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We study the emergence of anisotropic (Bianchi IX) inflationary universes with no-

boundary conditions in the path integral approach to quantum gravity. In contrast

to previous work, we find no evidence for any limit to how large the anisotropies

can become, although for increasing anisotropies the shape of the instantons be-

comes significantly different from Hawking’s original no-boundary instanton. In all

cases an inflationary phase is reached, with the anisotropies decaying away. Larger

anisotropies are associated with a much larger imaginary part of the action, implying

that the highly anisotropic branches of the wavefunction are heavily suppressed. In-

terestingly, the presence of anisotropies causes the wavefunction to become classical

much more slowly than for isotropic inflationary universes. We derive the associated

scaling of the WKB classicality conditions both numerically and analytically.
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I. INTRODUCTION

There is an old, simple idea illustrating the problem of initial conditions: take any state

that the universe might be in and evolve it back in time to some primordial epoch – you will

obtain a possible set of “initial” conditions for the universe. Considering that our current

universe is in many ways special (and certainly non “generic”), this argument makes it very

clear that we will need a theory of initial conditions if we are to understand the history of

the universe. The same argument applies to inflationary and ekpyrotic models (for reviews

see [1] and [2]): despite the fact that they are attractors, one may evolve any final state

(even arbitrarily non-flat ones) backwards in time to some initial configuration leading to

it. Then, without a measure on the set of possible initial configurations, one cannot assess

what is likely or unlikely to ensue. What is likely is that a theory of initial conditions will

have to be formulated within quantum theory, both because the dynamics near the big bang

will require quantum gravity to be truly understood, and simply because we believe that

our fundamental laws are quantum mechanical in nature.

In the present paper we will investigate the no-boundary proposal of Hartle and Hawk-

ing [3–6], and the closely related tunnelling prescription of Vilenkin [7–10], for anisotropic
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(Bianchi IX) models of the universe, in the context of an inflationary model. Our focus

is on the saddle point geometries that approximate the path integral, and on the classi-

cality of the wavefunction - these are issues that apply equally to both proposals. The

inclusion of anisotropies is of interest because it provides the first step in going beyond the

often-employed restriction to spatially homogeneous and isotropic minisuperspace models.

In that sense these models are already a good deal more realistic than the isotropic ones.

Also, it is known that in the approach of a cosmological singularity, the spacetime metric

can locally be described to better and better accuracy by precisely a Bianchi IX metric

[11]. Thus we may reasonably hope that the Bianchi IX models studied here capture certain

salient features of a full superspace analysis.

Anisotropic models have been studied repeatedly in quantum cosmology, starting from

the more qualitative works of Hawking and Luttrell [12], and Moss and Wright [13]. Vari-

ous approximate solutions to the Wheeler-DeWitt equation were given by Del Campo and

Vilenkin [14], by Amsterdamski [15] and by Duncan and Jensen [16]. These works provided

valuable first insights into the existence and properties of anisotropic instantons. More re-

cently, Fujio and Futamase instigated a more systematic numerical study, in which they

found an obstruction to constructing instantons with large anisotropies [17].

Here we wish to extend these studies. We will show that Bianchi IX instantons sat-

isfying the no-boundary regularity conditions may actually be constructed with arbitrary

anisotropies. A non-trivial feature is however that care must be taken in choosing a contour

of integration in the complex time plane, as for increasing anisotropies singularities start

to appear, and the standard contour (originally employed by Hawking since the earliest

works [3]) becomes inappropriate. The visual methods developed in [18–20] are well suited

to reveal this feature, and readily suggest better contours.

Even though we do not find any limit to how large the anisotropies can be at a given

instant, all classical histories implied by the instantons undergo inflationary dynamics, just

as is the case for isotropic models [6], and thus the anisotropies are quickly diluted away.

Nevertheless, we find an interesting effect induced by the anisotropies: they cause the wave-

function of the universe to become classical, in a WKB sense, more slowly than in the

isotropic case. More specifically, isotropic inflationary universes satisfy the WKB conditions

(that the amplitude of the wavefunction should vary slowly compared to the phase) approx-

imately in inverse proportion to the amount of volume created, while anisotropic universes
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do so only in inverse proportion to the linear size of the universe. We show this result

numerically, and prove it analytically for constant equation of state.

II. THE ANISOTROPIC MINISUPERSPACE MODEL

We will consider a model of gravity coupled to a scalar field φ moving in a potential V (φ),

S =

∫
d4x
√
−g
(
R

2
− 1

2
gµν∂µφ ∂νφ− V (φ)

)
, (1)

where we are using natural units 8πG = c = ~ = 1. We are interested in studying the effects

of anisotropies, and to this effect we choose the spacetime metric to be of Bianchi IX form,

ds2
IX = −N2(t)dt2 +

∑
m

(
lm(t)

2

)2

σ2
m , (2)

where σ1 = sinψdθ − cosψ sin θdϕ, σ2 = cosψdθ + sinψ sin θdϕ, and σ3 = −(dψ + cos θdϕ)

are differential forms on the three sphere such that 0 ≤ ψ ≤ 4π, 0 ≤ θ ≤ π, and 0 ≤ φ ≤ 2π.

