diagram 𝒜𝐿

In the simplest extension to the Standard Model a Majorana neutrino couples to two LH
gauge bosons as shown in Figure 3.1a. The amplitude is then given by

𝒜𝐿 ≃ 𝐺2
𝐹 (

3

∑
𝑖=1

𝑈𝑒𝑖
𝑚𝑖
𝑞2 𝑈𝑒𝑖 +

3

∑
𝑖=1

𝑆𝑒𝑖
𝑀𝑖

𝑞2 − 𝑀2
𝑖

𝑆𝑒𝑖) , (3.4)
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3.1 Contributing amplitudes in the Left Right symmetric model

𝑊𝐿

𝑛

𝑊𝐿

𝑑𝐿 𝑢𝐿

𝑒𝐿

𝑒𝐿

𝑑𝐿 𝑢𝐿

(a) Left handed gauge boson interac-
tion, 𝒜𝐿.

𝑊𝑅

𝑛

𝑊𝑅

𝑑𝑅 𝑢𝑅

𝑒𝑅

𝑒𝑅

𝑑𝑅 𝑢𝑅

(b) Right handed gauge boson interac-
tion, 𝒜𝑅.

Fig. 3.1 – Feynman diagrams for the contributions to the neutrinoless double beta decay
with equal chiralities in the outgoing electrons.

with 𝐺𝐹 =
√

2𝑔2/8𝑚2
𝐿 being the Fermi Constant of Weak Interaction. The two contri-

butions can be characterized separately as

𝒜𝜈 ≃ 𝐺2
𝐹 (

3

∑
𝑖=1

𝑈𝑒𝑖
𝑚𝑖
𝑞2 𝑈𝑒𝑖) = 𝐺2

𝐹
⟨𝑚𝑒𝑒⟩

𝑞2 , (3.5)

𝒜𝐿
𝑁𝑅

≃ 𝐺2
𝐹

3

∑
𝑖=1

𝑆2
𝑒𝑖

𝑀2
𝑖

. (3.6)

For 𝒜𝜈 the physically interesting quantity describing the contribution of this process is
the effective mass | ⟨𝑚𝑒𝑒⟩ | = | ∑ 𝑈2

𝑒𝑖𝑚𝑖|. In order to express this parameter in terms of
a dimensionless quantity, ⟨𝑚𝑒𝑒⟩ is rescaled by the electron mass:

|𝜂𝜈| = |⟨𝑚𝑒𝑒⟩|
𝑚𝑒

≤ 3.0 × 10−7. (3.7)

The limit given here, as well as in the case of the amplitudes below, is obtained from
the experimental limit on the half life of the nucleus under consideration as described
in Section 3.2 below.

The corresponding parameter for 𝒜𝐿
𝑁𝑅

is

∣𝜂𝐿
𝑁𝑅

∣ = 𝑚𝑝 ∣
3

∑
𝑖=1

𝑆2
𝑒𝑖

𝑀𝑖
∣ ≤ 2.9 × 10−9. (3.8)

Here, 𝑚𝑝 is the mass of the proton.
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Chapter 3 Neutrinoless double beta decay

If we additionally include the possibility of gauge boson mixing1, we can summarize
the amplitude for two LH electrons being emitted as

𝒜𝐿𝐿 ≃ 𝐺2
𝐹 (1 + 2tan 𝜉 + tan2𝜉)

3

∑
𝑖=1

(𝑈2
𝑒𝑖𝑚𝑖
𝑞2 − 𝑆2

𝑒𝑖
𝑀𝑖

) . (3.9)

Standard right handed diagram 𝒜𝑅

Figure 3.1b shows the Feynman diagram that is obtained from replacing all LH particles
in the 𝒜𝜈 diagram with RH particles. Its amplitude reads

𝒜𝑅 ≃ 𝐺2
𝐹

𝑚4
𝐿

𝑚4
𝑅

(
3

∑
𝑖=1

𝑇 ∗
𝑒𝑖

𝑚𝑖
𝑞2 𝑇 ∗

𝑒𝑖 +
3

∑
𝑖=1

𝑉 ∗
𝑒𝑖

𝑀𝑖
𝑞2 − 𝑀2

𝑖
𝑉 ∗

𝑒𝑖) . (3.10)

Here, the light neutrino exchange can be neglected, as it is suppressed by both the light
neutrino mass 𝑚𝑖 as well as the small mixing 𝑇𝑒𝑖 ≪ 𝑉𝑒𝑖. The heavy neutrino contribu-
tion is approximately given by

𝒜𝑅
𝑁𝑅

≈ −𝐺2
𝐹

𝑚4
𝐿

𝑚4
𝑅

3

∑
𝑖=1

𝑉 ∗2
𝑒𝑖

𝑀𝑖
, (3.11)

and as a dimensionless parameter for this process we can define

∣𝜂𝑅
𝑁𝑅

∣ = 𝑚𝑝
𝑚4

𝐿
𝑚4

𝑅
∣

3

∑
𝑖=1

𝑉 ∗2
𝑒𝑖

𝑀𝑖
∣ ≤ 2.9 × 10−9. (3.12)

For two RH electrons emitted we thus find the overall amplitude including boson
mixing up to 𝒪(tan2𝜉) as follows

𝒜𝑅𝑅 ≃ 𝐺2
𝐹 (𝑚4

𝐿
𝑚4

𝑅
+ 2𝑚2

𝐿
𝑚2

𝑅
tan 𝜉 + tan2𝜉)

3

∑
𝑖=1

(𝑇 ∗2
𝑒𝑖 𝑚𝑖
𝑞2 − 𝑉 ∗2

𝑒𝑖
𝑀𝑖

) . (3.13)

Triplet exchange diagrams 𝒜𝛿𝐿/𝑅

The Left Right symmetric model also includes doubly charged heavy scalar triplets re-
sulting from the type-II seesaw mechanism. These particles can also mediate the 0𝜈𝛽𝛽
decay. The corrosponding Feynman diagrams are shown in Figure 3.2.

1 In this case the quarks coupled the boson may not have the same chirality as the electron.
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3.1 Contributing amplitudes in the Left Right symmetric model

𝑊𝐿

𝛿−−
𝐿

𝑊𝐿

𝑑𝐿 𝑢𝐿

𝑒−
𝐿

𝑒−
𝐿

𝑑𝐿 𝑢𝐿

(a) Left handed, double charged
scalars mediating the interaction,
𝒜𝛿𝐿

.

𝑊𝑅

𝛿−−
𝑅

𝑊𝑅

𝑑𝑅 𝑢𝑅

𝑒−
𝑅

𝑒−
𝑅

𝑑𝑅 𝑢𝑅

(b) Right handed, double charged
scalars mediating the interaction,
𝒜𝛿𝑅

.

Fig. 3.2 – Contribution from the 𝑆𝑈(2)𝐿/𝑅 triplets of the Left Right symmetric model.

In the case of the RH triplet (Fig. 3.2b), the amplitude is given by

𝒜𝛿𝑅
≃ 𝐺2

𝐹
𝑚4

𝐿
𝑚4

𝑅

3

∑
𝑖=1

𝑉 2
𝑒𝑖𝑀𝑖

𝑚2
𝛿−−

𝑅

, (3.14)

and the corresponding particle physics parameter reads

∣𝜂𝛿𝑅
∣ =

𝑚𝑝

𝐺2
𝐹

∣∑3
𝑖=1 𝑉 2

𝑒𝑖𝑀𝑖∣
𝑚2

𝛿𝑅−− 𝑚4
𝑅

≤ 2.9 × 10−9, (3.15)

where the relation
√

2𝜐𝑅(ℎ𝑅)𝑒𝑒 = ∑ 𝑉 2
𝑒𝑖𝑀𝑖 has been used.

For the LH triplet, the expression reads

𝒜𝛿𝐿
≃ 𝐺2

𝐹
(ℎ𝐿)𝑒𝑒𝜐𝐿

𝑚2
𝛿−−

𝐿

. (3.16)

Here, ℎ is the the Yukawa coupling matrix given in Equation (2.45). This amplitude
is suppressed by a factor of 𝑞2/𝑚2

𝛿−−
𝐿

compared to the other diagrams and can thus be
neglected.

Momentum dependent diagrams

After having presented the mass-dependent mechanisms above, we now explain the two
most important momentum dependent amplitudes.
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Chapter 3 Neutrinoless double beta decay

𝑊𝐿

𝑛

𝑊𝑅

𝑑𝐿 𝑢𝐿

𝑒𝐿

𝑒𝑅

𝑑𝑅 𝑢𝑅

1

(a) The 𝜆 diagram, 𝒜𝜆.

𝑊𝐿

𝑛

𝑊𝑅

𝑊𝐿

𝑑𝐿 𝑢𝐿

𝑒𝐿

𝑒𝑅

𝑑𝐿 𝑢𝐿

(b) The 𝜂 diagram, 𝒜𝜂.

Fig. 3.3 – Contributions with different helicities in the outgoing electrons.

In these channels the emitted electrons have different helicities. This requires to cou-
ple the neutrino to two gauge bosons of different helicities 𝑊 −

𝐿 and 𝑊 −
𝑅 . In the simplest

case, without gauge boson mixing, the result is the 𝜆 diagram shown in Figure 3.3a. Its
amplitude reads

𝒜𝜆 ≃ 𝐺2
𝐹

𝑚2
𝐿

𝑚2
𝑅

(
3

∑
𝑖=1

𝑈𝑒𝑖𝑇 ∗
𝑒𝑖

𝑞
+

3

∑
𝑖=1

𝑆𝑒𝑖𝑉 ∗
𝑒𝑖

𝑞
𝑞2 − 𝑀2

𝑖
) . (3.17)

In the low energy 0𝜈𝛽𝛽 decay, the heavy neutrino contribution is suppressed by its
mass; as we want to consider this diagram at high energies, we nevertheless derive an
approximate expression including the heavy neutrino propagators. Therefore we use
an approximation from [41], which was originally introduced for the standard mass-
dependent mechanism 𝒜𝐿

𝑁𝑅
:

𝒜𝜆 ≃ 𝐺2
𝐹

𝑞
𝑚2

𝐿
𝑚2

𝑅
(

3

∑
𝑖=1

𝑈𝑒𝑖𝑇 ∗
𝑒𝑖 −

3

∑
𝑖=1

𝐹 (𝐴, 𝑀𝑖) 𝑆𝑒𝑖𝑉 ∗
𝑒𝑖) , (3.18)

with 𝐹(𝐴, 𝑀𝑖) resulting from the integration over the small transferred momentum 𝑞.
It reads

𝐹 (𝐴, 𝑀𝑖) ≈ 𝑀2
𝑎

𝑀2
𝑖

𝑓(𝐴), 𝑀𝑎 ≈ 0.9GeV, (3.19)

and depends on the considered nucleus with atomic number 𝐴 through the value 𝑓(𝐴).
For 136Xe, which we use for our calculations, we have 𝑓(136Xe) ≈ 0.068. The values for
other nuclei can be taken from [41].
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3.2 Nuclear matrix elements and half lives

The particle physics parameter in this case reads

|𝜂𝜆| = 𝑚2
𝐿

𝑚2
𝑅

∣
3

∑
𝑖=1

𝑈𝑒𝑖𝑇 ∗
𝑒𝑖 −

3

∑
𝑖=1

𝐹 (𝐴, 𝑀𝑖) 𝑆𝑒𝑖𝑉 ∗
𝑒𝑖∣ ≤ 2.4 × 10−7. (3.20)

This valuewill be used in the following chapter to derive upper limits on the cross section
of the high energy equivalent.

Finally, the light neutrino part of the 𝜂 diagram (Fig. 3.3b) also contributes to the
momentum-dependent amplitude.2 It is given by

𝒜𝜂 ≃ 𝐺2
𝐹 tan 𝜉

3

∑
𝑖=1

𝑈𝑒𝑖𝑇 ∗
𝑒𝑖

𝑞
, (3.21)

and can be described by the dimensionless particle physics parameter

∣𝜂𝜂∣ = tan 𝜉 ∣
3

∑
𝑖=1

𝑈𝑒𝑖𝑇 ∗
𝑒𝑖∣ ≤ 1.3 × 10−9. (3.22)

The general expression for the momentum-dependent amplitude, including mixing up
to second order, reads

𝒜𝐿𝑅 ≃ 𝐺2
𝐹 (𝑚2

𝐿
𝑚2

𝑅
+ tan 𝜉 + 𝑚2

𝐿
𝑚2

𝑅
tan 𝜉 + tan2𝜉)

3

∑
𝑖=1

(𝑈𝑒𝑖𝑇 ∗
𝑒𝑖

𝑞
− 𝑆𝑒𝑖𝑉 ∗

𝑒𝑖
𝑞

𝑀2
𝑖

) .

(3.23)

3.2 Nuclear matrix elements and half lives

The lifetime 𝑇 0𝜈
1/2 of the nucleus under consideration in the 0𝜈𝛽𝛽 decay has to be cal-

culated including the nuclear matrix elements ℳ𝑖 which describe the interaction of the
constituent quarks in the environment of the nucleus. For our analysis we consider
136Xe, although the following considerations are analogous for other nuclei with the
appropriate replacements (see [21] for details).

The general expression for 𝑇 0𝜈
1/2 resulting from the contribution of all diagrams above

can be written as

(𝑇 0𝜈
1/2)

−1
= 𝐺0𝜈

01 (∣ℳ0𝜈
𝜈 ∣2 |𝜂𝜈|2 + ∣ℳ0𝜈

𝑁 ∣2 ∣𝜂𝐿
𝑁𝑅

∣
2

+ ∣ℳ0𝜈
𝑁 ∣2 ∣𝜂𝑅

𝑁𝑅
+ 𝜂𝛿𝑅

∣
2

+

+ ∣ℳ0𝜈
𝜆 ∣2 |𝜂𝜆|2 + ∣ℳ0𝜈

𝜂 ∣2 ∣𝜂𝜂∣2) + interference terms.
(3.24)

2 We neglect the heavy neutrino propagator here as it is suppressed by the heavy neutrino mass 𝑀𝑖 and
we are not further interested in details about this diagram.
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Chapter 3 Neutrinoless double beta decay

𝐺0𝜈
01 is the phase space factor resulting from the integration over the available momen-

tum space. Following the notation of [21], the ℳ0𝜈
𝑖 contain the actual nuclear matrix

elements ℳ𝑖 as well as kinematical factors and some weight that takes into account that
different approaches have been adopted to calculate the matrix elements for the different
processes.

Given the limit on the neutrinoless double beta decay, one can finally extract a limit on
the parameter of interest by assuming that the amplitude under consideration is mainly
responsible for the decay. In our case — we are interested in the 𝜆 diagram— we can
therefore assume

(𝑇 0𝜈
1/2)

−1
≈ 𝐺0𝜈

01 ∣ℳ0𝜈
𝜆 ∣2 |𝜂𝜆|2 . (3.25)

Among various other values, [21] quotes the value for 𝐺0𝜈
01 and a range for ℳ0𝜈

𝜆 in the
case of xenon:

ℳ0𝜈
𝜆 = 1.96 − 2.49 and 𝐺0𝜈

01 ≈ 4.24 × 10−14 yrs−1. (3.26)

The current half life limit for 136Xe from the experiment is [46]:

𝑇 0𝜈
1/2 ≥ 1.07 × 1026 yrs (3.27)

Equation (3.25) then yields

|𝜂𝜆| ≈ (𝐺0𝜈
01)−1/2 ∣ℳ0𝜈

𝜆 ∣−1 (𝑇 0𝜈
1/2)

−1/2
≲ 2.4 × 10−7. (3.28)

The same procedure can be done for the other diagrams, giving the limits presented in
Section 3.1.
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Chapter 4
Analysing the lambda diagram at the Large
Hadron Collider

In this chapter we perform our analysis of the 𝜆 diagram cross section in the high en-
ergy scenario and derive upper limits for the respective signal. We first summarise the
scenario we are considering, i.e. we give the relevant model parameters we used for our
simulations and the constraints we will use for the discussion. Then we consider the 𝑡-
channel process (Fig. 3.3a) and afterwards the 𝑠-channel process for the case where the
incoming quarks couple to the 𝑊 −

𝑅 (Fig. 4.1). As we are working in the ultra-relativistic
limit the interference between the different channels can be neglected.1

Fig. 4.1 – The 𝑠-channel 𝜆 diagram contribution with right-handed incoming quarks. The
mixing matrices contributing to the coupling between the neutrino propagator 𝑛 and the
𝑊 bosons are indicated by 𝐾𝐿 ≃ (𝑈, 𝑆) and 𝐾𝑅 ≃ (𝑇 ∗, 𝑉 ∗), respectively.

