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Abstract

A linear general rate model of two-component liquid chromatography is analyzed consider-

ing heterogenous reactions of types A→B and A⇄B. The model equations incorporate axial

dispersion, external and intra particle pore diffusions, interfacial mass transfer, linear sorp-

tion kinetics, and first order heterogeneous chemical reactions. The solution methodology

successively employs the Laplace transform and linear transformation steps to uncouple

the governing set of coupled differential equations. The resulting system of uncoupled

ODEs is solved by applying an elementary solution technique. The numerical Laplace

inversion is employed to transform back the solutions in the actual time domain. The

current solutions extend and generalize the recent solutions of nonreactive general rate

model for single-solute transport. For validation, a high resolution finite volume scheme

is implemented to obtain the numerical solutions. Different case studies are considered

to verify the correctness of semi-analytical solutions and the accuracy of the numerical

scheme. To further study the behavior of a chromatographic reactor, numerical temporal

moments of the elution profiles are presented for both reactant and product. The derived

semi-analytical solutions are useful tools to study the influence of solid phase reaction

rate constant, interfacial mass transfer rate, intra particle pore diffusion, and reactant

adsorption affinity on the concentration profiles.
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1. Introduction

High performance liquid chromatography is considered as an efficient quantitative and

qualitative chromatographic tool in chemical engineering for the separation of multi com-

ponent mixtures in which each component has different adsorption affinity. Chromato-

graphic techniques have numerous advantages and play key roles in chemical, pharmaceu-

tical, petrochemical, bio-technical, photochemical and food industries. There are several

characteristics which make the HPLC procedures more superior over other forms of chro-

matography namely, (i) it is universally applicable and only few samples are excluded from

the possibility of HPLC, (ii) its analysis time is short, (iii) its operation on much larger

scale is possible, (iv) it has remarkable assay precision (±0.5% ), and (v) HPLC columns

are reusable without regeneration [1–3].

Reactive chromatography is an integrated process in which chemical or biochemical reac-

tions are combined with the chromatographic separation [1–4]. This technique improves

the conversion of reactants and purity of products and has, therefore, attracted several

researchers in the past few decades [2, 4–26].

The chemical reactions inside this integrated process can be catalyzed homogeneously and

heterogeneously. In the case of homogeneous catalysis, the separation of catalyst has to be

taken into account. On the other hand, heterogeneously catalyzed reactions usually occur

in the case of esterification, where the same ion exchange resin act as a catalyst for the

reaction and as an absorbent for the separation. To understand the basic principle of a

fixed-bed chromatographic reactor, let us consider a single column reactor and a reversible

reaction of the type A⇄B. The reactant A is dissolved in the desorbent and is injected as

rectangular pulse into the column packed with the stationary phase. The reaction occurs

at the surface of catalyst to form the product B. Both components A and B interact with

the surface of adsorbent and because of their different affinities to the stationary phase,

they move inside the column with different propagation speeds. Hence, components are
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separated and the driving force for the forward reaction is enhanced and the backward

reaction is suppressed. As a result, chemical equilibrium can be achieved and high purity

product can be obtained at the column outlet.

Mathematical modeling and simulation of chromatography are useful tools to understand

the involved transport mechanisms, to scale up physio-chemical parameters, and to opti-

mize the experimental conditions. Several models exist in the literature with different levels

of complexities to describe the process [2, 3]. The general rate model (GRM) is the most

complicated and detailed model in chromatography among all the transport models [3]. In

GRM, chromatographic separation is governed by several sorption and transport mecha-

nisms at different scales. Molecules in a sample of mixture are transported by convection

through interstitial bulk phase between the chromatographic beads and are dispersed due

to inhomogeneities in the flow. The external film mass transfer resistances equilibrate the

concentration gradients between the bulk phase and the stagnant film round the porous

beads. The intra particle diffusion (combination of pore and surface diffusion), difference in

the adsorption/desorption rate and equilibria make possible the separation of individuals

components from complex mixtures.

The analytical solutions of linear chromatographic models can be used to quantify the

effect to different mass transfer and reaction kinetics on the process without doing practical

experiments in the laboratories [3, 5, 19, 20, 27–36]. These models are useful to understand

the chromatographic process, as in most of the situations the injected volume of the sample

is small and is diluted. The derived analytical solutions could be used to validate the

numerical solutions of more complex models when no experimental data is available.

The Laplace domain solutions can be used to derive the statistical temporal moments

[3, 34–36]. The retention equilibrium-constant and parameters of the mass transfer kinetics

in the column are related to the moments. The moment analysis has been used in a number

of studies of fixed-bed systems [3, 34–38].

In this work, a linear reactive general rate model (RGM) is analyzed to study two-

component adsorption equilibria and reaction-separation kinetics in a fixed-bed chromato-

graphic reactor. Semi-analytical solutions of the model are derived for both irreversible
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and reversible reactions in the particles macropores. The Laplace transformation and

eigen-decomposition technique are successively applied to solve the model equations for

two different sets of boundary conditions (BCs), namely the Dirichlet and the Danckwerts

BCs. Due to the complex structure of the solutions, analytical back transformations are

not possible. Therefore, numerical Laplace inversion is applied to get the time domain

solutions [19, 20, 34, 35]. To validate the derived solutions, numerical solutions are also

obtained by applying a high resolution finite volume scheme to the same model equations

[39–41]. Several case studies are considered and both numerical and semi-analytical results

are compared. The behavior of chromatographic reactor is further analyzed by calculating

analytical and numerical moments of concentration profile.

The major novelty of this article specifically include: (a) derivation of semi-analytical

solutions of a linear two-component reactive GRM for two different sets of boundary con-

ditions, (b) consideration solid-phase reactions, (c) numerical inversion of solutions from

frequency to time domain, (d) calculation of numerical moments, and (e) validation of the

correctness of analytical results by a successful comparison with numerical results. The

considered two-component reactive GRM contains four coupled PDEs, two PDEs describe

concentration balances in the bulk of fluid and two PDEs are concentration balances in

the particles pores. The analytical solutions of this model for the considered reaction

types and boundary conditions are more complicated than the classical single-component

non-reactive GRM [35]. Besides the Laplace transformation, a successive application of

decoupling technique is required to uncouple the resulting coupled system of ODEs ob-

tained after applying Laplace transformation. Especially, in the reversible reaction case,

this technique is applied two times which is a more uphill task. Thus, the analysis and the

results presented below are truly new and nontrivial. The analytical Laplace inversion is

not possible due to very complicates expressions of the Laplace domain solutions. Although

analytical Laplace inversion is not possible, the derived semi-analytical solutions are still

very accurate and useful. These solutions can be used to study the chromatographic be-

haviors, such as peak area, sample retention time, band broadening, asymmetry of elution

profiles, and efficiency of the column. The derived semi-analytical solutions are seen as
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helpful for further developments of chromatographic reactors. For instance, the analysis

could be used to study the effects of mass transfer and reaction kinetics on the elution

profiles, for sensitivity analysis, for validating numerical solutions, and for estimating lon-

gitudinal dispersion coefficients from experimentally determined elution profiles, among

others.

This article is organized as follows. In Section 2, the linear RGRM is introduced for

irreversible reaction along with two sets of BCs, such as Dirichlet and Danckwerts BCs. In

Section 3, analytical solutions are derived to solve these model equations for the considered

irreversible reaction. In Section 4, this analytical solution methodology is extended to the

case of reversible reaction. Section 5 introduces moment analysis. In Section 6, several

test problems are considered. Conclusions are drawn in Section 7.