It is particularly useful to re-write the three scale factors as (we will employ the original

definition of Misner [21] – note that some authors re-scale the βs by a factor of 2),

l1(t) = a(t) exp

(
1

2

(
β+(t) +

√
3β−(t)

))
(3)

l2(t) = a(t) exp

(
1

2

(
β+(t)−

√
3β−(t)

))
(4)

l3(t) = a(t) exp (−β+(t)) (5)

which makes it obvious that a will yield information about volume change while the βs

quantify shape change. When β− = β+ = 0 one recovers the isotropic case. The Lorentzian

action in these coordinates becomes

S = 2π2

∫
dtNa

[
1

N2

(
−3ȧ2 + a2

(
1

2
φ̇2 +

3

4
β̇2

+ +
3

4
β̇2
−

))
−
(
a2V (φ) + U(β+, β−)

)]
, (6)

where

U(β+, β−) = −2
(
e2β+ + e−β+−

√
3β− + e−β++

√
3β−
)

+
(
e−4β+ + e2β+−2

√
3β− + e2β++2

√
3β−
)
.

(7)

Varying with respect to the lapse N we obtain the Friedman constraint equation

3ȧ2 = a2

(
1

2
φ̇2 +

3

4
β̇2

+ +
3

4
β̇2
−

)
+N2

(
a2V (φ) + U(β+, β−)

)
, (8)
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FIG. 1. A plot of the anisotropy potential U(β+, β−). The minimum is at U(0, 0) = −3. Around

the minimum the potential has an approximate circular symmetry, which at larger values of the

anisotropy parameters morphs into the symmetry of an equilateral triangle.

while the equations of motion for a, β+, β− are given by

ä

a
+

1

2

ȧ2

a2
− 2

aN
ȧṄ +

3

8

(
β̇2

+ + β̇2
−

)
− N2

6a2
U(β+, β−) +

1

2

(
1

2
φ̇2 −N2V (φ)

)
= 0 , (9)

β̈+ + 3
ȧ

a
β̇+ −

Ṅ

N
β̇+ +

2

3

N2

a2
U,β+ = 0 , (10)

β̈− + 3
ȧ

a
β̇− −

Ṅ

N
β̇− +

2

3

N2

a2
U,β− = 0 . (11)

Finally we have the equation for the scalar field,

φ̈+ 3
ȧ

a
φ̇− Ṅ

N
φ̇+N2V,φ = 0 . (12)

One can simplify the equation for a by plugging in the Friedman constraint (8) into it. Then

we get

ä

a
+

1

2

(
β̇2

+ + β̇2
−

)
+

1

3

(
φ̇2 −N2V (φ)

)
= 0 . (13)

Similarly, once we have a solution to the equations of motion, we can simplify the calculation

of the value of the on-shell action by plugging in the Friedman equation (8),

Son−shell = −4π2

∫
dtNa

[
U(β+, β−) + a2V (φ)

]
. (14)
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In the numerical calculations, it turns out to be computationally favourable if one eliminates

the U(β+, β−) potential from the action. In that case the action becomes

Son−shell = 6π2

∫
dt
a3

N

(
−2ȧ2 +

1

2
(β̇2

+ + β̇2
−) +

1

3
φ̇2

)
. (15)

The potential for the anisotropy parameters β± is shown in Fig. 1. For small βs it is

given approximately by

U(β+, β−) ≈ −3 + 6
(
β2

+ + β2
−
)
, (16)

and hence near the origin it has a circular symmetry. For larger anisotropies, the potential

becomes exponentially steep and has the symmetry of an equilateral triangle, with one axis

of symmetry being the β− = 0 line [21]. This forms the basis for describing the dynamics

close to a cosmological singularity as that of a ball on this (or a closely related) effective

triangular billiard table [22] (with different boundary conditions, this system has also been

quantised [23, 24]). Here we will however not need the billiards description.

-� -� -� -� -� �
ϕ

���

���

���

���

���
�(ϕ)

FIG. 2. The scalar field potential V (φ) = ecφ. For our numerical examples, we chose c = 1/3 and

correspondingly ε = 1/18.

We will consider the scalar field potential to be of exponential form,

V (φ) = V0e
cφ, (17)

as shown in Fig. 2 and with c taken to be a positive constant. We will set V0 = 1, which

can be achieved by shifting the origin of φ. The reason for choosing an exponential is that
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for such potentials the slow-roll parameter ε = c2/2 is constant (though it need not be small

– only the condition ε < 1 is required for inflation to take place). Furthermore, with this

potential, the theory has a classical scaling/shift symmetry. Indeed, if one performs the

following transformations, with ∆φ constant,

φ ≡ φ̄+ ∆φ , gµν ≡ e−c∆φḡµν , (18)

one finds that the action changes only by an overall constant

S = e−c∆φ
∫
d4x
√
−ḡ
(
R̄

2
− 1

2
ḡµν∂µφ̄∂νφ̄− ecφ̄

)
. (19)

This symmetry of the equations of motion is of great value in obtaining analytic approxi-

mations.

