1 Supplemental Figures

2 3

Figure S1. Total ion chromatogram of a positive mode UHPLC/TOF-MS run (TIC+) of a whole leaf extract

4 which is compared with an O-acyl sugars (O-AS) extract. The leaf extract is dominated by nicotine,

5 phenylpropanoid polyamine conjugates (PPCs), 17-hydroxygeranyllinalool diterpene glycosides (DTGs), and

6 *O*-AS, while the *O*-AS extract was dominated by a mixture of *O*-AS.

Figure S2: MS² spectra of class 2 *O*-acyl sugars and the annotation of the main fragment peaks (Main
 peaks) and neutral losses. The position of the branched-chain fatty acids could not be verified and may
 vary.

Figure S3: MS² spectra of class 3 *O*-acyl sugars and the annotation of the main fragment peaks (Main
 peaks) and neutral losses. The position of the branched-chain fatty acids could not be verified and may
 vary.

Figure S4: MS² spectra of class 4 *O*-acyl sugars and the annotations of the main fragment peaks (Main
 peaks) and neutral losses. The position of the branched-chain fatty acids could not be verified and may
 vary.

22 Figure S5. *O*-acyl sugars composition of A83, A84 and UT plants. Peak area per gram fresh mass (peak

- 23 area/gFM) of each individual O-AS revealing the overall reduction of all 15 O-AS in A83 and A84 compared to
- 24 UT.

25

27 close-up for the collection sites in Utah and Arizona are presented. Full GPS coordinates are provided in SI

28 Appendix, Table S1. Colors were given to accessions according to their cluster based on O-AS composition

- 29 (Fig. 2B).
- 30

Figure S7. Two low O-AS accessions are not compromised in JA signaling but more susceptible to the
 specialist herbivore. A. M. sexta larvae fed on A83 (red line) and A84 (green line) plants grew faster than those

fed on UT plants. The error bars represent standard errors (n=30). B. The JA-induced defenses in two low *O*-AS
 accessions are intact. A simplified herbivore-induced JA signaling and the defensive responses it activates in *N*.

36 *attenuata* are shown in the middle and five measured traits are shown as bar plots. µg/gFM: µg per gram of

37 fresh mass. Ctrl: control, WOS: wound leaf plus *M. sexta*'s oral secretion. Black bars represent UT while red

38 and green bars represent A83 and A84 plants, respectively. The error bars represent standard error (n= 5- 6). **C**.

39 O-AS are not induced after herbivory. In all panels, asterisks indicate significant differences between A83 (red

40 asterisks) or A84 (green asterisks) and UT at a given treatment or a given time point (*t* test, ***: $P \le 0.001$, **:

- 41 $P \leq 0.01, *: P \leq 0.05$).
- 42
- 43

45 Figure S8. Morphological differences between UT, A83 and A84 plants. A. Representative pictures of UT,

46 A83 and A84 plants at the rosette-stage of growth (30 day-old plants). **B**. Trichome density on the leaves of UT,

47 A83 and A84 plants (n=5). Stem diameter (C), leaf width (D), leaf length (E), the number of days to bolting (F),

48 the number of days to flowering (G), rosette diameter (H) and stalk height (I) of UT compared to that of A83

49 and A84. Asterisks indicate significant differences between A83 (red asterisks) or A84 (green asterisks) and UT

50 at a given treatment (t test, *: $P \le 0.05$). Note the breaks in the Y-axis.

52

53 Figure S9. A83 and A84 show less *O*-acyl sugars in the water wash compared to UT. Base peak

54 chromatogram of a positive mode UHPLC/TOF-MS analysis (BPC+) from UT (black line), A83 (red line), A84

71 NaBCKDEIA (**B**, **C**), acyltransferases NaAT1 (**D**), NaAT2 (**E**), acylsugar acyl hydrolase NaASH1 (**F**), NaASH2

72 (G) in trichomes between A83, 84 compared to UT (n=5-6). Relative gene expression was normalized to the

73 expression of the house keeping gene *N. attenuata* actin 7. Asterisks indicate significant differences between

- A83 (red asterisks) or A84 (green asterisks) and UT at a given treatment (t test, ***: $P \le 0.001$, **: $P \le 0.01$, *: $P \le 0$
- 75 ≤0.05).

77 Figure S12. Expression specificity of *S. lycopersicum* trichome specific promoter (SIAT2) in *N. attenuata*.

78 A. The pRESC2TRC series binary plant transformation vectors used for expressing SIAT2::GFP/GUS in N.

79 attenuata. The1495bp of the trichome-specific promoter from S. lycopersicum SIAT2 gene was inserted into

80 pRESC2TRC vector with the hygromycin (*hptII*) resistance gene as a selection marker. Abbreviations: LB/RB,

81 left/right border of T-DNA; PNOS/TNOS, promoter/terminator of the nopaline synthase gene from the Ti

82 plasmid of Agrobacterium tumefaciens; PTRC, trichome specific promoter from Solanum lycopersicum SIAT2;

83 T35S, 35S terminator from cauliflower mosaic virus; *hptII*, hygromycin phosphotransferase gene from

84 pCAMBIA-1301 (AF234297); *nptII*, amino glycoside phosphotransferase class II; ori, origin of replication. **B**.

85 SIAT2::GUS is expressed in tip cells of both type C and D trichome of N. attenuata. Images obtained using a

86 ZEISS stereomicroscope SV 11 with 4x and Axio Zoom.V16 Stereo microscope at 180X magnification.

87 88

Figure S13. Creating irBCKDE1B transgenic lines using Agrobacterium-transformation. A. Two

89 Agrobacterium-transformed lines irBCKDE1B-132-10 and irBCKDE1B-147-2 were subjected to Southern blot

90 analysis using genomic DNA digested with HindIII and XbaI restriction enzyme and hptII-radiolabeled probe.