2. Irreversible reaction (A→B) in a fixed-bed chromatographic reactor

In this process, the component A (component 1) converts to component B (component

2) through an irreversible first order heterogeneous reaction. The reactant and product

travel along the column by axial dispersion and conversion of reactant into the product is

due to the first order chemical reaction in the solid phase. The considered two-component

reactive general rate model (RGRM) is based upon the following assumptions:

1. The chromatographic process is isothermal.

2. The porous particles in the column are spherical shaped and have same diameter.

3. The concentration gradient in the radial direction are neglected.

4. There exist an instantaneous local equilibrium between the macropore surfaces and the

stagnant fluid inside particles macropores.

5. Interfacial mass transfer between the bulk fluid and particle phases is described by film

mass transfer mechanism.

6. The diffusional and mass transfer parameters are constant and are independent of the

mixing effects of the component involved.

Based on the above assumption, the current RGRM contains four mass balance equations
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for the two-component mixture transport, i.e. two equations are describing transport in

the bulk of fluid and two equations are for transport inside the particles macropores.

The mass balance equations of RGRM for the bulk of fluid considering two-component so-

lute percolating through a chromatographic reactor filled with spherical particles of radius

Rp are expressed as [2, 3, 35]

∂c1
∂t

+ u
∂c1
∂z

=Dz

∂2c1
∂z2
− 3

Rp

Fkext,i
(

c1 − cp,1|r=Rp

)

, (1)

∂c2
∂t

+ u
∂c2
∂z

=Dz

∂2c2
∂z2
− 3

Rp

Fkext,i
(

c2 − cp,2|r=Rp

)

. (2)

In the above equation, t denotes the time coordinate, z represents the axial coordinate

along the column length, ci(t, z) is the concentration of i-th component in the bulk of fluid

and cp,i(t, z) is the i-th component concentration in the particles, respectively. Moreover, u

is the interstitial velocity, Dz represents the axial dispersion coefficient, kext,i is the external

mass transfer coefficient of i-th component, F = 1−ǫ
ǫ
, is the phase ratio, ǫ ∈ (0, 1) is the

external porosity and r denotes the radial coordinate of spherical particles of radius Rp.

The mass balance equations for the solute considering irreversible reactions in the station-

ary phase can be expressed assuming two mechanisms of intraparticle transport [2, 3, 35]:

ǫp
∂cp,1
∂t

+ (1− ǫp)
∂q∗p,1
∂t

=
1

r2
∂

∂r

(

r2
[

ǫpDp,1
∂cp,1
∂r

+ (1− ǫp)Ds,1

∂q∗p,1
∂r

])

− (1− ǫp)ν1q
∗

p,1 ,

(3)

ǫp
∂cp,2
∂t

+ (1− ǫp)
∂q∗p,2
∂t

=
1

r2
∂

∂r

(

r2
[

ǫpDp,2
∂cp,2
∂r

+ (1− ǫp)Ds,2

∂q∗p,2
∂r

])

+ (1− ǫp)ν1q
∗

p,1 .

(4)

Here, q∗i is the local equilibrium concentration of solute in the stationary phase, ǫp is the

internal porosity, Dp,i is the pore diffusivity of i-th component, Ds,i is the surface diffusivity,

and ν1 is the reaction rate constant of component 1.

Eqs. (1)-(4) are connected at r = Rp via the following expressions which quantify the
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temporal change of the average loadings of the particles [3, 35]:

[

ǫpDp,1
∂cp,1
∂r

+ (1− ǫp)Ds,1

∂q∗p,1
∂r

]

r=Rp

=kext,1(c1 − cp,1|r=Rp
) , (5)

[

ǫpDp,2
∂cp,2
∂r

+ (1− ǫp)Ds,2

∂q∗p,2
∂r

]

r=Rp

=kext,2(c2 − cp,2|r=Rp
) . (6)

Only linear adsorption isotherms are considered in this work [3]:

q∗p,1 = a1cp,1 , q∗p,2 = a2cp,2. (7)

After using Eq. (7) in Eqs. (3) and (4), we obtain

a∗1
∂cp,1
∂t

=
Deff ,1

r2
∂

∂r

(

r2
∂cp,1
∂r

)

− (1− ǫp)ν1a1cp,1 , (8)

a∗2
∂cp,2
∂t

=
Deff ,2

r2
∂

∂r

(

r2
∂cp,2
∂r

)

+ (1− ǫp)ν1a1νcp,1 , (9)

with,

a∗i = ǫp + (1− ǫp)ai and Deff,i = ǫpDp,i + (1− ǫp)Ds,iai , i = 1, 2 . (10)

Similarly, Eq. (5) and Eq. (6) simplifies to

Deff ,1
∂cp,1
∂r

∣

∣

∣

∣

r=Rp

= kext,1(c1 − cp,1|r=Rp
), (11)

Deff ,2
∂cp,2
∂r

∣

∣

∣

∣

r=Rp

= kext,2(c2 − cp,2|r=Rp
). (12)

To further simplify the analysis and reduce the number of variables, the following dimen-

sionless variables are introduced:

x =
z

L
, τ =

ut

L
, ρ =

r

Rp

, P el =
Lu

Dz

, ωi =
L

u
νiai ,

Bip,i =
kext,iRp

Deff ,i
, ηp,i =

Deff ,iL

R2
pu

, ξp,i = 3Bip,iηp,iF , i = 1, 2, (13)

where L is the length of the column and Pel is the Pectlet number. Using the above
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dimensionless variables in Eqs. (1), (2), (8) and (9), we obtain

∂c1
∂τ

+
∂c1
∂x

=
1

Pel

∂2c1
∂x2
− ξp,1 (c1 − cp,1|ρ=1) , (14)

∂c2
∂τ

+
∂c2
∂x

=
1

Pel

∂2c1
∂x2
− ξp,2 (c2 − cp,2|ρ=1) , (15)

a∗1
∂cp,1
∂τ

= ηp,1
1

ρ2
∂

∂ρ

(

ρ2
∂cp,1
∂ρ

)

− (1− ǫp)ω1cp,1 , (16)

a∗2
∂cp,2
∂τ

= ηp,2
1

ρ2
∂

∂ρ

(

ρ2
∂cp,2
∂ρ

)

+ (1− ǫp)ω1cp,1 . (17)

Eqs. (16) and (17) can now be rephrased as

a∗1
∂

∂τ
[ρcp,1]− ηp,1

∂2

∂ρ2
[ρcp,1] + (1− ǫp)ω1[ρcp,1] = 0, (18)

a∗2
∂

∂τ
[ρcp,2]− ηp,2

∂2

∂ρ2
[ρcp,2]− (1− ǫp)ω1[ρcp,2] = 0 . (19)

Moreover, appropriate inlet and outlet BCs are needed for Eqs. (14), (15), (18) and (19).

For an initially regenerated column, the corresponding initial conditions of Eqs. (14) and

(15) are given as

ci(0, x) = 0, (0 < x < 1) i = 1, 2 (20)

and initial conditions for Eqs. (18) and (19), considering empty particles, are given as

q∗p,i(0, x, ρ) = 0, cp,i(0, x, ρ) = 0, x, r ∈ (0, 1). (21)

Due to the assumed rapid adsorption or desorption rates, the concentrations of solute in

the pores and that in the stationary phase are in equilibrium state.

In this study, the following two sets of BCs are considered for Eqs. (14) and (15).