III. QUANTUM COSMOLOGY, CLASSICALITY AND NO-BOUNDARY

CONDITIONS

In order to define classicality in quantum cosmology it is useful to rewrite the complete

Lorentzian action in the form

S = 6π2

∫
dtN

[
1

2
GAB

(
1

N

dqA

dt

)(
1

N

dqB

dt

)
− U(qA)

]
(20)

with qA = (a, φ, β+, β−) and

GAB = diag

(
−2a,

1

3
a3,

1

2
a3,

1

2
a3

)
. (21)

Then the associated Hamiltonian is given by

H =
1

2
GABpApB + U , (22)

with the canonical momenta pa = −2aȧ, pφ = 1
3
a3φ̇, pβ+ = 1

2
a3β̇+, pβ− = 1

2
a3β̇−, and where

the total effective potential is given by

U(qA) = aU(β+, β−) + a3V (φ). (23)

Quantising this theory canonically by letting pA → −i~ ∂
∂qA

gives the quantum version of the

Hamiltonian constraint (which in the classical theory is simply the Friedman equation), the

Wheeler-DeWitt (WdW) equation

ĤΨ =

(
−~2

2
∇2 + U

)
Ψ = 0 , (24)
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where∇2 ≡ GAB∇A∇B and where we have chosen the factor ordering such that the equation

is covariant on superspace [25]. Let us choose a semi-classical ansatz for the wavefunction

Ψ = e(−A+iS̃)/~ (25)

with A(a, φ, β+, β−) and S̃(a, φ, β+, β−) real functions. Plugging this ansatz into the WdW

equation and expanding in powers of ~ gives to leading order:

−1

2
GAB

(
− ∂A
∂qA

+ i
∂S̃

∂qA

)(
− ∂A

∂qB
+ i

∂S̃

∂qB

)
+ U = 0 (26)

Thus if

∂S̃

∂qA
� ∂A

∂qA
, (27)

i.e. if the phase of the wavefunction varies much faster than its amplitude for all degrees of

freedom, we obtain the Lorentzian Hamilton-Jacobi equation (which specifies the classical

dynamics)

1

2
GAB ∂S̃

∂qA
∂S̃

∂qB
+ U = 0 , (28)

as long as we identify S̃ with the classical action. With this identification, we also obtain

the classical relation between the momenta and the action,

pA =
∂S̃

∂qA
, (29)

and the behaviour of the wavefunction can be said to be classical since it is strongly peaked

around classical solutions to the equations of motion. A possible probabilistic interpretation

of the wavefunction has been described by Vilenkin [26] and relies on the conserved Klein-

Gordon current

JB = − i
2

(Ψ∗∇BΨ−Ψ∇BΨ∗) . (30)

Evaluating this current for the semi-classical form of the wavefunction yields JB = e−2A∇BS̃

and consequently

∇B
(
e−2A∇BS̃

)
= 0 . (31)
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Vilenkin’s prescription then is to specify a spacelike hypersurface in field space, and define

approximately conserved relative probabilities e−2A nB∇BS̃ where nB is the unit normal to

the surface.

The WdW equation admits many solutions. In order to know which one to pick, we

need a theory of initial conditions. First recall that the path integral construction of the

wavefunction,

Ψ(b, χ, b+, b−) =

∫
C
DNDaDφDβ+Dβ− e

i
~
∫

dt[pAq̇A−NH] , (32)

is equivalent to canonical quantisation, in the sense that the wavefunction thus constructed

automatically solves the WdW equation (see e.g. [25]). Here the arguments of the wave-

function correspond to the specified field values on the final hypersurface. If we denote the

time coordinate at the final hypersurface by τf , then the arguments are

a(τf ) = b, φ(τf ) = χ, β+(τf ) = b+, β−(τf ) = b− . (33)

In the definition (32) the no-boundary proposal then restricts the class C of metrics over

which the path integral is performed to be the class of compact, regular metrics admitting

regular field configurations and having no boundary other than the final boundary just

described. This restriction selects particular solutions of the WdW equation – this is the

sense in which the no-boundary proposal is indeed a theory of initial conditions. Below

we will evaluate the path integral in the saddle point approximation, i.e. we will look for

finite action solutions of the classical equations of motion satisfying the required boundary

conditions. As is well known [27], with the “no-boundary” boundary conditions, these

solutions must in fact be complex, although of course at the final boundary all field vales in

(33) are required to be real. Given one saddle point, one can obtain others rather trivially,

by taking either the complex conjugate or the time reverse (or both) of a particular saddle

point geometry. Hartle and Hawking then have a proposal as to which of these saddle points

should be retained [3–6]. A second well-known theory of initial conditions is Vilenkin’s

tunnelling proposal. In that theory, the universe is also envisaged to tunnel from “nothing”,

and the regular tunnelling geometries satisfy the same no-boundary regularity condition.