91 Both lines showed single insertions of T-DNA fragment into the genome. **B**. The pRESC8TRCAS series binary

- 92 plant transformation vectors used for silencing BCKDE1B encoding gene (*NIATv7_g34895*).A 351bp of
- 93 NaBCKDE1B gene was inserted into pRESC8TRCAS vector as an inverted-repeat construct with hptII used as
- 94 plant selection marker gene. Abbreviations: LB/RB, left/right border of T-DNA; PNOS/TNOS, promoter/
- 95 terminator of the nopaline synthase gene from the Ti plasmid of Agrobacterium tumefaciens; PTRC, trichome
- 96 specific promoter from *Solanum lycopersicum* SIAT2; T35S, 35S terminator from cauliflower mosaic virus;
- 97 *hptII*, hygromycin phosphotransferase gene from pCAMBIA-1301 (AF234297); i, intron 3 of

- 98 Flaveriatrinerviapdk gene for pyruvate, orthophosphate dikinase; nptII, amino glycoside phosphotransferase
- 99 class II; ori, origin of replication. C. Trichome density of two independently transformed homozygous
- 100 irBCKDE1B lines and wild-type (WT) plants (n=5). **D** The similarity of the morphology of two Agrobacterium-
- 101 transformed lines irBCKDE1B-132-10 and irBCKDE1B-147-2 at the rosette-stage of growth. E. Individual O-
- 102 AS in 2 irBCKDE1B independent lines. Error bars represent standard error. Asterisks indicate significant
- 103 differences between WT and individual irBCKDE1B lines (*t* test, ***: $P \le 0.001$, **: $P \le 0.01$, *: $P \le 0.05$).

105 Figure S14. Detached leaf assay on irBCKDE1B transgenic lines. Necrotic lesions caused by *Fusarium* (A)

106 and Alternaria (B) and on detached leaves of WT, 132-10 and 147-2 at 5 days post inoculation (DPI)

107

108 Figure S15. Effect of *O*-acyl sugars on fungal pathogens. Spore germination and hyphal length of *Alternaria*

109 and Fusarium fungal on plain agar supplemented with O-AS concentrations 1.5 mg/mL in comparison with

- 110 mock treatment at 6 and 12 h post inoculation (HPI) or 3 days post inoculation (DPI). Pictures were taken under
- 111 the light microscope Axio Observer.D1 with 400 X magnification.

 112

 113

 Figure S16. Effect of branched-chain fatty acids (BCFAs) on fungal pathogens. Spore germination and

114 hyphal length of Alternaria and Fusarium fungal on plain agar supplemented with BCFAs at concentrations of

- 115 1.5 mg/mL in comparison with mock treatment at 6 and 12 h post inoculation (HPI). Pictures were taken under
- 116 the light microscope Axio Observer.D1 with 400 X magnification.
- 117

118 Literature Cited

- 119 Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: Molecular evolutionary
- genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods.
 Molecular Biology and Evolution 28(10): 2731-2739.

122 Supplemental Tables

Table S1: GPS coordinates of 26 natural accessions

No. of			
accession	Accession	Latitude	Longitude
1	A84	37°19'35.48"N	113°57'38.28"W
2	A83	37°19'35.48"N	113°57'38.28"W
3	A422	35°12'44.80"N	111°28'24.80"W
4	A421	35°12'31.10"N	111°28'8.38"W
5	A278	37°16'16.22"N	114° 7'39.67"W
6	A305	37°45'19.61"N	118°35'41.82"W
7	A224	37°19'33.89"N	113°57'54.16"W
8	A138	37° 8'19.58"N	114° 1'35.10"W
9	A351	37°17'9.10"N	114° 7'31.50"W
10	UT	37°19'36.26"N	113°57'53.05"W
11	A133	37° 6'12.50"N	113°49'36.60"W
12	Az	35°13'8.62"N	111°28'26.03"W
13	A308	37°13'5.50"N	113°48'24.25"W
14	A149	35°12'56.07''N	111°27'41.29"W
15	A43	37°17'9.10"N	114° 7'31.50"W
16	A214	37°13'15.83"N	113°48'20.86"W
17	A384	37°14'27.05"N	113°49'36.71"W
18	A304	37°20'22.52"N	114° 2'40.86"W
19	A341	37° 9'45.30"N	114° 0'58.52"W
20	A331	37°13'15.83"N	113°48'20.86"W
21	A194	37°20'22.52"N	114° 2'40.86"W
22	A97	37°21'35.24"N	113°56'38.68"W
23	A382	37°14'27.05"N	113°49'36.71"W
24	A176	37°16'38.65"N	113°53'35.18"W
25	A179	37°21'1.04"N	113°57'5.17"W
26	A85	37°19'35.48"N	113°57'38.28"W

- 125 Table S2. The list of m/z and retention times (RT) used to identify and measure O-acyl sugars (O-AS). O-AS
- 126 annotation was done as described by Kim et al. (2012) which includes sucrose backbone (S for sucrose), the

127 number of acyl chains, the total number of carbons for acyl chains and the expected length of each acyl chain.

	<i>O</i> -AS				
O -acyl sugars	annotation	m/z	m/z width	RT(min)	RT width
AS1	\$3:13(4,5,4)	589.24	0.05	8.6	0.5
AS2	\$3:14 (5,4,5)	603.26	0.05	9.4	0.5
AS3	\$3:15 (5,5,5)	617.27	0.05	10.1	0.5
AS4	\$3:16 (6,5,5)	631.29	0.01	10.9	0.5
AS5	\$3:17 (6,5,6)	645.31	0.01	11.7	0.5
AS6	\$3:18 (6,6,6)	659.32	0.01	12.3	0.5
AS7	S4:15 (2,4,4,5)	631.25	0.05	9.9	0.5
AS8	S4:16 (2,5,4,5)	645.27	0.01	10.7	0.5
AS9	S4:17 (2,5,4,6)	659.29	0.01	11.3	0.5
AS10	S4:18 (2,5,5,6)	673.3	0.01	12	0.5
AS11	S4:19 (2,6,5,6)	687.32	0.01	12.9	0.5
AS12	\$5:17 (2,4,4,5)	673.27	0.01	11.1	0.5
AS13	\$5:18 (2,4,5,5,2)	687.28	0.01	11.8	0.5
AS14	\$5:19 (2,4,5,6,2)	701.29	0.01	12.6	0.5
AS15	\$5:20 (2,4,6,6,2)	715.31	0.01	13.4	0.5

129

130 Table S3: Branched-chain fatty acids (BCFAs) compositions of *N. attenuata O*-acyl sugars (*O*-AS).

131 Retention times (RT) and indices (RI) of authentic standards are compared to those found in the extract of

132 saponified *O*-AS. The most abundant BCFAs are highlighted (bold).

		RT	RI	RT	RI
	Acid	Single St	andards	extracthy	drolysis
1	aceticacid	19.386	1456	19.319	1453
2	propionicacid	21.538	1543	21.603	1546
3	2-methyl propanoicacid	22.281	1574	22.124	1567
4	2-methy butanoicacid	24.679	1678	24.501	1670
5	3-methyl butanoicacid	24.678	1678	24.501	1670
6	3-methyl pentanoicacid	27.393	1802	27.265	1796
7	4-methyl pentanoicacid	27.601	1813	27.46	1806
8	hexanoicacid	28.536	1859	28.426	1853

134 **Table S4:** MS²-spectral data showing the annotation of class 2 *O*-acyl sugars elemental formulas, their

135 calculated monoisotopic mass, the elemental formula of fragment ions, and their annotations, intensity and m/z

¹³⁶ values compared to the calculated m/z values.

