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Structure preserving iterative methods for periodic
projected Lyapunov equations and their application
in model reduction of periodic descriptor systems

Peter Benner · Mohammad-Sahadet
Hossain

Abstract In this paper, we develop structure preserving iterative schemes to
solve the periodic discrete-time projected Lyapunov equations associated to
analysis and design of discrete-time descriptor systems exploiting the reflexive
generalized inverses of the periodic matrices associated with these systems.
In particular, we extend the Smith method to solve the large scale projected
periodic discrete-time algebraic Lyapunov equations in lifted form. A low-rank
version of this method is also presented, avoiding the explicit lifted formula-
tion and working directly with the periodic matrix coefficients. Moreover, we
consider an application of the Lyapunov solvers in balanced truncation model
reduction of periodic discrete-time descriptor systems. Numerical results are
given to illustrate the efficiency and accuracy of the proposed methods.

Keywords Periodic descriptor systems · Lifted state space representation ·
Periodic projected Lyapunov equations · Smith iteration · Model order
reduction

1 Introduction

Periodic systems and control theory have received a lot of attention in the
last few decades because they have wide applications in many areas of science
and engineering, specially in the areas where the periodic control is deserved,
such as aerospace realm, control of industrial processes and communication
systems, modeling of periodic time-varying filters and networks [13,17,16,29].
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In this paper, we consider linear time-varying (LTV) discrete-time descrip-
tor systems of order n̄ = (n0, n1, . . . , nK−1), as

Ekxk+1 = Akxk +Bkuk, yk = Ckxk, k ∈ Z, (1)

where Ek ∈ Rµk×nk+1 , Ak ∈ Rµk×nk , Bk ∈ Rµk×mk , Ck ∈ Rpk×nk are the
system matrices, xk ∈ Rnk is the (generalized) state or descriptor vector,
uk ∈ Rmk is the control input, and yk ∈ Rpk is the output. The system
matrices are periodic with a period K ≥ 1, and

∑K−1
k=0 µk =

∑K−1
k=0 nk = n,∑K−1

k=0 mk = m as well as
∑K−1
k=0 pk = p. If all Ek are nonsingular, then (1)

can be transformed into a periodic standard system.
Efficient numerical methods for computing poles and zeros, L∞-norm, min-

imal and balanced realizations have been developed for such systems [6,33–35].
Model reduction of such systems using balanced truncation has been proposed
in [1]. All these methods are restricted to problems of small or medium size
[1,30]. Much attention has recently been devoted to the iterative solution of
large-scale sparse Lyapunov equations. Iterative solvers for projected gener-
alized Lyapunov equations have been proposed in[24,25]. On the other hand,
an extension of the Smith method and the block-Arnoldi based Krylov sub-
space method to standard periodic Lyapunov equations has been presented in
[11]. But,these methods cannot be directly applied to the projected periodic
Lyapunov equations [2].

Analysis and reduced order modeling of periodic discrete-time descriptor
systems may require to invert the system matrices in some appropriate sense.
A special form of the generalized inverses, known as (1,2)-inverses, of periodic
systems in the descriptor form has been considered in [31], which works on
the corresponding lifted form of the associated system pencil of the periodic
system.

In this paper, we discuss the computation of the generalized inverses of
periodic discrete-time descriptor systems using the left and right deflating pro-
jectors associated with the eigenstructures of the periodic matrix pairs. This
technique has been implemented in [25] for continuous-time descriptor system
to compute the solution of the corresponding projected Lyapunov equations.
We will generalize the idea of [25] for the discrete periodic setting and use those
periodic inverses to compute the solutions of the periodic projected Lyapunov
equations. Moreover, we reformulate the Smith method to solve the large pro-
jected periodic discrete-time algebraic Lyapunov equations in lifted form. The
block diagonal structure of the periodic solutions is preserved in every Smith
iteration step which is one of the challenging task in many of the iterative
computations in the periodic setting. It should be noted that generalized ver-
sions of the ADI method and the Smith method have been proposed in [2] for
the solution of projected periodic Lyapunov equations. But, the methods fail
to preserve the block diagonal structure during the iteration, and it is only
achieved upon convergence.

The rest of the paper is organized as follows. In Section 2, we briefly re-
view discrete-time periodic descriptor systems and their cyclic lifted represen-
tations. We also study the causal and noncausal decomposition of the periodic
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descriptor systems. In Section 3, we introduce the periodic matrix equations
under consideration and review the different techniques for the solutions of
those matrix equations associated to the causal and noncausal systems. We
also discuss the challenges of iterative techniques used in computing the struc-
ture preserving solution of those matrix equations. In Sections 4, we discuss
the generalized inverses of periodic discrete-time descriptor systems using the
left and right deflating projectors associated with the eigenstructures of the
periodic matrix pairs. Iteratively solving of the causal and noncausal lifted Lya-
punov equations exploiting the generalized inverses is discussed in Sections 5
and 6, respectively. Low-rank versions of these methods are also presented,
which avoid the explicit lifted formulation and work directly with the period
matrix coefficients. A balanced truncation model reduction method for peri-
odic descriptor systems is considered in Section 7. Section 8 contains numerical
examples that illustrate the properties of the described iterative methods for
projected Lyapunov equations and their application to model reduction. Some
conclusions are given in Section 9.

2 Periodic descriptor systems

Lifted representations [4,7,33] of periodic systems are the analogous time-
invariant representations of the periodic systems. Using the lifting isomor-
phism one can exploit the theory of time-invariant systems for the analysis
and control of periodic systems, provided that the results achieved can be
easily re-interpreted in a periodic framework.

2.1 Cyclic lifted representation of periodic systems

We consider here the cyclic lifted representation which was introduced first
for standard periodic systems in [17]. The essence of the cyclic lifted system
is putting inputs, states and outputs of the original LTV descriptor system at
cyclic places of those of the lifted LTI system.

The cyclic lifted representation of the periodic descriptor system (1) is given
by

EXk+1 = AXk + B Uk, Yk = CXk, (2)

where

E = diag(E0, E1, . . . , EK−1), B = diag(B0, B1, . . . , BK−1),

A =


0 · · · 0 A0

A1 0
. . .