We stress that we consider the interaction in the center of mass frame of the partici-
pating quarks only, i.e. we did not take any parton distribution into account. The center
of mass energy

√
𝑠 corresponds therefore to the energy resulting from the two quarks

1 The interference terms are proportional to the mass 𝑚 of the incoming quark as ∑ 𝑃𝐿𝜓𝑠𝜓𝑠𝛾𝜇𝑃𝑅 =
𝑚𝛾𝜇𝑃𝑅, whereas the pure, non-interfering amplitudes are proportional to its momentum 𝑞 ≫ 𝑚:
∑ 𝑃𝐿𝜓𝑠𝜓𝑠𝛾𝜇𝑃𝐿 = /𝑞𝛾𝜇𝑃𝐿; here, 𝜓 denotes the spinor of the incoming quark and the sum is taken
over its spin 𝑠 = ± 1

2 .
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Chapter 4 Analysing the lambda diagram at the Large Hadron Collider

only:

𝑠 = (𝑝𝑞1 + 𝑝𝑞2)2 , (4.1)

with 𝑝𝑞1 and 𝑝𝑞2 the momenta of the quarks. It is connected to the center of mass energy
in the proton-proton collision √𝑠𝑝𝑝 via

√
𝑠 = 𝑥1 ⋅ 𝑥2 ⋅ √𝑠𝑝𝑝. (4.2)

Here, 𝑥1 and 𝑥2 characterize the fraction of the proton momenta carried by the inter-
acting quarks. In general it is necessary to include the parton distribution function2 in
order to calculate the correct cross section in terms of √𝑠𝑝𝑝. However, as a rough esti-
mate, on can use the averaged momentum fractions ⟨𝑥𝑖⟩. For the valence quarks (𝑑 and
𝑢) and sea quarks (the remaining quarks and anti quarks), these are approximately [47]

⟨𝑥𝑉⟩ ≈ 0.12 and ⟨𝑥𝑆⟩ ≈ 0.04. (4.3)

The cross section in a proton-proton collision can then be calculated by summing up all
contributions, that is, of all combinations of quarks in the protons that can lead to the
interaction. In the case of the 𝑡-channel diagram this gives

𝜎 (𝑠) = 𝜎𝑑𝑑 (𝑠) + 𝜎𝑢 𝑢 (𝑠) + 𝜎𝑑𝑢 (𝑠) + 𝜎𝑢𝑑 (𝑠)
= 𝜎𝑑𝑑 (𝑠) + 𝜎𝑢 𝑢 (𝑠) + 2𝜎𝑑𝑢 (𝑠)
≈ 𝜎 (0.122 𝑠𝑝𝑝) + 𝜎 (0.042 𝑠𝑝𝑝) + 2𝜎 (0.12 ⋅ 0.04 𝑠𝑝𝑝) .

(4.4)

For the 𝑠-channel, it reads

𝜎 (𝑠) ≈ 2𝜎 (4.8 × 10−3𝑠𝑝𝑝) . (4.5)

In the following we will continue working with the center of mass energy in the quark-
quark interaction

√
𝑠. However, we stress that the above reduces the signal of interac-

tions involving heavy neutrinos by several orders of magnitude as

𝜎 ∝ 𝑠2 ≈ 10−4𝑠2
𝑝𝑝. (4.6)

The simulationswhich resulted in the approximative expressions for the cross sections
given below, were carried out with the Monte Carlo simulator Mad Graph 5. Technical
details about the implementation of the LRSM and the simulations as well as a short
introduction to this program can be found in Appendix C.Themodel parameters we used
for the simulations were chosen such that they fulfil the constraints given in Subsection

2 The parton distribution function describes how the values of 𝑥 are distributed, i.e. how probable it is
that a quark has momentum 𝑝𝑞 = 𝑥 ⋅ 𝑝.
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2.3.4; they are summarised as follows:
We restrict ourselves to the scenario where the mixing between the gauge bosons (see

Equation (2.77)) is negligible, we thus set the bi-doublet VEVs accordingly:

𝜅1 ≃ 245.9GeV and 𝜅2 ≃ 7.4GeV. (4.7)

This results in vanishing mixing in the gauge boson sector, as can be understood by use
of Equation (2.80).

For the left handed unitary neutrino mixing matrix 𝑈𝐿 from Equation (2.59) we used
the best-fit PMNS-matrix parameters for the normal hierarchy scenario given in Equa-
tion (2.109). The right handed analogue 𝑈𝑅 was randomly chosen in the full parameter
space, i.e.

sin 𝜃𝑅 ∈ {−1, 1} for 𝜃𝑅 ∈ {𝜃𝑅12, 𝜃𝑅13, 𝜃𝑅23} and 𝛿𝑅 ∈ {0, 𝜋}. (4.8)

The complex elements of the matrix 𝑅 which is responsible for heavy-light mixing in the
neutrinos, were drawn within the constraints given by the electroweak precision data
in Equation (2.108).

Finally, different combinations for the heavy neutrino masses 𝑀𝑖, the heavy 𝑊 boson
mass 𝑚𝑅 and the center of mass energy

√
𝑠 have been simulated and evaluated sepa-

rately. Only such combinations of the above mentioned parameters have been accepted
that fulfilled the constraints given by electroweak precision measurements (Equation
(2.108)) and the requirement of small neutrino masses (Equation (2.107)). As the lat-
ter constrains the combination of heavy neutrino masses 𝑀𝑖 and their mixing matrix
elements 𝑆𝑒𝑖 quite strongly, the resulting values of the 𝑅𝑖𝑗 were rather small in most
cases.

However, the conclusion we draw in the following are unaffected hereof as the ef-
fect of the mixing matrix elements can be factored out by analytical considerations (see
Chapter B). In this way it is possible to recover expressions for the cross sections valid
for arbitrary 𝑅.
The values for 𝑚𝑅,

√
𝑠 and 𝑀𝑖 spanned the ranges

0.5 TeV ≲ 𝑚𝑅 ≲ 50 TeV,
1 TeV ≲

√
𝑠 ≲ 20 TeV,

50GeV ≲ 𝑀𝑖 ≲ 4 TeV,
(4.9)

but were mainly taken near 𝑚𝑅 ≈ 4 TeV,
√

𝑠 ≈ 13TeV and around 500GeV ≲ 𝑀𝑖 ≲
2 TeV as this part of the parameter space is most promising due to the small masses; much
larger values of

√
𝑠 are not accessible today. The conclusions we draw in the following

should be considered valid for regions of the parameter space near these reference values
mainly.
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Chapter 4 Analysing the lambda diagram at the Large Hadron Collider

In the following we are interested in investigating how the results of the low energy
0𝜈𝛽𝛽 decay constrain the high energy cross section. Thus we will work with the con-
straint on the parameter 𝜂𝜆 from Equation (3.18), which we recall being

∣
3

∑
𝑖=1

𝑈𝑒𝑖𝑇 ∗
𝑒𝑖 +

3

∑
𝑖=1

𝑆𝑒𝑖𝑉 ∗
𝑒𝑖

𝑀2
𝑎

𝑀2
𝑖

𝑓(𝐴)∣ ≤ 𝑚2
𝑅

𝑚2
𝐿

𝜂0, 𝑀𝑎 ≈ 0.9GeV. (4.10)

In the case of 136Xe, which we used in our analysis, we have

𝑓(𝐴) ≃ 0.068 and 𝜂0 ≤ 2.41 × 10−7. (4.11)

In the generic case where the 𝑆𝑒𝑖𝑉 ∗
𝑒𝑖 are of the same order of magnitude as the 𝑈𝑒𝑖𝑇 ∗

𝑒𝑖
we find 𝑓(𝐴) 𝑀2

𝑎 /𝑀2
𝑖 ≪ 1 and the heavy neutrino contribution in the low energy

case can be neglected.3 More generally, if 𝑈𝑒𝑖𝑇 ∗
𝑒𝑖 ≫ 𝑆𝑒𝑖𝑉 ∗

𝑒𝑖 𝑓(𝐴) 𝑀2
𝑎 /𝑀2

𝑖 , or if the
heavy neutrinos do not contribute at low energy for any other reason, the constraint in
Equation (4.10) affects only the light neutrino couplings ∑ 𝑈𝑒𝑖𝑇 ∗

𝑒𝑖 ≈ −𝑅11 and we can
write

∣
3

∑
𝑖=1

𝑈𝑒𝑖𝑇 ∗
𝑒𝑖∣ ≈ |𝑅11| ≤ 𝑚2

𝑅
𝑚2

𝐿
𝜂0. (4.12)

Similarly, if the light neutrinos do not contribute, e.g. if 𝑅11 ≈ 0, we have

∣
3

∑
𝑖=1

𝑆𝑒𝑖𝑉 ∗
𝑒𝑖

𝑀2
𝑖

∣ ≤ 𝑚2
𝑅

𝑚2
𝐿𝑀2

𝑎

𝜂0
𝑓(𝐴)

. (4.13)

However, this is a very weak constraint as the heavy neutrino mass in the denominator
suppresses the matrix elements by some orders of magnitude, which can be understood
as the 0𝜈𝛽𝛽 decay happens at relatively low energies of 𝒪(100MeV); at this energy, the
heavy neutrino contribution is strongly suppressed and consequently the limit result-
ing from the non-observation of xenon decays does not constrain the heavy neutrino
parameters. Thus, it is fulfilled in almost all cases under consideration.

Furthermore, from Subsection 2.3.4 we know that the various parameters of the model
are constrained by theory as well as by experimental data. Below we will mainly use

3 Note that this is true for the 𝜆 diagram, but not necessarily for mass-dependent mechanisms (see Section
3.1) where the heavy neutrino mass dependency is different.
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three conditions and constraints thereof, namely

3

∑
𝑖=1

𝑈𝑒𝑖𝑇 ∗
𝑒𝑖 = −

3

∑
𝑖=1

𝑆𝑒𝑖𝑉 ∗
𝑒𝑖 ≈ 𝑅11, (4.14)

∣
3

∑
𝑖=1

𝑆∗2
𝑒𝑖 𝑀𝑖∣ ≤ 1 eV ≈ 0 (4.15)

and ∣𝜂𝑖𝑗∣ ≤ ⎛⎜
⎝

2.0 × 10−3 0.6 × 10−4 1.6 × 10−3

0.6 × 10−4 0.8 × 10−3 1.0 × 10−3

1.6 × 10−3 1.0 × 10−3 2.6 × 10−3

⎞⎟
⎠𝑖𝑗

, (4.16)

with the matrix 𝜂 being defined as

𝜂 = −1
2

𝑅𝑅† = −1
2

𝑆𝑆†. (4.17)

Equation (4.14) results from the unitarity of the mixing matrix 𝑊 when neglecting
terms of 𝒪(𝑅3); this approximation will be used frequently without explicitly mention-
ing it in the following. Equation (4.15) has to be fulfilled in order to get small neutrino
masses and is meaningful only when considering all three heavy neutrinos contribut-
ing to the signal, in other cases it can generally be argued that the non-contributing
neutrinos can compensate the terms in the constraint coming from the interacting neu-
trino. Although we will use it only at the end of the chapter, we already give it here to
summarize the important constraints.

Finally, Equation (4.16) is extracted from electroweak precision measurements. In
particular it implies

|𝑅11|2 ≤ 4.0 × 10−3 and |𝑆𝑒𝑖|
2 ≤ 4.0 × 10−3 for 𝑖 = 1, 2, 3. (4.18)

This result, together with Equation (4.12), determines the upper limit for any signal, as
we will see in a moment. Note that we can can also use |𝑆𝑒𝑖𝑉 ∗

𝑒𝑖|2 ≤ 4 × 10−3 as the
matrix 𝑉 is of order one (see Equation (2.59)).

The constraints on 𝑅11 are shown in Figure 4.2a; we also indicate how the allowed
parameter space for |𝑅11| changes if the future limit on the half life of xenon in the
neutrinoless double beta decay is improved by a factor of 2 or 10, respectively.
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(a) Constraints on the mixing matrix ele-
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(b) Upper limit on the 𝑡-channel cross sec-
tion with light neutrino contribution only.

Fig. 4.2 – Constraints for negligible heavy neutrino contribution in the low energy 0𝜈𝛽𝛽
decay. The blue lines indicate current constraints from electroweak precision data (solid line)
and the non-observation of low energy 0𝜈𝛽𝛽 decay of xenon (dashed line); the purple lines
correspond to improved 0𝜈𝛽𝛽 limits, i.e. if the lower limit on the half life doubles (dashed)
or increases by a factor of 10 (dotted). The gray-shaded region is excluded by the limit on
the heavy 𝑊 boson mass of 𝑚 ≳ 4 TeV.

4.1 Limits on the 𝑡-channel cross section 𝜎𝑡
𝜆

For the 𝑡-channel, the cross section can be calculated by the formula derived in Section
B.1 in the appendix:

𝜎𝑡
𝜆 = 𝑠 𝑎(𝑠)

𝑚4
𝑅

3

∑
𝑖,𝑗=0

ℳ𝑖 ℳ∗
𝑗 𝜎𝑡

0(𝑦𝑖, 𝑦𝑗). (4.19)

Here,
√

𝑠 is the center of mass energy, 𝑎(𝑠) an 𝒪(1)-function given in Equation (B.14)
and the matrix elements and masses have been renamed to shorten the notation as

ℳ𝑖 = { ∑3
𝑗=1 𝑈𝑒𝑗𝑇 ∗

𝑒𝑗 ≈ −𝑅11, 𝑖 = 0,
𝑆𝑒𝑖𝑉 ∗

𝑒𝑖, 𝑖 = 1, 3, 4,

𝑦𝑖 = { 0, 𝑖 = 0
𝑀2

𝑖 /𝑠, 𝑖 = 1, 3, 4.

(4.20)

The function 𝜎𝑡
0(𝑦𝑖, 𝑦𝑗) is shown in Figure B.3. It is symmetric in its two arguments and

decreases monotonically in both of them. For 𝑦𝑖 ≈ 0 ≈ 𝑦𝑗 it takes its maximum of
roughly 1010 pb, which corresponds to the exchange of light neutrinos. For large values
of 𝑦𝑖, the cross section is suppressed by the heavy neutrino mass as expected: 𝜎𝑡

0 ∝ 𝑀−2
𝑖

in this limit, and 𝜎𝑡
0 ∝ 𝑀−2

𝑖 𝑀−2
𝑗 for both 𝑦𝑖 and 𝑦𝑗 large.

We now want to estimate the maximal possible cross section in the case of different
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4.1 Limits on the 𝑡-channel cross section 𝜎𝑡
𝜆

neutrino contributions in the propagator of the 𝜆 diagram. As a concrete example, we
work with

𝑚𝑅 = 4 TeV and
√

𝑠 = 13 TeV.
(4.21)

For other values, the corresponding calculations can be done by use of Equation (4.19).

Only light neutrinos involved First, consider a scenario where only the light neutri-
nos 𝜈 contribute to the high energy cross section 𝜎𝑡

𝜆. This can be the case if the masses of
the heavy neutrinos are much larger than the accessible energy

√
𝑠, if the mixing matrix

elements 𝑆𝑒𝑖𝑉 ∗
𝑒𝑖 are very small, or if the heavy neutrino contribution vanishes due to in-

terference between the three 𝑁𝑖. In this case, the constraints from electroweak precision
data (4.18) and the neutrinoless double beta decay (4.12) can be directly translated into
an upper limit for the 𝑡-channel cross section 𝜎𝑡

𝜆 which turns out to be of 𝒪(10−11 pb) in
the most optimistic case. The limit is shown in Figure 4.2b.

Only one heavy neutrino involved If instead one single heavy neutrino 𝑁𝑖 medi-
ates the interaction, but no light neutrinos 𝜈 are involved, nor other heavy neutrinos
𝑁𝑗 (𝑗 ≠ 𝑖), this means that either some interference cancels the contributions from the
light and remaining heavy neutrinos, or 𝑅11 ≪ 𝑆𝑒𝑖𝑉 ∗

𝑒𝑖/𝑀2
𝑖 as well as 𝑆𝑒𝑗𝑉 ∗

𝑒𝑗/𝑀2
𝑗 ≪

𝑆𝑒𝑖𝑉 ∗
𝑒𝑖/𝑀2

𝑖 (e.g. the 𝑁𝑗 decouple due to their heavy mass). In either case, the cross
section is determined by the properties of 𝑁𝑖, roughly speaking:

𝜎𝑡
𝜆 ∝ |𝑆𝑒𝑖𝑉 ∗

𝑒𝑖|
2

𝑀4
𝑖

. (4.22)

The relevant constraint in this case is given by the electroweak precision data in Equation
(4.13). As discussed above, the constraint coming from the 0𝜈𝛽𝛽 decay turns out to be
much weaker here and would apply only for 𝑚4

𝑅𝑀4
𝑖 ≲ 4 × 10−3𝑚4

𝐿𝑀4
𝑎 𝑓(𝐴)2, which is

already ruled out by the lower limits on the heavy neutrino and𝑊 −
𝑅 masses (see Equation

(2.103)). We find that the signal can be of 𝒪(10−7 pb) in the most promising case, which
might be surprising as heavy neutrino contributions should be suppressed compared to
light one. However, this is just the result of the light neutrinos being stronger constraint
from low energy experiments.

Figure 4.3 shows the resulting limit on 𝜎𝑡
𝜆, both as a function of the right handed gauge

boson mass 𝑚𝑅 for different heavy neutrino masses 𝑚𝑁 and vice versa.

Oneheavy and light neutrinos involved Having understood the rather simple cases
of only light neutrinos or one single heavy neutrino contributing to the cross section, we
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(a)Upper limits as a function of the heavy
𝑊 boson mass for different heavy neu-
trino masses. The gray shaded region is
excluded by 𝑚𝑅 ≥ 4 TeV; the colored
shaded regions are excluded for the dif-
ferent neutrino masses, respectively.
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(b) The cross section limits as a function of
the heavy neutrino mass 𝑚𝑁 for different
𝑊 −

𝑅 masses. Values above the curves are
excluded for the different 𝑚𝑅 cases, respec-
tively.