The difference with the approach of Hartle and Hawking is that the tunnelling boundary

conditions select a different saddle point to be retained [7–10]. Since the various saddle points

in question can be trivially obtained from one another, we will not dwell on distinguishing
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the two proposals below - our focus is on obtaining and characterising the saddle point

geometries in the first place, and on the classicality properties of the wavefunction, which

are issues that apply equally to both theories of initial conditions.

The no-boundary condition demands regularity at the so-called South Pole of the solution

(i.e. where the volume of the universe is zero). In our case this corresponds to a = 0, which

we can set to be at t = 0. From the Friedman equation it is clear that at the South Pole

ȧ2 =
N2

3
U(β+, β−) (34)

must be satisfied. For small anisotropies, Eq. (7) implies that U < 0, and thus we see that

the Friedman constraint forces us to complexify the fields (we will shortly see that in fact

we need to take U(β+(t = 0), β−(t = 0)) = U(0, 0) = −3). The φ equation (12) enforces

φ̇ = 0 . (35)

The β equations (10),(11) give U,β+ = U,β− = 0 which correspond respectively to

2e2β+ − e−β+−
√

3β− − e−β++
√

3β− + 2e−4β+ − e2β+−2
√

3β− − e2β++2
√

3β− = 0 , (36)

−e−β+−
√

3β− + e−β++
√

3β− − e2β+−2
√

3β− + e2β++2
√

3β− = 0 . (37)

These equations allow six complex solutions given by

(eβ+ , e
√

3β−) =
{

(1, 1), (−1,−1), (−(−1)1/3, 1), ((−1)1/3,−1), ((−1)2/3, 1), (−(−1)2/3,−1)
}
.

(38)

It is instructive to analyse the form of the metric near the South Pole for these values.

Inserting the values of the first two solutions yields

ds2
SP ≈ −N2dt2 + a2

(
σ2

1 + σ2
2 + σ2

3

)
. (39)

Solutions 3 and 4 give

ds2
SP ≈ −N2dt2 −

(
1

2
+ i

√
3

2

)
a2
(
σ2

1 + σ2
2 + σ2

3

)
, (40)

while the last pair of solutions give

ds2
SP ≈ −N2dt2 +

(
−1

2
+ i

√
3

2

)
a2
(
σ2

1 + σ2
2 + σ2

3

)
. (41)
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Since we are allowing for complex scale factors a when searching for instanton solutions, all

these cases are in fact equivalent, and we may simply use (39).

Even though we defined the path integral in real/Lorentzian time, we just saw that the

boundary conditions force us to consider complex solutions as saddle points of the action.

This means that from here on we should consider the time variable to be complex. To make

contact with the existing literature on no-boundary instantons, we will take our complexified

time variable to be given by τ, such that Im(τ) = t. Thus one may think of the real part

of τ as denoting the Euclidean time direction, and the imaginary part as real time. The

regularity of the field equations near the South Pole then translates into the following series

expansions up to O(τ 5)

a = τ − 1

18
V0e

cφSP τ 3 +
1

8640
((−216(β′′SP+)2 − 216(β′′SP−)2 + (8− 27c2)V 2

0 e
2cφSP )τ 5 + · · ·

(42)

φ = φSP +
c

8
V0e

cφSP τ 2 +
c(2 + 3c2)

576
V 2

0 e
2cφSP τ 4 + · · · (43)

β+ =
1

2
β′′SP+τ

2 +
1

144
(45(β′′SP−)2 + β′′SP+(−45β′′SP− + 7V0e

cφSP ))τ 4 + · · · (44)

β− =
1

2
β′′SP−τ

2 +
1

144
β′′SP−(90β′′SP+ + 7V0e

cφSP )τ 4 + · · · (45)

These series expansions are needed to form a well-defined numerical problem. We can see

that the instantons are characterised by the three complex numbers

φSP , β′′SP+, β′′SP− , (46)

representing the scalar field value, and the values of the second derivatives of the anisotropy

functions, at the South Pole. The no-boundary condition forces the anisotropy functions

and their first derivatives to be zero at the no-boundary point, but allow for a non-trivial

second derivative. In this way anisotropies can develop.