...
0 AK−1 0

 , C =


0 · · · 0 C0

C1 0
. . .

...
0 CK−1 0

 . (3)
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The descriptor vector, system input and output of (2) are related to those of
(1) via

Xk =


x1
...

xK−1
x0

 , Uk =


u0
u1
...

uK−1

 , Yk =


y0
y1
...

yK−1

 ,

respectively. The transfer function of the lifted system (2) can be rewritten as

H(z) = C(zE − A)−1B. (4)

The cyclic lifted system (2) describes the eigenstructure and system dynam-
ics of the LTV discrete-time descriptor system (1). Regularity of the periodic
matrix pairs {(Ek, Ak)}K−1k=0 implies the regularity of the cyclic matrix pair
(E ,A) [14,22,13]. The reverse argument also holds true.

The cyclic matrix pencil zE −A is said to be regular when det(zE −A) 6= 0
for some z ∈ C. The cyclic lifted system (2) is asymptotically stable iff zE −A
is regular and all its finite eigenvalues lie inside the unit circle. System (1) is
asymptotically stable if and only if the corresponding cyclic lifted system (2)
is asymptotically stable.

2.2 Spectral projectors for periodic matrix pairs

In the descriptor setting, the Ek in (1) are singular for k = 0, 1, . . . ,K − 1,
and analysis and modeling of system (1) can be proceed by separating the
causal and the noncausal parts of the periodic descriptor system (1). The
periodic Kronecker canonical form [27,23,6] of the matrix pairs {(Ek, Ak)}K−1k=0

for k = 0, 1, . . . ,K − 1, can be used for this separation.

UkEkVk+1 =

[
Inf

k+1
0

0 Ebk

]
, UkAkVk =

[
Afk 0
0 In∞k

]
, (5)

where Uk, Vk are nonsingular. Then the left and right spectral projectors Pl(k)
and Pr(k), for k = 0, 1, . . . ,K − 1, can be represented as [2,6,24],

Pl(k) = U−1k

[
Inf

k+1
0

0 0

]
Uk, Pr(k) = Vk

[
Inf

k
0

0 0

]
V −1k , (6)

respectively. The index ρ of the periodic descriptor system (1) and the index
ν of the lifted system (2) are related via ν ≤ Kρ [2,6,24].
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3 Periodic matrix equations and their solutions

Stability analysis and model reduction of periodic systems are strongly related
to the matrix equations associated with the systems. For disctere-time peri-
odic descriptor systems, they are well known as generalized projected periodic
discrete-time algebraic Lyapunov equations (PPDALEs). It has been shown
in [2,6] that the periodic Gramians of the asymptotically stable discrete-time
descriptor systems (1) satisfy the PPDALEs with special right-hand sides.
The causal and noncausal reachability Gramians Xk and X̂k are the unique
symmetric, positive semidefinite periodic solutions of the PPDALEs

AkXkA
T
k − EkXk+1E

T
k = −Pl(k)BkB

T
k Pl(k)T ,

Xk = Pr(k)XkPr(k)T ,
(7)

and

AkX̂kA
T
k − EkX̂k+1E

T
k = Ql(k)BkB

T
k Ql(k)T ,

X̂k = Qr(k)X̂kQr(k)T ,
(8)

respectively, where XK = X0, X̂K = X̂0. Note that Pl(k), Pr(k), for k =
0, 1, . . . ,K−1, are the spectral projectors onto the k-th left and right deflating
subspaces of the periodic matrix pairs {(Ek, Ak)}K−1k=0 corresponding to the
finite eigenvalues [1,6], and Ql(k) = I − Pl(k) and Qr(k) = I − Pr(k) in (8).

Similarly, the causal and noncausal observability Gramians Yk and Ŷk are
the unique symmetric, positive semidefinite periodic solutions of the PPDALEs

ATk Yk+1Ak − ETk−1YkEk−1 = −PTr (k)CTk CkPr(k),
Yk = Pl(k − 1)TYkPl(k − 1),

(9)

and

ATk Ŷk+1Ak − ETk−1ŶkEk−1 = Qr(k)TCTk CkQr(k),

Ŷk = Ql(k − 1)T ŶkQl(k − 1),
(10)

respectively, where YK = Y0, ŶK = Ŷ0.
The numerical solution of (7) has been considered in [6] for time-varying

matrix coefficients. The method proposed there is based on an initial reduction
of the periodic matrix pairs {(Ek, Ak)}K−1k=0 to the generalized periodic Schur
form [12,32] and on solving the resulting generalized periodic Sylvester and
Lyapunov equations. As a result, the method is computationally expensive
and not suitable for large scale problems.

An efficient approach which works with the cyclic lifted representation of
(1) and the corresponding lifted form of (7) has been considered in [1]. Follow-
ing the work of [1], the PPDALEs (7) and (8) are equivalent to the following
projected lifted discrete-time algebraic Lyapunov equations (PLDALEs)

AXAT − EX ET = −PlBBTPTl , X = PrXPTr , (11)

AX̂AT − EX̂ET = QlBBTQTl , X̂ = QrX̂QTr , (12)
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respectively, where E , A and B are as in (3), and

X = diag(X1, . . . , XK−1, X0), X̂ = diag(X̂1, . . . , X̂K−1, X̂0).

In that case, the projectors in lifted forms are given by

Pl = diag(Pl(0), Pl(1), . . . , Pl(K − 1)), Ql = I − Pl,

Pr = diag(Pr(1), . . . , Pr(K − 1), Pr(0)), Qr = I − Pr.

The matrices X and X̂ are called the causal and noncausal reachability Grami-
ans of the lifted system (2). A similar result can also be stated for the causal
and noncausal observability Gramians [1].

In practice, one should avoid these direct methods for large-scale prob-
lems because the computational complexity for solving a Lyapunov equation
of the form (11) or (12) using direct methods is at least of order (O(Kn3

max)),
where nmax = max(nk), and they require extensive storage. Therefore, itera-
tive methods have been developed for the solutions of such equations.