Fig. 4.3 – Upper limits on the 𝑡-channel cross section 𝜎𝑡
𝜆 of the 𝜆 diagram in the case of

single heavy neutrino dominance.

can now investigate the scenario in which both light neutrinos 𝜈 and one single heavy
neutrino 𝑁𝑖 mediate the interaction simultaneously. For this, 𝑅11 must be of the same
order of magnitude as 𝑆𝑒𝑖𝑉 ∗

𝑒𝑖/𝑀2
𝑖 , and 𝑆𝑒𝑗𝑉 ∗

𝑒𝑗/𝑀2
𝑗 (which determines the contribution

of the remaining heavy neutrinos 𝑁𝑗, 𝑗 ≠ 𝑖) has to be small compared to the former. In
this situation, interference between the light neutrinos and 𝑁𝑖 becomes important and
it is interesting to consider the extreme case of maximal positive interference. Using
Equation (4.19) we can write4

𝜎𝑡
𝜆 ≈ 𝑠 𝑎(𝑠)

𝑚4
𝑅

(|𝑅11|2 𝜎𝑡
0(0, 0) − 2 ℛ𝑒(𝑅∗

11𝑆𝑒𝑖𝑉 ∗
𝑒𝑖) 𝜎𝑡

0 (0, 𝑀𝑖√
𝑠

) +

+ |𝑆𝑒𝑖𝑉 ∗
𝑒𝑖|

2 𝜎𝑡
0 (𝑀𝑖√

𝑠
, 𝑀𝑖√

𝑠
)) ,

(4.23)

and find the maximal positive signal by requiring ℛ𝑒(𝑅∗
11𝑆𝑒𝑖𝑉 ∗

𝑒𝑖) ≈ −|𝑅11| |𝑆𝑒𝑖𝑉𝑒𝑖|.
In Figure 4.4 we plot the resulting limit on the cross section as a function of 𝑚𝑅 for

this rather optimistic case. For comparison we also included the results from above.
The plot shows that for low 𝑊 −

𝑅 masses, the heavy neutrino contribution dominates.
The reason for this is again that the constraint from neutrinoless double beta decay does
not apply for the heavy neutrinos. For large boson masses, the situation changes and
both contributions, those of the light neutrinos and the heavy neutrino, become equally
important. In this regime, the constraint from electroweak precision measurements is
the more restricting one. As it equally applies for 𝑅11 and 𝑆𝑒𝑖, the resulting limit in the
4 Note that the minus sign in the interference term is due to ∑ 𝑈𝑒𝑖𝑇 ∗

𝑒𝑖 = −𝑅11.
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Fig. 4.4 – Upper limit on the 𝑡-channel cross section in the case of light neutrinos maximally
positive interfering with one heavy neutrino. The limit is shown as function of the heavy
gauge boson mass 𝑚𝑅 for different heavy neutrino masses 𝑚𝑁. Dashed lines result from
0𝜈𝛽𝛽 decay constraints, solid lines from the electroweak precision data. For comparison,
upper limits in the case of light neutrinos (dash-dotted) and one single heavy neutrino only
(dashed), are shown in black. The shaded regions above the curves are ruled out for the
respective neutrino mass. The gray shaded region is excluded due to constraints on the 𝑊 −

𝑅
mass.

case of positive interference is proportional to the limit in the case of light neutrinos
only (Fig. 4.2b). The proportionality factor is determined by the dependency of 𝜎𝑡

0 in
Equation (4.19) on the mass of the heavy neutrino 𝑚𝑁 and can range from 1 for very
large 𝑚𝑁 (decoupling limit) to 4 (vanishing neutrino mass).

Above we found that the light neutrino contribution is severely restricted due to the
0𝜈𝛽𝛽 decay constraint in Equation (4.10). The allowed parameter space of the cross
section would reach up to 𝒪(10−7 pb) if it would be possible to avoid this constraint
and Equation (4.18) would apply only. Therefore, one could argue that by means of
interference the term ∑ 𝑈𝑒𝑖𝑇 ∗

𝑒𝑖 + ∑ 𝑆𝑒𝑖𝑉 ∗
𝑒𝑖 𝑓(𝐴) 𝑀2

𝑎 /𝑀2
𝑖 vanishes without ∑ 𝑈𝑒𝑖𝑇 ∗

𝑒𝑖
actually being small. Consequently, this would imply

3

∑
𝑖=1

𝑈𝑒𝑖𝑇 ∗
𝑒𝑖 ≈ −

3

∑
𝑖=1

𝑆𝑒𝑖𝑉 ∗
𝑒𝑖 𝑓(𝐴) 𝑀2

𝑎
𝑀2

𝑖
≲ −4 × 10−3𝑓(𝐴)

3

∑
𝑖=1

𝑀2
𝑎

𝑀2
𝑖

(4.24)

by use of the electroweak precision constraint 𝑆𝑒𝑖𝑉 ∗
𝑒𝑖 ≲ 4 × 10−3. Thus, the constraint

on 𝑅11 becomes even more restrictive. On the other hand, we have seen that for heavy
neutrinos the parameter space for a signal of that size is not yet ruled out. Therefore,
the scenario of a rather light heavy neutrino with a mass of a few hundred GeV is the
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most promising scenario for the 𝑡-channel at the moment.

More than one heavy neutrino involved In the case of more than one heavy neu-
trino significantly contributing to the cross section precise calculations become diffi-
cult. However, it turns out that the upper limit on the cross section does not signifi-
cantly change. To understand this, we consider the case of two heavy neutrinos. For
both contributions to be significant, their masses must be of the same order of magni-
tude. Else, the lighter neutrino could be neglected.5 In this case, similarly to the case
of light neutrinos in combination with one heavy neutrino, the maximal possible cross
section increases by an 𝒪(1) factor at most. Furthermore, Equation (4.16) constraints
the sum of both mixing matrix elements. Thus, we rather find |𝑆𝑒𝑖𝑉 ∗

𝑒𝑖|2 ≤ 2 × 10−3 than
|𝑆𝑒𝑖𝑉 ∗

𝑒𝑖|2 ≤ 4 × 10−3 for each contributing heavy neutrino in the most promising case,
which reduces the maximal possible signal by a factor of two.

Similar considerations are true for the case of three heavy neutrinos and also when
including the light neutrinos. In the case of all six neutrinos contributing — three light
and three heavy — further constraints should be imposed, such as Equation (4.14) and
Equation (4.15). This usually restricts the possible signal strength even more.

4.2 Estimates on the 𝑠-channel cross section 𝜎𝑠𝑅𝐿
𝜆

mediated by light neutrinos

In the following, we comment very briefly on the 𝑠-channel diagram shown in Figure
4.1. In this channel the incoming quarks have RH helicities and produce the heavy 𝑊𝑅
boson. If the energy is sufficient (𝑠 ≳ 𝑚2

𝑅) the boson can be produced at resonancewhich
enhances the cross section. In Equation (B.27) in the appendix we give an approximation
for the cross section 𝜎𝑠𝑅𝐿

𝜆 :

𝜎𝑠𝑅𝐿
𝜆 = 𝑎(𝑠)

√
𝑠3 GeV−1

(𝑠 − 𝑚2
𝑅)2 + Γ2

𝑅𝑚2
𝑅

∫
∞

0
𝑓𝑠𝑅𝐿

𝜆 (𝑞2

𝑠
) ×

×
∣
∣∣
∣

3

∑
𝑖=1
light

𝑈𝑒𝑖𝑇 ∗
𝑒𝑖 +

3

∑
𝑖=1
heavy

𝑆𝑒𝑖𝑉 ∗
𝑒𝑖

𝑞2

𝑞2 − 𝑀2
𝑖 + 𝑖 Γ𝑖𝑀𝑖

∣
∣∣
∣

2

d𝑞2

𝑠
,

(4.25)

5 Note that it is of course possible to have equally contributing heavy neutrinos with different masses,
i.e. if the mixing matrices are compensate the difference: 𝑆𝑒𝑖𝑉 ∗

𝑒𝑖
𝑀2

𝑖
≈ 𝑆𝑒𝑗𝑉 ∗

𝑒𝑗
𝑀2

𝑗
. However, the result of the

following argumentation would stay the same.
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4.2 Estimates on the 𝑠-channel cross section 𝜎𝑠𝑅𝐿
𝜆 mediated by light neutrinos
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Fig. 4.5 – Limits on the 𝑠-channel cross section including light neutrinos only. Colored
dashed lines correspond to the limits from 0𝜈𝛽𝛽 decay, the solid line is obtained by applying
the limit obtained by electroweak precision data. In black we give projective future limits
for an improvement of the half life of xenon by a factor of 2 (dotted) and 10 (dashed-dotted).
The gray shaded region is excluded by the limit on the 𝑊𝑅 mass.

with the functions 𝑎 and 𝑓𝑠𝑅𝐿
𝜆 being obtained from simulations:

𝑎(𝑠) = 1.08 − 0.88 𝑠
13 TeV2 ,

𝑓𝑠𝑅𝐿
𝜆 (𝑥) = 𝑎0

e
−𝑏0

𝑥

(𝑥 + 𝑐0)4 , with 𝑥 = 𝑞2/𝑠 and

𝑎0 = 0.0136GeV2 pb, 𝑏0 = 2.7 × 10−3, 𝑐0 = 0.133.

(4.26)

Restricting ourselves to light neutrinos in the propagator, yields roughly

𝜎𝑠𝑅𝐿
𝜆 = 𝑎(𝑠)

√
𝑠3 GeV−1 |𝑅11|2

(𝑠 − 𝑚2
𝑅)2 + Γ2

𝑅𝑚2
𝑅

∫
∞

0
𝑓𝑠𝑅𝐿

𝜆 (𝑞2

𝑠
) d𝑞2

𝑠

≈ 1.62 |𝑅11|2 𝑎(𝑠)
√

𝑠3 GeV−1

(𝑠 − 𝑚2
𝑅)2 + Γ2

𝑅𝑚2
𝑅

,
(4.27)

In order to obtain an upper limit on the signal, we apply the limits given in Equations
(4.12) and (4.18) again. The result is shown in Figure 4.5. It shows that the limit from
electroweak precision data is more restrictive than the 0𝜈𝛽𝛽 limit. Furthermore, the
cross section could reach 𝒪(10 pb) in the most promising scenario. However, this is
mainly due to the resonance of the 𝑊𝑅 boson and depends very much on its mass.

In the appendix we also derive formulae for the case where heavy neutrinos take part
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Chapter 4 Analysing the lambda diagram at the Large Hadron Collider

in the interaction (Equation (B.32) and (B.35)). The heavy neutrino contribution is sup-
pressed by its mass, if it is not resonantly produced. However, if they are produced at
resonance (𝑞2 ≈ 𝑀2

𝑖 ), our calculations suggest that the cross section is enhanced and
interference terms between different heavy neutrinos can be neglected (if their masses
are not very similar). The analysis carried out in Section B.2 suggests that including
all neutrinos of the Left Right symmetric model (i.e. three light neutrinos and three
heavy neutrinos) is approximately equivalent to the case where only heavy neutrinos
contribute if it is possible to produce the heavy neutrinos resonantly. This means that
the contribution from the heavy states dominates over the light states. However, this
outcome is not fully understood and needs further investigation. Therefore, we decided
to not discuss the heavy neutrino contributions further; for concrete and reliable state-
ments more data would be needed.

We also mention that another 𝑠-channel diagram contributes to the full 𝜆 cross sec-
tion; it is obtained by interchanging all chiralities in Figure 4.1; i.e. the incoming quarks
couple to 𝑊𝐿. For this case and with 𝑚𝑅 = 4 TeV and

√
𝑠 = 13 TeVwe found cross sec-

tions of 𝒪(10−6 pb)× |𝑅11|2 if only including light neutrinos and 𝒪(10−5 pb)× |𝑆𝑒𝑖𝑉 ∗
𝑒𝑖|2

if a heavy neutrino of mass 𝑀𝑖 ≈ 1 TeV mediates the interaction.

4.3 Summary and conclusions

In this thesis we analysed the possible cross sections of the 𝜆 diagram at energies around√
𝑠 ≈ 13 TeV. We focused on the quark-quark interaction without parton distribution

function. It was found that for the 𝑡-channel the cross section cannot be larger than
𝒪(10−11 pb) if only light neutrinos interact and 𝒪(10−7 pb) if heavy neutrinos are con-
tributing significantly. For the 𝑠-channel the light neutrino contribution was limited to
𝜎 ≤ 𝒪(10 pb), which was found for the case of a resonantly produced 𝑊𝑅 boson.

In general the light neutrino contribution dominates over the heavy neutrino one.
However, we found that the limit from neutrinoless double beta decay only restricts the
light neutrinos. Therefore their parameter space is stronger restricted than for heavy
neutrinos; in fact, the 0𝜈𝛽𝛽 limit from the non-observation of xenon decays is only
significant in the case of light neutrinos in the 𝑡-channel.

The simple approximations we carried out in this work gave an overview over the
possible channels and signals. The expected maximal order of magnitude of the cross
section was derived; however, for more details and a better understanding how cancella-
tions caused by interference could be important, further analysis is needed for the high
energy sector as well at low energies.

Similar studies have been performed by various authors to show that interactions
including heavy neutrinos leading to diboson signals can be detected at the LHC if the
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4.3 Summary and conclusions

cross section is of order 𝒪(fb) [45, 48]. Therefore, we conclude that the above discussed
channels cannot be detected at present experiments.

Furthermore we emphasise that the parton distribution has to be taken into account
in order to get experimentally meaningful cross sections. However, this will reduce the
cross sections above by at least a factor of 10−4, which makes the observation of the
signal impossible in the discussed scenarios.
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Appendix A
Relevant particle decay widths

In this chapter we give analytical formulae for the relevant particle decay widths we
used in our numerical analysis. In the case of the heavy 𝑊 boson the expressions have
been taken from [49]. In the calculation, fermion masses have been neglected, except
for the top-mass 𝑚𝑡 and the heavy neutrino masses 𝑁𝑖.

Γ (𝑊 −
𝑅 → 𝜈𝑖ℓ−

𝛼) = 𝑔2
𝑅

48𝜋
|𝑇𝛼𝑖|

2 𝑚𝑅, (A.1)

Γ (𝑊 −
𝑅 → 𝑁𝑖ℓ−

𝛼) = 𝑔2
𝑅

48𝜋
|𝑉𝛼𝑖|

2 𝑚𝑅 (1 + 𝑀2
𝑖

2 𝑚2
𝑅

) (1 − 𝑀2
𝑖

𝑚2
𝑅

)
2

, (A.2)

Γ (𝑊 −
𝑅 → 𝑢𝑑) = Γ (𝑊 −

𝑅 → 𝑐𝑠) = 𝑔2
𝑅

16𝜋
𝑚𝑅, (A.3)

Γ (𝑊 −
𝑅 → 𝑡𝑏) = 𝑔2

𝑅
16𝜋

𝑚𝑅 (1 + 𝑚2
𝑡

2 𝑚2
𝑅

) (1 − 𝑚2
𝑡

𝑚2
𝑅

)
2

, (A.4)

Here, 𝑇ℓ𝑖 and 𝑉ℓ𝑖 are the mixing matrix elements of the charged leptons ℓ ∈ {𝑒, 𝜇, 𝜏}
with the LH and RH currents respectively (see Equation (2.59)). Note that we did not
list the decay channel Γ(𝑊 −

𝑅 → 𝑊 −
𝐿 𝑍𝐿) here, neither Γ(𝑊 −

𝑅 → 𝑊 −
𝐿 𝐻) as they are

negligible due to vanishing mixing in the scenario under consideration. However, in
the simulations we included them for completeness. Figure ⁇ shows the remaining
contributions to Γ𝑊𝑅

with normalised mixings 𝑈 = 1.
The decay widths for the heavy neutrinos can be found in [50] and [45]; they read

Γ (𝑁𝑖 → ℓ±
𝛼𝑊𝐿) = 𝑔2

𝐿
64𝜋

|𝑆𝛼𝑖|
2 𝑀3

𝑖
𝑚2

𝐿
(1 − 𝑚2

𝐿
𝑀2

𝑖
)

2

(1 + 2𝑚2
𝐿

𝑀2
𝑖

) , (A.5)

Γ (𝑁𝑖 → 𝜈𝑗𝑍𝐿) = 𝑔2
𝐿

128𝜋
∣(𝑆†𝑈)

𝑖𝑗
∣
2 𝑀3

𝑖
𝑚2

𝑍𝐿
cos2𝜃𝑊

× (1 −
𝑚2

𝑍𝐿

𝑀2
𝑖

)
2

(1 + 2
𝑚2

𝑍𝐿

𝑀2
𝑖

) ,
(A.6)

Γ (𝑁𝑖 → 𝜈𝑗𝐻) = 𝑔2
𝐿

128𝜋
∣(𝑆†𝑈)

𝑖𝑗
∣
2 𝑀3

𝑖
𝑚2

𝐿
(1 − 𝑚2

𝐻
𝑀2

𝑖
)

2

. (A.7)
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(a) Most relevant partial decay widths of
𝑊𝑅; for illustration𝑚𝑁 = 2 TeVwas used.
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(b) Most relevant partial decay widths of
𝑁. Note that both decays, to ℓ±

𝛼𝑊𝐿 and
to 𝜈𝑗𝑍𝐿 give roughly equal contributions
up to the mixing matrix elements.

Fig. A.1 – Different partial decay widths of 𝑊𝑅 and 𝑁; the respective mixing matrix ele-
ments 𝑈 have been normed to 1 for comparison.

Note that the coupling to the 𝑍 boson mass eigenstates in general is rather involved.
We used the expression for the vanishing-mixing limit here; the full expression can be
found in [29]. Again we did only give the relevant contributions here; the three-body
decays Γ(𝑁𝑖 → ℓ±

𝛼𝑊 ∗
𝑅 → ℓ±𝑗𝑗) and Γ(𝑁𝑖 → 𝜈𝑗𝑍∗

𝑅 → 𝜈𝑗𝑗𝑗) have been omitted as they
are much small than the remaining in our case.
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Appendix B
Analytical approximations for the 𝜆 diagram
cross sections

In this sectionwe derive formulae to calculate the cross section of the high-energy equiv-
alent to the neutrinoless double beta decay 𝜆-diagram. The result will not be a simple
analytical function. Thus we make use of Monte Carlo simulations to solve the remain-
ing multi-dimensional integrals and to find a simple approximation for the cross section.
More concrete, we derive an expression for the differential cross section d𝜎/d𝑞2 in terms
of the center of mass energy

√
𝑠, the square of the four-momentummediated by the neu-

trino 𝑞2 and the masses and couplings of the participating particles.