IV. RESULTS

A. Existence and basic features of anisotropic instantons

We can now look for solutions satisfying the no-boundary conditions (42) - (45) while

approaching the desired real values of b, χ, b+, b− on the final hypersurface at some τf . In
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FIG. 3. An example of an anisotropic instanton, optimised to reach the real values b = 10000, χ =

−2, b+ = 1, b− = 1 on the final boundary. These values are reached at τf = 2.32705 + 17.9932 i,

with the South Pole values φSP = 0.942081 − 0.554398 i, β′′SP+ = −0.926417 + 0.173177 i, β′′SP− =

−0.00373004 + 0.000697265 i. We have drawn an example of a “good” contour of integration in

magenta, which avoids the singularities and their associated branch cuts visible in the lower right

part of the figures. For a detailed description of the figure, see the main text.

order to find such solutions we have the freedom of adjusting the contour and the South

Pole values (46). We find these values by implementing a numerical Newtonian optimisation

algorithm. An example of an anisotropic instanton, optimised to reach the values (b =

10000, χ = −2, b+ = 1, b− = 1) on the final boundary is shown in Fig. 3. What we show in

the figure are relief plots of the imaginary parts of the functions a(τ), φ(τ), β±(τ) over the

complex time plane τ with τ = 0 corresponding to the South Pole where the no-boundary

conditions are implemented. More precisely, we are plotting the logarithm of the absolute

value of the imaginary part of these functions, such that small imaginary part corresponds
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FIG. 4. The evolution of the fields a, φ, β+, β− along the contour shown in magenta in Fig. 3.

The contour has been parameterised with a monotonically increasing parameter λ, and the dashed

lines indicate the locations where the contour changes direction. Note that the fields approach

real values on the final, vertical part of the contour. The inflationary attractor ensures that this

is possible simultaneously for all fields. Also note that the anisotropy functions β± start out at

zero, as they must to satisfy the no-boundary conditions, then grow to complex values and and

eventually settle at the desired real values.

to very negative values and thus very dark points. The dark lines thus represent the locus

where the fields are essentially real. These plots are obtained by solving the equations of

motion, starting from the South Pole, going upwards along the imaginary τ axis to a fixed

height first, and then branching out horizontally to a dense series of points on a horizontal
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line. Then this procedure is repeated for a slightly higher horizontal line, until a dense grid

of points is obtained, covering the desired region of the complex time plane.

Our procedure thus implicitly entails a choice of contour along which the equations of

motion are solved. This contour is different from the type of contour usually employed for

no-boundary instantons, see Fig. 5. The usual contour runs out horizontally along the real

τ axis (along which the solution is approximately that of a Euclidean sphere) and then up,

parallel to the imaginary τ axis, to the final location τf where the desired field values are

reached. In the isotropic case, the solution along this last contour then corresponds to a

portion of de Sitter space. However, when significant anisotropies are included, this standard

type of contour is no longer viable, as singularities develop and the standard contour would

in fact take us to a different sheet of the solution function. Along this new sheet we have

checked and found that the final real values (b, χ, b±) are not reached. But we can avoid the

singularities by running the contour first up along the imaginary τ axis, and then horizontally

across. An example of such a “good” contour is shown by the magenta line in Fig. 3, and

the evolution of the fields along this contour is shown in Fig. 4.

Note that the presence of additional singularities is not really surprising: the anisotropies

lead to an increased energy density, which favours a decelerating scale factor (see Eq. (13))

and thus favours gravitational collapse. In regions where the scale factor a shrinks, a sin-

gularity can only be avoided if the homogeneous curvature dominates over the anisotropies,

since the homogeneous curvature can induce a bounce analogous to that present in the

closed slicing of de Sitter space. This however will generically not occur, as the energy

density of the homogeneous curvature scales as 1/a2 while that of the anisotropies scales as

1/a6. Thus we may generically expect singularities to form in regions where the scale factor

shrinks, and consequently it is only natural that we see many additional singularities in the

anisotropic case. (See also [28] for tunnelling solutions which circumvent singularities in a

similar manner.)

With the right contour, we can now construct anisotropic instantons over large ranges

of values, where we only seem to be limited in the range by the computational time it

takes to optimise the instantons. As an example, we show the South Pole values and values

of the action for instantons optimised to reach (b = 100, χ = −1/2), with the anisotropy

parameters ranging from −7/10 ≤ b+ ≤ +1/2 and −1/2 ≤ b− ≤ +1/2. These ranges

coincide with the ranges for the potential U(β+, β−) shown in Fig. 1. The optimised South
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SP

τ

τ f

x
x
x

x

FIG. 5. Due to the presence of singularities (marked by purple crosses), we cannot choose the

standard “Hawking” contour in the complex time plane (in red), as this contour would not have

yielded a solution with the desired boundary conditions. Instead we have to use a modified contour

such as the one in green. Shown here is the complexified Euclidean time plane τ, with the South

Pole at τ = 0 and the final boundary conditions imposed at τf .

Pole values φSP , β
′′
SP+, β

′′
SP− are shown in Figs. 6 - 8, while the action is shown in Fig. 9.