3.1 Revised iterative methods for solutions of PLDALEs

Iteratively solving (7) and (8) using their corresponding lifted structures, i.e.,
(11) and (12), has been considered in [2]. A generalized version of the alter-
nating direction implicit (ADI) method and the Smith method is proposed
there for the solutions of (11) and (12), respectively. Note that, for the de-
scriptor system (1), the matrix E = diag(E0, . . . , EK−1) is singular. However,
both the ADI and Smith iterations fail to converge for the resulting Lyapunov
equations since the iteration operator of the ADI and the Smith iterations, in
this case, does not have spectral radius less than one. This problem has been
circumvented by considering a generalized Cayley transformation given by

C(E ,A) = λ(A− E)− (A+ E) (13)

see, e.g., [15]. This transformation transfers the PLDALE (11) to an equivalent
projected continuous-time algebraic Lyapunov equation (PCALE)

EXAT + AXET = −2PlBBTPTl , X = PrXPTr , (14)

where λE −A = λ(A − E) − (A + E) is the Cayley-transformed pencil. The
finite eigenvalues of λE−A lying inside the unit circle are mapped to the finite
eigenvalues of λE−A in the open left half-plane, and the eigenvalue of λE −A
at infinity is mapped to λ = 1.

The solutions of the PLDALE (11) and the PCALE (14) are identical and
have the block diagonal structure. Therefore, it is desired that the iterative
solution of (14) will have the block diagonal structure analogous to (11) at
each ADI iteration step. Unfortunately, the case is not so. It is observed that
the generalized ADI method does not preserve the block diagonal structure
at every ADI iteration step due to the specific structure of the matrices E
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and A, although the approximate Gramian is block diagonal [2]. Therefore,
we use the concept of reflexive generalized inverses of periodic matrix pairs
associated with the periodic system to preserve the block diagonal structure
of the approximate solution at each iteration step.

4 Reflexive generalized inverses of periodic matrices

For periodic systems, the inversion problem has been introduced in [10,19]
by exploiting the concept of left and right invertibility of system (1) in the
standard case (i.e., with Ek = Ink+1

). A generalization of that concept, which
computes the generalized inverses of periodic descriptor systems via the cor-
responding lifted representation has been considered in [32]. A special class of
generalized inverse, called reflexive generalized inverse, of the system pencil
has been proposed in [25] to find the solutions of projected continuous-time
algebraic Lyapunov equations using Krylov subspace methods, and also in [3]
for computing a partial realization for descriptor systems. Similar inverses have
been proposed in [31] to compute generalized inverses of rational matrices in
descriptor state-space representation, and named there (1,2)-inverse as they
satisfy the first two Moore-Penrose conditions. Details of these definitions can
be found in [5]. Analogous to [25], we can find the reflexive generalized inverses
for Ek with respect to the projectors Pl(k) and Pr(k + 1) as

Ēk = Vk+1

[
Inf

k+1
0

0 0

]
Uk, (15)

for k = 0, 1, . . . ,K − 1. Moreover, the reflexive generalized inverses satisfy the
relations

ĒkEkĒk = Ēk, EkĒk = Pl(k), ĒkEk = Pr(k + 1), (16)

for k = 0, 1, . . . ,K − 1. These reflexive generalized inverses of Ek for k =
0, 1, . . . ,K − 1 will be exploited in the next two sections to find the block
diagonal approximate solutions of (11) and (12) using the Smith iterative
method.

5 Generalized Smith method for causal PLDALEs

Consider again the PLDALE (11). Multiplying it from the left and right by Ē ,
and (Ē)T , we get

PrXPTr − ĒAXAT (Ē)T = ĒPlBBTPTl (Ē)T , X = PrXPTr , (17)

where ĒE=Pr by the definition of the reflexive generalized inverse, and Ē =
diag(Ē0, Ē1, · · · , ĒK−1). Equation (17) can be written in a more usual form
as

X − (ĒA)X (ĒA)T = PrĒB (PrĒB)T , X = PrXPTr , (18)



8 P. Benner, M.-S. Hossain

where X = PrXPTr . Note that in the above representation, we use the relation
PrĒ = ĒPl. Clearly, Pl and Pr are the spectral projectors onto the invariant
subspace of the matrix ĒA corresponding to eigenvalues inside the unit circle.
Such an equation can be solved by the Smith method [18,24] given by

X1 = PrĒB (PrĒB)T ,

X` = PrĒB (PrĒB)T + (ĒA)X`−1(ĒA)T .
(19)

Then the unique solution X of (18) can be approximated using the Smith
iterations

Xi =

i−1∑
`=0

(ĒA)`PrĒB BT ĒTPTr ((ĒA)T )`. (20)

Therefore, the Cholesky factor Ri, where Xi = RiRTi , is given by

Ri = [ PrĒB, (ĒA)PrĒB, . . . , (ĒA)i−1 PrĒB ]. (21)

Remark 1 At each iteration step i in (21), we do not have an analogous block
diagonal structure as given in (11). Note that X = diag(X1, . . . , XK−1, X0),
and Xk = RkR

T
k for k = 0, 1, . . . ,K − 1. Hence, we demand to compute

the block diagonal Cholesky factor Ri = diag(Rb1,i, . . . , R
b
K−1,i, R

b
0,i) at each

iteration step i of (21), where Rbk,i collocates all the iterative counterparts
of the computed Rk at the i-th iteration steps for k = 0, 1, . . . ,K − 1, and
Xk = RkR

T
k ≈ Rbk,i(Rbk,i)T . Unfortunately, the iterations do not result in this

form. This is because in each iteration step i, except for the first iteration, in
the right-hand side of (21), we have a different block cyclic matrix.

5.1 Structure preserving solutions of PLDALEs

The problem of preserving the block diagonal structure at the iterative compu-
tation of the Cholesky factor Ri can be circumvented by introducing a cyclic
permutation matrix in each iteration step i of (21). First, consider the trivial
permutation matrix

Π =



Jm0
0 · · · 0 0

... Jm1
0 0
. . .

...
0 JmK−2

0
0 0 · · · JmK−1

 , (22)

where Jmi denotes the square identity matrix of size mi, and mi equals the
number of columns of Bi.