To arrive at the desired function, we first analyse the dimensional dependencies and
then rewrite the cross section in a convenient way. This procedure is first done for the
𝑡-channel diagram and afterwards repeated for the 𝑠-channel with the heavy 𝑊 boson
coupling to the initial particles; as we are working in the ultra-relativistic limit, the three
contributions can be regarded as interference-free. The expressions we are deriving here
are valid for the hard quark-quark interaction only, i.e. to obtain experimentally sensi-
ble values they have to be folded with the parton distribution function. Alternatively,
one can approximate the valence-quark contribution by scaling down the proton-proton
collision energy √𝑠𝑝𝑝 to the average energy carried by the valence quarks as [47]. We
adopt the latter approach after deriving the quark-quark cross sections.

Wework in the LR-symmetricmodel withoutmixing, i.e. we assume that the𝑊-boson
mixing angle 𝜉 in Equation (2.77) vanishes:

𝜉 ≈ 0 (B.1)

Then we can use the following notation without ambiguity:

𝑊1 ≃ 𝑊𝐿, 𝑊2 ≃ 𝑊𝑅,
𝑚𝑊1

≃ 𝑚𝐿, 𝑚𝑊2
≃ 𝑚𝑅,

𝑔 ≡ 𝑔𝐿 = 𝑔𝑅.
(B.2)

In the process we are interested in, the neutrino couples to one LH and one RH elec-
tron. In the model under consideration the couplings of the neutrino mass eigenstates
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Appendix B Analytical approximations for the 𝜆 diagram cross sections

in the virtual propagator are proportional to 𝑈𝑒𝑖𝑇 ∗
𝑒𝑖 and 𝑆𝑒𝑖𝑉 ∗

𝑒𝑖, respectively. However,
the conclusions we are drawing are valid for other models with different couplings as
well, as long as the currents are of the same form, i.e. 𝑉 ∓ 𝐴.

B.1 𝑡-channel cross section

The interesting physics is encapsulated in the transition matrix element 𝒜 of the t-
channel 𝜆-diagram, which can be obtained from the Lagrangian in Equation (2.96). The
corresponding Feynman diagram is depicted in Figure B.1.

𝑞𝐿1 𝑞𝐿2𝑘𝐿 𝑊𝐿

𝑝𝐿𝑞 𝑛

𝑝𝑅

𝑞𝑅1

𝑘𝑅 𝑊𝑅

𝑞𝑅2

𝑑𝐿 𝑢𝐿

𝑒𝐿

𝑒𝑅

𝑑𝑅 𝑢𝑅

Fig. B.1 – Feynman diagram for the 𝑡-channel 𝜆-diagram.

The expression for the amplitude reads

𝑖𝒜 = −𝑔2
𝐿

2
𝑢𝐿𝛾𝜇′𝑃𝐿𝑑𝐿 (𝜂𝜇′𝜇 −

𝑘𝐿𝜇′𝑘𝐿𝜇

𝑚2
𝐿

) −𝑖
𝑘2

𝐿 − 𝑚2
𝐿

× −𝑔2
𝑅

2
𝑢𝑅𝛾𝜈′𝑃𝑅𝑑𝑅 (𝜂𝜈′𝜈 − 𝑘𝑅𝜈′𝑘𝑅𝜈

𝑚2
𝑅

) −𝑖
𝑘2

𝑅 − 𝑚2
𝑅

× 𝑒𝐿𝛾𝜇 𝑃𝐿
⎛⎜⎜
⎝

3

∑
𝑖=1
light

𝑈𝑒𝑖
𝑖 (/𝑞 + 𝑚𝑖)
𝑞2 − 𝑚2

𝑖
𝑇 ∗

𝑒𝑖 +
3

∑
𝑖=1
heavy

𝑆𝑒𝑖
𝑖 (/𝑞 + 𝑀𝑖)
𝑞2 − 𝑀2

𝑖
𝑉 ∗

𝑒𝑖
⎞⎟⎟
⎠

𝑃𝑅 𝛾𝜈𝑒𝑐
𝑅.

(B.3)

Here, 𝑢𝐿/𝑅, 𝑑𝐿/𝑅 and 𝑒𝐿/𝑅 are the fermion spinors of to the initial and final states, 𝑞𝜇

is the four-momentum of the exchanged neutrino and 𝑘𝜇
𝐿 and 𝑘𝜇

𝑅 are the four-momenta
of the exchanged gauge-bosons. 𝑚𝑖 and 𝑀𝑖 are the light and heavy neutrino masses,
respectively, and 𝑃𝐿/𝑅 denote the chirality projection operators from Equation (2.31).

Note that the second electron is charged conjugate due to the Majorana nature of the
neutrino [51] and 𝑞2, 𝑘2

𝐿 and 𝑘2
𝑅 are strictly negative because the interaction happens in
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B.1 𝑡-channel cross section

the 𝑡-channel. Thus we do not produce any particle at resonance and need not to include
the decay widths into the propagators.

As the light neutrino masses are very small, one can approximate their propagator via

𝑞 + 𝑚𝑖
𝑞2 − 𝑚2

𝑖
≈ 𝑞 + 𝑚𝑖

𝑞2 . (B.4)

The structure of the 𝜆-diagram now simplifies the expression significantly due to the
equality

𝑃𝐿 (/𝑞 + 𝑚) 𝑃𝑅 = /𝑞 𝑃𝑅, (B.5)

where we used the identities in Equation (2.31).

Because of this, we observe that the light neutrino masses do not enter the matrix
element, whereas the heavy neutrino masses appear in the denominator of the propaga-
tor only. After factoring out 𝑖/𝑞/𝑞2 from the last part of Equation (B.3), we thus find the
simple proportionality

𝒜 ∝ ⎛⎜⎜
⎝

3

∑
𝑖=1
light

𝑈𝑒𝑖𝑇 ∗
𝑒𝑖 +

3

∑
𝑖=1
heavy

𝑆𝑒𝑖𝑉 ∗
𝑒𝑖

𝑞2

𝑞2 − 𝑀2
𝑖

⎞⎟⎟
⎠

. (B.6)

Although we will not use it here, we point out that in the Left Right symmetric model
∑ 𝑈𝑒𝑖𝑇 ∗

𝑒𝑖 = − ∑ 𝑆𝑒𝑖𝑉 ∗
𝑒𝑖 (see Equation (2.61)). Thus, we can also rewrite the amplitude

as

𝒜 ∝
3

∑
𝑖=1
heavy

𝑆𝑒𝑖𝑉 ∗
𝑒𝑖

𝑀2
𝑖

𝑞2 − 𝑀2
𝑖

. (B.7)

The elements of the mixing matrices 𝑈, 𝑆, 𝑇 and 𝑉, as well as the heavy masses 𝑀𝑖
appear only in this part of the matrix element. As we are mainly interested in these
parameters, expression (B.6) is used various times in the analysis in Chapter 4.

From the above and Equation (B.3), we can express the amplitude as

𝒜 = 1
𝑚2

𝑅
× ⎛⎜⎜

⎝

3

∑
𝑖=1
light

𝑈𝑒𝑖𝑇 ∗
𝑒𝑖 +

3

∑
𝑖=1
heavy

𝑆𝑒𝑖𝑉 ∗
𝑒𝑖

𝑞2

𝑞2 − 𝑀2
𝑖

⎞⎟⎟
⎠

× 𝒜0 (𝑞2

𝑠
, 𝑚2

𝐿
𝑠

, 𝑚2
𝑅

𝑠
) .

(B.8)

Here,
√

𝑠 = |𝑞𝜇
𝐿1 + 𝑞𝜇

𝑅1| is the center of mass energy and 𝒜0 a dimensionless function
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depending on the quantities 𝑚2
𝐿/𝑠, 𝑚2

𝑅/𝑠 and 𝑞2/𝑠.1 Of course there are also dependen-
cies on the remaining momenta (i.e. of the outgoing quarks and electrons). However,
we are interested in the total, spin averaged cross section and therefore will integrate
out the momenta in the next step.
The formula for the cross section with the momenta labelled according to Figure B.1
reads

d𝜎 =
⟨|𝒜|2⟩

2𝑞0
𝐿1 2𝑞0

𝑅1

1
(2𝜋)12 Δ𝑣

d3 ⃗𝑞𝐿2
2𝑞0

𝐿2

d3 ⃗𝑞𝑅2
2𝑞0

𝑅2

d3 ⃗𝑝𝐿
2𝑝0

𝐿

d3 ⃗𝑝𝑅
2𝑝0

𝑅

× (2𝜋)4𝛿4(𝑞𝐿1 + 𝑞𝑅1 − 𝑞𝐿2 − 𝑞𝑅2 − 𝑝𝐿 − 𝑝𝑅) .
(B.9)

In the center of mass frame in the relativistic limit, we have 2𝑞0
𝐿 =

√
𝑠 = 2𝑞0

𝑅 and the
Galilean velocity difference Δ𝑣 = 𝑣𝑑𝐿

− 𝑣𝑑𝑅
≈ 2 (in natural units 𝑐 ≡ 1).2 The Lorentz

invariant phase space factors d3 ⃗𝑝𝑖/2𝑞0
𝑖 are proportional to 𝑠 each and the Dirac delta

function can be rescaled to obtain its dimensionality as

𝛿4(∑
𝑖

𝑝𝜇
𝑖 ) = 𝛿4(

√
𝑠 ∑

𝑖

𝑝𝜇
𝑖√
𝑠

) = 1
𝑠2 𝛿4(∑

𝑖

𝑝𝜇
𝑖√
𝑠

) . (B.10)

As we are interested in the cross section in terms of its proportionality to the propa-
gator term in Equation (B.6), we need to change the integration variables such that the
integral is performed over 𝑞2. This transformation is taken into account by the Jacobian
matrix 𝐽 𝑞2 ≃ 𝜕𝑝𝑛𝑒𝑤

𝑖 /𝜕𝑝𝑜𝑙𝑑
𝑖 .

Explicitly calculating this is rather involved andwill not result in an useful expression.
Thus, we simply put together our dimensional considerations from above and conclude
that we can write

d𝜎 = 𝑠
𝑚4

𝑅

∣
∣∣
∣

3

∑
𝑖=1
light

𝑈𝑒𝑖𝑇 ∗
𝑒𝑖 +

3

∑
𝑖=1
heavy

𝑆𝑒𝑖𝑉 ∗
𝑒𝑖

𝑞2

𝑞2 − 𝑀2
𝑖

∣
∣∣
∣

2

𝐺(𝑞2

𝑠
, 𝑚2

𝐿
𝑠

, 𝑚2
𝑅

𝑠
) d𝑞2

𝑠
. (B.11)

Note that we already performed the integrals over the various momenta. The dimen-
sionless function 𝐺(𝑞2/𝑠, 𝑚2

𝐿/𝑠, 𝑚2
𝑅/𝑠) is roughly given by

𝐺 ≃ 𝐶
11

∏
𝑖=1

(∫
∞

−∞
d𝑝𝑖) det (𝐽 𝑞2) 𝛿4(∑ 𝑝𝜇

𝑖 )
⟨|𝒜0|2⟩

𝑝4
𝑖

, (B.12)

1 This can be found by reorganizing the terms in Equation (B.3) and considering their dimensionalities:
𝑚2

𝑖 ∼ 𝑠, 𝑞2 ∼ 𝑠 and 𝜓 ∼ 𝑠 1
4 with 𝜓 representing the spinors 𝑢𝐿/𝑅, 𝑑𝐿/𝑅 and 𝑒𝐿/𝑅.

2 The formula in Equation (B.9) was taken from [52]. They explicitly state that Δ𝑣 is not a Lorentz
invariant quantity and thus is not calculated respecting special relativity.
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B.1 𝑡-channel cross section

with 𝑝𝑖 being some not further specified rescaled (i.e. divided by
√

𝑠) momenta resulting
from the coordinate transformation discussed above and 𝐶 a numerical constant.

Now it would be interesting to understand the exact dependencies of 𝐺 on its vari-
ables. As was mentioned before, it is not an easy task to determine it analytically.
Therefore we chose another approach: The Monte Carlo simulations carried out by
Mad Graph 5 (see Chapter C) are used to calculate both, the cross section 𝜎 and the
𝑞2 spectrum of the interaction with the latter being precisely given by d𝜎/d𝑞2.

Exploiting this, we find that in the region of interest, i.e. for 𝑚2
𝑅 ≳ 16 TeV and

√
𝑠 ≃

𝒪(13 TeV), the function 𝐺 can be approximated as

𝐺(𝑞2

𝑠
, 𝑚2

𝐿
𝑠

, 𝑚2
𝑅

𝑠
) ≃ 𝑎(𝑠)

𝑠
𝑓 𝑡

𝜆 (𝑞2

𝑠
) . (B.13)

Thus, the dependency on the boson masses is very weak and can be neglected.

Fitting numerical data, we constructed the approximation

𝑎(𝑠) = 0.16GeV2 log(1 + 1.3 × 10−8 ( 𝑠
TeV2 )

2
) ,

𝑓 𝑡
𝜆(𝑥) = 𝑎0

e
𝑏0
𝑥

(𝑥 − 𝑐0)4 ,
(B.14)

with 𝑥 = 𝑞2/𝑠 and

𝑎0 = 1.785 × 109 GeV2 pb, 𝑏0 = 2.357 × 10−4, 𝑐0 = 0.372. (B.15)

To illustrate this result, a comparison between the approximation and the numerical
values obtained from simulation is given in Figure B.2 for different values of

√
𝑠.

With this approximation given, we can even perform the integral over 𝑞2 to obtain
an expression for the full cross section 𝜎. For deductive reasons we insert the term
𝑞2/(𝑞2 −𝑚2) into the light neutrino propagator in Equation (B.11) with the replacement
𝑚 → 0 taken later again. This yields

d𝜎 = 𝑠 𝑎(𝑠)
𝑚4

𝑅

∣
∣∣
∣

3

∑
𝑖=1
light

𝑈𝑒𝑖𝑇 ∗
𝑒𝑖

𝑞2

𝑞2 − 𝑚2 +
3

∑
𝑖=1
heavy

𝑆𝑒𝑖𝑉 ∗
𝑒𝑖

𝑞2

𝑞2 − 𝑀2
𝑖

∣
∣∣
∣

2

𝑓 𝑡
𝜆(𝑞2

𝑠
) d𝑞2

𝑠
. (B.16)
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Fig. B.2 – Numerical results for 𝑎(𝑠)
𝑠 𝑓𝑡

𝜆(𝑞2

𝑠 ) (dots) and analytical approximation (dashed)
for different energies

√
𝑠.

Next, we ease the notation by use of the redefinitions

ℳ𝑖 = {
∑3

𝑗=1 𝑈𝑒𝑗𝑇 ∗
𝑒𝑗, 𝑖 = 0,

𝑆𝑒𝑖𝑉 ∗
𝑒𝑖, 𝑖 = 1, 3, 4,

𝑦𝑖 = { 𝑚2/𝑠 → 0, 𝑖 = 0,
𝑀2

𝑖 /𝑠, 𝑖 = 1, 3, 4, and

𝑥 = 𝑞2

𝑠
.

(B.17)

The cross section then becomes3

𝜎 = 𝑠 𝑎(𝑠)
𝑚4

𝑅
∫

0

−∞
∣

3

∑
𝑖=0

ℳ𝑖
𝑥

𝑥 − 𝑦𝑖
∣
2

𝑓 𝑡
𝜆(𝑥) d𝑥

= 𝑠 𝑎(𝑠)
𝑚4

𝑅

3

∑
𝑖,𝑗=0

ℳ𝑖 ℳ∗
𝑗 ∫

0

−∞

𝑥2

(𝑥 − 𝑦𝑖)(𝑥 − 𝑦𝑗)
𝑓 𝑡

𝜆(𝑥) d𝑥
(B.18)

= 𝜎𝑡
𝜆 = 𝑠 𝑎(𝑠)

𝑚4
𝑅

3

∑
𝑖,𝑗=0

ℳ𝑖 ℳ∗
𝑗 𝜎𝑡

0(𝑦𝑖, 𝑦𝑗), (B.19)

where we defined the two-dimensional symmetric function 𝜎𝑡
0(𝑦𝑖, 𝑦𝑗). We want to stress

3 Keep in mind that 𝑞2 < 0 in the 𝑡-channel.
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B.1 𝑡-channel cross section

here, that this result is true for the interaction of the quarks. In order to obtain the cross
section for the full proton-proton interaction the parton distribution function has to be
taken into account. The integral can be performed numerically for different values of
𝑀2

𝑖 /𝑠 and 𝑀2
𝑗 /𝑠. For the special cases 𝑠 ≫ 𝑀2

𝑖,𝑗 and 𝑠 ≪ 𝑀2
𝑖,𝑗, the solution is readily

found:

𝜎0

𝑀2
𝑖,𝑗≪𝑠

−−−−−−→ 1010 GeV2 pb,

𝜎0

𝑀2
𝑖,𝑗≫𝑠

−−−−−−→ 8 × 108 GeV2 pb
𝑠2

𝑀2
𝑖 𝑀2

𝑗
.