ID	Monoisotopic mass El Formula	Elemental Formula Fragments	Annotation	Annotation Intensity		m/z Calc	Δррт
		$C_{25}H_{42}O_{14}Na^+$	$[M+Na]^+$	14.68	589.2477	589.2467	1
		$C_{19}H_{32}O_9Na^+$	$[(M - C_6H_{10}O_5) + Na]^+$	100.00	427.1935	427.1938	0.3
AS1	566.2926 C ₂₅ H ₄₂ O ₁₄	$\mathrm{C_{15}H_{24}O_{7}Na}^{+}$	$[(M - C_6H_{10}O_5 - C_4H_8O_2) + Na]^+$	4.36	339.1383	339.1414	3.1
		$\mathrm{C_{14}H_{22}O_{7}Na^{+}}$	$[(M - C_6H_{10}O_5 - C_5H_{10}O_2) + Na]^+$	5.88	325.1317	325.1257	6
		$C_6H_{10}O_5Na^+$	$[(M - C_{19}H_{32}O_9) + Na]^+$	3.33	185.0404	185.042	1.6
		$C_{26}H_{44}O_{14}Na^+$	$[M+Na]^+$	100.00	603.2663	603.2623	4
		$C_{20}H_{34}O_9Na^+$	$[(M - C_6H_{10}O_5) + Na]^+$	33.88	441.2048	441.2095	4.7
AS2	580.2731 C ₂₆ H ₄₄ O ₁₄	$\mathrm{C_{15}H_{24}O_{7}Na^{+}}$	$[(M - C_6H_{10}O_5 - C_4H_8O_2)+Na]^+$	7.52	353.1583	353.1571	1.2
		$\mathrm{C_{15}H_{24}O_{7}Na^{+}}$	$[(M - C_6H_{10}O_5 - C_5H_{10}O_2) + Na]^+$	6.58	339.1448	339.1414	3.4
		$\mathrm{C_6H_{10}O_5Na^+}$	$[(M - C_{20}H_{34}O_9) + Na]^+$	4.36	185.0404	185.042	1.6
		$C_{27}H_{46}O_{14}Na^{+}$	$[M+Na]^+$	16.82	617.2756	617.2779	2.3
		$C_{21}H_{36}O_9Na^+$	$[(M - C_6H_{10}O_5) + Na]^+$	100.00	455.2249	455.2251	0.2
AS3	594.2887	$\mathrm{C_{17}H_{28}O_7Na^+}$	$[(M - C_6H_{10}O_5 - C_4H_8O_2)+Na]^+$	1.83	367.1745	367.1727	1.8
	$C_{27}H_{46}O_{14}$	$C_{16}H_{26}O_7Na^+$	$\begin{bmatrix} (M - C_6 H_{10} O_5 - C_5 H_{10} O_2) + Na \end{bmatrix}^+$	6.13	353.1538	353.157	3.2
		$\mathrm{C_{15}H_{24}O_{7}Na^{+}}$	$\begin{array}{l} \left[(M \ \text{-} C_6 H_{10} O_5 \ \text{-} \\ C_6 H_{12} O_2) \text{+} Na \right]^+ \end{array}$	4.30	339.1365	339.1414	4.9
		$C_6H_{10}O_5Na^+$	$[(M - C_{21}H_{36}O_9) + Na]^+$	2.88	185.0406	185.042	1.4
		$C_{28}H_{48}O_{14}Na^{+}$	$[M+Na]^+$	18.98	631.2962	631.2926	3.6
		$C_{22}H_{38}O_9Na^+$	$[(M - C_6H_{10}O_5) + Na]^+$	100.00	469.2403	469.2408	0.5
AS4	608.3044 C ₂₈ H ₄₈ O ₁₄	$\mathrm{C_{17}H_{28}O_7Na^+}$	$\begin{array}{l} [(M \ \text{-} C_6 H_{10} O_5 \ \text{-} \\ C_5 H_{10} O_2) \ \text{+} Na]^+ \end{array}$	2.54	367.1625	367.1727	10.2
		$\mathrm{C_{16}H_{26}O_7Na}^+$	$[(M - C_6H_{10}O_5 - C_6H_{12}O_2) + Na]^+$	7.66	353.1575	353.157	0.5
		$\mathrm{C_6H_{10}O_5Na^+}$	$[(M - C_{22}H_{38}O_9) + Na]^+$	2.71	185.0419	185.042	0.1
		$C_{29}H_{50}O_{14}Na^+$	$[M+Na]^+$	20.23	645.3117	645.3093	2.4
		$C_{23}H_{40}O_9Na^+$	$[(M - C_6H_{10}O_5) + Na]^+$	100.00	483.2553	483.2564	1.1
AS5	622.3201 C ₂₉ H ₅₀ O ₁₄	$C_{18}H_{30}O_7Na^+$	$\begin{array}{l} \left[(M \ \text{-} C_6 H_{10} O_5 \ \text{-} \\ C_5 H_{10} O_2) \text{+} Na \right]^+ \end{array}$	2.33	381.1848	381.1883	3.5
	27 50 14	$\mathrm{C_{17}H_{28}O_{7}Na^{+}}$	$[(M - C_6H_{10}O_5 - C_6H_{12}O_2) + Na]^+$	9.52	367.1711	367.1727	1.6
		$\mathrm{C_6H_{10}O_5Na^+}$	$[(M - C_{23}H_{40}O_9) + Na]^+$	3.42	185.0412	185.042	0.8
		$C_{30}H_{52}O_{14}Na^+$	$[M+Na]^+$	25.23	659.324	659.3249	0.9
	636.3249	$C_{24}H_{42}O_9Na^+$	$[(M - C_6H_{10}O_5) + Na]^+$	100.00	497.2725	497.2721	0.4
AS6	$C_{30}H_{52}O_{14}$	$\mathrm{C_{18}H_{30}O_7Na^+}$	$[(M - C_6H_{10}O_5 - C_6H_{12}O_2) + Na]^+$	9.24	381.1893	381.1883	1
		$\mathrm{C_6H_{10}O_5Na^+}$	$[(M - C_{24}H_{42}O_9) + Na]^+$	2.54	185.0408	185.042	1.2

Table S5: MS²-spectral data showing the annotations of class 3 *O*-acyl sugars elemental formulas, their

139 calculated monoisotopic mass, the elemental formula of fragment ions, their annotations, intensity and m/z

140 values compared to the calculated m/z values.