Type 1: Dirichlet inlet BCs

In this case, the simpler Dirichlet BCs are applied at the column inlet:

ci(τ, x = 0) =







cinj,i , if 0 ≤ τ ≤ τinj ,

0 , τ > τinj ,
(22a)

together with zero Neumann BCs for a hypothetically infinite length column:

∂ci
∂x

∣

∣

∣

∣

x=∞

= 0 . (22b)
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In the above equation, τinj denotes the time of sample injection. For sufficiently small

dispersion coefficient, for example Dz ≤ 10−5 m2/s, the Dirichlet inlet boundary conditions

are well applicable.

Type 2: Danckwerts inlet BCs

In this case, the Robin type BCs, also known as Danckwerts BCs in chemical engineering,

are applied at the column inlet [42]:

ci(τ, x = 0)− 1

Pel

∂ci(τ, x = 0)

∂x
=







cinj,i , if 0 ≤ τ ≤ τinj ,

0 , τ > τinj .
(23a)

At the outlet of the column of finite length x = 1, the following Neumann BCs are used

∂ci
∂x

∣

∣

∣

∣

x=1

= 0 . (23b)

The natural boundary condition at ρ = 0 and ρ = 1 are assumed for Eqs. (18) and (19)

(c.f. Eqs. (11) and (12))

∂cpi
∂ρ

∣

∣

∣

∣

ρ=0

= 0 ,
∂cpi
∂ρ

∣

∣

∣

∣

ρ=1

= Bip,i(ci − cpi|ρ=1) . (24)

3. Analytical solutions of RGRM for reaction of type A→B

In this section, semi-analytical solutions of linear RGRM (c.f. Eqs. (14), (15), (18) and

(19)) are derived for Dirichlet (Eqs. (22a) and (22b)) and Danckwert (Eqs. (23a) and

(23b)) boundary conditions. The model can be conveniently solved by means of Laplace

transformation which is defined as

c̄(s, x) =

∞
∫

0

e−sτc(τ, x)dτ, τ ≥ 0. (25)

The Laplace transformations of model Eqs. (14) and (15) yield

sc̄1 +
dc̄1
dx

=
1

Pel

d2c̄1
dx2
− ξp,1(c̄1 − c̄p,1|ρ=1) , (26)

sc̄2 +
dc̄2
dx

=
1

Pel

d2c̄2
dx2
− ξp,2(c̄2 − c̄p,2|ρ=1). (27)
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While, the Laplace transformations of Eqs. (18) and (19) give

d2

dρ2
[ρc̄p,1]−

a∗1s

ηp,1
[ρc̄p,1]−

(1− ǫp)ω1

ηp,1
[ρc̄p,1] = 0 , (28)

d2

dρ2
[ρc̄p,2]−

a∗2s

ηp,2
[ρc̄p,2] +

(1− ǫp)ω1

ηp,2
[ρc̄p,1] = 0. (29)

The general solution of Eq. (28) is given as

c̄p,1(s, x, ρ) =
1

ρ

[

k1e
√

α(s)ρ + k2e
−

√
α(s)ρ

]

, (30)

where,

α(s) =
a∗1s+ (1− ǫp)ω1

ηp,1
. (31)

On utilizing the boundary conditions given in Eq. (24), the values of k1 and k2 in Eq. (30)

come out to be

k1,2 = ±
Bip,1c̄1

2 sinh(
√

α(s))

[

√

α(s) coth(
√

α(s)) +Bip,1 − 1

] . (32)

Here, the upper positive sign is taken for k1 and the lower negative sign for k2. At ρ = 1,

Eqs. (30) and (32) reduce to

c̄p,1|ρ=1 = c̄1f1(s), (33)

where

f1(s) =
Bip,1

[

√

α(s) coth(
√

α(s)) +Bip,1 − 1

] . (34)

After introducing Eq. (33) in Eq. (29), we obtain the general solution as

c̄p,2(s, x, ρ) =
1

ρ

[

k′

1e
√

α′(s)ρ + k′

2e
−

√
α′(s)ρ

]

+
f1(s)(1− ǫp)ω1c̄1

a∗2s
. (35)

where α′(s) =
a∗2s

ηp,2
. By using Eq. (24) in Eq. (35), we obtian

k′

1,2 = ±
Bip,2c̄2 − Bip,2f1(s)(1−ǫp)ω1c̄1

a∗2s

2 sinh(
√

α′(s))

[

√

α′(s) coth(
√

α′(s)) +Bip,2 − 1

] , (36)
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At ρ = 1, Eqs. (35) and (36) reduce to

c̄p,2|ρ=1 = c̄2f2(s) + c̄1A(s), (37)

where,

f2(s) =
Bip,2

[

√

α′(s) coth(
√

α′(s)) +Bip,2 − 1

] (38)

and

A(s) =
f1(s)(1− ǫp)ω1

a∗2s

[ −Bip,2

[
√

α′(s) coth(
√

α′(s)) +Bip,2 − 1]
+ 1

]

. (39)

After introducing Eqs. (33) and (37) in Eqs. (26) and (27), respectively, we get the following

ordinary differential equations (ODEs)

d2c̄1
dx2
− Pel

dc̄1
dx
− Pelφ1(s)c̄1 = 0 . (40)

d2c̄2
dx2
− Pel

dc̄2
dx
− Pel

dc̄2
dx

= Pelξp,2A(s)c̄1, (41)

where

φ1(s) = s+ ξp,1(1− f1(s)), φ2(s) = s+ ξp,2(1− f2(s)). (42)

In the matrix notions, Eqs. (40) and (41) can be expressed as

d2

dx2





c̄1

c̄2



− Pel
d

dx





c̄1

c̄2



−





Pelφ1(s) 0

−ξp,2PelA(s) Pelφ2(s)









c̄1

c̄2



 =





0

0



 . (43)

Here, the square brackets [ ] stands for a square matrix, the curly brackets ( ) represents

a column vector, and c̄i for (i = 1, 2) are the liquid phase concentrations of mixture

components in the Laplace domain.

The reaction coefficient matrix [B] on in Eq. (43) is given as

B =





Pelφ1(s) 0

−ξp,2PelA(s) Pelφ2(s)



 . (44)
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In the next step, linear transformation matrix [A] will be computed [19, 20, 43]. Note that,

the columns of [A] are the eigenvectors of the matrix [B]. The eigenvalues and eigenvectors

of the matrix [B] are given as:

λ1 = Pelφ1(s), x1 =





A11

−ξp,2PelA(s)A11

Pelφ1(s)−Pelφ2(s)



 and λ2 = Pelφ2(s), x2 =





0

A22



 . (45)

Here, λ1 and λ2 denote the eigenvalues and A11 and A22 are the arbitrary constants. For

simplicity, we take the values of A11 and A22 equal to one. Using Eq. (45), the diagonal

matrix κ and the transformation matrix [A] can be written as

κ =





Pelφ1(s) 0

0 Pelφ2(s)



 , A =





1 0

−ξp,2PelA(s)

Pelφ1(s)−Pelφ2(s)
1



 . (46)

The matrix [A] is then used in the following linear transformation [20, 43]





c̄1

c̄2



 =





1 0

−ξp,2PelA(s)

Pelφ1(s)−Pelφ2(s)
1









b1

b2



 . (47)

Applying the above linear transformation on Eq. (43), we get

d2

dx2





b1

b2



− Pel
d

dx





b1

b2



 =





Pelφ1(s) 0

0 Pelφ2(s)









b1

b2



 . (48)

Eq. (48) represents a system of two independent ODEs. Their explicit solutions are given

as

b1(s, x) = A1e
m1x +B1e

m2x, m1,2 =
Pel
2



1∓
√

1 +
4φ1(s)