(B.20)

Note that the former corresponds to one light being exchanged, whereas the latter is
used for very heavy neutrinos. Figure B.3 shows the numerical values of the integration
for the cases 𝑀𝑖 = 𝑀𝑗, 𝑀𝑖 = 0 and 𝑀𝑖 = 500GeV, as well as a contour plot of the
region 𝑀𝑖,𝑗 ≤ 5 TeV; both for

√
𝑠 = 13 TeV.
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Fig. B.3 – Numerical result for 𝜎𝑡
0 with

√
𝑠 = 13 TeV

Before applying the cross section formula to actual proton-proton collisions, the par-
ton distribution inside the protons has to be taken into account. The momentum carried
by a quark 𝑞𝜇 inside the proton with momentum 𝑝𝜇 is 𝑞𝜇 = 𝑥 ⋅ 𝑝𝜇. The average mo-
mentum fraction of a valence quark (𝑢 and 𝑑) is ⟨𝑥𝑉⟩ ≈ 0.12, whereas sea-quarks (the
remaining types of quarks and anti-quarks) carry the fraction ⟨𝑥𝑆⟩ ≈ 0.04 in average
[47]. For the 𝑡-channel process we can have different quarks involved in the interaction,
namely 𝑑 and 𝑢 at each 𝑊-vertex. Thus, we have to take all combinations into account;
dropping the sub- and superscript of 𝜎𝑡

𝜆 we have:

𝜎 (𝑠) = 𝜎𝑑𝑑 (𝑠) + 𝜎𝑢 𝑢 (𝑠) + 𝜎𝑑𝑢 (𝑠) + 𝜎𝑢𝑑 (𝑠)
= 𝜎𝑑𝑑 (𝑠) + 𝜎𝑢 𝑢 (𝑠) + 2𝜎𝑑𝑢 (𝑠)
≈ 𝜎 (0.122 𝑠𝑝𝑝) + 𝜎 (0.042 𝑠𝑝𝑝) + 2𝜎 (0.12 ⋅ 0.04 𝑠𝑝𝑝) .

(B.21)
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Appendix B Analytical approximations for the 𝜆 diagram cross sections

Fig. B.4 – 𝑠-channel processes of the 𝜆 diagram with right-handed inital quarks.

B.2 𝑠-channel cross section with left-handed final
state quarks

Nowwe want to consider the 𝑠-channel interaction with two right-handed quarks in the
initial state, interacting to form a heavy 𝑊𝑅 boson as shown in Figure B.4. This situation
is particularly simple, as we will see below.

We start with Expression (B.3), which has to be slightly modified. Namely, the prop-
agators have to be replaced by the correct expressions to avoid the poles 𝑞2 = 𝑀2

𝑖 ,
𝑘2

𝐿 = 𝑚2
𝐿 and 𝑘2

𝑅 = 𝑚2
𝑅. Thus we make the replacement

𝑖 (/𝑝 + 𝑚)
𝑝2 − 𝑚2 ⟶

𝑖 (/𝑝 + 𝑚)
𝑝2 − 𝑚2 + 𝑖 Γ𝑚

, (B.22)

with 𝑝 = 𝑞, 𝑘𝐿, 𝑘𝑅, 𝑚 = 𝑀𝑖, 𝑚𝐿, 𝑚𝑅 and the decay width Γ = Γ𝑖, Γ𝐿, Γ𝑅, respectively.
Γ𝑖 and Γ𝑅 are given in Chapter A above, and from the SM we have Γ𝐿 ≈ 2.1GeV.

Essentially the same steps as in the case of the 𝑡-channel have to be performed now.
However, two crucial points are different here: the 𝑊𝑅 boson carries the complete en-
ergy of the process, i.e. 𝑘2

𝑅 = 𝑠, and because of the proportionality 𝒜 ∝ (𝑘2
𝐿 − 𝑚2

𝐿)−1,
the amplitude is enhanced for 𝑘2

𝐿 ≈ 𝑚2
𝐿. Restricting ourselves to the high energy case

𝑠 ≫ 𝑚2
𝐿, we can therefore assume 𝑘2

𝐿 = 𝑚2
𝐿 in our calculations.4 Then, it is straight

4 In other words: contributions with 𝑘2
𝐿 ≠ 𝑚2

𝐿 are negligible as they are suppressed by 𝑠 − 𝑚2
𝐿.
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B.2 𝑠-channel cross section with left-handed final state quarks

forward to write down the following expression for the amplitude:

𝒜 = 1
Γ𝐿𝑚𝐿

𝑠
𝑠 − 𝑚2

𝑅 + 𝑖 Γ𝑅𝑚𝑅
×

× ⎛⎜⎜
⎝

3

∑
𝑖=1
light

𝑈𝑒𝑖𝑇 ∗
𝑒𝑖 +

3

∑
𝑖=1
heavy

𝑆𝑒𝑖𝑉 ∗
𝑒𝑖

𝑞2

𝑞2 − 𝑀2
𝑖 + 𝑖 Γ𝑖𝑀𝑖

⎞⎟⎟
⎠

× 𝒜0 (𝑞2

𝑠
, 𝑚2

𝐿
𝑠

, 𝑚2
𝑅

𝑠
) .

(B.23)

The dependency of 𝒜0 on 𝑚2
𝑅/𝑠 is very weak and we can already neglect it here.5 Anal-

ogously to Equation (B.11) the cross section is then given as

d𝜎 = 𝑠3

(𝑠 − 𝑚2
𝑅)2 + Γ2

𝑅𝑚2
𝑅

∣
∣∣
∣

3

∑
𝑖=1
light

𝑈𝑒𝑖𝑇 ∗
𝑒𝑖 +

3

∑
𝑖=1
heavy

𝑆𝑒𝑖𝑉 ∗
𝑒𝑖

𝑞2

𝑞2 − 𝑀2
𝑖 + 𝑖 Γ𝑖𝑀𝑖

∣
∣∣
∣

2

×

× 1
Γ2

𝐿𝑚2
𝐿

𝐺(𝑞2

𝑠
, 𝑚2

𝐿
𝑠

) d𝑞2

𝑠
.

(B.24)

However, the simulations show that 𝐺(𝑞2/𝑠, 𝑚2
𝐿/𝑠) ∝ 𝑠− 3

2 ; therefore we can define

𝐺(𝑞2

𝑠
, 𝑚2

𝐿
𝑠

) ≃ 𝑎(𝑠) Γ2
𝐿𝑚2

𝐿√
𝑠3GeV

𝑓𝑠𝑅𝐿
𝜆 (𝑞2

𝑠
) with (B.25)

𝑎(𝑠) = 1.08 − 0.88 𝑠
13 TeV2 ,

𝑓𝑠𝑅𝐿
𝜆 (𝑥) = 𝑎0

e
−𝑏0

𝑥

(𝑥 + 𝑐0)4 , with 𝑥 = 𝑞2/𝑠 and

𝑎0 = 0.0136GeV2 pb, 𝑏0 = 2.7 × 10−3, 𝑐0 = 0.133.

(B.26)

Neglecting the𝑊𝑅 decaywidth in the denominator, the cross section for the 𝑠-channel

5 It turns out that 𝑢𝑅𝛾𝜈′𝑃𝑅𝑑𝑅 (𝜂𝜈′𝜈 − 𝑘𝑅𝜈′𝑘𝑅𝜈
𝑚2

𝑅
) ≈ 𝑢𝑅𝛾𝜈′𝑃𝑅𝑑𝑅 𝜂𝜈′𝜈 due to the structure of the

weak interaction.
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process with LH final state quarks is given by6

𝜎𝑠𝑅𝐿
𝜆 = 𝑎(𝑠)

√
𝑠3 GeV−1

(𝑠 − 𝑚2
𝑅)2 ∫

∞

0
𝑓𝑠𝑅𝐿

𝜆 (𝑞2

𝑠
) ×

×
∣
∣∣
∣

3

∑
𝑖=1
light

𝑈𝑒𝑖𝑇 ∗
𝑒𝑖 +

3

∑
𝑖=1
heavy

𝑆𝑒𝑖𝑉 ∗
𝑒𝑖

𝑞2

𝑞2 − 𝑀2
𝑖 + 𝑖 Γ𝑖𝑀𝑖

∣
∣∣
∣

2

d𝑞2

𝑠
.

(B.27)

As in the case of the 𝑡-channel diagram, the parton distribution function has to be taken
into account when applying this result to proton-proton collisions. Again we use the
average for the momentum fraction carried by the quarks. In the 𝑠-channel one down-
type quark has to interact with one anti-up quark in order to produce a 𝑊 −

𝑅 boson.
Furthermore we get a factor of two which accounts for the exchange of the interacting
𝑑- and 𝑢-quarks with respect to the protons7:

𝑠 = ⟨𝑥𝑑 𝑥𝑢⟩ 𝑠𝑝𝑝 ≈ 4.8 × 10−3𝑠𝑝𝑝, (B.28)
𝜎𝑠𝑅𝐿

𝜆 (𝑠) ≈ 2𝜎𝑠𝑅𝐿
𝜆 (4.8 × 10−3𝑠𝑝𝑝) , (B.29)

with 𝑠 the center of mass energy of the quarks as used in the cross section formulae and
𝑠𝑝𝑝 the center of mass energy of the protons; ⟨𝑥𝑑⟩ ≈ 0.12 and ⟨𝑥𝑢⟩ ≈ 0.04 [47].

Continuing with the bare quark-quark interaction, the cross section can be further
simplified if only light neutrinos are involved in the process:

𝜎𝑠𝑅𝐿
𝜆 = 𝑎(𝑠)

√
𝑠3 GeV−1 |𝑅11|2

(𝑠 − 𝑚2
𝑅)2 ∫

∞

0
𝑓𝑠𝑅𝐿

𝜆 (𝑞2

𝑠
) d𝑞2

𝑠

≈ 1.62 |𝑅11|2 𝑎(𝑠)
√

𝑠3 GeV−1

(𝑠 − 𝑚2
𝑅)2 ,

(B.30)

where we used ∑3
𝑖=1 𝑈𝑒𝑖𝑇 ∗

𝑒𝑖 ≈ |𝑅11| and ∫ ∞
0

𝑓1𝑠
𝜆 (𝑥) dx ≈ 1.62.

For a single heavy neutrino 𝑁𝑖 with the mixing matrix element 𝑆𝑒𝑖𝑉 ∗
𝑒𝑖 and a mass

6 Γ𝑅 is small compared to 𝑚𝑅, see Figure A.1; if the case 𝑠 ≈ 𝑚2
𝑅 is considered, it has to be reinserted.

7 I.e. the 𝑑-quark in the first proton can interact with the 𝑢-quark in the second proton and vice versa.
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B.2 𝑠-channel cross section with left-handed final state quarks

𝑀𝑖 ≲
√

𝑠 mediating the process, we can write8

𝜎𝑠𝑅𝐿
𝜆 = |𝑆𝑒𝑖𝑉 ∗

𝑒𝑖|
2 ×

× 𝑎(𝑠)
√

𝑠3 GeV−1

(𝑠 − 𝑚2
𝑅)2 ∫

∞

0
𝑓𝑠𝑅𝐿

𝜆 (𝑞2

𝑠
) 𝑞4

(𝑞2 − 𝑀2
𝑖 )2 + Γ2

𝑖 𝑀2
𝑖

d𝑞2

𝑠
(B.31)

≈ |𝑆𝑒𝑖𝑉 ∗
𝑒𝑖|

2 𝑎(𝑠)
√

𝑠3 GeV−1

(𝑠 − 𝑚2
𝑅)2

𝑀3
𝑖

Γ𝑖
𝑓𝑠𝑅𝐿

𝜆 (𝑀2
𝑖

𝑠
) . (B.32)

In the last step the integral was evaluated around the maximum and then multiplied by
Γ𝑖𝑀𝑖, as is appropriate for a Lorentz curve.

Finally, if all three heavy and light neutrinos take part in the interaction, i.e. if𝑀𝑖 ≲
√

𝑠
for 𝑖 = 1, 2, 3, we canmake use of the unitarity of themixingmatrix 𝑊 in Equation (2.61)
and rewrite the mixing matrix elements as 𝑈𝑒𝑖𝑇 ∗

𝑒𝑖 = −𝑆𝑒𝑖𝑉 ∗
𝑒𝑖. If we additionally assume

that the masses of the heavy neutrinos are not to close to each other, the Lorentz curves
do not overlap and we can neglect interference between the 𝑁𝑖. In this case, the cross
section becomes

𝜎𝑠𝑅𝐿
𝜆 = 𝑎(𝑠)

√
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𝑠
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𝑖 + 𝑖 Γ𝑖𝑀𝑖

− 1∣
2 d𝑞2

𝑠

(B.33)

= 𝑎(𝑠)
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(B.34)

≈ 𝑎(𝑠)
√

𝑠3 GeV−1

(𝑠 − 𝑚2
𝑅)2

3

∑
𝑖=1

|𝑆𝑒𝑖𝑉 ∗
𝑒𝑖|

2 𝑓𝑠𝑅𝐿
𝜆 (𝑀2

𝑖
𝑠

) 𝑀3
𝑖

Γ𝑖
. (B.35)

Again, the integrals were evaluated at the maxima. Additionally we neglected the small
decay width Γ𝑖 ≪ 𝑀𝑖 in the nominator after integration. These results show that the
heavy neutrino contribution dominates over the light neutrino contribution if the heavy
particles can be produced, i.e. if they are accessible at the energy

√
𝑠.

8 For 𝑀𝑖 >
√

𝑠 it can not be produced and its contribution is suppressed compared to the light neutrinos,
i.e. it can be neglected.
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Appendix C
Mad Graph 5: a monte carlo simulator

C.1 The program

Mad Graph 5 is a Monte Carlo Simulator that allows to calculate cross sections for user
defined particle interactions. For the simulations it uses the helicity calculation routine
HELAS [53], which generates the events by use of the helicity amplitudes of the inter-
acting particles. Although many features are worth discussing, we restrict ourselves to
a short introduction including only the parts which are relevant for our simulations. In-
formation about Mad Graph 5 can be found in [30]; useful tutorials for beginners are
given in [54, 55].

First steps: setting up a simulation

After launching the program via command line, it is possible to specify a model file
which contains the Lagrangian and specifies the interactions the user wants to inves-
tigate.1 Model files can be generated for example by use of the FeynRules package for
Mathematica[54]. In our case we modified the model file of the minimal left right sym-
metric from [56] in order to incorporate the full neutrinomixingmatrix𝑊 fromEquation
(2.59). The necessary changes are documented in the subsequent section.

After the user has selected the desired model, an interaction process can be specified.
This can be any kind of 𝑛 to 𝑚 scattering process (𝑛, 𝑚 ∈ ℕ) or the decay of a particle.
The basic syntax for this is as follows:2

user$ generate i1 i2 ... in > o1 o2 ... om

Here, 𝑖1 to 𝑖𝑛 correspond to the incoming particles, e.g. 𝑒−𝑒+, and 𝑜1 to 𝑜𝑚 to the
outgoing particles. Furthermore it is possible to define multi-particles like 𝑗 for jets or
1 There are some pre-defined models available of which one is automatically loaded on start-up.
2 Note that the preamble ’user$’ does not have to be entered and is included to illustrate the terminal only.

71



Appendix C Mad Graph 5: a monte carlo simulator

𝑝 for protons. This allows Mad Graph to pick anyone of the particles included in the
multi-particle definition and thus results in the overall cross section including all those
particles.

Having specified the interaction in that way, it is possible to add further interaction
channels to the calculation by use of

user$ add process i1 ... in > o1 ... om

When the full interaction has been entered by the user, the directory for the calculations
and results has to be chosen. This is done via

user$ ouput path/foldername

Mad Graph then prepares the directory for the simulation and provides an useful and
illustrative html-document there, which displays all possible diagrams contributing to
the interaction as well as a summary of the out-carried simulations.

Starting the simulation can be done in different ways. The easiest one is to just type

user$ launch

Other possibilities are bash-scripts, for example. In any case, it is possible to modify
some settings after launching the simulation. However, we will explain later how to
change the settings by modifying the corresponding parameter files before launching.

Advanced syntax: excluding particles and channels

It is possible to modify the event-generation command above in order to exclude certain
particles from the interaction or force 𝑠-channel propagators, for example. The authors
of Mad Graph explicitly warn the user to be cautious as these options may result in
non Lorentz or Gauge invariant interactions which could be physically meaningless.
However, sometimes it may be needed. The command

user$ generate i1 ... in > a1 ... am > o1 ... ok

forces an intermediate step with exactly the particles 𝑎1 to 𝑎𝑚 appearing together. In
the case of 𝑚 = 1, this results in a 𝑠-channel diagram. By use of

user$ generate i1 ... in > o1 ... om /p1 ... pk

the particles 𝑝1 to 𝑝𝑘 are completely excluded from the interaction, wherease

72



C.1 The program

user$ generate i1 ... in > o1 ... om $p1 ... pk

excludes the the 𝑠-channel appearance of the particles 𝑝1 to 𝑝𝑘 only. Another useful
command is

user$ generate i1 ... in > o1 ... om, oj > p1 ... pk

which is used to define decay chains and can be applied various times. Further com-
mands can be found in [54, 55].

For the simulations in this thesis, we used precisely the commands above to generate
the desired 𝑡- and 𝑠-channel simulations with different pattern and different neutrinos
involved. For example,

user$ generate p p > W- > j j e- e- /hm2 z z2 a h h2 h02 h03 h+ h-
hp2 hl-- hl++ hr++ hr-- h3 a02 ve vt vm

was used to generate the 𝑠-channel diagram with all heavy neutrinos in the propagator,
but no light neutrinos.3

Changing the simulation parameters

Each model allows to adjust some parameters and Mad Graph also provides some op-
tions for the simulation. The main adjustments can be done by modifying the files in
the Cards-folder of the output directory. The file param_card.dat contains the model pa-
rameters including masses and decay widths and run_card.dat specifies the detector and
collider settings like center of mass energy, parton distribution function and detector
cuts. Further settings can be made in other files like plot_card.dat. For example, for our
simulations we turned off the parton distribution function by setting

0 = lpp1
0 = lpp2

in run_card.dat.

3 More precisely, the allowed helicities had to be adjusted as explained below. In that way, the resulting
interaction included only the desired 𝜆 diagram.
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Advanced settings: modifying the python scripts

MadGraph is written in Python and allows the advanced user tomodify its routines. One
possibility given is to remove certain helicities for the outgoing particles, thus restricting
them to have the helicities that are desired by the user. To do this, the files matrix1.f 4

in the subfolders SubProcesses/P1_cxcx_dxdxemem5 in the output directory have to be
modified.