The figures clearly reflect the expected b− → −b− symmetry that comes with this choice of

coordinates. Note that the South Pole values of the scalar field vary little as the anisotropies

are increased, and in particular the imaginary part stays essentially constant. Note also that

for a pure b+ deformation the values of β′′SP− stay close to zero, and to a somewhat lesser

extent this is also true for the β′′SP+ values when considering pure b− deformations. This

indicates that there is not much “rotation” (or mixing between β+ and β−) of the instantons

between the South Pole and the final hypersurface. Regarding the action in Fig. 9, we

can see that the real part of the action is very large, which is as expected since a classical

history has been reached. The imaginary part of the action, which can be thought of as the

“quantum” part, is much smaller but increases steeply for larger anisotropies. We note also

that it changes sign: the minimum is located at b+ = b− = 0 where Im(S) = −79.769844,

while for large anisotropies the imaginary part of the action becomes large and positive. We
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will further comment on this feature in the discussion section.

FIG. 6. Real and imaginary parts of φSP at the South Pole, in terms of the final, real values of b±

indicated, and for b = 100, χ = −1/2. Note that Im(φSP ) varies only over a very small range.

FIG. 7. Real and imaginary parts of β′′SP+ at the South Pole, in terms of the final, real values of

b± indicated, and for b = 100, χ = −1/2.

Having constructed anisotropic instantons over a significant range of anisotropy param-

eters, we should note an interesting consequence of the shift/scaling symmetry (18). Given

a solution such as the ones we have just described, a shifted instanton with final values

b→ b e−
c
2

∆χ, χ→ χ+ ∆χ, b+ → b+, b− → b− , (47)

can be obtained from the following South Pole values

φSP → φSP + ∆χ (48)

β′′SP+ → β′′SP+ e
c∆χ (49)
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FIG. 8. Real and imaginary parts of β′′SP− at the South Pole, in terms of the final, real values of

b± indicated, and for b = 100, χ = −1/2.

β′′SP− → β′′SP− e
c∆χ (50)

τf → τf e
− c

2
∆χ , (51)

where we also included the shifted time coordinate of the final hypersurface. Here ∆χ is

an arbitrary real number, und thus a one-parameter family of instantons with the same

anisotropy parameters, but different scale factor and scalar field values can be obtained.

These shifted instantons belong to different classical histories. Interestingly, starting from

a specific instanton, one can use these relations to construct an instanton with the same

anisotropies but with a much larger value of the scale factor. But evolving that new history

back in time to the original scale factor one realises that this has shifted to a history with

much larger anisotropies (as measured at a reference scale factor value). Given that using

the formulae above we can shift the scale factor by an arbitrary amount, this means that

we can obtain histories with an arbitrarily large anisotropies, along a one-parameter set of

deformations. Together with our grids in Figs. 6, 7 and 8 this strongly suggests that, at least

in the case of a constant equation of state, there is no limit to how large the anisotropies

can be.

The visual methods employed here, and which were developed in [18–20], have the great

advantage of allowing one to see by eye where the singularities are located, and thus clearly

show in what manner the choice of contour is crucial. With the right contour, we have been

able to construct anisotropic instantons with any desired final anisotropy parameters. Thus

we suspect that the obstruction to constructing instantons with large anisotropies reported
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FIG. 9. Real and imaginary parts of the action S, in terms of the final, real values of b± indicated,

and for b = 100, χ = −1/2.

in [17] might have been due to the fact that the authors used the standard contour, and

thus inadvertently landed on a wrong sheet of the solution function.

B. Scaling of the classicality conditions

So far, we have discussed the instanton solutions that are required to approximate the

wavefunction (32) in the saddle point approximation. But it is important to realise that

the instantons themselves do not represent the physical spacetime (which is also why it

is unproblematic that they are complex valued) – rather all the physics must be deduced

from the wavefunction itself. The most basic question we can ask is whether the wave-

function thus calculated predicts a classical spacetime. We can analyse this question using

the WKB classicality conditions reviewed around Eq. (27). To evaluate whether the am-

plitude of the wavefunction evolves slowly compared to its phase, we must first find out

how the action changes as the boundary conditions (b, χ, b±) of the wavefunction are varied,

i.e. we must evaluate the wavefunction along a classical history. Moreover, to evaluate

the partial derivatives w.r.t the fields we must also evaluate the wavefunction with small

changes in the individual fields, so that we may approximate the derivatives by finite dif-

ferences. Thus we must evaluate Ψ[b(λ), χ(λ), b+(λ), b−(λ)] for a sequence of time steps,

where [b(λ), χ(λ), b+(λ), b−(λ)] denotes a classical history parameterised by a time coor-

dinate λ, and also the slightly shifted instantons Ψ[b + δb, χ, b+, b−], Ψ[b, χ + δχ, b+, b−],

Ψ[b, χ, b+ + δb+, b−] and Ψ[b, χ, b+, b−+ δb−] at each time step. Then we can form the WKB
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conditions

WKB qA ≡
∂AIm(S)