Pel



 , (49)

and

b2(s, x) = A2e
m3x +B2e

m4x, m3,4 =
Pel
2



1∓
√

1 +
4φ2(s)

Pel



 . (50)

Here, A1, B1, A2 and B2 are constants of integration which can be obtained by using one

of the selected two sets of BCs.
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3.1. Dirichlet BCs (Type I)

The Laplace Transformation of Eqs. (22a) and (22b) are given as

c̄i(s, 0) =
cinj,i(1− e−sτinj)

s
,

dc̄i
dx

(s,∞) = 0. (51)

On using the transformations in Eq. (47), Eq. (51) yields

b1(s, x = 0) =
(1− e−sτinj)

s
cinj,1,

db1
dx

(s,∞) = 0. (52)

b2(s, x = 0) =
(1− e−sτinj)

s
cinj,2 +

ξp,2PelA(s)

Pelφ1(s)− Pelφ2(s)
b1(s, x = 0),

db2
dx

(s,∞) = 0. (53)

After applying these boundary conditions on Eq. (49), the values of A1 and B1 are obtained

as

A1 =
(1− e−sτinj)

s
cinj,1, B1 = 0 . (54)

Thus, Eqs. (47), Eq. (49) and Eq. (54) give

c̄1(s, x) =
cinj,1(1− e−sτinj)

s
em1x. (55)

The value of m1 is given by Eq. (49) for the upper negative sign. Similarly, on using Eq.

(53) in Eq. (50), we get the values of A2 and B2 as follows:

A2 =
(1− e−sτinj)

s

[

cinj,2 +
ξp,2PelA(s)

Pelφ1(s)− Pelφ2(s)
cinj,1

]

, B2 = 0 . (56)

With these values of A2 and B2 and using Eq. (47) in Eq. (50), we obtain

c̄2(s, x) =
cinj,1(1− e−sτinj)

s

(

ξp,2A(s)

φ1(s)− φ2(s)

)

(em3x − em1x) +
cinj,2(1− e−sτinj)

s
em3x. (57)

Analytical Laplace inversions are not possible to bring back solutions in the time domain

τ . Therefore, the numerical inverse Laplace transformation is employed to find the original

solutions cj(τ, x) for j = 1, 2 [44]. In this work, an efficient numerical Laplace inver-

sion method, based on a Fourier series expansion developed by Durbin [45], is applied as

explained below.
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The solution in the time domain cj(τ, x) can be obtained by using the exact formula for

the back transformation as

cj(τ, x) = L−1[c̄j(s, x)] =
1

2πi

v+i∞
∫

v−i∞

e−tsc̄j(s, x)ds , j = 1, 2, (58)

with s = v+ iw; v, w ∈ R. The real constant v exceeds the real part of all the singularities

of c̄j(s, x). The integrals in Eqs. (25) and (58) exist for Re(s) > α̃ ∈ R if

(a) cj is locally integrable,

(b) there exist a τ0 ≥ 0 and p, α̃ ∈ R, such that cj(τ, x) ≤ peα̃τ for all τ ≥ τ0,

(c) for all τ ∈ (0,∞) there is a neighborhood in which cj is of bounded variation.

In the following we always assume that cj fulfils the above conditions and in addition that

there are no singularities of c̄j(s, x) to the right of the origin. Therefore, Eqs. (25) and

(58) are defined for all y > 0. The possibility to choose v > 0 arbitrarily, is the basis of the

methods of Durbin [45]. The integral in Eq. (58) is equivalently expressed in the interval

[0, 2T ] as [45]

cj(τ, x) =
evτ

π

∞
∫

0

[Re{c̄j(s, x)} cos(wτ)− Im{c̄j(s, x)} sin(wτ)]dw. (59)

Durbin derived the following approximate expression for Eq. (59):

cj(τ, x) =
evτ

T

[

−1
2
Re{c̄j(v, x)}+

∞
∑

p=0

Re
{

c̄j

(

v + i
pπ

T
, x
)}

cos
(pπτ

T

)

−
∞
∑

p=0

Im
{

c̄j

(

v + i
pπ

T
, x
)}

sin
(pπτ

T

)

]

. (60)

In the numerical computations, the infinite series in Eq. (60) can only be summed up

to a finite number Np of terms only. Thus, a truncation error occurs in the numerical

computations. In this work, the numerical Laplace inversion formula in Eq. (60) is applied

to obtain the time domain solution cj(τ, x) by considering Np = 103.
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3.2. Danckwerts BCs (Type II)

The Laplace transformations of Danckwerts BCs given by Eqs. (23a) and (23b) are given

as

c̄i(s, 0) =
cinj,i
s

(

1− e−sτinj
)

+
1

Pel

dc̄i
dx

∣

∣

∣

∣

x=0

,
dc̄i
dx

(s, x = 1) = 0 , i = 1, 2 . (61)

Following the same solution procedure of Subsection 3.1, the Laplace domain solutions can

be obtained as

c̄1(s, x) =
cinj,1 (1− e−sτinj)

s

(m2 −m1)e
m2+m1

(1− m1

Pel
)m2em2 − (1− m2

Pel
)m1em1

, (62)

c̄2(s, x) =
−ξp,2A(s)

φ1(s)− φ2(s)

cinj,1 (1− e−sτinj)

s

(m2 −m1)e
m2+m1

(1− m1

Pel
)m2em2 − (1− m2

Pel
)m1em1

+
(1− e−sτinj)

s

[

cinj,2 − (
−ξp,2FA(s)

φ1(s)−φ2(s)
)cinj,1

]

(m3 −m4)e
(m4+m3)

(1− m4

Pel
)m3em3 − (1− m3

Pel
)m4em4

. (63)

There is no possibility to apply analytical back transformation on these Laplace domain

solutions. However, the numerical Laplace inversion can be applied to obtain a discrete

solution in time. In this technique, the integral of inverse Laplace transformation is ap-

proximated by Fourier series [44, 45].

This completes the derivation of analytical solutions for Irreversible two-component linear

RGRM.

4. RGRM for reversible Reaction A ⇋ B

Now, we present the general case of linear reversible reaction carried out in a chromato-

graphic reactor. In this case, the component A (component 1) is injected to the column

which converts to component B (component 2) with a reaction rate constant ν1. Because

of the reversibility of the reaction, component B also converts partly back to component A

with a reaction rate constant ν2. The model equations for transport in the bulk of liquid

are formulated as

∂c1
∂t

+ u
∂c1
∂z

= Dz

∂2c1
∂z2
− 3

Rp

Fkext,1
(

c1 − cp,1|r=Rp

)

, (64)

∂c2
∂t

+ u
∂c2
∂z

= Dz

∂2c2
∂z2
− 3

Rp

Fkext,2
(

c2 − cp,2|r=Rp

)

. (65)
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For dynamics in the particle macropores, the model equations are expressed as

ǫp
∂cp,1
∂t

+ (1− ǫp)
∂q∗p,1
∂t

=
1

r2
∂

∂r

[

r2
(

ǫpDp,1
∂cp,1
∂r

+ (1− ǫp)Ds,1

∂q∗p,1
∂r

)]

− (1− ǫp)ν1q
∗

p,1 + (1− ǫp)ν2q
∗

p,2, (66)

ǫp
∂cp,2
∂t

+ (1− ǫp)
∂q∗p,2
∂t

=
1

r2
∂

∂r

[

r2
(

ǫpDp,2
∂cp,2
∂r

+ (1− ǫp)Ds,2

∂q∗p,2
∂r

)]