We introduce a new permutation matrix σiΠ at each iteration step i in
the computation of (20), where σiΠ changes in a cyclic manner by a forward
block-column shift at each iteration step.
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For example, suppose that K = 3, and k = 0, 1, 2. Then for i = 1, σ0Π = Π
is given by

Π =

Jm0
0 0

0 Jm1
0

0 0 Jm2

 . (23)

For i = 2, we get

σ1Π = σΠ = σ(Π) =

 0 Jm0
0

0 0 Jm1

Jm2
0 0

 , (24)

which is just a forward shift of the last block-column of Π in (23). Clearly for
i = 3, the permutation matrix takes the form

σ2Π = σ(σΠ) = σ(σ(Π)) =

 0 0 Jm0

Jm1 0 0
0 Jm2 0

 , (25)

which is nothing but a forward shift of the last block-column of σΠ. Note
that similar types of permutations are also considered in [11] for solutions of
periodic Lyapunov equations. One nice property of this permutation matrix is
that it satisfies the periodicity property, i.e., σKΠ = Π, where K is the period
of system (1).

Hence (20) takes the new form

Xi =

i−1∑
`=0

(ĒA)`PrĒB(σ`Π) (σ`Π)TBTĒTPT
r ((ĒA)T)`.

Therefore, in this new representation the Cholesky factor Ri has the form

Ri = [ PrĒBΠ, (ĒA)Pr ĒB(σΠ), . . . , (ĒA)i−1 Pr ĒB(σi−1Π) ]. (26)

In (26) we have PrĒBΠ = Pr ĒB. It is to be noted that the matrix Ri in (26) is
not block diagonal but each block computed at the i-th iteration step of Ri in
(26) preserves the block diagonal structure. Therefore, we construct the block
diagonal Cholesky factor diag(Rb1,i, . . . , R

b
K−1,i, R

b
0,i) of Xi which is obtained

from Ri by additional block permutation at each iteration step i, i = 2, 3, . . .,
and Xk = RkR

T
k ≈ Rbk,i(R

b
k,i)

T for k = 0, 1, . . . ,K − 1. The whole iterative
process is summarized in Algorithm 1.

The approximate solution satisfies Ri = PrRi in every iteration step i.
Algorithm 1 is to be stopped as soon as the normalized residual norm given
by

η(Ri) =
‖ARiRTi AT − ERiRTi ET + PlBBTPTl ‖F

‖PlBBTPTl ‖F
(27)

satisfies the condition η(Ri) < tol with a user-defined tolerance tol or a stag-
nation of residual norms is observed.
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Algorithm 1 Generalized Smith method for causal PLDALE

Input: A, Ē,B, Pr, cyclic permutation matrix Π.
Output: A low-rank Cholesky factor Ri such that Xi ≈ RiRTi .

1: W1 = Pr ĒB
2: Z1 = W1;
3: R1 = Z1

4: for i = 2, 3, . . . do
5: Wi = (ĒA)Wi−1

6: Zi = Wi(σ
i−1Π);

7: Ri = [Ri−1, Zi]
8: end for

Remark 2 When the numbers of columns of Bk, i.e., mk, k = 0, 1, . . . ,K − 1,
are big, Ri may face rank deficiency, because, in each iteration step, Algo-
rithm 1 will add as many columns as there are in B to the previous Ri. Hence,
we propose the rank-revealing QR decomposition (RRQR) [8] of Ri with tol-
erance τ to compute a low-rank factor of Ri. But in general, the RRQR will
destroy the constructed block diagonal structure of Ri. Hence, we use the
RRQR decomposition on the factored form of Ri, i.e., on Rbk,i at each itera-
tion step i, for k = 0, 1, . . . ,K − 1. Note that

Rbk,i = [Rk,1, Rk,2, . . . , Rk,i] (28)

at the i-th iteration steps for k = 0, 1, . . . ,K − 1. We then use the RRQR
decomposition

[V̂i, Q̂i, rcc] = RRQR((Rbk,i)
T , τcc),

where τcc =
√
ε [2], update

Rbk,i = Q̂iV̂
T
i [ Ircc , 0 ]T ,

for k = 0, 1, . . . ,K − 1, construct Ri = diag(Rb1,i, . . . , R
b
K−1,i, R

b
0,i) at each

iteration step i in Step 7 of Algorithm 1, and use it in the i + 1-st iteration
step.

5.2 Cyclic computation of causal PLDALEs

In fact, the iteration (26) implemented in Algorithm 1 not only proves that
each block matrix in Ri stay block diagonal at each iteration step i, it also
enables us to rewrite (21) in such a way that one can directly compute the
periodic Cholesky factors for different k, k = 0, 1, . . . ,K − 1. From simple
algebraic manipulation of (26), we observe that the periodic matrices Ek, Ak,
and Bk appear in a cyclic manner in the computation of the periodic Cholesky
factors Rbk,i in every iteration step i for different values of k, k = 0, 1, . . . ,K−1.
Observing these cyclic relations and handing them technically, we can compute
the periodic Cholesky factors Rbk,i, k = 0, 1, . . . ,K − 1, i = 1, 2, . . ., directly.
We represent some of those computations in the following.
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For i = 1, we get

R0,1 = RK,1 = Pr(K)ĒK−1BK−1 = Pr(0)ĒK−1BK−1,

R1,1 = Pr(1)Ē0B0, % ĒK = Ē0, BK = B0

...

RK−1,1 = Pr(K − 1)ĒK−2BK−2.

For i = 2, we get

R0,2 = RK,2 = ĒK−1AK−1Pr(K − 1)ĒK−2BK−2 = ĒK−1AK−1RK−1,1,

R1,2 = Ē0A0Pr(0)ĒK−1BK−1 = Ē0A0R0,1,

...

RK−1,2 = ĒK−2AK−2Pr(K − 2)ĒK−3BK−3 = ĒK−2AK−2RK−2,1.

For i = 3, we get

R0,3 = RK,3 = ĒK−1AK−1ĒK−2AK−2Pr(K − 2)ĒK−3BK−3

= ĒK−1AK−1RK−1,2,

R1,3 = Ē0A0ĒK−1AK−1Pr(K − 1)ĒK−2BK−2 = Ē0A0R0,2,

...