ID	Monoisotopic mass El Formula	Elemental Formula Fragments	Annotation	Intensity	m/z Fragment	m/z Calc	Δррт
		$C_{27}H_{44}O_{15}Na^+$	$[M+Na]^+$	100.00	631.2554	631.2572	1.8
		$C_{23}H_{36}O_{13}Na^+$	$[(M - C_4H_8O_2)+Na]^+$	5.99	543.199	543.2048	5.8
	608 2680	$\mathrm{C_{19}H_{32}O_9Na^+}$	$[(M - C_8H_{12}O_6) + Na]^+$	40.35	427.1928	427.1939	1.1
AS7	$C_{27}H_{44}O_{15}$	$C_{14}H_{22}O_7Na^+$	$\begin{array}{l} [(M \ \text{-} C_8 H_{12} O_6 \ \text{-} \\ C_5 H_{10} O_2) \text{+} Na]^+ \end{array}$	4.27	325.1222	325.1258	3.6
		$C_8H_{13}O_6^{+}$	$[M - C_{19}H_{31}O_9Na]^+$	5.32	205.0702	205.0706	0.4
		$C_{5}H_{5}O_{2}^{+}$	$[C_8H_{13}O_6 - C_2H_4O_2 - HCHO - H_2O]^+$	6.32	97.0291	97.0285	0.6
		$C_{28}H_{46}O_{15}Na^+$	$[M+Na]^+$	100.00	645.2746	645.2729	1.7
		$C_{24}H_{38}O_{13}Na^+$	$\left[(M - C_4 H_8 O_2) + Na\right]^+$	4.83	557.219	557.2204	1.4
		$C_{23}H_{36}O_{13}Na^+$	$[(M - C_5H_{10}O_2)+Na]^+$	2.55	543.2058	543.2048	1
		$C_{22}H_{34}O_{13}Na^+$	$[(M-C_6H_{12}O_2)+Na]^+$	1.48	529.1925	529.1891	3.4
	622.2837 C ₂₈ H ₄₆ O ₁₅	$C_{20}H_{34}O_9Na^+$	$[(M - C_8H_{12}O_6) + Na]^+$	38.54	441.2082	441.2095	1.3
AS8		$C_{16}H_{26}O_7Na^+$	$\left[(M - C_8 H_{12} O_6 - C_4 H_8 O_2) + Na \right]^+$	1.57	353.1538	353.157	3.2
		$C_{15}H_{24}O_7Na^+$	$\begin{array}{l} [(M \ \text{-} C_8 H_{12} O_6 \ \text{-} \\ C_5 H_{10} O_2) \text{+} Na]^+ \end{array}$	2.22	339.1365	339.1414	4.9
		$C_{14}H_{22}O_7Na^+$	$\begin{array}{l} [(M \ -C_8 H_{12} O_6 \ - \\ C_6 H_{12} O_2) + Na]^+ \end{array}$	4.11	325.125	325.1258	0.8
		$C_8H_{13}O_6^{+}$	$[M - C_{20}H_{33}O_9Na]^+$	6.09	205.0699	205.0706	0.7
		$C_{5}H_{5}O_{2}^{+}$	$\begin{array}{c} [{\rm C_8H_{13}O_6} \text{ - } {\rm C_2H_4O_2} \text{ - } \\ {\rm HCHO} \text{ - } {\rm H_2O]}^+ \end{array}$	6.79	97.0281	97.0285	0.4
		$C_{29}H_{48}O_{15}Na^+$	$[M+Na]^+$	100.00	659.292	659.2885	3.5
		$C_{25}H_{40}O_{13}Na^+$	$[(M - C_4H_8O_2)+Na]^+$	2.92	571.2342	571.2361	1.9
		$C_{24}H_{38}O_{13}Na^+$	$[(M - C_5H_{10}O_2)+Na]^+$	3.64	557.2251	557.2204	4.7
		$C_{23}H_{36}O_{13}Na^+$	$[(M-C_6H_{12}O_2)+Na]^+$	2.38	543.2059	543.2048	1.1
		$\mathrm{C_{21}H_{36}O_9Na^+}$	$[(M - C_8H_{12}O_6) + Na]^+$	33.45	455.2255	455.2251	0.4
AS9	636.2993 C ₂₉ H ₄₈ O ₁₅	$C_{17}H_{28}O_7Na^+$	$[(M - C_8H_{12}O_6 - C_4H_8O_2)+Na]^+$	1.14	367.1748	367.1727	2.1
		$C_{16}H_{26}O_7Na^+$	$[(M - C_8H_{12}O_6 - C_5H_{10}O_2)+Na]^+$	1.41	353.1542	353.157	2.8
		$\mathrm{C_{15}H_{24}O_{7}Na^{+}}$	$[(M - C_8H_{12}O_6 - C_6H_{12}O_2)+Na]^+$	5.64	339.1431	339.1414	1.7
		$C_8H_{13}O_6^{+}$	$[M - C_{21}H_{35}O_9Na]^+$	7.08	205.0699	205.0706	0.7
		$C_{5}H_{5}O_{2}^{+}$	$ \begin{array}{c} [{\rm C_8H_{13}O_6} {\rm C_2H_4O_2} \\ {\rm HCHO} {\rm H_2O]^+} \end{array} $	6.08	97.0279	97.0285	0.6