The authors of [53, 57, 58] explain how the Python script works and how to change
the helicity amplitudes. Basically lines like

DATA (NHEL(I, 2),I=1,6) / 1,-1,-1, 1,-1, 1/

correspond to the final state helicities +1, −1, −1, +1, −1 and +1, for the outgoing
particles respectively. Here, the order is given in one of the first lines of the file, e.g.

C Process: d c~ > u d~ e- e- WEIGHTED<=8 $$ w- w2- w+ w2+ / hp2 z

Removing or commenting these lines by adding a C in front of it, will exclude the corre-
sponding outcome from the calculation. This possibility was used to restrict the simula-
tions for this thesis in order to reproduce the 𝜆 diagram, which consists of two different
helicities in the final state electrons.

Note that the source code should only be changed if the user is aware of what he is
doing. For example in certain cases the procedure above would require to change the
number in the following line

DATA IDEN/72/

which specifies the averaging factor needed for example when the colour of quarks in-
volved in the interaction is important.

Evaluating the output

Mad Graph not only provides the cross section of the simulated processes. It further-
more gives a sample of events, that is of the in- and outgoing, as well as intermedi-
ate on-shell particles. The desired sample number can be specified in the run_card.dat

4 Further files likematrix2.f etc. could be present, depending on the structure of the specified interaction.

5 Each amplitude contributing to the interaction is stored in one folder called P1_cxcx_dxdxemem or sim-
ilarly.
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via the parameter nevents before starting the simulation.6 After the simulation is fin-
ished, the events are stored in the file Events/run_01/unweighted_events.lhe.gz as Les
Houches event files. It contains all parameters of the simulation, as well as the sam-
ples. The interesting data is given as tables (see Figure C.1 for an example): Each line
corresponds to one particle and the following information are encoded in the rows:

row(s) 1 2 3 & 4 5 & 6
information particle type incoming particle (−1) mother particles color charge

7-9 10 11 12 13
momentum energy mass unknown helicity

Fig. C.1 – Example lhe file containing the simulated particle sample.

The data then can be processed in a user defined way. The author of [55] gives examples
using Mathematica and provides routines for this.

C.2 The model file for the Left Right symmetric model

Our studies have been carried out in the framework of the Left Right symmetric model.
In particular it was important to be able to simulate different neutrino mixing matrices
given by Equation (2.59) as

𝑊 = ( 𝑉 𝜈
𝐿

𝑉 𝜈
𝑅

) = ( 𝑈 𝑆
𝑇 𝑉 ) = ( 1 − 1

2𝑅𝑅† 𝑅
−𝑅† 1 − 1

2𝑅†𝑅 ) ( 𝑈𝐿 0
0 𝑈𝑅

) ,

(C.1)

with 𝑅 being an arbitrary 3 × 3 complex matrix and 𝑈𝐿 and 𝑈𝑅 being PMNS-like.

The model file we used was is explained by their authors in [56]; it is based on the
treatment of the LRSM in [29]. Unfortunately it implements only a very limited way of

6 The default is 10.000. It is recommended not to use a sample number much larger than 50.000 by the
developers of Mad Graph. It results in long-during simulations.

75



Appendix C Mad Graph 5: a monte carlo simulator

neutrino mixing, the possible parameters given in the model file allowed for the follow-
ing neutrino mixing matrix with real entries:

𝑊 = ( 𝑉 𝜈
𝐿

𝑉 𝜈
𝑅

) = ( 𝑈𝐿 𝑉
−𝑉 𝟙 ) , 𝑉 = ⎛⎜

⎝

𝑉 𝐾𝑒 0 0
0 𝑉 𝐾𝜇 0
0 0 𝑉 𝐾𝜏

⎞⎟
⎠

. (C.2)

Thus we modified the file to implement the full neutrino mixing as given in Equa-
tion (C.1). Therefore we removed the parameters 𝑉 𝐾𝑒, 𝑉 𝐾𝜇 and 𝑉 𝐾𝜏 and added 18
parameters for the complex matrix 𝑅 and 4 parameters for the matrix 𝑈𝑅 instead. For
reproductive purpose, we list the lines that we removed in C.1 and the new lines and
modified lines are shown in C.2 and C.2, respectively. The model file was compiled by
use of FeynRules [54].

Code C.1 – Modifications of the MLRSM model file: removed code
VKe == { ParameterType −> Ex t e rna l , BlockName −> KLRBLOCK ,

↪ OrderB lock −> 1 , D e f i n i t i o n s −> { VKe −>
↪ Sq r t [ 0 . 0 0 0 0 1 ] } , TeX −> S u b s c r i p t [ KLRmix , e ] ,
↪ De s c r i p t i o n −> ” Lepton mixing paramete r e ” } ,

VKmu == { ParameterType −> Ex t e rna l , BlockName −> KLRBLOCK ,
↪ OrderB lock −> 2 , D e f i n i t i o n s −> {VKmu −>
↪ Sq r t [ 0 . 0 0 0 0 1 ] } , TeX −> S u b s c r i p t [ KLRmix , mu] ,
↪ De s c r i p t i o n −> ” Lepton mixing paramete r mu ” } ,

VKta == { ParameterType −> Ex t e rna l , BlockName −> KLRBLOCK ,
↪ OrderB lock −> 3 , D e f i n i t i o n s −> { VKta −>
↪ Sq r t [ 0 . 0 0 0 0 1 ] } , TeX −> S u b s c r i p t [ KLRmix , t a ] ,
↪ De s c r i p t i o n −> ” Lepton mixing paramete r t a ” } ,

Code C.2 – Modifications of the MLRSM model file: additional code
sR12 == { ParameterType −> Ex t e rna l , BlockName −>

↪ RPMNSBLOCK , OrderB lock −> 1 , Value −> 0 . 5 4 9 8 9 8 , TeX −>
↪ S u b s c r i p t [ sR , 1 2 ] , D e s c r i p t i o n −> ” sR12 ” } ,

sR23 == { ParameterType −> Ex t e rna l , BlockName −>
↪ RPMNSBLOCK , OrderB lock −> 2 , Value −> 0 . 6 4 2 7 8 8 , TeX −>
↪ S u b s c r i p t [ sR , 2 3 ] , D e s c r i p t i o n −> ” sR23 ” } ,

sR13 == { ParameterType −> Ex t e rna l , BlockName −>
↪ RPMNSBLOCK , OrderB lock −> 3 , Value −> 0 . 1 5 0 5 7 1 , TeX −>
↪ S u b s c r i p t [ sR , 1 3 ] , D e s c r i p t i o n −> ” sR13 ” } ,

CPR == { ParameterType −> Ex t e rna l , BlockName −>
↪ RPMNSBLOCK , OrderB lock −> 4 , Value −> 0 , TeX −>
↪ de l t a_R , D e s c r i p t i o n −> ”CP de l R ” } ,
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rR11 == { ParameterType −> Ex t e rna l , BlockName −> KLRBLOCK ,
↪ OrderB lock −> 1 , Value −> 0 , TeX −> S u b s c r i p t [ rKLRmix ,
↪ 1 1 ] , D e s c r i p t i o n −> ” L e f t − R igh t − Mixing − Matr ix
↪ ( r e a l p a r t ) ” } ,

rR12 == { ParameterType −> Ex t e rna l , BlockName −> KLRBLOCK ,
↪ OrderB lock −> 2 , Value −> 0 , TeX −> S u b s c r i p t [ rKLRmix ,
↪ 1 2 ] , D e s c r i p t i o n −> ” L e f t − R igh t − Mixing − Matr ix
↪ ( r e a l p a r t ) ” } ,

rR13 == { ParameterType −> Ex t e rna l , BlockName −> KLRBLOCK ,
↪ OrderB lock −> 3 , Value −> 0 , TeX −> S u b s c r i p t [ rKLRmix ,
↪ 1 3 ] , D e s c r i p t i o n −> ” L e f t − R igh t − Mixing − Matr ix
↪ ( r e a l p a r t ) ” } ,

rR21 == { ParameterType −> Ex t e rna l , BlockName −> KLRBLOCK ,
↪ OrderB lock −> 4 , Value −> 0 , TeX −> S u b s c r i p t [ rKLRmix ,
↪ 2 1 ] , D e s c r i p t i o n −> ” L e f t − R igh t − Mixing − Matr ix
↪ ( r e a l p a r t ) ” } ,

rR22 == { ParameterType −> Ex t e rna l , BlockName −> KLRBLOCK ,
↪ OrderB lock −> 5 , Value −> 0 , TeX −> S u b s c r i p t [ rKLRmix ,
↪ 2 2 ] , D e s c r i p t i o n −> ” L e f t − R igh t − Mixing − Matr ix
↪ ( r e a l p a r t ) ” } ,

rR23 == { ParameterType −> Ex t e rna l , BlockName −> KLRBLOCK ,
↪ OrderB lock −> 6 , Value −> 0 , TeX −> S u b s c r i p t [ rKLRmix ,
↪ 2 3 ] , D e s c r i p t i o n −> ” L e f t − R igh t − Mixing − Matr ix
↪ ( r e a l p a r t ) ” } ,

rR31 == { ParameterType −> Ex t e rna l , BlockName −> KLRBLOCK ,
↪ OrderB lock −> 7 , Value −> 0 , TeX −> S u b s c r i p t [ rKLRmix ,
↪ 3 1 ] , D e s c r i p t i o n −> ” L e f t − R igh t − Mixing − Matr ix
↪ ( r e a l p a r t ) ” } ,

rR32 == { ParameterType −> Ex t e rna l , BlockName −> KLRBLOCK ,
↪ OrderB lock −> 8 , Value −> 0 , TeX −> S u b s c r i p t [ rKLRmix ,
↪ 3 2 ] , D e s c r i p t i o n −> ” L e f t − R igh t − Mixing − Matr ix
↪ ( r e a l p a r t ) ” } ,

rR33 == { ParameterType −> Ex t e rna l , BlockName −> KLRBLOCK ,
↪ OrderB lock −> 9 , Value −> 0 , TeX −> S u b s c r i p t [ rKLRmix ,
↪ 3 3 ] , D e s c r i p t i o n −> ” L e f t − R igh t − Mixing − Matr ix
↪ ( r e a l p a r t ) ” } ,

iR11 == { ParameterType −> Ex t e rna l , BlockName −> KLRBLOCK ,
↪ OrderB lock −> 10 , Value −> 0 , TeX −>
↪ S u b s c r i p t [ iKLRmix , 1 1 ] , D e s c r i p t i o n −> ” L e f t − R igh t
↪ − Mixing − Matr ix ( imag inary p a r t ) ” } ,

iR12 == { ParameterType −> Ex t e rna l , BlockName −> KLRBLOCK ,
↪ OrderB lock −> 11 , Value −> 0 , TeX −>
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↪ S u b s c r i p t [ iKLRmix , 1 2 ] , D e s c r i p t i o n −> ” L e f t − R igh t
↪ − Mixing − Matr ix ( imag inary p a r t ) ” } ,

iR13 == { ParameterType −> Ex t e rna l , BlockName −> KLRBLOCK ,
↪ OrderB lock −> 12 , Value −> 0 , TeX −>
↪ S u b s c r i p t [ iKLRmix , 1 3 ] , D e s c r i p t i o n −> ” L e f t − R igh t
↪ − Mixing − Matr ix ( imag inary p a r t ) ” } ,

iR21 == { ParameterType −> Ex t e rna l , BlockName −> KLRBLOCK ,
↪ OrderB lock −> 13 , Value −> 0 , TeX −>
↪ S u b s c r i p t [ iKLRmix , 2 1 ] , D e s c r i p t i o n −> ” L e f t − R igh t
↪ − Mixing − Matr ix ( imag inary p a r t ) ” } ,

iR22 == { ParameterType −> Ex t e rna l , BlockName −> KLRBLOCK ,
↪ OrderB lock −> 14 , Value −> 0 , TeX −>
↪ S u b s c r i p t [ iKLRmix , 2 2 ] , D e s c r i p t i o n −> ” L e f t − R igh t
↪ − Mixing − Matr ix ( imag inary p a r t ) ” } ,

iR23 == { ParameterType −> Ex t e rna l , BlockName −> KLRBLOCK ,
↪ OrderB lock −> 15 , Value −> 0 , TeX −>
↪ S u b s c r i p t [ iKLRmix , 2 3 ] , D e s c r i p t i o n −> ” L e f t − R igh t
↪ − Mixing − Matr ix ( imag inary p a r t ) ” } ,

iR31 == { ParameterType −> Ex t e rna l , BlockName −> KLRBLOCK ,
↪ OrderB lock −> 16 , Value −> 0 , TeX −>
↪ S u b s c r i p t [ iKLRmix , 3 1 ] , D e s c r i p t i o n −> ” L e f t − R igh t
↪ − Mixing − Matr ix ( imag inary p a r t ) ” } ,

iR32 == { ParameterType −> Ex t e rna l , BlockName −> KLRBLOCK ,
↪ OrderB lock −> 17 , Value −> 0 , TeX −>
↪ S u b s c r i p t [ iKLRmix , 3 2 ] , D e s c r i p t i o n −> ” L e f t − R igh t
↪ − Mixing − Matr ix ( imag inary p a r t ) ” } ,

iR33 == { ParameterType −> Ex t e rna l , BlockName −> KLRBLOCK ,
↪ OrderB lock −> 18 , Value −> 0 , TeX −>
↪ S u b s c r i p t [ iKLRmix , 3 3 ] , D e s c r i p t i o n −> ” L e f t − R igh t
↪ − Mixing − Matr ix ( imag inary p a r t ) ” } ,

Code C.3 – Modifications of the MLRSM model file: modified code
KL == {

ParameterType −> I n t e r n a l ,
I n d i c e s −> { Index [ Gen2 ] , Index [ Gene ra t i on ] } ,
Value −> {

KL [ 1 , 1 ] −> ( 1 + ( − ( ( ( − I ) * iR11 + rR11 ) * ( I * iR11 +
↪ rR11 ) ) − ((− I ) * iR12 + rR12 ) * ( I * iR12 + rR12 ) −
↪ ((− I ) * iR13 + rR13 ) * ( I * iR13 + rR13 ) ) / 2 ) * S q r t [ 1
↪ − sL12 ^2 ] * S q r t [ 1 − sL13 ^2] + ( ( − ( ( ( − I ) * iR11 +
↪ rR11 ) * ( I * iR21 + rR21 ) ) − ((− I ) * iR12 +
↪ rR12 ) * ( I * iR22 + rR22 ) − ((− I ) * iR13 +
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↪ rR13 ) * ( I * iR23 + rR23 ) ) * ( − ( sL12 * S q r t [ 1 −
↪ sL23 ^ 2 ] ) − Sq r t [ 1 −
↪ sL12 ^2 ] * sL13 * sL23 * ( Cos [CPL ] − I * S in [CPL ] ) ) ) / 2
↪ + ( ( − ( ( ( − I ) * iR11 + rR11 ) * ( I * iR31 + rR31 ) ) −
↪ ((− I ) * iR12 + rR12 ) * ( I * iR32 + rR32 ) −
↪ ((− I ) * iR13 + rR13 ) * ( I * iR33 + rR33 ) ) * ( sL12 * sL23
↪ − Sq r t [ 1 − sL12 ^2 ] * sL13 * S q r t [ 1 −
↪ sL23 ^ 2 ] * ( Cos [CPL ] − I * S in [CPL ] ) ) ) / 2 ,

KL [ 1 , 2 ] −> ( ( − ( ( I * iR11 + rR11 ) * ( ( − I ) * iR21 + rR21 ) )
↪ − ( I * iR12 + rR12 ) * ( ( − I ) * iR22 + rR22 ) − ( I * iR13
↪ + rR13 ) * ( ( − I ) * iR23 + rR23 ) ) * S q r t [ 1 −
↪ sL12 ^2 ] * S q r t [ 1 − sL13 ^ 2 ] ) / 2 + ( 1 +
↪ ( − ( ( ( − I ) * iR21 + rR21 ) * ( I * iR21 + rR21 ) ) −
↪ ((− I ) * iR22 + rR22 ) * ( I * iR22 + rR22 ) −
↪ ((− I ) * iR23 + rR23 ) * ( I * iR23 +
↪ rR23 ) ) / 2 ) * ( − ( sL12 * S q r t [ 1 − sL23 ^ 2 ] ) − Sq r t [ 1 −
↪ sL12 ^2 ] * sL13 * sL23 * ( Cos [CPL ] − I * S in [CPL ] ) ) +
↪ ( ( − ( ( ( − I ) * iR21 + rR21 ) * ( I * iR31 + rR31 ) ) −
↪ ((− I ) * iR22 + rR22 ) * ( I * iR32 + rR32 ) −
↪ ((− I ) * iR23 + rR23 ) * ( I * iR33 + rR33 ) ) * ( sL12 * sL23
↪ − Sq r t [ 1 − sL12 ^2 ] * sL13 * S q r t [ 1 −
↪ sL23 ^ 2 ] * ( Cos [CPL ] − I * S in [CPL ] ) ) ) / 2 ,