∂ARe(S)
, qA = (b, χ, b+, b−) , (52)

which are shown in Fig. 10. The numerical results for the WKB conditions are given by the

blue lines, while the red dashed lines indicate fitting functions. There are a few points to

note: the most obvious feature is that the WKB conditions become better and better satisfied

as the universe expands. Thus the wavefunction really does predict a classical spacetime at

large values of the scale factor. The seond point to note is that the WKB conditions approach

a scaling law, since the log-log plots approach straight lines. Interestingly however, the four

conditions do not all approach the same scaling. The conditions involving derivatives of the

scale factor b and the scalar field χ approach the scaling relation

WKB b,χ ∝
1

b3−ε ∝ e−
3−ε
1−εN , (53)

which is the same scaling that one obtains for isotropic inflationary universes (hereN denotes

the number of e-folds of evolution, dN ≡ d ln(aH)). This is perhaps not so surprising, since

the anisotropies are diluted away at late values of the scale factor. For a small slow-roll

parameter ε, one has WKB b,χ ∼ b−3, i.e. the classicality conditions are satisfied in inverse

proportion to the volume generated by inflation. These relations were proven analytically

for the isotropic case in [29].

For the WKB conditions involving derivatives of the anisotropy functions b±, we obtain

a different scaling law, namely

WKB b+,b− ∝
1

b1+ε
∝ e−

1+ε
1−εN . (54)

This is a substantially slower fall-off than that in Eq. (53), and for small slow-roll parameter ε

one approximately findsWKB b± ∼ b−1, that is to say the classicality conditions only become

satisfied in inverse proportion to the linear size of the universe. Thus the anisotropies slow

down the approach to classicality.

We can derive this asymptotic scaling analytically. For this we need to derive the be-

haviour of the fields at large scale factor. At late times, the inflationary attractor is reached,

and the energy density in the anisotropies is diluted as 1/a6. Thus the anisotropies will only

act as a small perturbation. Because of the attractor, successive constant time slices of a

single instanton will correspond with great accuracy to a series of subsequent instantons for
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FIG. 10. Plots of the WKB classicality conditions (in blue) and their asymptotic scaling behaviour

(red dashed lines). For the classicality conditions involving the scale factor b and the scalar field

χ the red dashed lines are proportional to b−3+ε, while for the relations involving the anisotropy

functions b± the fitted red dashed lines are proportional to b−1−ε. Thus the anisotropies cause the

wavefunction to become classical more slowly than in the isotropic case.

a wavefunction evaluated on the corresponding classical history. In an exponential scalar

potential the scale factor will approach the inflationary attractor solution

b = b0t
1/ε , (55)

where t is the Lorentzian time coordinate and b0 is a constant. At large scale factor, we can

consider the anisotropy equations of motion at linear order in the anisotropy functions,

b̈± +
3

εt
ḃ± +

8

b2
0t

2/ε
b± = 0 . (56)

These equations can be solved asymptotically in a series expansion, giving

b±(t) = b∞±

(
1 +

4ε2

b2
0(1− ε2)

t2−
2
ε + · · ·

)
. (57)

Here b∞± are the asymptotic values of the anisotropy parameters reached at t→∞.
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It is interesting to see how this solution transforms under the shift-scaling symmetry (47)

that arises for exponential potentials. This symmetry only affects the time coordinate t and

the scale factor b in the metric, and not the anisotropy parameters b±, so that we have

b̄±(t̄) = b±(e−
c
2

∆χt) (58)

= b∞±

(
1 +

4ε2

b2
0(1− ε2)

e−
c
2

∆χ(2− 2
ε
)t̄2−

2
ε + · · ·

)
, (59)

which, using the transformation of the integration constant b̄2
0 = b2

0e
ε−1
ε
c∆χ [29], leads to

b̄±(t̄) = b∞±

(
1 +

4ε2

b̄2
0(1− ε2)

t̄2−
2
ε + · · ·

)
. (60)

Thus the solution for the anisotropy parameters is indeed unchanged in form, and in par-

ticular the value of the anisotropies at infinity is unchanged.

We are now in a position to determine how the action changes along a classical history.

As argued above, at sufficiently late times the anisotropies will act as small perturbations,

and hence we can treat them perturbatively without loss of generality. Then, to leading

order, the b± dependent changes in the action (14) will be reflected solely in the term∫
dtNaU(β+, β−) . (61)

Successive instantons are obtained in the late time limit by evolving in the Lorentzian time

direction, hence the lapse function is N = 1 and the asymptotic scaling of the anisotropy

parameters in Eq. (57) implies that they will reach constant values,

∆Re(S) =

∫
dta U(β+, β−) (62)

≈
∫

dt b0 t
1
εU(b+, b−) (63)

≈ b0 t
1
ε
+1U (64)

∝ b V −1/2U . (65)

Thus ∂b±Re(S) ∝ b V −1/2U,b± . In order to determine the change in the imaginary part of

the action, we can use the scaling/shift symmetry described above. As shown in [29], for

isotropic instantons with constant ε this symmetry implies that ∆Im(S) ∝ b
2ε
ε−1V