RK−1,3 = ĒK−2AK−2ĒK−3AK−3Pr(K − 3)ĒK−4BK−4

= ĒK−2AK−2RK−2,2,

and so on. The whole computation is summarized in Algorithm 2. Note that
in the above computations and also in Algorithm 2, we use the periodicity
of the coefficient matrices and that of the projectors. Here, Pr(K) = Pr(0),
Pr(K − 1) = Pr(−1), ĒK = Ē0, Ē−1 = ĒK−1, ĒK+k = Ēk, and the similar
for others. Obviously, XK = X0 = RKR

T
K = R0R

T
0 . It should be also noted

that in Algorithm 2, Rbk,i means the computed Rk at the i-th iteration steps.

Also note that Rbk,i collects all these iterative counterparts for an individual

k, where k = 0, 1, . . . ,K − 1. That means for k = 0, we compute Rb0,i =
[R0,1, R0,2, . . . , R0,i], and similarly the others.
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Algorithm 2 Smith method for cyclic computations of causal PLDALEs.

Input: (Ēk, Ak, Bk), spectral projectors Pr(k) for k = 0, . . . ,K − 1.
Output: Low-rank periodic Cholesky factor Rk such that Xk ≈ Rbk(Rbk)T .

1: for k = 0 : K − 1 do
2: Rk,1 = Pr(k)Ēk−1Bk−1 % note that Ē−1 = ĒK−1, B−1 = BK−1

3: Rbk,1 = Rk,1
4: end for

5: for i = 2, 3, . . . do
6: for k = 0 : K − 1 do
7: Rk,i = Ēk−1 Ak−1Rk−1,i−1

8: Rbk,i = [Rbk,i−1 Rk,i]

9: Rbk = RRQR(Rbk,i, τk)

10: end for
11: end for

One can define a stoping criteria for Algorithm 2 by setting a normalized
residual norm given by

η(Rbk) =
‖AkRbk(Rbk)TATk − EkRbk+1(Rbk+1)TETk + Pl(k)BkB

T
k Pl(k)T ‖F

‖Pl(k)BkB
T
k Pl(k)T ‖F

,

(29)
which satisfy the condition η(Rbk) < tolc for k = 0, 1, . . . ,K − 1, where tolc is
a user predefined tolerance. A similar computation can also be stated for the
causal periodic observability Gramians Yk of (9).

6 Smith method for noncausal PLDALEs

For nonsingular A, the PLDALE (12) is equivalent to the PLDALE

X̂ − (A−1E)X̂ (A−1E)T = QrA−1BBTA−TQTr ,
X̂ = QrX̂ QTr .

(30)

Such an equation can be solved by the Smith method [21] given by

X̂1 = QrA−1BBTA−TQTr ,

X̂i = QrA−1BBTA−TQTr + (A−1E)X̂i−1(A−1E)T .
(31)

Note that in the noncausal case we do not need to compute the reflexive
generalized inverses of the periodic matrices Ek, and Ak, for k = 0, 1, . . . ,K−1,
since (31) requires only the inversion of the cyclic lifted nonsingular matrix A.

In this case, QrA−1E = A−1EQr is nilpotent with the nilpotency index ν
[2], and after ν iterations we obtain

X̂ν =

ν−1∑
i=0

(A−1E)iQrA−1BBTA−TQTr ((A−1E)T )i = X̂ . (32)
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Therefore, the Cholesky factor R̂ of the solution X̂ = R̂R̂T of (30) and
also of the PLDALE (12) takes the form

R̂ν = [QrA−1B,A−1EQrA−1B, . . . , (A−1E)ν−1QrA−1B]. (33)

Note that the above iteration does not preserve the block diagonal structure
at every iteration step in the computation of the Cholesky factor R̂ν [2]. By
introducing a cyclic permutation matrix in each iteration step like the causal
case, one can easily preserve the block diagonal structure at every iteration
step in(33).

6.1 Structure preserving solutions for noncausal PLDALEs

Let us again consider a cyclic permutation matrix P̂ of the form

P̂ =


0 · · · 0 Jm0

Jm1
0

. . .
...

0 JmK−1
0

 , (34)

where as before, Jmi
denotes the identity matrix of size mi. We introduce a

new permutation matrix σ̂iP̂ at each iteration step i in the computation of
(32), where σ̂iP̂ changes in a cyclic manner by a backward block-column shift
at each iteration step.

Similar to the causal case, the permutation matrix is periodic with a pe-
riodicity K, i.e., σ̂KP̂ = P̂, where K is the period of system (1). Then (32)
gets the new form

X̂ν =

ν−1∑
i=0

(A−1E)iQrA−1B(σ̂iP̂) (σ̂iP̂)TBTA−TQTr ((A−1E)T )i = X̂ . (35)

Therefore, the Cholesky factor R̂ν has the form

R̂ν = [QrA−1BP̂,A−1EQrA−1B(σ̂P̂), . . . , (A−1E)ν−1QrA−1B(σ̂ν−1P̂) ].
(36)

It can be verified that each column block in (36) preserves the block diagonal
structure analogous to the solution of (30). The computation of this factor is
presented in Algorithm 3.

We note that if the index ν is unknown, then Algorithm 3 can be stopped
as soon as ‖Wi‖F ≤ ε or ‖Wi‖F /‖R̂i‖F ≤ ε with the machine precision ε.
Thus, for systems of low index, the solution of (8) can be obtained with few
computations. Also, we have to project Wi onto the image of Qr to guarantee
that the second equation in (12) (and also in (30)) is satisfied.
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Algorithm 3 Generalized Smith method for noncausal PLDALEs

Input: A, E,B, spectral projector Qr, cyclic permutation matrix P̂.
Output: Low-rank factor R̂ν such that X̂ = R̂νR̂Tν .

1: W1 = QrA−1B
2: Z1 = W1P̂
3: R̂1 = Z1

4: for i = 2, 3, . . . , ν do
5: Wi = A−1EWi−1

6: Zi = Wi(σ̂
i−1P̂)

7: R̂i = [R̂i−1, Zi]
8: end for

Note that the matrix R̂ν in (36) is not block diagonal but each column block
computed at the i-th iteration step in (36) preserves the block diagonal struc-
ture analogous to the solution of (30).Therefore, we construct the block diag-
onal Cholesky factor diag(R̂b1,i, . . . , R̂

b
K−1,i, R̂

b
0,i) of X̂i which is obtained from

R̂i by additional block permutation at each iteration step i, i = 2, 3, . . . , ν.
Note that R̂bk,i collects all the iterative counterparts of the computed R̂k at

the i-th iteration steps for k = 0, 1, . . . ,K−1, and X̂k = R̂kR̂
T
k ≈ R̂bk,i(R̂bk,i)T .