+ (1− ǫp)ν1q
∗

p,1 − (1− ǫp)ν2q
∗

p,2, (67)

where q∗p,i (i = 1, 2) are given by Eq. (7). On using the dimensionless variables in Eq. (13)

and isotherms q∗p,i in Eq. (7), the above equations can be rewritten as

∂c1
∂τ

+
∂c1
∂x

=
1

Pel

∂2c1
∂x2
− ξp,1 (c1 − cp,1|ρ=1) , (68)

∂c2
∂τ

+
∂c2
∂x

=
1

Pel

∂2c1
∂x2
− ξp,2 (c2 − cp,2|ρ=1) , (69)

a∗1
∂

∂τ
(ρcp,1) = ηp,1

∂2

∂ρ2
(ρcp,1)− (1− ǫp)ω1(ρcp,1) + (1− ǫp)ω2(ρcp,2), (70)

a∗2
∂

∂τ
(ρcp,2) = ηp,2

∂2

∂ρ2
(ρcp,2) + (1− ǫp)ω1(ρcp,2)− (1− ǫp)ω2(ρcp,1) . (71)

The same initial and boundary conditions are used as given by Eqs. (20)-(24). The appli-

cation of Laplace transformation on the above equations yields

sc̄1 +
dc̄1
dx

=
1

Pel

d2c̄1
dx2
− ξp,1(c̄1 − ¯cp,1|ρ=1) , (72)

sc̄2 +
dc̄2
dx

=
1

Pel

d2c̄2
dx2
− ξp,2(c̄2 − ¯cp,2|ρ=1) , (73)

d2

dρ2
(

ρc̄p,1
)

− a∗1s

ηp,1

(

ρc̄p,1
)

− (1− ǫp)ω1

ηp,1

(

ρc̄p,1
)

+
(1− ǫp)ω2

ηp,1

(

ρc̄p,2
)

= 0 , (74)

d2

dρ2
(

ρc̄p,2
)

− a∗2s

ηp,2

(

ρc̄p,2
)

+
(1− ǫp)ω1

ηp,2

(

ρc̄p,1
)

− (1− ǫp)ω2

ηp,2

(

ρc̄p,2
)

= 0 . (75)

In matrix natation, Eqs. (75) and Eq. (74) can be expressed as

d2

dx2





ρc̄p,1

ρc̄p,2



−





a∗1s+(1−ǫp)ω1

ηp,1
− (1−ǫp)ω2

ηp,1

− (1−ǫp)ω1

ηp,2

a∗2s+(1−ǫp)ω2

ηp,2









ρc̄1

ρc̄2



 =





0

0



 . (76)
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The reaction coefficient matrix [B′] of Eq. (76) is given as

B′ =





a∗1s+(1−ǫp)ω1

ηp,1
− (1−ǫp)ω2

ηp,1

− (1−ǫp)ω1

ηp,2

a∗2s+(1−ǫp)ω2

ηp,2



 . (77)

The eigenvalues and eigenvectors of the matrix [B′] are given as:

λ′

1,2 =
β1 ±

√

β2
1 − 4β2

2
x′

1,2 =





λ′

1,2 −
a∗2s+(1−ǫp)ω2

ηp,2

− (1−ǫp)ω1

ηp,2



 , (78)

where

β1(s) =
a∗1s

ηp,1
+

a∗2s

ηp,2
+

(1− ǫp)ω1

ηp,1
+

(1− ǫp)ω2

ηp,2
, (79)

β2(s) =
a∗1a

∗

2s
2

ηp,1ηp,2
+

a∗2s(1− ǫp)ω1

ηp,1ηp,2
+

a∗1s(1− ǫp)ω2

ηp,1ηp,2
. (80)

Thus, we have the following linear transformation




c̄p,1

c̄p,2



 =





λ′

1 −
a∗2s+(1−ǫp)ω2

ηp,2
λ′

2 −
a∗2s+(1−ǫp)ω2

ηp,2

− (1−ǫp)ω1

ηp,2
− (1−ǫp)ω1

ηp,2









b̄p,1

b̄p,2



 . (81)

Applying the above linear transformation on Eq. (76), we get

d2

dx2





ρb̄p,1

ρb̄p,2



−





λ′

1 0

0 λ′

2









ρb̄p,1

ρb̄p,2



 =





0

0



 . (82)

Eq. (82) represents a system of two independent ODEs. Their explicit solutions are given

as

b̄p,1(s, x, ρ) =
1

ρ
[A′

1e
√

λ′

1ρ +B′

1e
−

√
λ′

1ρ], b̄p,2(s, x, ρ) =
1

ρ
[A′

2e
√

λ′

2ρ +B′

2e
−

√
λ′

2ρ]. (83)

From Eqs. (24) and (81), one can easily find

∂bp,i(s, ρ)

∂ρ

∣

∣

∣

∣

ρ=0

= 0, i = 1, 2. (84)

On using the above boundary conditions, we get from Eq. (83) B′

1 = −A′

1 and B′

2 = A′

2.

Thus, Eq. (83) reduces to

bp,1(s, x, ρ) =
2A′

1

ρ
sinh(

√

λ′

1ρ), bp,2(s, x, ρ) =
2A′

2

ρ
sinh(

√

λ′

2ρ). (85)
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By using the transformation in Eq. (81) and values of bi in Eq. (85), we obtain

cp,1(s, x, ρ) =

[

λ′

1 −
a∗2s+ (1− ǫp)ω2

ηp,2

]

2A′

1

ρ
sinh(

√

λ′

1ρ)

+

[

λ′

2 −
a∗2s+ (1− ǫp)ω2

ηp,2

]

2A′

2

ρ
sinh(

√

λ′

2ρ), (86)

cp,2(s, x, ρ) = −
(1− ǫp)ω1

ηp,2

[

2A′

1

ρ
sinh(

√

λ′

1ρ) +
2A′

2

ρ
sinh(

√

λ′

2ρ)

]

. (87)

By using second boundary condition at ρ = 1 (c.f. Eq. (24)) in Eqs. (86) and (87), we get

a system of two equations in term of A′

1 and A′

2. On solving those equations, we obtain

A′

1 =
1

2 sinh(
√

λ′

1)





α1(s)

A(s)
c̄1 +

α2(s)

A(s)

ηp,2

(

λ′

2 −
a∗2s+(1−ǫp)ω2

ηp,2
)
)

(1− ǫp)ω1
c̄2



 , (88)

A′

2 =−
1

2 sinh(
√

λ′

2)





α3(s)

A(s)
c̄1 +

α4(s)

A(s)

ηp,2

(

λ′

1 −
a∗2s+(1−ǫp)ω2

ηp,2
)
)

(1− ǫp)ω1
c̄2



 , (89)

where

α1(s) =Bip,1[Bip,2 − 1 +
√

λ′

2 coth(
√

λ′

2)], α2(s) = Bip,2[Bip,1 − 1 +
√

λ′

2 coth(
√

λ′

2)], (90)

α3(s) =Bip,1[Bip,2 − 1 +
√

λ′

1 coth(
√

λ′

1)], α4(s) = Bip,2[Bip,1 − 1 +
√

λ′

1 coth(
√

λ′

1)], (91)

A(s) =

(

λ′

1 −
a∗2s+ (1− ǫp)ω2

ηp,2

)

[Bip,1 − 1 +
√

λ′

1 coth(
√

λ′

1)][Bip,2 − 1 +
√

λ′

2 coth(
√

λ′

2)]

−
(

λ′

2 −
a∗2s+ (1− ǫp)ω2

ηp,2

)

[Bip,1 − 1 +
√

λ′

2 coth(
√

λ′

2)][Bip,2 − 1 +
√

λ′

1 coth(
√

λ′

1)] .