143 Table S5 continued:

ID	Monoisotopic mass El Formula	Elemental Formula Fragments	Annotation	Intensity	m/z Fragment	m/z Calc	Δррт
		$C_{30}H_{50}O_{15}Na^+$	$[M+Na]^+$	100.00	673.305	673.3041	0.9
		$C_{25}H_{40}O_{13}Na^+$	$[(M - C_5H_{10}O_2)+Na]^+$	2.72	571.2365	571.2361	0.4
		$C_{24}H_{38}O_{13}Na^+$	$[(M-C_6H_{12}O_2)+Na]^+$	4.80	557.2244	557.2204	4
		$C_{22}H_{38}O_9Na^+$	$[(M - C_8H_{12}O_6) + Na]^+$	31.03	469.2377	469.2408	3.1
AS10	$\begin{array}{c} 650.315 \\ C_{30}H_{50}O_{15} \end{array}$	$C_{17}H_{28}O_7Na^+$	$[(M - C_8H_{12}O_6 - C_5H_{10}O_2) + Na]^+$	1.95	367.1767	367.1727	4
		$C_{16}H_{26}O_{7}Na^{+}$	$[(M - C_8H_{12}O_6 - C_6H_{12}O_2) + Na]^+$	3.46	353.155	353.157	2
		$C_8H_{13}O_6^{+}$	$[M - C_{22}H_{37}O_9Na]^+$	5.67	205.07	205.0706	0.6
		$C_{5}H_{5}O_{2}^{+}$	$\begin{bmatrix} C_8 H_{13} O_6 - C_2 H_4 O_2 - \\ H C H O - H_2 O \end{bmatrix}^+$	3.36	97.0276	97.0285	0.9
		$C_{31}H_{52}O_{15}Na^+$	$[M+Na]^+$	100.00	687.3213	687.3198	1.5
		$C_{26}H_{42}O_{13}Na^+$	$[(M - C_5H_{10}O_2)+Na]^+$	1.69	585.2495	585.2517	2.2
		$C_{25}H_{40}O_{13}Na^+$	$[(M-C_6H_{12}O_2)+Na]^+$	4.84	571.2363	571.2361	0.2
4511	664.3306	$C_{23}H_{40}O_9Na^+$	$[(M - C_8H_{12}O_6) + Na]^+$	30.06	483.2559	483.2565	0.6
ASII	$C_{31}H_{52}O_{15}$	$C_{17}H_{28}O_7Na^+$	$[(M - C_8H_{12}O_6 - C_6H_{12}O_2) + Na]^+$	5.62	367.1723	367.1727	0.4
		$C_8H_{13}O_6^{+}$	$[M - C_{23}H_{39}O_9Na]^+$	5.41	205.0713	205.0706	0.7
		$C_{5}H_{5}O_{2}^{+}$	$\begin{array}{c} [{\rm C_8H_{13}O_6} \text{-} {\rm C_2H_4O_2} \text{-} \\ {\rm HCHO} \text{-} {\rm H_2O]}^+ \end{array}$	3.72	97.0285	97.0285	0

147 **Table S6:** MS²-spectral data showing the annotations of class 4 *O*-acyl sugars elemental formulas, their

148 calculated monoisotopic mass, the elemental formula of fragment ions, and their annotations, intensity and m/z

149 values compared to the calculated m/z values.

ID	Monoisotopic mass El Formula	Elemental Formula Fragments	Annotation	Intensity	Fragment Mass	Calc	Δррт
		$C_{29}H_{46}O_{16}Na^+$	$[M+Na]^+$	100.00	673.2723	673.2678	4.5
		$C_{25}H_{38}O_{14}Na^+$	$[(M - C_4H_8O_2)+Na]^+$	3.31	585.2072	585.2153	8.1
		$C_{24}H_{36}O_{14}Na^+$	$[(M - C_5H_{10}O_2)+Na]^+$	4.42	571.1896	571.1997	10.1
AS 12	650.2786	$C_{21}H_{34}O_{10}Na^{+}\\$	$[(M - C_8H_{12}O_6) + Na]^+$	51.73	469.205	469.2044	0.6
110 12	$C_{29}H_{46}O_{16}$	$C_{17}H_{26}O_8Na^+$	$egin{bmatrix} (M - C_8 H_{12} O_6 - C_4 H_8 O_2) + Na \end{bmatrix}^+$	8.37	381.1516	381.1519	0.3
		$C_8H_{13}O_6^{+}$	$[M - C_{21}H_{33}O_{10}Na]^+$	7.53	205.0727	205.0706	2.1
		$C_{5}H_{5}O_{2}^{+}$	$[C_8H_{13}O_6 - C_2H_4O_2 - HCHO - H_2O]^+$	3.72	97.0263	97.0285	2.2
		$C_{30}H_{48}O_{16}Na^{+}$	$[M+Na]^+$	100.00	687.2861	687.2835	2.6
		$C_{26}H_{40}O_{14}Na^+$	$[(M - C_4H_8O_2)+Na]^+$	3.36	599.2303	599.231	0.7
		$C_{25}H_{38}O_{14}Na^+$	$[(M - C_5H_{10}O_2)+Na]^+$	4.52	585.2123	585.2153	3
AS 13	664.2942	$C_{22}H_{36}O_{10}Na^+$	$[(M - C_8H_{12}O_6) + Na]^+$	47.27	483.2189	483.2201	1.2
	$C_{30}H_{48}O_{16}$	$C_{17}H_{26}O_8Na^+$	$\begin{array}{l} [(M - C_8 H_{12} O_6 - \\ C_5 H_{10} O_2) + Na]^+ \end{array}$	8.99	381.1548	381.1519	2.9
		$C_8H_{13}O_6^{+}$	$[M - C_{22}H_{35}O_{10}Na]^+$	10.54	205.0735	205.0706	2.9
		$C_{5}H_{5}O_{2}^{+}$	$[C_8H_{13}O_6 - C_2H_4O_2 - HCHO - H_2O]^+$	7.30	97.0284	97.0285	0.1
		$C_{31}H_{50}O_{16}Na^{+}$	$[M+Na]^+$	100.00	701.2973	701.2991	1.8
		$C_{27}H_{42}O_{14}Na^+$	$[(M - C_4H_8O_2)+Na]^+$	1.58	613.2455	613.2467	1.2
		$C_{26}H_{40}O_{14}Na^+$	$[(M - C_5H_{10}O_2)+Na]^+$	2.58	599.2348	599.231	3.8
		$C_{25}H_{38}O_{14}Na^+$	$[(M - C_6H_{12}O_2) + Na]^+$	2.90	585.2137	585.2153	1.6
		$C_{23}H_{38}O_{10}Na^{+}\\$	$[(M - C_8H_{12}O_6) + Na]^+$	43.62	497.2343	497.2357	1.4
AS 14	678.3098 C ₃₁ H ₅₀ O ₁₆	$C_{19}H_{30}O_8Na^+$	$[(M - C_8H_{12}O_6 - C_4H_8O_2) + Na]^+$	2.15	409.1778	409.1832	5.4
		$C_{18}H_{28}O_8Na^+$	$\frac{\left[(M - C_8H_{12}O_6 - C_5H_{10}O_2) + Na\right]^+}{\left[(M - C_8H_{10}O_2) + Na\right]^+}$	5.48	395.1664	395.1676	1.2
		$C_{17}H_{26}O_8Na^+$	$[(M - C_8H_{12}O_6 - C_6H_{12}O_2) + Na]^+$	4.11	381.1552	381.152	3.2
		$C_8H_{13}O_6^{+}$	$[M - C_{23}H_{37}O_{10}Na]^+$	6.83	205.0703	205.0706	0.3
		$C_{5}H_{5}O_{2}^{+}$	$[C_8H_{13}O_6 - C_2H_4O_2 - HCHO - H_2O]^+$	3.96	97.0299	97.0285	1.4
		$C_{32}H_{52}O_{16}Na^+$	$[M+Na]^+$	100.00	715.3165	715.3148	1.7
		$C_{28}H_{44}O_{14}Na^{+}$	$\left[(M - C_4 H_8 O_2) + Na\right]^+$	2.46	627.2641	627.2623	1.8
		$C_{26}H_{40}O_{14}Na^+$	$[(M-C_6H_{12}O_2)+Na]^+$	5.74	599.2382	599.231	7.2
AS 15	692.3225	$C_{24}H_{40}O_{10}Na^+$	$[(M - C_8H_{12}O_6) + Na]^+$	34.86	511.2514	511.2513	0.1
	$C_{32}H_{52}O_{16}$	$\mathrm{C}_{18}\mathrm{H}_{28}\mathrm{O}_8\mathrm{Na}^+$	$\left[(M - C_8 H_{12} O_6 - C_6 H_{12} O_2) + Na ight]^+$	6.68	395.1661	395.1676	1.5
		$C_8H_{13}O_6^{+}$	$[M - C_{24}H_{39}O_{10}Na]^+$	5.07	205.0733	205.0706	2.7
		$C_{5}H_{5}O_{2}^{+}$	$[C_8H_{13}O_6 - C_2H_4O_2 - HCHO - H_2O]^+$	2.24	97.0289	97.0285	0.4