6.2 Cyclic computations of periodic noncausal Cholesky factors

In fact, the iteration (36) implemented in Algorithm 3 not only proves that
each column block computed in R̂ν stay block diagonal, it also enables us to
rewrite (33) in such a way that one can directly compute the periodic Cholesky
factors for different k, k = 0, 1, . . . ,K−1. From simple algebraic manipulation
of (36), we observe that the periodic matrices Ek, Ak, and Bk appear in a
cyclic manner in the computation of the periodic Cholesky factors R̂bk,i in every
iteration step i for different values of k, k = 0, 1, . . . ,K − 1. Observing these
cyclic relations and handing them technically, we can compute the periodic
Cholesky factors R̂bk,i, k = 0, 1, . . . ,K − 1, i = 1, 2, . . ., directly. We represent
some of those computations in the following.

For i = 1, we get

R̂0,1 = R̂K,1 = Qr(0)A−10 B0,

R̂1,1 = Qr(1)A−11 B1,

...

R̂K−1,1 = Qr(K − 1)A−1K−1BK−1.
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For i = 2, we get

R̂0,2 = R̂K,2 = A−10 E0Qr(1)A−11 B1 = A−10 E0R̂1,1,

R̂1,2 = A−11 E1Qr(2)A−12 B2 = A−11 E1R̂2,1,

...

R̂K−1,2 = A−1K−1EK−1Qr(0)A−10 B0 = A−1K−1EK−1R̂0,1.

For i = 3, we get

R̂0,3 = R̂K,3 = A−10 E0A
−1
1 E1Qr(2)A−12 B2 = A−10 E0R̂1,2,

R̂1,3 = A−11 E1A
−1
2 E2Qr(3)A−13 B3 = A−11 E1R̂2,2,

...

R̂K−1,3 = A−1K−1EK−1A
−1
0 E0Qr(1)A−11 B1 = A−1K−1EK−1R0,2,

and so on.

Algorithm 4 Generalized Smith method for noncausal PLDALEs.
Input: (Ek, Ak, Bk), spectral projectors Qr(k) for k = 0, 1, . . . ,K − 1.

Output: Low-rank periodic Cholesky factor R̂k such that X̂k = R̂kR̂
T
k .

1: for k = 0 : K − 1 do
2: R̂k,1 = Qr(k)A−1

k Bk % note that R̂0,1 = R̂K,1

3: R̂bk,1 = R̂k,1
4: end for

5: for i = 2 : ν do
6: for k = 0 : K − 1 do
7: R̂k,i = A−1

k Ek R̂k+1,i−1

8: R̂bk,i = [R̂bk,i−1 R̂k,i]

9: R̂k = RRQR(R̂bk,i, τ)

10: end for
11: end for

The whole computation is summarized in Algorithm 4. Similar to the causal
case, we consider the periodicity of the coefficient matrices and that of the pro-
jectors in Algorithm 4. Here Qr(K) = Qr(0), EK = E0, EK−1 = E−1, EK+k =
Ek, etc. Obviously, X̂K = X̂0 = R̂KR̂

T
K = R̂0R̂

T
0 . In Algorithm 4, R̂bk,i means

the computed R̂k at the i-th iteration step. Also note that R̂bk,i collocates all
these iterative counterparts for an individual k, where k = 0, 1, . . . ,K − 1.
That means for k = 0, we compute

R̂b0,i = [R̂0,1, R̂0,2, . . . , R̂0,i],
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and similarly the others.
For unknown index ν, we propose the RRQR decomposition [8] of R̂bk,i with

tolerance τ to truncate redundant columns in the iterations of Algorithm 4.
In that case, we assume that after the i-th iteration we have the exact compu-
tation of the periodic Cholesky factors R̂k satisfying relation ‖R̂k,i‖F ≤ ε or

‖R̂k,i‖F /‖R̂k‖F ≤ ε, where ε is the machine precision, and then, X̂k = R̂kR̂
T
k

are the periodic solutions of (8) for k = 0, 1, . . . ,K − 1. We also need to
project R̂k,i onto the image of Qr to guarantee that the second equation in
(8) is satisfied.

Remark 3 As the Ak can be singular in the discrete-time case, Algorithm 4 is
restricted in that case. We restrict our model reduction approach for systems
where Ak, for k = 0, 1, . . . ,K − 1, are nonsingular.

Remark 4 The causal and noncausal observabiliy Gramians of the periodic de-
scriptor system (1) can also be determined from the corresponding PLDALEs
that are dual to the PLDALE (11) and (12), see [1] for details. Applying Algo-
rithm 1 and Algorithm 3 (and also their corresponding cyclic reformulations
Algorithm 2 and Algorithm 4) to these equations, we find, respectively, the low-
rank Cholesky factors Lk of the causal observability Gramians Yk ≈ LkLTk and

the Cholesky factor Ỹk of the noncausal observability Gramians Ŷk = L̂kL̂
T
k .

7 Application to model order reduction

Model order reduction (MOR) is an approach, where a large dynamical system
is approximated by a reduced-order model which can be fast and efficiently
simulated and which has nearly the same response characteristics as compared
to the original large model. Balanced truncation for periodic standard discrete-
time system and periodic descriptor systems has been considered in [7,30], and
[6], respectively. For the periodic descriptor system (1), a reduced-order model
of dimension r̄ = (r0, r1, . . . , rK−1) has the form

Ẽkx̃k+1 = Ãkx̃k + B̃kuk, ỹk = C̃kx̃k, k ∈ Z, (37)

where Ẽk ∈ Rγk×rk+1 , Ãk ∈ Rγk×rk , B̃k ∈ Rγk×mk , C̃k ∈ Rqk×rk are K-
periodic matrices,

∑K−1
k=0 γk =

∑K−1
k=0 rk = r, and r� n. It is also important

that the reduced-order model preserves physical properties of the original sys-
tem such as regularity and stability, and that the approximation error is small.