(92)

Thus, Eqs. (86) and (87) take the forms

cp,1|ρ=1 =

[

α1(s)

A(s)

(

λ′

1 −
a∗2s+ (1− ǫp)ω2

ηp,2
)

)

− α3(s)

A(s)

(

λ′

2 −
a∗2s+ (1− ǫp)ω2

ηp,2
)

)]

c̄1

− (1− ǫp)ω2

ηp,1

[

α2(s)

A(s)
− α4(s)

A(s)

]

c̄2, (93)

cp,2|ρ=1 =−
(1− ǫp)ω1

ηp,2

[

α1(s)

A(s)
− α3(s)

A(s)

]

c̄1

+

[

α4(s)

A(s)

(

λ′

1 −
a∗2s+ (1− ǫp)ω2

ηp,2
)

)

− α2(s)

A(s)

(

λ′

2 −
a∗2s+ (1− ǫp)ω2

ηp,2
)

)]

c̄2. (94)

By using Eqs. (93) and (94) in Eqs. (72) and (73), we get the following system of ODEs

d2

dx2





c̄1

c̄2



− Pel
d

dx





c̄1

c̄2



+





−r1 − sPel r2

r3 −r4 − sPel









c̄1

c̄2



 =





0

0



 , (95)
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where

r1 =Pelξp,1

[

1− α1(s)

A(s)

(

λ′

1 −
a∗2s+ (1− ǫp)ω2

ηp,2
)

)

+
α3(s)

A(s)

(

λ′

2 −
a∗2s+ (1− ǫp)ω2

ηp,2
)

)]

, (96)

r2 =− Pelξp,1
(1− ǫp)ω2

ηp,1

[

α2(s)

A(s)
− α4(s)

A(s)

]

, (97)

r3 =− Pelξp,2
(1− ǫp)ω1

ηp,2

[

α1(s)

A(s)
− α3(s)

A(s)

]

, (98)

r4 =Pelξp,2

[

1− α4(s)

A(s)

(

λ′

1 −
a∗2s+ (1− ǫp)ω2

ηp,2
)

)

+
α2(s)

A(s)

(

λ′

2 −
a∗2s+ (1− ǫp)ω2

ηp,2
)

)]

. (99)

By adopting the same decoupling procedure, we get the following Laplace domain solutions of

the system in Eq. (95) for the considered two sets of BCs.

4.1. Type 1: Dirichlet BCs

In this case, the boundary conditions in Eqs. (22a), (22b) are taken into account. The Laplace

domain solutions are given as

c̄1(s, x) =
(1− e−sτinj)λ′′

3(r3cinj,1 − λ′′

4cinj,2)(m
′

2e
m′

2+m′

1x −m′

1e
m′

1+m′

2x)

sr3(λ′′

3 − λ′′

4)(m
′

2e
m′

2 −m′

1e
m′

1)

− (1− e−sτinj)λ′′

4(r3cinj,1 − λ′′

3cinj,2)(m
′

4e
m′

4+m′

3x −m′

3e
m′

3+m′

4x)

sr3(λ′′

3 − λ′′

4)(m
′

4e
m′

4 −m′

3e
m′

3)
, (100)

c̄2(s, x) =
(1− e−sτinj) (r3cinj,1 − λ′′

4cinj,2)(m
′

2e
m′

2+m′

1x −m′

1e
m′

1+m′

2x)

s(λ′′

3 − λ′′

4)(m
′

2e
m′

2 −m′

1e
m′

1)

− (1− e−sτinj) (r3cinj,1 − λ′′

3cinj,2)(m
′

4e
m′

4+m′

3x −m′

3e
m′

3+m′

4x)

s(λ′′

3 − λ′′

4)(m
′

4e
m′

4 −m′

3e
m′

3)
, (101)

where

λ′′

1,2 =−
1

2

[

r1 + r4 + 2sPel ∓
√

4(r2r3 − r1r4) + (r1 + r4)2
]

, (102)

λ′′

3,4 =−
1

2

[

r1 − r4 ∓
√

4(r2r3 − r1r4) + (r1 + r4)2
]

. (103)

m′

1,2 =
Pel ±

√

Pe2l − 4λ′′

1

2
, m′

3,4 =
Pel ±

√

Pe2l − 4λ′′

2

2
. (104)

Analytical Laplace inversions of the above equations are very difficult. Therefore, numerical

Laplace inversions are used to get back solutions in actual time domain [20, 34, 44, 45].

Type 2: Danckwerts BCs

In this case, the BCs in Eq. (23a) and (23b) are taken into account. The general solutions in the

Laplace domain are given as
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c̄1(s, x) =
(1− e−sτinj)λ′′

3(r3cinj,1 − λ′′

4cinj,2)(m
′

1e
m′

1+m′

2x −m′

2e
m′

2+m′

1x)

r3s(λ′′

3 − λ′′

4)[(1−
m′

2

Pel
)m′

1e
m′

1 − (1− m′

1

Pel
)m′

2e
m′

2 ]

− (1− e−sτinj)λ′′

4(r3cinj,1 − λ′′

3cinj,2)(m
′

3e
m′

3+m′

4x −m′

4e
m′

4+m′

3x)

r3s(λ′′

3 − λ′′

4)[(1 −
m′

4

Pel
)m′

3e
m′

3 − (1− m′

3

Pel
)m′

4e
m′

4 ]
, (105)

c̄2(s, x) =
(1− e−sτinj) (r3cinj,1 − λ′′

4cinj,2)(m
′

1e
m′

1+m′

2x −m′

2e
m′

2+m′

1x)

s(λ′′

3 − λ′′

4)[(1−
m′

2
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1e
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4x −m′
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Here, λ′′

i and m′

i for i = 1, 2, 3, 4 are given by Eqs. (102)-(104). Once again, analytical Laplace

inversions of the above equations are not possible. Therefore, numerical Laplace inversions are

used to get back the time domain solutions [20, 34, 44, 45].

5. Moments analysis

Moment analysis is an attractive technique for deducing important information about the re-

tention equilibrium and mass transfer kinetics in the column. This approach has been found

instructive in the literature [3, 19, 35]. A set of statistical temporal moments can define the

appearance of the plotted elution profile. For example, the appropriate forms of the first, second

and third will describe the mean, spread and skew, respectively, of the distribution.

In this article, we have derived the first two analytical temporal moments of the Laplace domain

solutions (c.f Eqs. (55) and (57)) for irreversible reaction considering Dirichlet BCs and cinj,2 = 0,

i.e. considering the injection of component 1 (reactant) only. These moments were derived using

the following moment generating property of the Laplace domain solutions.

The zeroth moments [26] are defined as

µ
(i)
0 =

L

u
lim
s→0

(c̄i(s, x = 1)) , i = 1, 2 , (107)

and the n-th moments are given as

µ(i)
n =

(

−L

u

)n 1

lims→0(c̄i(s, x = 1))
lim
s→0

dn(c̄i(s, x = 1))

dsn
, n = 1, 2, 3, · · · . (108)

The resulting expressions of the moments are presented in Appendix A. The derivation of analyt-

ical moments for reversible reaction were very difficult due to their lengthy expressions. For that

reason, the numerical temporal moments up to order three are also presented in the case studies.
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The normalized numerical moments can be obtained by integrating the band profiles at the outlet

of a chromatographic column as

µ
(i)
0 =

L

u

∫

∞

0
ci(τ, x = 1)dτ, µ(i)

n =

(

L

u

)n
∫

∞

0 ci(τ, x = 1) τndτ
∫

∞

0 ci(τ, x = 1)dτ
, n = 1, 2, · · · . (109)

While, the n-th central moments are expressed as

µ′(i)
n =

(

L

u

)n
∫

∞

0 ci(τ, x = 1) (τ − u
L
µ
(i)
1 )ndτ

∫

∞

0 c(τ, x = 1)dτ
, n = 2, 3, · · · , i = 1, 2 . (110)

In the discussion of test problems, a comparison first three moments is given which were obtained

by integrating the concentration profiles of analytical solutions and numerical solutions of finite

volume scheme [40]. The trapezoidal rule is applied to numerically approximate the integral

terms appearing in the above equations.