- 151 Table S7: The concentration of each branched-chain fatty acids (BCFAs) released from *Manduca sexta*'s frass
- 152 and bodies as described by Weinhold and Baldwin (2011) and in the reconstructed mixture for the artificial diet
- 153 and spore germination medium.

	2-methyl butanoic acid	3-methyl butanoic acid	3-methyl pentanoic acid	4-methyl pentanoic acid	Total 4 BCFAs
ng/g frass within 2h	199.6	660.12	5110.2	248.72	6218.64
% in frass within 2h	3.2	10.6	82.2	4.0	
ng/ 3rd instar caterpillar					1504.12
within 2h	44.06	212.32	1210.57	37.17	
% in 3rd instar caterpillar					
within 2h	2.9	14.1	80.5	2.5	
mg/g diet	0.04	0.13	0.99	0.05	1.2
% in diet	3.2	10.6	82.2	4.0	
mg/mL medium	0.1	0.32	2.47	0.12	3
% in medium	3.2	10.6	82.2	4.0	

156 Literature Cited

- Brockmöller T, Ling Z, Li D, Gaquerel E, Baldwin IT, Xu S. 2017. *Nicotiana attenuata* Data Hub (NaDH): an
 integrative platform for exploring genomic, transcriptomic and metabolomic data in wild tobacco.
 BMC Genomics 18(1): 79.
- 160 Kim J, Kang K, Gonzales-Vigil E, Shi F, Jones AD, Barry CS, Last RL (2012) Striking natural diversity in
 161 glandular trichome acylsugar composition is shaped by variation at the acyltransferase2 locus in the
 162 wild tomato *Solanum habrochaites*. Plant Physiology 160: 1854-1870

Weinhold A, Baldwin IT (2011) Trichome derived *O*-acyl sugars are a first meal for caterpillars that tags them for predation. Proceedings of the National Academy of Sciences of the United States of America 108: 7855-7859

166

168 Supplemental Methods

169

170 *O*-AS isolation and characterization

171 To isolate O-AS from N. attenuata plants, we used a protocol similar to that of Van Dam and Hare 172 (1998). All plant parts except the flowers were harvested. The stem was cut into small pieces (approx. 10cm). 173 Around 1 kg of tissue was combined in a 5 L glass beaker (Schott) and soaked in 3 L of chloroform for 1h of 174 stirring. Afterwards, the plant tissue was removed and the solvent was dried over sodium sulfate (anhydrous 175 Sigma-Aldrich). The chloroform was removed in a rotary evaporator and the residue was resolved in acetonitrile 176 (ACN) (VWR International) and sonicated. The ACN phase was partitioned 3 times against n-hexane (VWR 177 International) (ACN: n-Hexane 1:2). The hexane phase was discarded and the ACN was removed in a rotary evaporator. The residue was solved in dichloromethane (DCM) (VWR) and partitioned 3 times against 1N 178 179 tartaric acid (Sigma-Aldrich) 2 times against distilled water. Afterward, the DCM was removed and the glue-180 like, brownish yellow residue was kept under argon at 4°C until further use for bioassay and for MS² 181 experiment. A small portion was dissolved in 40% methanol and analyzed by ultra-high performance liquid 182 chromatography/ time-of-flight mass spectrometry (UHPLC/TOF-MS) to verify the extraction. 183 To fragment the O-AS for MS² experiment, extracted O-AS was dissolved in acetonitrile to a 184 concentration of 1mg/mL. We used an Agilent 1100 HPLC system equipped with a DAD detector. Separation 185 was achieved on a preparative Luna 5n C18 column (250 x 10 mm, 5µm, Phenomenex) connected to a Luna 5n 186 C-18 guard column (50 x 10 mm, 5 μ m) with a mixture of deionized water (0.1 % (v/v) formic acid + 0.1% 187 (v/v) ammonia) (solvent A) and methanol (solvent B) at a flow rate of 3 mL/min. We used an isocratic gradient 188 with 80 % of solvent B for 20 min and then increased to 95% of solvent B in 5 min. The post-run time was 7 189 min. We collected fractions with a Foxy fraction collector (Isco) in 20 mL glass reaction tubes (Schott). 40 190 fractions of 30 s were cut starting 5 min. after injection. The fractions were transferred to scintillation vials and 191 the solvent was evaporated in a vacuum centrifuge (Eppendorf). The single fractions were then analyzed for 192 their content by injection into an UHPLC/TOF-MS system (BrukerDaltonik, Bremen, Germany) with conditions 193 described in Weinhold and Baldwin (2011).