KL [ 1 , 3 ] −> ( ( − ( ( I * iR11 + rR11 ) * ( ( − I ) * iR31 + rR31 ) )
↪ − ( I * iR12 + rR12 ) * ( ( − I ) * iR32 + rR32 ) − ( I * iR13
↪ + rR13 ) * ( ( − I ) * iR33 + rR33 ) ) * S q r t [ 1 −
↪ sL12 ^2 ] * S q r t [ 1 − sL13 ^ 2 ] ) / 2 + ( ( − ( ( I * iR21 +
↪ rR21 ) * ( ( − I ) * iR31 + rR31 ) ) − ( I * iR22 +
↪ rR22 ) * ( ( − I ) * iR32 + rR32 ) − ( I * iR23 +
↪ rR23 ) * ( ( − I ) * iR33 + rR33 ) ) * ( − ( sL12 * S q r t [ 1 −
↪ sL23 ^ 2 ] ) − Sq r t [ 1 −
↪ sL12 ^2 ] * sL13 * sL23 * ( Cos [CPL ] − I * S in [CPL ] ) ) ) / 2
↪ + ( 1 + ( − ( ( ( − I ) * iR31 + rR31 ) * ( I * iR31 + rR31 ) )
↪ − ((− I ) * iR32 + rR32 ) * ( I * iR32 + rR32 ) −
↪ ((− I ) * iR33 + rR33 ) * ( I * iR33 +
↪ rR33 ) ) / 2 ) * ( sL12 * sL23 − Sq r t [ 1 −
↪ sL12 ^2 ] * sL13 * S q r t [ 1 − sL23 ^ 2 ] * ( Cos [CPL ] −
↪ I * S in [CPL ] ) ) ,

KL [ 2 , 1 ] −> ( 1 + ( − ( ( ( − I ) * iR11 + rR11 ) * ( I * iR11 +
↪ rR11 ) ) − ((− I ) * iR12 + rR12 ) * ( I * iR12 + rR12 ) −
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↪ ((− I ) * iR13 + rR13 ) * ( I * iR13 +
↪ rR13 ) ) / 2 ) * sL12 * S q r t [ 1 − sL13 ^2] +
↪ ( ( − ( ( ( − I ) * iR11 + rR11 ) * ( I * iR21 + rR21 ) ) −
↪ ((− I ) * iR12 + rR12 ) * ( I * iR22 + rR22 ) −
↪ ((− I ) * iR13 + rR13 ) * ( I * iR23 + rR23 ) ) * ( S q r t [ 1 −
↪ sL12 ^2 ] * S q r t [ 1 − sL23 ^2] −
↪ sL12 * sL13 * sL23 * ( Cos [CPL ] − I * S in [CPL ] ) ) ) / 2 +
↪ ( ( − ( ( ( − I ) * iR11 + rR11 ) * ( I * iR31 + rR31 ) ) −
↪ ((− I ) * iR12 + rR12 ) * ( I * iR32 + rR32 ) −
↪ ((− I ) * iR13 + rR13 ) * ( I * iR33 + rR33 ) ) * ( − ( S q r t [ 1
↪ − sL12 ^2 ] * sL23 ) − sL12 * sL13 * S q r t [ 1 −
↪ sL23 ^ 2 ] * ( Cos [CPL ] − I * S in [CPL ] ) ) ) / 2 ,

KL [ 2 , 2 ] −> ( ( − ( ( I * iR11 + rR11 ) * ( ( − I ) * iR21 + rR21 ) )
↪ − ( I * iR12 + rR12 ) * ( ( − I ) * iR22 + rR22 ) − ( I * iR13
↪ + rR13 ) * ( ( − I ) * iR23 + rR23 ) ) * sL12 * S q r t [ 1 −
↪ sL13 ^ 2 ] ) / 2 + ( 1 + ( − ( ( ( − I ) * iR21 +
↪ rR21 ) * ( I * iR21 + rR21 ) ) − ((− I ) * iR22 +
↪ rR22 ) * ( I * iR22 + rR22 ) − ((− I ) * iR23 +
↪ rR23 ) * ( I * iR23 + rR23 ) ) / 2 ) * ( S q r t [ 1 −
↪ sL12 ^2 ] * S q r t [ 1 − sL23 ^2] −
↪ sL12 * sL13 * sL23 * ( Cos [CPL ] − I * S in [CPL ] ) ) +
↪ ( ( − ( ( ( − I ) * iR21 + rR21 ) * ( I * iR31 + rR31 ) ) −
↪ ((− I ) * iR22 + rR22 ) * ( I * iR32 + rR32 ) −
↪ ((− I ) * iR23 + rR23 ) * ( I * iR33 + rR33 ) ) * ( − ( S q r t [ 1
↪ − sL12 ^2 ] * sL23 ) − sL12 * sL13 * S q r t [ 1 −
↪ sL23 ^ 2 ] * ( Cos [CPL ] − I * S in [CPL ] ) ) ) / 2 ,

KL [ 2 , 3 ] −> ( ( − ( ( I * iR11 + rR11 ) * ( ( − I ) * iR31 + rR31 ) )
↪ − ( I * iR12 + rR12 ) * ( ( − I ) * iR32 + rR32 ) − ( I * iR13
↪ + rR13 ) * ( ( − I ) * iR33 + rR33 ) ) * sL12 * S q r t [ 1 −
↪ sL13 ^ 2 ] ) / 2 + ( ( − ( ( I * iR21 + rR21 ) * ( ( − I ) * iR31 +
↪ rR31 ) ) − ( I * iR22 + rR22 ) * ( ( − I ) * iR32 + rR32 ) −
↪ ( I * iR23 + rR23 ) * ( ( − I ) * iR33 + rR33 ) ) * ( S q r t [ 1 −
↪ sL12 ^2 ] * S q r t [ 1 − sL23 ^2] −
↪ sL12 * sL13 * sL23 * ( Cos [CPL ] − I * S in [CPL ] ) ) ) / 2 +
↪ ( 1 + ( − ( ( ( − I ) * iR31 + rR31 ) * ( I * iR31 + rR31 ) ) −
↪ ((− I ) * iR32 + rR32 ) * ( I * iR32 + rR32 ) −
↪ ((− I ) * iR33 + rR33 ) * ( I * iR33 +
↪ rR33 ) ) / 2 ) * ( − ( S q r t [ 1 − sL12 ^2 ] * sL23 ) −
↪ sL12 * sL13 * S q r t [ 1 − sL23 ^ 2 ] * ( Cos [CPL ] −
↪ I * S in [CPL ] ) ) ,
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KL [ 3 , 1 ] −> ( ( − ( ( ( − I ) * iR11 + rR11 ) * ( I * iR21 + rR21 ) )
↪ − ((− I ) * iR12 + rR12 ) * ( I * iR22 + rR22 ) −
↪ ((− I ) * iR13 + rR13 ) * ( I * iR23 + rR23 ) ) * S q r t [ 1 −
↪ sL13 ^2 ] * sL23 ) / 2 + ( ( − ( ( ( − I ) * iR11 +
↪ rR11 ) * ( I * iR31 + rR31 ) ) − ((− I ) * iR12 +
↪ rR12 ) * ( I * iR32 + rR32 ) − ((− I ) * iR13 +
↪ rR13 ) * ( I * iR33 + rR33 ) ) * S q r t [ 1 − sL13 ^2 ] * S q r t [ 1
↪ − sL23 ^ 2 ] ) / 2 + ( 1 + ( − ( ( ( − I ) * iR11 +
↪ rR11 ) * ( I * iR11 + rR11 ) ) − ((− I ) * iR12 +
↪ rR12 ) * ( I * iR12 + rR12 ) − ((− I ) * iR13 +
↪ rR13 ) * ( I * iR13 + rR13 ) ) / 2 ) * sL13 * ( Cos [CPL ] +
↪ I * S in [CPL ] ) ,

KL [ 3 , 2 ] −> ( 1 + ( − ( ( ( − I ) * iR21 + rR21 ) * ( I * iR21 +
↪ rR21 ) ) − ((− I ) * iR22 + rR22 ) * ( I * iR22 + rR22 ) −
↪ ((− I ) * iR23 + rR23 ) * ( I * iR23 + rR23 ) ) / 2 ) * S q r t [ 1
↪ − sL13 ^2 ] * sL23 + ( ( − ( ( ( − I ) * iR21 +
↪ rR21 ) * ( I * iR31 + rR31 ) ) − ((− I ) * iR22 +
↪ rR22 ) * ( I * iR32 + rR32 ) − ((− I ) * iR23 +
↪ rR23 ) * ( I * iR33 + rR33 ) ) * S q r t [ 1 − sL13 ^2 ] * S q r t [ 1
↪ − sL23 ^ 2 ] ) / 2 + ( ( − ( ( I * iR11 + rR11 ) * ( ( − I ) * iR21
↪ + rR21 ) ) − ( I * iR12 + rR12 ) * ( ( − I ) * iR22 + rR22 )
↪ − ( I * iR13 + rR13 ) * ( ( − I ) * iR23 +
↪ rR23 ) ) * sL13 * ( Cos [CPL ] + I * S in [CPL ] ) ) / 2 ,

KL [ 3 , 3 ] −> ( ( − ( ( I * iR21 + rR21 ) * ( ( − I ) * iR31 + rR31 ) )
↪ − ( I * iR22 + rR22 ) * ( ( − I ) * iR32 + rR32 ) − ( I * iR23
↪ + rR23 ) * ( ( − I ) * iR33 + rR33 ) ) * S q r t [ 1 −
↪ sL13 ^2 ] * sL23 ) / 2 + ( 1 + ( − ( ( ( − I ) * iR31 +
↪ rR31 ) * ( I * iR31 + rR31 ) ) − ((− I ) * iR32 +
↪ rR32 ) * ( I * iR32 + rR32 ) − ((− I ) * iR33 +
↪ rR33 ) * ( I * iR33 + rR33 ) ) / 2 ) * S q r t [ 1 −
↪ sL13 ^2 ] * S q r t [ 1 − sL23 ^2] + ( ( − ( ( I * iR11 +
↪ rR11 ) * ( ( − I ) * iR31 + rR31 ) ) − ( I * iR12 +
↪ rR12 ) * ( ( − I ) * iR32 + rR32 ) − ( I * iR13 +
↪ rR13 ) * ( ( − I ) * iR33 + rR33 ) ) * sL13 * ( Cos [CPL ] +
↪ I * S in [CPL ] ) ) / 2 ,

KL [ 4 , 1 ] −> ((− I ) * iR11 + rR11 ) * S q r t [ 1 −
↪ sR12 ^2 ] * S q r t [ 1 − sR13 ^2] + ((− I ) * iR12 +
↪ rR12 ) * ( − ( sR12 * S q r t [ 1 − sR23 ^ 2 ] ) − Sq r t [ 1 −
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↪ sR12 ^2 ] * sR13 * sR23 * ( Cos [CPR] − I * S in [CPR ] ) ) +
↪ ((− I ) * iR13 + rR13 ) * ( sR12 * sR23 − Sq r t [ 1 −
↪ sR12 ^2 ] * sR13 * S q r t [ 1 − sR23 ^ 2 ] * ( Cos [CPR] −
↪ I * S in [CPR ] ) ) ,

KL [ 4 , 2 ] −> ((− I ) * iR21 + rR21 ) * S q r t [ 1 −
↪ sR12 ^2 ] * S q r t [ 1 − sR13 ^2] + ((− I ) * iR22 +
↪ rR22 ) * ( − ( sR12 * S q r t [ 1 − sR23 ^ 2 ] ) − Sq r t [ 1 −
↪ sR12 ^2 ] * sR13 * sR23 * ( Cos [CPR] − I * S in [CPR ] ) ) +
↪ ((− I ) * iR23 + rR23 ) * ( sR12 * sR23 − Sq r t [ 1 −
↪ sR12 ^2 ] * sR13 * S q r t [ 1 − sR23 ^ 2 ] * ( Cos [CPR] −
↪ I * S in [CPR ] ) ) ,

KL [ 4 , 3 ] −> ((− I ) * iR31 + rR31 ) * S q r t [ 1 −
↪ sR12 ^2 ] * S q r t [ 1 − sR13 ^2] + ((− I ) * iR32 +
↪ rR32 ) * ( − ( sR12 * S q r t [ 1 − sR23 ^ 2 ] ) − Sq r t [ 1 −
↪ sR12 ^2 ] * sR13 * sR23 * ( Cos [CPR] − I * S in [CPR ] ) ) +
↪ ((− I ) * iR33 + rR33 ) * ( sR12 * sR23 − Sq r t [ 1 −
↪ sR12 ^2 ] * sR13 * S q r t [ 1 − sR23 ^ 2 ] * ( Cos [CPR] −
↪ I * S in [CPR ] ) ) ,

KL [ 5 , 1 ] −> ((− I ) * iR11 + rR11 ) * sR12 * S q r t [ 1 −
↪ sR13 ^2] + ((− I ) * iR12 + rR12 ) * ( S q r t [ 1 −
↪ sR12 ^2 ] * S q r t [ 1 − sR23 ^2] −
↪ sR12 * sR13 * sR23 * ( Cos [CPR] − I * S in [CPR ] ) ) +
↪ ((− I ) * iR13 + rR13 ) * ( − ( S q r t [ 1 − sR12 ^2 ] * sR23 ) −
↪ sR12 * sR13 * S q r t [ 1 − sR23 ^ 2 ] * ( Cos [CPR] −
↪ I * S in [CPR ] ) ) ,

KL [ 5 , 2 ] −> ((− I ) * iR21 + rR21 ) * sR12 * S q r t [ 1 −
↪ sR13 ^2] + ((− I ) * iR22 + rR22 ) * ( S q r t [ 1 −
↪ sR12 ^2 ] * S q r t [ 1 − sR23 ^2] −
↪ sR12 * sR13 * sR23 * ( Cos [CPR] − I * S in [CPR ] ) ) +
↪ ((− I ) * iR23 + rR23 ) * ( − ( S q r t [ 1 − sR12 ^2 ] * sR23 ) −
↪ sR12 * sR13 * S q r t [ 1 − sR23 ^ 2 ] * ( Cos [CPR] −
↪ I * S in [CPR ] ) ) ,

KL [ 5 , 3 ] −> ((− I ) * iR31 + rR31 ) * sR12 * S q r t [ 1 −
↪ sR13 ^2] + ((− I ) * iR32 + rR32 ) * ( S q r t [ 1 −
↪ sR12 ^2 ] * S q r t [ 1 − sR23 ^2] −
↪ sR12 * sR13 * sR23 * ( Cos [CPR] − I * S in [CPR ] ) ) +
↪ ((− I ) * iR33 + rR33 ) * ( − ( S q r t [ 1 − sR12 ^2 ] * sR23 ) −
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↪ sR12 * sR13 * S q r t [ 1 − sR23 ^ 2 ] * ( Cos [CPR] −
↪ I * S in [CPR ] ) ) ,

KL [ 6 , 1 ] −> ((− I ) * iR12 + rR12 ) * S q r t [ 1 −
↪ sR13 ^2 ] * sR23 + ((− I ) * iR13 + rR13 ) * S q r t [ 1 −
↪ sR13 ^2 ] * S q r t [ 1 − sR23 ^2] + ((− I ) * iR11 +
↪ rR11 ) * sR13 * ( Cos [CPR] + I * S in [CPR ] ) ,

KL [ 6 , 2 ] −> ((− I ) * iR22 + rR22 ) * S q r t [ 1 −
↪ sR13 ^2 ] * sR23 + ((− I ) * iR23 + rR23 ) * S q r t [ 1 −
↪ sR13 ^2 ] * S q r t [ 1 − sR23 ^2] + ((− I ) * iR21 +
↪ rR21 ) * sR13 * ( Cos [CPR] + I * S in [CPR ] ) ,

KL [ 6 , 3 ] −> ((− I ) * iR32 + rR32 ) * S q r t [ 1 −
↪ sR13 ^2 ] * sR23 + ((− I ) * iR33 + rR33 ) * S q r t [ 1 −
↪ sR13 ^2 ] * S q r t [ 1 − sR23 ^2] + ((− I ) * iR31 +
↪ rR31 ) * sR13 * ( Cos [CPR] + I * S in [CPR ] )
↪ } ,

TeX −> S u p e r s c r i p t [V , KL ] ,
D e s c r i p t i o n −> ” Le f t−handed−l e p t o n i c −mixing−Matr ix ” } ,

KR == {
ParameterType −> I n t e r n a l ,
I n d i c e s −> { Index [ Gen2 ] , Index [ Gene ra t i on ] } ,
Value −> {

KR [ 1 , 1 ] −> −(((− I ) * iR11 + rR11 ) * S q r t [ 1 −
↪ sL12 ^2 ] * S q r t [ 1 − sL13 ^ 2 ] ) − ((− I ) * iR21 +
↪ rR21 ) * ( − ( sL12 * S q r t [ 1 − sL23 ^ 2 ] ) − Sq r t [ 1 −
↪ sL12 ^2 ] * sL13 * sL23 * ( Cos [CPL ] + I * S in [CPL ] ) ) −
↪ ((− I ) * iR31 + rR31 ) * ( sL12 * sL23 − Sq r t [ 1 −
↪ sL12 ^2 ] * sL13 * S q r t [ 1 − sL23 ^ 2 ] * ( Cos [CPL ] +
↪ I * S in [CPL ] ) ) ,

KR [ 1 , 2 ] −> −(((− I ) * iR12 + rR12 ) * S q r t [ 1 −
↪ sL12 ^2 ] * S q r t [ 1 − sL13 ^ 2 ] ) − ((− I ) * iR22 +
↪ rR22 ) * ( − ( sL12 * S q r t [ 1 − sL23 ^ 2 ] ) − Sq r t [ 1 −
↪ sL12 ^2 ] * sL13 * sL23 * ( Cos [CPL ] + I * S in [CPL ] ) ) −
↪ ((− I ) * iR32 + rR32 ) * ( sL12 * sL23 − Sq r t [ 1 −
↪ sL12 ^2 ] * sL13 * S q r t [ 1 − sL23 ^ 2 ] * ( Cos [CPL ] +
↪ I * S in [CPL ] ) ) ,
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KR [ 1 , 3 ] −> −(((− I ) * iR13 + rR13 ) * S q r t [ 1 −
↪ sL12 ^2 ] * S q r t [ 1 − sL13 ^ 2 ] ) − ((− I ) * iR23 +
↪ rR23 ) * ( − ( sL12 * S q r t [ 1 − sL23 ^ 2 ] ) − Sq r t [ 1 −
↪ sL12 ^2 ] * sL13 * sL23 * ( Cos [CPL ] + I * S in [CPL ] ) ) −
↪ ((− I ) * iR33 + rR33 ) * ( sL12 * sL23 − Sq r t [ 1 −
↪ sL12 ^2 ] * sL13 * S q r t [ 1 − sL23 ^ 2 ] * ( Cos [CPL ] +
↪ I * S in [CPL ] ) ) ,

