

Supporting Information

Structure of Monomeric Transthyretin Carrying the Clinically Important T119M Mutation

Jin Hae Kim, Javier Oroz, and Markus Zweckstetter*

anie_201608516_sm_miscellaneous_information.pdf

Figure S1. Comparison of experimental ¹H-¹⁵N dipolar couplings measured in T119M M-TTR (x-axis) with those back-calculated from the monomeric subunit of the tetrameric crystal structure of wild-type TTR (y-axis; PDB id: 1F41;^[1] Resolution = 1.5 Å). RDCs of residues in the D/A/G/H-sheet are colored in orange, those in the C/B/E/F-sheet in green.

Figure S2. Comparison of experimental ¹H-¹⁵N RDCs, which were measured for T119M M-TTR, and values back-calculated from 219 tetramer structures (blue bars) deposited in the ProteinDataBank (please see Table S3 for PDB ids). Upper panel: Pearson's correlation coefficients. Most structures have correlation coefficients of 0.91 to 0.93. Lower panel: dipolar coupling quality factors with most crystal structures having values between 0.30 and 0.40. A fit of the experimental ¹H-¹⁵N RDCs, which were not used in the structure calculation of T119M M-TTR, to the 3D structure of T119M M-TTR (determined in the current study), results in a Pearson's correlation coefficient of 0.97 and a RDC quality factor of 0.196 (marked as red bars in panels a and b, respectively).

Figure S3. S² backbone order parameters predicted from experimental chemical shifts of T119M M-TTR (purple) and wild-type TTR (black; BMRB id 5507)^[2] using TALOS-N.^[3] The location of secondary structure elements in wild-type TTR is shown above.

distance constraints	2238
- intraresidue (i = j)	493
- sequential $(i - j = 1)$	665
- medium range (1 < (<i>i</i> − <i>j</i>) ≤ 5)	254
- long range ($i - j > 5$)	826
dihedral angle constraints	214
- φ	93
-ψ	97
- X1	24
number of constraints per residue	19.3
number of long-range constraints per residue	6.5
CYANA target function (Å)	1.29 (± 0.06)
average number of distance constraints violations per	0
_conformer (> 0.5 Å)	
average number of dihedral angle constraints violations per	0
conformer	
average r.m.s.d. for ordered residues ^a to the mean structure	
(Å)	
- backbone atoms (N, Cα, C')	0.5
- all atoms	0.8
Ramachandran plot summary for ordered residues ^a from	
PROCHECK	
 most favored regions (%) 	84.8
 additionally allowed regions (%) 	15.2
 generously allowed regions (%) 	0.0
- disallowed regions (%)	0.0
PROCHECK raw score ^a (ϕ and ψ /all dihedral angle)	-0.67/-0.68
PROCHECK z-score ^a (ϕ and ψ /all dihedral angle)	-2.32/-4.02

Table S1. NMR constraints and structural statistics for the ensemble of 20 lowest-energystructures of T119M M-TTR.

^a Residues 10–97, 105–115, and 117–126 of T119M M-TTR were considered ordered by the Protein Structure Validation Software Suite.

Table S2. NOE contacts to M119 observed in 3D NOESY-HSQC spectra of T119M M-TTR.

118	THR	QG2	119	MET	Н
107	ILE	QD1	119	MET	QE
118	THR	HB	119	MET	HA
119	MET	HA	119	MET	QE
93	VAL	HB	119	MET	QE
107	ILE	HG13	119	MET	QE
109	ALA	HA	119	MET	HB2
119	MET	QE	120	ALA	Н
93	VAL	Н	119	MET	QE
94	VAL	Н	119	MET	QE
109	ALA	HA	119	MET	QE
93	VAL	HA	119	MET	QE
118	THR	HB	119	MET	HB2
109	ALA	QB	119	MET	QE
93	VAL	QG1	119	MET	QE
93	VAL	QG2	119	MET	QE
107	ILE	QG2	119	MET	QE
73	ILE	QD1	119	MET	QE
71	VAL	Н	119	MET	QE
118	THR	HA	119	MET	Н
109	ALA	HA	119	MET	Н
119	MET	Н	119	MET	HB2
118	THR	Н	119	MET	HB2
119	MET	Н	120	ALA	Н
119	MET	HB3	120	ALA	Н
119	MET	HB2	120	ALA	Н

Table S3. PDB ids of TTR structures, which were compared to ¹H-¹⁵N RDCs that were measured for T119M M-TTR (see Figure S2).

	4vdn	3qs7	5al0
1tsh	1thc	4pwi	3cbr
1e3f	2b16	4tai	liin
1dvs	3ine	2gab	2 aad
2+ ~~~	3100	2gdb 3cft	299a Awni
2 L L Y 1 h = 0	1 oth	2122	4 W II J
1111	letb 2feib	JUZI	
1111	3ICD	4185	41K1
ldvy	3hj0	Jeso	31mw
ldvz	4ik'/	3ims	3ng5
ldvq	4t14	4wns	4tls
1dvx	1eta	lsok	3a4e
3i9i	2b15	3p3r	3p3s
2g3z	4ank	4hjt	3p3u
4tm9	4ikj	4pwf	4ac2
ltyr	3bt0	3d2t	2fbr
1dvt	3djz	4act	4y9b
liik	3esp	4pme	2q9k
4mas	4fi7	4tap	4i89
2t.rh	4hiu	3p3t	2aab
1+1m	4tne	1 awh	3a4f
203x	3i9n	2nov	1fh2
Afi8	1n87	2009	1112
4220 1206	107	zqge	- y) C 4 i k 6
2~51	1200 Abia	Jesn	4100
295u 1921	41119 1 - 4 h	3 IIII 2 a fim	4W00
4aC4	1041	SCIM	2077
1bza	lttc	3neo	4abv
ldvu	269a	4his	4pvm
Jtib	3cn3	3dk2	lsoq
4tkw	3kgt	3cfq	4mrb
ltha	3w3b	4mrc	4pm1
1bmz	2b14	2h4e	2qel
lttb	3u2j	4pvn	3cxf
4tlt	4y9g	4qxv	3gs4
1e5a	3nex	4y9e	2f8i
3kgu	4fi6	3glz	3d7p
4pwg	4ikl	3ipb	5a18
1f41	4ky2	4pvl	3a4d
3dis	3kqs	5boj	4v9f
1ttr	4pwk	1tta	1a1o
3imt	4arf	2a4a	4iiz
3nes	1fhn	4pwe	5akv
2000	1++6	1f86	4abg
1hm7	1 z c r	4abw	4abu
1bzo	3192	3cn/	1185
3aa0	J194 4+15	1000	344+
JY50 411+	11.4	49ya 4+11-	Sujt Falrt
411L 4	1 y 1 u 2 -11- 0	4 L L K	Jakt
4 yam	Jaku	4pwj	
JOZL	4pmI	Saks	тако
4hjs	JCÍN	3056	Jdjr
⊥z'/j	3cn2	4tqh	3ssg
ltz8	3imu	3cn1	3grg
3fc8	3imv	4ikk	3dgd
3mlo	3ozk	2g4e	3did
4tq8	411s	1u21	3grb
2roy	4pwh	3cn0	3gps

- [1] A. Hornberg, T. Eneqvist, A. Olofsson, E. Lundgren, A. E. Sauer-Eriksson, *J Mol Biol* **2000**, *302*, 649-669.
- [2] K. Liu, J. W. Kelly, D. E. Wemmer, *J Mol Biol* **2002**, *320*, 821-832.
- [3] Y. Shen, A. Bax, *Methods Mol Biol* **2015**, *1260*, 17-32.