194 For MS² experiments, 1µL of each fraction was separated using a Dionex RSLC system (Dionex, 195 Sunnyvale, USA) with a Dionex Acclaim RSLC 120 C-18 column (150 x 2.1 mm, 2.2 µm). The following 196 binary gradient was applied: 0 to 1 min isocratic 90% A (deionized water, 0.1% (v/v) acetonitrile (Baker, HPLC 197 grade), and 0.05% formic acid), 10% B (acetonitrile and 0.05% formic acid); 1 to 9 min linear gradient to 80% 198 B; isocratic for 2 min. The flow rate was 400 µL/min. MS detection was carried out with an ultra-high 199 performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/Q-TOF-MS) 200 (BrukerDaltonik, Bremen, Germany) operated in positive electrospray mode. Typical instrument settings were 201 as follows: capillary voltage, 4500 V; dry gas temperature, 180 °C; dry gas flow, 10 L/min. Ions were detected 202 from m/z 50 to 1400 at a repetition rate of 1 Hz. The instrument was operated in autoMS/MS mode at various 203 CID voltages from 5 to 75 eV for sodium adducts. Mass calibration was performed using sodium formate 204 clusters (10 mM solution of NaOH in 50/50% v/v isopropanol/water containing 0.2% formic acid). Elemental 205 formula and mass were calculated with the ACD/Labs 12 ChemSketch calculating tool (ACD/Labs, Frankfurt,

206 Germany).

208 Analysis of O-AS acid composition

209 One mg of an O-AS extract, obtained as described above, was saponified by adding 1 mL of a 0.2 M 210 aqueous potassium hydroxide solution (Sigma-Aldrich). The solution was sonicated and kept in a sealed vial for 211 24 h. The mixture was neutralized by adding 1 mL of a 0.2 M hydrochloric acid solution and then partitioned 212 against 1.5 mL dichloromethane (VWR). One µL of the dichloromethane phase was then injected into a Varian 213 3800 gas chromatograph equipped with a ZB-Wax-plus column (30m x 0.25mm x 0.25µm, Restek) and a flame 214 ionization detector (GC-FID) (Agilent). The injector temperature was set to 230°C and the flow was 1 mL/min 215 (constant flow). The oven was kept at 40°C for 5 min, then heated to 185°C at a rate of 5°C/min and finally with 216 a rate of 30°C/min to 250 °C. The FID was operated at 250°C with 25 mL/min make up gas flow and 30 217 mL/min hydrogen and 300 mL/min compressed air flow. The identities of the carboxylic acids were verified by 218 the injection of authentic standards at a concentration of $50 ng/\mu L$. Retention indices were calculated in reference 219 to an alkane standard mixture (C8-C20, Sigma-Aldrich).

220

221 O-AS relative comparison analysis

222 To cross-compare O-AS levels among different accessions or genotypes, we extracted leaf or trichome 223 O-AS using a method described by Gaquerel et al. (2010). Briefly, approximately 100 mg of ground leaf 224 materials (without the midvein) or 50mg trichome materials were homogenized with 2 steel beads by 225 GenoGrinder 2000 (SPEX SamplePrep) at 1100 strokes per minute for 30 seconds and then extracted with 1 mL 226 extraction solution (50 mM acetate buffer, pH 4.8, containing 40% methanol spiked with sucrose monolaurate 227 (Sigma) with final concentration of 10 $ng/\mu L$ as an internal standard. The extraction was done using 228 GenoGrinder 2000 (SPEX SamplePrep) with 1100 strokes per min for 15 minutes. After centrifugation at 229 13,200 rpm for 20 min at 4°C, the supernatant was collected and centrifuged again. 100 µL of the supernatant 230 was transferred to a HPLC vial and 1 µL supernatants were separated using a HPLC Dionex RSLC system 231 (Dionex, Sunnyvale, USA) with a Dionex Acclaim RSLC 120 C-18 column (150 x 2.1 mm, 2.2 µm). The 232 following binary gradient was applied: 0.5 min isocratic 90% A (deionized water, 0.1% (v/v) acetonitrile 233 (Baker, HPLC grade), and 0.05% formic acid), 10% B (acetonitrile and 0.05% formic acid); 13 min linear 234 gradient to 80% B; isocratic for 1.5 min. The flow rate was 400 μ L/min. MS detection was carried out with the 235 UHPLC/TOF-MS system (Bruker Daltonik, Bremen, Germany) operated in positive electrospray mode. Typical 236 instrument settings were described by Gilardoni et al. (2011) with some modification: capillary voltage, 4500 V; 237 dry gas temperature, 200 °C; dry gas flow, 10 L/min. Ions were detected from m/z 50 to 1400 at a repetition rate 238 of 2 Hz. Mass calibration was performed using sodium formate clusters (10 mM solution of NaOH in 50/50% 239 v/v isopropanol/water containing 0.2% formic acid). The peak areas were integrated using extracted ion traces 240 for the sodium adduct [M+Na]+ of each individual O-AS in the QuantAnalysis software version 2.0 SP1 241 (Bruker Daltonics). The amount of each O-AS in plant tissue was normalized internal standard and the fresh 242 weight of the tissue. Total O-AS was calculated by summing the normalized peak area of all 15 O-AS. The 243 annotated 15 O-AS together with its m/z value and retention time (RT) is listed in Table S2. 244

245

Extraction and analysis of phytohormones, secondary metabolites

246 Phytohormone extraction was carried out as described previously by Gilardoni et al. (2011). Briefly,
247 0.1 g of frozen leaf tissue was homogenized with a Genogrinder 2000 (BTC and OPS Diagnostics). One

- 248 milliliter of ethylacetate spiked with $[9,10^{-2}H_2]$ -dihydro-JA and $[^{13}C_6]$ -JA-IIe was added to the samples. After 249 vortexing, the samples were centrifuged for 20 min at 12,000g (4°C). The organic phase was collected and
- evaporated to dryness, which were subsequently reconstituted in 300 mL of 70% (v/v) methanol/water for
- analysis on a Bruker Elite EvoQ Triple quad-MS equipped with a HESI (heated electrospray ionization) ion
- source using the MRM transitions described in (Schäfer et al., 2016). Each phytohormone (JA, JA-Ile) was
- 253 quantified by comparing its peak area with the peak area of its respective internal standard as described in Wu et
- al. (2007). Phytohormone levels were quantified per gram fresh mass ($\mu g/gFM$).
- 255