1
ε−1 . But

we have just seen that the symmetry does not affect the anisotropy parameters. Hence we

must have

∆Im(S) ∝ f(b+, b−) b
2ε
ε−1V

1
ε−1 , (66)
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for some function f(b+, b−) which we cannot determine from these arguments. However, we

also do not need to know its precise functional form. This is because asymptotically, both

the function f and its derivatives f,b± will reach the constant values f(b±∞) and f,b±(b±∞)

respectively, and we are only interested in the overall scaling. Putting the above results

together, we arrive at the scaling law for the WKB classicality conditions associated with

the anisotropy parameters,

WKB b± =
∂b±Im(S)

∂b±Re(S)
∝
f,b±(b±∞) b

2ε
ε−1V

1
ε−1

U,b±(b±∞)b V −1/2
∝ 1

b1+ε
. (67)

A final feature seen in Fig. 10 is the little dip in the plot of WKB b. This feature shows

that the scaling law has not been reached yet, and thus suggests that the wavefunction

has not really reached classicality yet at this stage. It is instructive to look at an early

instanton just before the dip – such an instanton is shown in Fig. 11. The instanton has

been optimised to reach the values (b = 100, χ = −1/2, b+ = 1, b− = 1). Interestingly, the

vertical lines emanating from τf for the plots of the imaginary values of the scale factor

and scalar field show that these fields are already very nearly real in the Lorentzian time

direction, while the ansiotropy parameters do not remain as close to real beyond τf , compare

also to Fig. 3 This is in agreement with the fact that the classicality conditions involving

the anisotropy functions are satisfied more slowly than those involving the scale factor and

scalar field. Thus, at that stage, one cannot yet say that a classical spacetime is predicted,

and several more e-folds of expansion are needed before classicality is reached.

V. DISCUSSION

We have shown that anisotropic (Bianchi IX) no-boundary inflationary instantons may

be constructed with arbitrary values of the anisotropy functions. A novel feature is that the

construction of these instantons requires a different contour in the complex time plane than

the one usually employed for no-boundary inflationary instantons, due to the presence of

singularities caused by the anisotropies. A further implication of the anisotropies is that the

wavefunction of the universe becomes classical in a WKB sense less fast than in the isotropic

case. More precisely, the classicality conditions are satisfied only in inverse proportion to

the linear size of the universe, as opposed to inversely to the volume, which would have been

the case for isotropic instantons. Thus the anisotropies keep the wavefunction fully quantum
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FIG. 11. An “early” instanton with a smaller scale factor, optimised for b = 100, χ = −1/2, b+ =

1, b− = 1. These values are reached at τf = 2.33345 + 8.29691 i, with the South Pole values

φSP = 0.905134−0.554599 i, β′′SP+ = −0.909196+0.164990 i, β′′SP− = −0.00369960+0.000726549 i.

The magenta contour runs from the South Pole at τ = 0 to the final hypersurface at τf . We have

solved the equations of motion over a larger time domain in order to show that the fields (especially

the anisotropy functions) do not retain approximately real values beyond τf yet.

for longer, and it will be interesting to explore possible implications of this feature.

Our results imply that for a scalar field model with an inflationary potential the no-

boundary state predicts classical histories with arbitrarily large anisotropies. In all cases

that we have constructed we found that an inflationary phase is reached, and thus at late

times these anisotropies decay away. In general, due to the presence of the anisotropies, the

classical histories reached at late times contain a big bang singularity when extrapolated

into their past. This singularity is then resolved by the no-boundary proposal in the sense

that the description in terms of a classical spacetime becomes untenable at small scale factor



23

values, since the wavefunction does not yet describe a classical universe at that point.

There are several avenues for future work: we have not much discussed the relative

probabilities of obtaining different classical histories. This is because our results lead to a

puzzle that will require a more detailed investigation. Indeed, as one can see from Fig. 9 the

imaginary part of the action passes through zero and changes sign. This is puzzling from the

point of view of a Picard-Lefschetz analysis of the path integral, since this analysis suggests

that the relevant saddle points of the path integral must always be smaller in magnitude

than 1, see the discussion in [30]. But this would mean that when the imaginary part of the

action crosses zero one must switch to using a different, complex conjugate, saddle point.

In turn such a switch would imply that the peak of the wavefunction would not reside at

zero anisotropy, as currently assumed in the literature, but at the values of the anisotropies

where the imaginary part of the action vanishes. However, performing a full Picard-Lefschetz

analysis of the Bianchi IX model is beyond the scope of the present work, and we hope to

return to this issue in the near future. What can be said either way is that the solutions with

large anisotropies and correspondingly large imaginary part of the action lead to a highly

suppressed wavefunction.

A further extension concerns the construction of anisotropic ekpyrotic instantons. Here

also we are naively faced with a puzzle: the newWKB b± classicality conditions that we have

derived here scale as b−1−ε. In ekpyrotic models the universe is contracting and moreover

ε > 3. Then, if the same scaling were to hold, it would appear that the classicality conditions

would blow up and not be satisfied as b shrinks. This is however hard to believe as an

ekpyrotic phase is an attractor and suppresses anisotropies in much the same way as inflation

does. It will therefore be interesting to clarify this puzzle.
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