6. Numerical case studies

The derived semi-analytical solutions presented in the aforementioned sections are analyzed by

considering several test problems. For validation, the derived semi-analytical solutions of two-

component RGRM are compared with the numerical solutions of the same model. These numer-

ical solutions are obtained by implementing a high resolution finite volume scheme(HR-FVS) of

Koren [39, 40]. A complete set of basic model parameters used in the test problems is given in

Table 1. To derive reasonable (prototypic) results the values were chosen in typical ranges for

these parameters. Here, we have assumed that Deff ,i and kext,i are the same for all components.

6.1. Problem 1: Linear irreversible reaction

In this section, the semi-analytical and numerical solutions of the model equations Eqs. (1)-(4)

are compared for the considered irreversible reaction in the solid phase. The results obtained

demonstrate the effects of boundary conditions, reaction rate constant ω1, Peclet number Pel,

film mass transfer resistance Bip, and intraparticle diffusion resistance ηp on the concentration

profiles and moments.

Figure 1 illustrates the effects of injected sample volume on the concentration profiles. The

concentration profiles are plotted at the column outlet after injecting a rectangular pulse of finite

width in an empty column (ci,init = 0 g/l for i = 1, 2) using Dirichlet BCs. In Figure 1(a), equal
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amount of injections are considered for both components (i.e. cinj,1 = 0.5 g/l, cinj,2 = 0.5 g/l) along

with the reaction rate constant ω1 = 0.1. The amount of product (component 2) increases due to

the conversion of reactant (component 1) into the product through irreversible reaction. On the

other hand, in Figure 1(b), the amount of injection for reactant (component 1) is cinj,1 = 0.5 g/l

and for the product (component 2) is cinj,1 = 0.25 g/l. Once gain, the same amount of reactant

(component 1) is converted into the product (component 2) but the total amount of product is

proportional to the amount of converted reactant plus the amount of product injected. Due to

the less amount of injected product, the hight of component 2 in Figure 1(b) is smaller than that

in Figure 1(a). Moreover, it can observed that component 1 elutes later than component 2 due

to a difference in their affinities (i.e a1 = 2.5 and a2 = 0.5). In both cases, the semi-analytical

and numerical solutions are in good agreement with each other.

Figure 2 demonstrates the effects of boundary conditions on the concentration profiles of compo-

nent 1 and component 2. The concentration profiles at the column outlet are plotted for different

values of Pel considering cinj,1 = 0.5 g/l, cinj,2 = 0.5 g/l, ci,init = 0.0 g/l for i = 1, 2, and ω1 = 0.1.

From these plots one can observe that the concentration profiles of Dirichlet and Danckwert BCs

deviate from each other for Pel = 1.25. However, for large Peclet, i.e. Pel = 125, or small axial

dispersion the concentration profiles obtained by Dirichlet and Danckwert BCs are almost iden-

tical. Thus, for small large values of axial dispersion coefficient, the more accurate Danckwerts

BCs should be used which accounts for back mixing near the column inlet.

Figure 3 depicts the effects of reaction rate constant ω1 on the concentration profiles. The

concentration profiles are plotted by using Danckwert BCs and taking ω1 as a parameter. Here,

we have chosen cinj,1 = 0.5 g/l, cinj,2 = 0.5 g/l, and ci,init = 0.0 g/l. In this case, the amount of

product increases on increasing the value of reaction rate constant, while the amount of reactant

is decreasing.

Figure 4(a) displays the effects of Biot number, Bip =
kextRp

Deffi

, on the concentration profiles of

both components for three different values of Bip. For Bip = 50, the peak profiles are broadened

where as for Bip = 0.5, both components have steeped profiles. Figure 4(b) examines the effects

of intraparticle diffusion ηp on the concentration profiles. The concentration profiles for both

components are plotted for a fixed Pel = 125 and taking different values of ηp. For ηp = 0.02,

the column retention time reduces for both components due to slow diffusion rate, where as,
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for ηp = 20 the retention time for both components increases. Moreover, the increasing value

of ηp enhances the separation of both components. Limitations in intraparticle mass transfer

resistances of both components decreases the zone spreading time for the considered fully porous

adsorbents.

Figure 5 gives the plots of numerical statistical moments of semi-analytical solutions for a wide

range of flow rates considering Dirichlet BCs. In this case cinj,1 = 0.5 g/l, cinj,2 = 0.5 g/l and

ω1 = 0.1. The plots of zeroth moments show the total masses of both components. They indicate

that conversion of component 1 into component 2 reduces on increasing the velocity. The plots

of first moments reveal the expected linear trends of mean retention times for the reactant and

product over 1/u. The plots of second central moments quantify the variance (spreading) of the

elution profiles for both components. The third central moments describe the skewness of the

elution profiles. The positive values of third central moments depict that the profiles of reactant

and product are right-tailed.

Figure 5 shows the comparison of analytical (c.f. Eqs. (A-2)-(A-7)) and numerical moments for

different flow rates using Dirichlet boundary conditions, cinj,1 = 0.5 g/l, cinj,2 = 0.0 g/l and

ω1 = 0.1. Here, the numerical moments were calculated by integrating the concentration profiles

obtained through numerical Laplace inversion.

Figure 7 compares the results of reactive GRM with those of simplified reactive lumped kinetic

model (LKM). The results of LKM were obtained by choosing the values of its parameters ac-

cording to the relations given in Eqs. (111) and (112) [34, 46]. Here, the Reaction rate constant

is taken as ω1 = 0.1. In the Figure 7(a), the first moments, i.e. the retention times, of GRM and

LKM were matched through the following relation (c.f. [46])

ai = a∗i , i = 1, 2 . (111)

To match the second central moments of GRM and LKM, the following relations between the

parameters of GRM and LKM were used (c.f. [46])

ai = a∗i , kLKM,i =

[

a∗i
1− ǫ

(

Rp

3kext,i
+

R2
p

15Deff ,i

)]

−1

, i = 1, 2 . (112)

However, in the reaction term ai is not replaced by a∗i . Figure 7(b) verifies that for these values,

the variances of GRM and LKM are identical. Moreover, for these values of ai and kLKM,i, the

23



concentration profiles of both models are overlapping each other as depicted in Figure 7(c). From

the results one concludes that, even a simplified model can give accurate results if all parameters

appearing in the model equation are chosen cleverly. Then, simplified models are enough to get

physical solutions and there is no need to deal with complicated models.

6.2. Problem 2: Reversible reaction

In this section, the semi-analytical and numerical solutions of RGRM are compared with each

other for reversible reactions. In the results, only Dirichlet inlet boundary conditions are consid-

ered for rectangular pulses injections. Once again, the same values of Deff ,i and kext,i are chosen

for both components. All model parameters are listed in Table 1.