256 Nicotine and hydroxygeranyllinalool diterpene glycosides (HGL-DTGs) were extracted as described 257 above for O-AS extraction. Analysis of these metabolites was done using an HPLC-DAD method described by 258 Keinanen et al. (2001) with some modification. Briefly, after extraction, 1µL of the supernatants were injected 259 into an Agilent 1100 HPLC (Agilent HPLC 1100 Series, Palo Alto, CA) installed with a Chromolith 260 FastGradient RP-18 (5032 mm; Merck, Darmstadt, Germany) endcapped 50 x 2 mm HPLC column (Lot No. 261 HX802433 Merck, Darmstadt, Germany) attached to a Gemini NX RP18, 3µm, 2 x 4.6 mm precolumn 262 (Phenomenex, Aschaffenburg, Germany) with a column oven set at 40°C. The mobile phase consisted of a mix 263 of solvent A (0.1 % formic acid and 0.1 % ammonium hydroxide solution in water (pH 3.5) and solvent B 264 (methanol) was used in a gradient mode (time/concentration min/% for A: 0:00/100; 0.50/100; 6.50/20; 265 10:00/20; 15:00/100) with a flow rate 0.8 mL/min. Under these conditions, nicotine eluted at a retention time 266 (RT) of 0.5 min (detected by UV absorbance at 260 nm. HGL-DTGs were detected by evaporative light 267 scattering detector (ELSD) after HPLC separation at RT from 7.15 to 8.31 min. The peak areas were integrated 268 using the Chromeleon software (Thermofisher) and nicotine in plant tissue was quantified using external 269 dilution series of standard mixtures of nicotine. The peak areas were quantified to estimate total HGL-DTGs 270 contents and normalized it to tissue fresh mass. The method was described previously by Kaur et al. (2010) 271

272 Ir-construct sequence of NaBCKDE1

279

280 RNA extraction, cDNA synthesis and quantitative real-time PCR

Total RNA was extracted from approximately 50 mg of frozen leaf or trichome tissue with Trizol
(Thermo scientific, 15596-026), followed by DNase-I treatment (Thermo Scientific) according to the
manufacturer's instructions. The cDNA was synthesized from 2 µg of total RNA using RevertAid First Strand
cDNA Synthesis Kit (Thermo scientific, K162). Quantitative real-time PCR was conducted with synthesized
cDNA using the Takyon™ qPCR Kits for SYBR® assays (Eurogentec) and gene-specific primer pairs using
Mx3005P PCR cycler (Stratagene). Relative gene expression was calculated from calibration curves obtained by
analysis of dilution series of cDNA samples, and the values were normalized by the expression of housekeeping

- 288 gene *N. attenuata* actin 7. All reactions were performed using the following qPCR conditions: initial
- denaturation step of 95°C for 3 min, followed by 40 cycles each of 95°C for 10 s, 60°C for 20s and 72°C for
- 290 40s, followed by melting curve analysis of PCR products.
- 291

292 Primer sequences for SYBR-qPCR

- 293 NaBCKDE1B_For: 5'- GTATAAAGGTGGTCATCC-3'
- 294 NaBCKDE1B_Rev: 5'- GCAACATATAATCATCTTCA-3'
- 295 Na_Actin 7_For: 5'- TTCTTCGTCTGGACCTTGCT-3'
- 296 Na_Actin 7_Rev: 5'- ATCATGGATGGCTGGAAGAG-3'
- 297 NaBCKDE1A_1_For: 5'- CAATACATTATGGCTCTAAC -3'
- 298 NaBCKDE1A_1_Rev: 5'- GTCCATTTTCAGAGAATAAG -3'
- 299 NaBCKDE1A_2_For: 5'- GACCCAGTAACTAGATTCAG -3'
- 300 NaBCKDE1A_2_Rev: 5'- GTAAATACATGCTTAATTGG -3'
- 301 NaAT1_For: 5'- CTTATTCATCCAAGCAGTA -3'
- 302 NaAT1_Rev: 5'- AAGATAGTACCTCTTCTGG -3'
- 303 NaAT2_For: 5'- GTTCATCCAAAAGTTTTAC -3'
- 304 NaAT2_Rev: 5'- TCACAGCATGGACTAATG -3'
- 305 NaASH1_For: 5'- GAACTTTATGGCATAGTTG -3'
- 306 NaASH1_Rev: 5'- GTAGTAAACTAAGACGGGTAG -3'
- 307 NaASH2_For: 5'- GTTTTCTCTAAAGACGTCAC -3'
- 308 NaASH2 Rev: 5'- TGACGTAACAGTGATTCC -3'
- 309

310 Literature Cited

- Gaquerel E, Heiling S, Schoettner M, Zurek G, Baldwin IT (2010) Development and validation of a liquid
 chromatography-electrospray ionization-time-of-flight mass spectrometry method for induced changes
 in *Nicotiana attenuata* leaves during simulated herbivory. Journal of Agricultural and Food Chemistry
 58: 9418-9427
- 315 Gilardoni PA, Hettenhausen C, Baldwin IT, Bonaventure G (2011) Nicotiana attenuata LECTIN RECEPTOR
- KINASE1 suppresses the insect-mediated inhibition of induced defense responses during *Manduca sexta* herbivory. The Plant Cell 23: 3512-3532
- Kaur H, Heinzel N, Schottner M, Baldwin IT, Galis I (2010) R2R3-NaMYB8 regulates the accumulation of
 phenylpropanoid-polyamine conjugates, which are essential for local and systemic defense against
 insect herbivores in *Nicotiana attenuata*. Plant Physiology 152: 1731-1747
- Keinanen M, Oldham NJ, Baldwin IT (2001) Rapid HPLC screening of jasmonate-induced increases in tobacco
 alkaloids, phenolics, and diterpene glycosides in *Nicotiana attenuata*. Journal of Agricultural and Food
 Chemistry 49: 3553-3558
- 324 Schäfer M, Brütting C, Baldwin IT, Kallenbach M (2016) High-throughput quantification of more than 100
- primary- and secondary-metabolites, and phytohormones by a single solid-phase extraction based
 sample preparation with analysis by UHPLC-HESI-MS/MS. Plant Methods 12: 30
- 327 Van Dam NM, Hare JD (1998) Biological activity of *Datura wrightii* glandular trichome exudate against

Manduca sexta larvae. Journal of Chemical Ecology 24: 1529-1549
Weinhold A, Baldwin IT (2011) Trichome derived O-acyl sugars are a first meal for caterpillars that tags them
for predation. Proceedings of the National Academy of Sciences of the United States of America 108:
7855-7859
Wu J, Hettenhausen C, Meldau S, Baldwin IT (2007) Herbivory rapidly activates MAPK signaling in attacked
and unattacked leaf regions but not between leaves of *Nicotiana attenuata*. The Plant Cell 19: 10961122