KR [ 2 , 1 ] −> −(((− I ) * iR11 + rR11 ) * sL12 * S q r t [ 1 −
↪ sL13 ^ 2 ] ) − ((− I ) * iR21 + rR21 ) * ( S q r t [ 1 −
↪ sL12 ^2 ] * S q r t [ 1 − sL23 ^2] −
↪ sL12 * sL13 * sL23 * ( Cos [CPL ] + I * S in [CPL ] ) ) −
↪ ((− I ) * iR31 + rR31 ) * ( − ( S q r t [ 1 − sL12 ^2 ] * sL23 ) −
↪ sL12 * sL13 * S q r t [ 1 − sL23 ^ 2 ] * ( Cos [CPL ] +
↪ I * S in [CPL ] ) ) ,

KR [ 2 , 2 ] −> −(((− I ) * iR12 + rR12 ) * sL12 * S q r t [ 1 −
↪ sL13 ^ 2 ] ) − ((− I ) * iR22 + rR22 ) * ( S q r t [ 1 −
↪ sL12 ^2 ] * S q r t [ 1 − sL23 ^2] −
↪ sL12 * sL13 * sL23 * ( Cos [CPL ] + I * S in [CPL ] ) ) −
↪ ((− I ) * iR32 + rR32 ) * ( − ( S q r t [ 1 − sL12 ^2 ] * sL23 ) −
↪ sL12 * sL13 * S q r t [ 1 − sL23 ^ 2 ] * ( Cos [CPL ] +
↪ I * S in [CPL ] ) ) ,

KR [ 2 , 3 ] −> −(((− I ) * iR13 + rR13 ) * sL12 * S q r t [ 1 −
↪ sL13 ^ 2 ] ) − ((− I ) * iR23 + rR23 ) * ( S q r t [ 1 −
↪ sL12 ^2 ] * S q r t [ 1 − sL23 ^2] −
↪ sL12 * sL13 * sL23 * ( Cos [CPL ] + I * S in [CPL ] ) ) −
↪ ((− I ) * iR33 + rR33 ) * ( − ( S q r t [ 1 − sL12 ^2 ] * sL23 ) −
↪ sL12 * sL13 * S q r t [ 1 − sL23 ^ 2 ] * ( Cos [CPL ] +
↪ I * S in [CPL ] ) ) ,

KR [ 3 , 1 ] −> −(((− I ) * iR21 + rR21 ) * S q r t [ 1 −
↪ sL13 ^2 ] * sL23 ) − ((− I ) * iR31 + rR31 ) * S q r t [ 1 −
↪ sL13 ^2 ] * S q r t [ 1 − sL23 ^2] − ((− I ) * iR11 +
↪ rR11 ) * sL13 * ( Cos [CPL ] − I * S in [CPL ] ) ,

KR [ 3 , 2 ] −> −(((− I ) * iR22 + rR22 ) * S q r t [ 1 −
↪ sL13 ^2 ] * sL23 ) − ((− I ) * iR32 + rR32 ) * S q r t [ 1 −
↪ sL13 ^2 ] * S q r t [ 1 − sL23 ^2] − ((− I ) * iR12 +
↪ rR12 ) * sL13 * ( Cos [CPL ] − I * S in [CPL ] ) ,
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KR [ 3 , 3 ] −> −(((− I ) * iR23 + rR23 ) * S q r t [ 1 −
↪ sL13 ^2 ] * sL23 ) − ((− I ) * iR33 + rR33 ) * S q r t [ 1 −
↪ sL13 ^2 ] * S q r t [ 1 − sL23 ^2] − ((− I ) * iR13 +
↪ rR13 ) * sL13 * ( Cos [CPL ] − I * S in [CPL ] ) ,

KR [ 4 , 1 ] −> ( 1 + ( − ( ( ( − I ) * iR11 + rR11 ) * ( I * iR11 +
↪ rR11 ) ) − ((− I ) * iR21 + rR21 ) * ( I * iR21 + rR21 ) −
↪ ((− I ) * iR31 + rR31 ) * ( I * iR31 + rR31 ) ) / 2 ) * S q r t [ 1
↪ − sR12 ^2 ] * S q r t [ 1 − sR13 ^2] + ( ( − ( ( ( − I ) * iR11 +
↪ rR11 ) * ( I * iR12 + rR12 ) ) − ((− I ) * iR21 +
↪ rR21 ) * ( I * iR22 + rR22 ) − ((− I ) * iR31 +
↪ rR31 ) * ( I * iR32 + rR32 ) ) * ( − ( sR12 * S q r t [ 1 −
↪ sR23 ^ 2 ] ) − Sq r t [ 1 −
↪ sR12 ^2 ] * sR13 * sR23 * ( Cos [CPR] + I * S in [CPR ] ) ) ) / 2
↪ + ( ( − ( ( ( − I ) * iR11 + rR11 ) * ( I * iR13 + rR13 ) ) −
↪ ((− I ) * iR21 + rR21 ) * ( I * iR23 + rR23 ) −
↪ ((− I ) * iR31 + rR31 ) * ( I * iR33 + rR33 ) ) * ( sR12 * sR23
↪ − Sq r t [ 1 − sR12 ^2 ] * sR13 * S q r t [ 1 −
↪ sR23 ^ 2 ] * ( Cos [CPR] + I * S in [CPR ] ) ) ) / 2 ,

KR [ 4 , 2 ] −> ( ( − ( ( I * iR11 + rR11 ) * ( ( − I ) * iR12 + rR12 ) )
↪ − ( I * iR21 + rR21 ) * ( ( − I ) * iR22 + rR22 ) − ( I * iR31
↪ + rR31 ) * ( ( − I ) * iR32 + rR32 ) ) * S q r t [ 1 −
↪ sR12 ^2 ] * S q r t [ 1 − sR13 ^ 2 ] ) / 2 + ( 1 +
↪ ( − ( ( ( − I ) * iR12 + rR12 ) * ( I * iR12 + rR12 ) ) −
↪ ((− I ) * iR22 + rR22 ) * ( I * iR22 + rR22 ) −
↪ ((− I ) * iR32 + rR32 ) * ( I * iR32 +
↪ rR32 ) ) / 2 ) * ( − ( sR12 * S q r t [ 1 − sR23 ^ 2 ] ) − Sq r t [ 1 −
↪ sR12 ^2 ] * sR13 * sR23 * ( Cos [CPR] + I * S in [CPR ] ) ) +
↪ ( ( − ( ( ( − I ) * iR12 + rR12 ) * ( I * iR13 + rR13 ) ) −
↪ ((− I ) * iR22 + rR22 ) * ( I * iR23 + rR23 ) −
↪ ((− I ) * iR32 + rR32 ) * ( I * iR33 + rR33 ) ) * ( sR12 * sR23
↪ − Sq r t [ 1 − sR12 ^2 ] * sR13 * S q r t [ 1 −
↪ sR23 ^ 2 ] * ( Cos [CPR] + I * S in [CPR ] ) ) ) / 2 ,

KR [ 4 , 3 ] −> ( ( − ( ( I * iR11 + rR11 ) * ( ( − I ) * iR13 + rR13 ) )
↪ − ( I * iR21 + rR21 ) * ( ( − I ) * iR23 + rR23 ) − ( I * iR31
↪ + rR31 ) * ( ( − I ) * iR33 + rR33 ) ) * S q r t [ 1 −
↪ sR12 ^2 ] * S q r t [ 1 − sR13 ^ 2 ] ) / 2 + ( ( − ( ( I * iR12 +
↪ rR12 ) * ( ( − I ) * iR13 + rR13 ) ) − ( I * iR22 +
↪ rR22 ) * ( ( − I ) * iR23 + rR23 ) − ( I * iR32 +
↪ rR32 ) * ( ( − I ) * iR33 + rR33 ) ) * ( − ( sR12 * S q r t [ 1 −
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↪ sR23 ^ 2 ] ) − Sq r t [ 1 −
↪ sR12 ^2 ] * sR13 * sR23 * ( Cos [CPR] + I * S in [CPR ] ) ) ) / 2
↪ + ( 1 + ( − ( ( ( − I ) * iR13 + rR13 ) * ( I * iR13 + rR13 ) )
↪ − ((− I ) * iR23 + rR23 ) * ( I * iR23 + rR23 ) −
↪ ((− I ) * iR33 + rR33 ) * ( I * iR33 +
↪ rR33 ) ) / 2 ) * ( sR12 * sR23 − Sq r t [ 1 −
↪ sR12 ^2 ] * sR13 * S q r t [ 1 − sR23 ^ 2 ] * ( Cos [CPR] +
↪ I * S in [CPR ] ) ) ,

KR [ 5 , 1 ] −> ( 1 + ( − ( ( ( − I ) * iR11 + rR11 ) * ( I * iR11 +
↪ rR11 ) ) − ((− I ) * iR21 + rR21 ) * ( I * iR21 + rR21 ) −
↪ ((− I ) * iR31 + rR31 ) * ( I * iR31 +
↪ rR31 ) ) / 2 ) * sR12 * S q r t [ 1 − sR13 ^2] +
↪ ( ( − ( ( ( − I ) * iR11 + rR11 ) * ( I * iR12 + rR12 ) ) −
↪ ((− I ) * iR21 + rR21 ) * ( I * iR22 + rR22 ) −
↪ ((− I ) * iR31 + rR31 ) * ( I * iR32 + rR32 ) ) * ( S q r t [ 1 −
↪ sR12 ^2 ] * S q r t [ 1 − sR23 ^2] −
↪ sR12 * sR13 * sR23 * ( Cos [CPR] + I * S in [CPR ] ) ) ) / 2 +
↪ ( ( − ( ( ( − I ) * iR11 + rR11 ) * ( I * iR13 + rR13 ) ) −
↪ ((− I ) * iR21 + rR21 ) * ( I * iR23 + rR23 ) −
↪ ((− I ) * iR31 + rR31 ) * ( I * iR33 + rR33 ) ) * ( − ( S q r t [ 1
↪ − sR12 ^2 ] * sR23 ) − sR12 * sR13 * S q r t [ 1 −
↪ sR23 ^ 2 ] * ( Cos [CPR] + I * S in [CPR ] ) ) ) / 2 ,

KR [ 5 , 2 ] −> ( ( − ( ( I * iR11 + rR11 ) * ( ( − I ) * iR12 + rR12 ) )
↪ − ( I * iR21 + rR21 ) * ( ( − I ) * iR22 + rR22 ) − ( I * iR31
↪ + rR31 ) * ( ( − I ) * iR32 + rR32 ) ) * sR12 * S q r t [ 1 −
↪ sR13 ^ 2 ] ) / 2 + ( 1 + ( − ( ( ( − I ) * iR12 +
↪ rR12 ) * ( I * iR12 + rR12 ) ) − ((− I ) * iR22 +
↪ rR22 ) * ( I * iR22 + rR22 ) − ((− I ) * iR32 +
↪ rR32 ) * ( I * iR32 + rR32 ) ) / 2 ) * ( S q r t [ 1 −
↪ sR12 ^2 ] * S q r t [ 1 − sR23 ^2] −
↪ sR12 * sR13 * sR23 * ( Cos [CPR] + I * S in [CPR ] ) ) +
↪ ( ( − ( ( ( − I ) * iR12 + rR12 ) * ( I * iR13 + rR13 ) ) −
↪ ((− I ) * iR22 + rR22 ) * ( I * iR23 + rR23 ) −
↪ ((− I ) * iR32 + rR32 ) * ( I * iR33 + rR33 ) ) * ( − ( S q r t [ 1
↪ − sR12 ^2 ] * sR23 ) − sR12 * sR13 * S q r t [ 1 −
↪ sR23 ^ 2 ] * ( Cos [CPR] + I * S in [CPR ] ) ) ) / 2 ,

KR [ 5 , 3 ] −> ( ( − ( ( I * iR11 + rR11 ) * ( ( − I ) * iR13 + rR13 ) )
↪ − ( I * iR21 + rR21 ) * ( ( − I ) * iR23 + rR23 ) − ( I * iR31
↪ + rR31 ) * ( ( − I ) * iR33 + rR33 ) ) * sR12 * S q r t [ 1 −
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↪ sR13 ^ 2 ] ) / 2 + ( ( − ( ( I * iR12 + rR12 ) * ( ( − I ) * iR13 +
↪ rR13 ) ) − ( I * iR22 + rR22 ) * ( ( − I ) * iR23 + rR23 ) −
↪ ( I * iR32 + rR32 ) * ( ( − I ) * iR33 + rR33 ) ) * ( S q r t [ 1 −
↪ sR12 ^2 ] * S q r t [ 1 − sR23 ^2] −
↪ sR12 * sR13 * sR23 * ( Cos [CPR] + I * S in [CPR ] ) ) ) / 2 +
↪ ( 1 + ( − ( ( ( − I ) * iR13 + rR13 ) * ( I * iR13 + rR13 ) ) −
↪ ((− I ) * iR23 + rR23 ) * ( I * iR23 + rR23 ) −
↪ ((− I ) * iR33 + rR33 ) * ( I * iR33 +
↪ rR33 ) ) / 2 ) * ( − ( S q r t [ 1 − sR12 ^2 ] * sR23 ) −
↪ sR12 * sR13 * S q r t [ 1 − sR23 ^ 2 ] * ( Cos [CPR] +
↪ I * S in [CPR ] ) ) ,

KR [ 6 , 1 ] −> ( ( − ( ( ( − I ) * iR11 + rR11 ) * ( I * iR12 + rR12 ) )
↪ − ((− I ) * iR21 + rR21 ) * ( I * iR22 + rR22 ) −
↪ ((− I ) * iR31 + rR31 ) * ( I * iR32 + rR32 ) ) * S q r t [ 1 −
↪ sR13 ^2 ] * sR23 ) / 2 + ( ( − ( ( ( − I ) * iR11 +
↪ rR11 ) * ( I * iR13 + rR13 ) ) − ((− I ) * iR21 +
↪ rR21 ) * ( I * iR23 + rR23 ) − ((− I ) * iR31 +
↪ rR31 ) * ( I * iR33 + rR33 ) ) * S q r t [ 1 − sR13 ^2 ] * S q r t [ 1
↪ − sR23 ^ 2 ] ) / 2 + ( 1 + ( − ( ( ( − I ) * iR11 +
↪ rR11 ) * ( I * iR11 + rR11 ) ) − ((− I ) * iR21 +
↪ rR21 ) * ( I * iR21 + rR21 ) − ((− I ) * iR31 +
↪ rR31 ) * ( I * iR31 + rR31 ) ) / 2 ) * sR13 * ( Cos [CPR] −
↪ I * S in [CPR ] ) ,

KR [ 6 , 2 ] −> ( 1 + ( − ( ( ( − I ) * iR12 + rR12 ) * ( I * iR12 +
↪ rR12 ) ) − ((− I ) * iR22 + rR22 ) * ( I * iR22 + rR22 ) −
↪ ((− I ) * iR32 + rR32 ) * ( I * iR32 + rR32 ) ) / 2 ) * S q r t [ 1
↪ − sR13 ^2 ] * sR23 + ( ( − ( ( ( − I ) * iR12 +
↪ rR12 ) * ( I * iR13 + rR13 ) ) − ((− I ) * iR22 +
↪ rR22 ) * ( I * iR23 + rR23 ) − ((− I ) * iR32 +
↪ rR32 ) * ( I * iR33 + rR33 ) ) * S q r t [ 1 − sR13 ^2 ] * S q r t [ 1
↪ − sR23 ^ 2 ] ) / 2 + ( ( − ( ( I * iR11 + rR11 ) * ( ( − I ) * iR12
↪ + rR12 ) ) − ( I * iR21 + rR21 ) * ( ( − I ) * iR22 + rR22 )
↪ − ( I * iR31 + rR31 ) * ( ( − I ) * iR32 +
↪ rR32 ) ) * sR13 * ( Cos [CPR] − I * S in [CPR ] ) ) / 2 ,

KR [ 6 , 3 ] −> ( ( − ( ( I * iR12 + rR12 ) * ( ( − I ) * iR13 + rR13 ) )
↪ − ( I * iR22 + rR22 ) * ( ( − I ) * iR23 + rR23 ) − ( I * iR32
↪ + rR32 ) * ( ( − I ) * iR33 + rR33 ) ) * S q r t [ 1 −
↪ sR13 ^2 ] * sR23 ) / 2 + ( 1 + ( − ( ( ( − I ) * iR13 +
↪ rR13 ) * ( I * iR13 + rR13 ) ) − ((− I ) * iR23 +
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↪ rR23 ) * ( I * iR23 + rR23 ) − ((− I ) * iR33 +
↪ rR33 ) * ( I * iR33 + rR33 ) ) / 2 ) * S q r t [ 1 −
↪ sR13 ^2 ] * S q r t [ 1 − sR23 ^2] + ( ( − ( ( I * iR11 +
↪ rR11 ) * ( ( − I ) * iR13 + rR13 ) ) − ( I * iR21 +
↪ rR21 ) * ( ( − I ) * iR23 + rR23 ) − ( I * iR31 +
↪ rR31 ) * ( ( − I ) * iR33 + rR33 ) ) * sR13 * ( Cos [CPR] −
↪ I * S in [CPR ] ) ) / 2 } ,

TeX −> S u p e r s c r i p t [V , KR ] ,
D e s c r i p t i o n −> ” Right−handed−l e p t o n i c −mixing−Matr ix ” }
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