Figure 8 shows the concentration profiles at the column outlet after injecting a rectangular pulse

of finite width in an initially regenerated column (ci,init = 0.0, g/l for i = 1, 2) using Dirichlet

BCs. Here, the reaction rate constants are taken as ω1 = 0.1, and ω2 = 0.05. In Figure 8(a)

equal amount of injection is considered for both components (ci,inj = 0.5 g/l for i = 1, 2), where

as in Figure 8(b) cinj,1 = 0.5 g/l and cinj,2 = 0.25 g/l. Now, a significant impact of reversible

reactions is visible, as the concentration levels of both components are different as compared

to the concentration levels obtained in the case of Irreversible reactions (c.f. Figure 1). As a

result, greater volume of reactant (component 1) is unconverted and lower amount of product

(component 2) is produced. However, the conversion rate of reactant into product increases when

equal amount of both components is injected to the column. Good agreements of the solution

profiles validate the accuracy of numerical Laplace inversion and the HR-FVS.

Finally, the numerical temporal moments of semi-analytical solutions are shown Figure 9 for the

case of reversible reaction considering different flow velocities of the mobile phase and Dirichlet

BCs. The magnitudes of zeroth moments reflect the obvious effects of flow velocity on the

conversion of reactant. The first moments reveal that retention time of component 1 (reactant)

is higher than component 2 (product). The plot of second central moments depict that variance

(spreading) of both components reduces on increasing the velocity. Further, the third central

moments, which quantify the asymmetry of the elution profiles, is also decreasing with increasing

the flow rates.
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7. Conclusion

Semi analytical solutions of two components linear reactive general rate model were presented

considering two sets of boundary conditions. The Laplace transformation was employed to obtain

the general analytical solutions in the Laplace domain. The numerical Laplace inversion was used

to get the desired concentration profiles in the actual time domain. Moreover, temporal moments

were obtained by numerically integrating the semi-analytical solutions. The semi analytical re-

sults were validated against the numerical results of a second order finite volume scheme. Good

agreements between semi-analytical and numerical results verified the correctness of analytical

expressions and accuracy of the suggested numerical scheme. The derived semi-analytical solu-

tions are useful tools to study the influence of reaction rate constants, interfacial mass transfer

rate, intra particle pore diffusion, and adsorption affinity on the concentration profiles. These

analytical solution can also be used to validate newly introduced numerical schemes.

Appendix

A. Analytical moments for Dirichlet BCs

Here, the first two moments are presented Dirichlet boundary conditions. For the derivation of

these moments, we have chosen c1,init = 0 g/l, c2,init = 0 g/l, and cinj,2 = 0 g/l. That means, we

have considered a regenerated column and injected only component 1 into the reactor. Using Eqs.

(107) and (108), we have derived the following moments µ
(i)
n of Laplace transformed solutions

given by Eqs. (55) and (57) for i = 1, 2 and n = 0, 1, 2, 3. Let us define

r̃ = PeFω, γ =
√

Pe2 + 4r̃ , δ1,2 = Pe∓ γ, k̃i =

[

a∗i
1− ǫ

(

F

ξpi
+

1

15ηpi

)

]

−1

. i = 1, 2 .

(A-1)

By using Eq. (107), the zeroth moments are given as

µ
(1)
0 = cinj,1tinje

δ1
2 , µ

(2)
0 = cinj,1tinj(1− e

δ1
2 ) . (A-2)

From Eq. (A-2), we get µ
(1)
0 + µ

(2)
0 = c1,injτinj, as cinj,2 = 0 is considered.
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The first moments are calculated by using the Eq. (108) for n = 1

µ
(1)
1 =

tinj
2

+
LPe(1 + a∗1F )

uγ
, (A-3)

µ
(2)
1 =

tinj
2

+
L

u

Pe
{

γF (a∗2 − a∗1)− r̃(1 + a∗1F )
}

e
δ1
2 − γ

{

F (a∗2 − a∗1)Pe− r̃(1 + a∗2F )
}

r̃γ
(

1− e
δ1
2

) . (A-4)

The second central moments are expressed as

µ′(i)
2 = µ

(i)
2 −

(

µ
(i)
1

)2
, i = 1, 2. (A-5)

Thus, we have

µ′(1)
2 =

t2inj
12

+
L2

u2
2Pe

[

γ2a∗1F (1− ǫ) + Peκ1(1 + a∗1F )2
]

γ3κ1
, (A-6)

µ′(2)
2 =

t2inj
12

+
L2

u2
1

1− e
δ1
2

[

e
δ1
2

{

− 2Pea∗1F (1− ǫ)

γκ1
− 2PeF (1 − ǫ)(a∗1κ2 − a∗2κ1)

r̃κ1κ2
− 2Pe2(1 + a∗1F )2

γ3

−Pe2F 2(a∗2 − a∗1)
2

r̃2

}

+
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r̃κ1κ2
+
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2
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


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{
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}2

e
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{
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


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Table 1: Parameters of linear reactive two-component GRM.

Parameters values

Column length L = 10 cm

Interstitial velocity u = 2.5 cm/min

Axial dispersion coefficient Dz = 0.34 cm2/min

Effective dispersion coefficient Deff = 10−4 cm2/min

External mass transfer coefficient kext = 0.01 cm/min

External porosity ǫ = 0.4

Internal porosity ǫp = 0.333

Total simulation time tmax = 50 min

Initial concentrations cinit,i = 0 g/l

Concentration at inlet for component 1 cinj,1 = 0.5 g/l

Concentration at inlet for component 2 cinj,2 = 0.5 g/l

Adsorption equilibrium constant for component 1 a1 = 2.5

Adsorption equilibrium constant for component 2 a2 = 0.5

Reaction rate constant (component 1) ω1 = 0.1

Reaction rate constant (component 2) ω2 = 0.05
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Figure 1: Irreversible reaction: Effects of injection on the concentration profiles obtained by Dirichlet BCs

at x = 1.
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Figure 2: Irreversible reaction: Effects of Dirichlet and Danckwerts BCs on the concentration profiles at

x = 1. Here, cinj,1 = 0.5 g/l, cinj,2 = 0.5 g/l and ω1 = 0.1.
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Figure 3: Irreversible reaction: Effects of reaction rate constant ω1 on the concentration profiles at x = 1,

using Danckwerts BCs. Here, cinj,1 = 0.5 g/l and cinj,2 = 0.5 g/l.
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Figure 4: Irreversible reaction: (a): Effects of Bip on the concentration profiles. (b): Effects of ηp on the

concentration profiles.
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Figure 5: Irreversible reaction: Plots of central moments (numerical) considering different flow rates using

Dirichlet BCs. Here, cinj,1 = 0.5 g/l, cinj,2 = 0.5 g/l, ω1 = 0.1.
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Figure 6: Irreversible reaction: A comparison of analytical central moments (Eqs. (A-2)-(A-7)) and nu-

merical moments of Laplace inversion solution for different flow rates using Dirichlet BCs, cinj,1 = 0.5,

cinj,2 = 0, and ω1 = 0.1.
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Figure 7: Irreversible reaction: Moments and concentration profiles of LKM and GRM when parameters

of both models are matched through Eqs. (111) and (112). Here ω = 0.1, u = 2.5 cm/min and other

parameters are given in Table 1.
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Figure 8: Reversible reaction: Effects of injection on the concentration profiles at x = 1. All parameters

are given in Table 1.
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Figure 9: Reversible reaction: Plots of central moments (numerical) considering different flow rates using

Dirichlet BCs. Here, cinj,1 = 0.5 g/l, cinj,2 = 0.5 g/l, ω2 = 0.1 and ω2 = 0.05.
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