Consider that the set of periodic matrix pairs {(Ek, Ak)}K−1k=0 is periodic
stable, and the Cholesky factors of the causal and noncausal Gramians satisfy

Xk = RkR
T
k , Yk = LkL

T
k ,

X̂k = R̂kR̂
T
k , Ŷk = L̂kL̂

T
k .

Then the causal and noncausal Hankel singular values of the periodic descrip-
tor system (1) are defined as

σk,j = ζj(L
T
kEk−1Rk), θk,j = ζj(L̂

T
k+1AkR̂k),
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respectively, where ζj(.) denotes the singular values of the corresponding prod-
uct matrices. For a balanced system, truncation of states related to the small
causal Hankel singular values does not change system properties essentially.
Unfortunately, truncation of small non-zero noncausal Hankel singular values
may lead the system to become unstable [9].

Let us consider the singular value decompositions of the product matrices

LTkEk−1Rk = [Uk,1, Uk,2]

[
Σk,1

Σk,2

]
[Vk,1, Vk,2]T ,

L̂Tk+1AkR̂k = Uk,3ΘkV
T
k,3,

(38)

where [Uk,1, Uk,2], [Vk,1, Vk,2], Uk,3 and Vk,3 are orthogonal,

Σk,1 = diag(σk,1, . . . , σk,rfk
), Σk,2 = diag(σk,rfk+1, . . . , σk,nf

k
),

with σk,1 ≥ · · · ≥ σk,rfk > σk,rfk+1 ≥ . . . ≥ σk,nf
k
, and Θk=diag(θk,1, . . . , θk,r∞k )

is nonsingular for k = 0, 1, . . . ,K − 1.
Defining the projection matrices [6] as

Sk,r = [Lk+1Uk+1,1Σ
−1/2
k+1,1, L̂k+1Uk,3Θ

−1/2
k ] ∈ Rµk×γk+1 ,

Tk,r = [RkVk,1Σ
−1/2
k,1 , R̂kVk,3Θ

−1/2
k ] ∈ Rnk×rk ,

with rk = rfk + r∞k and γk+1 = rfk+1 + r∞k , we compute the reduced-order
system (37) as

Ẽk = STk,rEkTk+1,r, Ãk = STk,rAkTk,r, B̃k = STk,rBk, C̃k = CkTk,r, (39)

Let H̃(z) be the transfer functions of the reduced-order lifted system formed
from the reduced-order matrices in (39). Then the reduced-order model satis-
fies the following H∞-norm error bound

‖H − H̃‖H∞ = sup
ω∈[0,2π]

‖H(eiω)− H̃(eiω)‖2

≤ 2 trace (diag(Σ0,2, . . . , ΣK−1,2)),
(40)

where H(z) is defined in (4), ‖.‖2 denotes the spectral matrix norm, and Σk,2,
k = 0, 1, . . . ,K − 1, contains the truncated causal Hankel singular values [9,
2].

8 Results

Example 1 We consider first an artificial periodic discrete-time descriptor sys-
tem on index-1 from [2, Example 1], which is reformulated from its original
model in [6, Example 1]. In this reformulation, the periodic descriptor sys-
tem has µk = nk = 404, mk = 2 and pk = 3 for the periodicity K = 10,
i.e., k = 0, 1, . . . , 9. The spectral projectors Pl(k) and Pr(k) are computed us-
ing the Kronecker-like forms of periodic matrix pairs {(Ek, Ak)}K−1k=0 proposed
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Fig. 1 (a) Normalized residual norms for the causal reachability and observability lifted
projected Lyapunov equations; (b) Causal Hankel singular values for original and reduced-
order lifted systems.

in [28,6]. The set of periodic matrix pairs {(Ek, Ak)}K−1k=0 is periodic stable

with causal eigenvalues, nfk = 400 and noncausal eigenvalues, n∞k = 4 for

k = 0, 1, . . . , 9. The original lifted system has order n = 4040. Since nfk = 400
for k = 0, 1, . . . , 9, computing the Ēk is straightforward using relation (15).

We solve the causal and noncausal lifted projected Lyapunov equations us-
ing Algorithm 2 and Algorithm 4, respectively. Since, Algorithm 2 is the cyclic
reformulation of Algorithm 1, we compute the normalized residual norms at
each Smith iteration step for the reachability and observability type of the
causal lifted Lyapunov equations using relation (27). We apply the RRQR
decomposition at every fifth iteration step, since it is computationally expen-
sive. Experiments confirm that computing it every ` = 5 steps often provides
a good efficiency balance of computational cost and rank growth compared
to other choices of `. To illustrate the efficiencies of the proposed algorithms,
we compare the results with the corresponding ADI (Alternating Direction
Implicit) computation of [2]. Fig. 1(a) shows the decay of the residual norms
computed at each Smith iteration step.

This iteration is stopped as soon as the normalized Lyapunov residual
reaches the tolerance tol = 10−10. We approximate system (1) by a reduced-
order model obtained by truncating the states corresponding to the small
causal Hankel singular values satisfying σk,j < 10−4. The largest 80 causal
Hankel singular values of the original lifted system, and the approximate 71
causal Hankel singular values for the reduced-order lifted system are shown in
Fig. 1(b).

For different subsystems, the numbers of the computed non-zero noncausal
Hankel singular values are identical and given by r∞k = 2 for k = 0, 1, . . . , 9.
The computed reduced-order model has subsystems of orders (9, 9, 9, 9, 9, 9, 9, 9,
10, 9). Note that stability is preserved in the reduced-order system.
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Fig. 2 (a) The frequency responses of the original and the reduced-order lifted systems;
(b) absolute error and error bound.

Fig. 2(a) shows the norms of the frequency responses H(eiω) and H̃(eiω) of
the original and reduced-order lifted systems for a frequency range [0, 2π]. We
observe a good match of the system norms. Finally, in Fig. 2(b), we display
the absolute error ‖H(eiω)− H̃(eiω)‖2 and the error bound given in (40).

Example 2 As a second model problem we consider here an artificial continuous-
time model from Section 4.3 of [26], where a spring-damper model is considered
as an artificial model of piezo-mechanical systems. We consider n = 500, l =
100,nin = 2,nout = 3 for our model problem, and hence the dimension of
the continuous-time model is 2n+ l = 1100. The formulated continuous-time
model is converted to a discrete-time model by an Euler discretization method
[20]. We then change the damping matrix periodically by introducing some pe-
riodic coefficients inside it. As a result, the model is time-varying and periodic.
The details of this periodic model formulation are given in the appendix.

For the resulting periodic model, we have nk = 1100, mk = 2, pk = 3, and
a period K = 10. The periodic matrix pairs {(Ek, Ak)}K−1k=0 are periodic stable

with nfk = 1000 and n∞k = 100 for every k = 0, 1, . . . , 9. The resulting periodic
system is of index 1, and the original lifted system has order n = 11000. The
sparsity pattern of the periodic pair at k = 0 is shown in Fig. 3.

In Fig. 4(a), we present the largest 260 causal Hankel singular values com-
puted by the proposed Smith method in Algorithm 2. We approximate system
(1) to the tolerance 10−4 and truncate the states corresponding to the smallest
200 causal Hankel singular values. The system has 20 noncausal Hankel sin-
gular values which are positive, but very small. The values of these noncausal
Hankel singular values lie in the range of [10−13, 10−15], and they are shown
in Fig. 4(b). It is to be mentioned that our model problem is of index 1, and
hence we need only one iteration to compute the noncausal Cholesky factor
for noncausal PLDALEs using Equation (36).
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Fig. 4 (a) Causal Hankel singular values for original and reduced-order lifted systems. (b)
Noncausal Hankel singular values for original and reduced-order lifted systems.

The computed reduced-order model has subsystems of order r̄ = (9, 8, 8, 7, 8,
9, 7, 8, 8, 8), and r = 80. In Fig. 5(a), we show the norms of the frequency re-
sponses H and H̃ for a frequency range [0, 2π]. We also display the absolute
error ‖H(eiω)− H̃(eiω)‖2 and the error bound in Fig. 5(b). One can see that
the error bound is tight in this example.

9 Conclusions

We discussed the structure preserving Smith iterations to compute the low-
rank factors for the solutions of large sparse projected periodic discrete-time
algebraic Lyapunov equations exploiting the reflexive generalized inverses of
the periodic matrix coefficients associated with the periodic descriptor system.
These low-rank factors are used in a balanced truncation model reduction
approach to find a reduced-order model for periodic discrete-time descriptor
systems. The proposed model reduction method delivers a reduced-order model
that preserves the regularity and stability properties of the original system.
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Fig. 5 The frequency responses and error bounds of the original and the reduced-order
lifted systems.

An important advantage of our computational approach is that one can
directly compute the reflexive generalized inverses of the periodic descriptor
system, without explicitly manipulating the lifted representations. Beside this,
the proposed Smith iterations preserve the cyclic block diagonal structures at
all iteration steps which is the main challenging task in periodic iterative
computations.

The major drawback of our proposed method is that it requires the peri-
odic projectors explicitly for the computations of periodic reflexive generalized
inverses which is numerically expensive and not a wise approach for higher in-
dex systems. Hence we restrict the proposed model reduction approach for
systems of index-1.
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Appendix

The MATLAB codes of the periodic model formulation used in the second
model problem. The following codes will construct the periodic matrices Ek,
Ak, Bk, and Ck for k = 0, 1, . . . , 9. Note that Ek are constant matrices in the
following construction.

-----------------------------------------------------

This is an index 1 problem

-----------------------------------------------------

n=500;

l=100;

nin=3; % number of input

nout=2; % number of output

K=10; %period

den=0.001;

I=speye(n);

M=.5*I+spdiags(-0.2*ones(n,1),2,n,n)+spdiags(-0.2*ones(n,1),-2,n,n)+

spdiags(0.2*ones(n,1),4,n,n)+spdiags(0.2*ones(n,1),-4,n,n);

K_uu=spdiags(5*ones(n,1),0,n,n)+spdiags(-1*ones(n,1),2,n,n)+

spdiags(-1*ones(n,1),-2,n,n)+ spdiags(2*ones(n,1),4,n,n)+spdiags(2*ones(n,1),-4,n,n);

D=cell(1,K);

for i=1:K

mu(i)=0.05+.01*i;

nu(i)=.8+.01*i;

D{i}=mu(i)*M+nu(i)*K_uu;

end

K_pp=spdiags(-5*ones(l,1),0,l,l)+spdiags(ones(l,1),2,l,l)+spdiags(ones(l,1),-2,l,l)+

spdiags(-2*ones(n,1),4,l,l)+spdiags(-2*ones(n,1),-4,l,l);

K_up=sprand(n,l,den);

% Transformation to first order system %

E1=[I spalloc(n,n,0);spalloc(n,n,0) M];

J1=cell(1,K);

for i=1:K

J1{i}=[spalloc(n,n,0) I;-K_uu -D{i}];

end

J2=[spalloc(n,l,0);-K_up];

J3=[-K_up’ spalloc(l,n,0) ];

J4=-K_pp;

clear M K_uu D K_pp K_up
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B11=[spalloc(n,nin,0);spdiags(ones(n,1),0,n,nin)];

B2=spdiags(zeros(l,1),0,l,nin);

C11=[spdiags(ones(n,1),0,nout,n) spalloc(nout,n,0)];

C22=spdiags(zeros(l,1),0,nout,l);

E= [E1 spalloc(size(J2,1),size(J2,2),0);

spalloc(size(J3,1),size(J3,2),0)

spalloc(size(J4,1),size(J4,2),0)]; % note E{i}=E; for i=0,1,...,9.

% Set the periodic matrices %

Ad=cell(1,K);B=cell(1,K); C=cell(1,K);

for i=1:K

Ad{i}=[J1{i} J2;J3 J4];

B1{i}=B11*cos(i);

B{i}=[B1{i}; B2];

C1{i}=C11*sin(i);

C{i}=[C1{i} C22];

end

A=cell(1,K);

for i=1:K

A{i}=(0.6*E-.015*Ad{i});

end
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