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Abstract: 
The dynamics of two-dimensional, dynamically forced roll vortices is investigated in the neutral atmospheric 
boundary layer by use of a four-component spectral model. 
Although the truncated model of shear flow cannot be expected to describe the developing structure in 
detail, information is given about the critical points at which the character of the flow is expected to change. 
The study consists of finding constant equilibrium solutions and then conducting a linearized analysis to 
determine their stability with respect to small disturbances. In addition, numerical integrations of the phase 
space trajectories of the solutions were performed to reveal the existence of temporally periodic solutions for 
a certain range of the external parameters. 
Finally, the calculated roll~scale transports of lateral momentum are compared with observational data. 

Zusammenfassung: Eine Studie über Wirbelrollen in der atmosphärischen Grenzschicht 
Die Dynamik zweidimensionaler, dynamisch erzeugter Wirbelrollen wird in der neutralen atmosphärischen 
Grenzschicht mit Hilfe eines vierkomponentigen spektralen Modells untersucht. 
Obwohl nicht erwartet werden darf, daß das niederspektrale Modell der Scherströmung exakt die sich ent- 
wickelnde Strömungskonfiguration vorhersagt, kann dennoch Auskunft über die kritischen Parameterwerte 
gegeben werden, an denen eine Änderung im Charakter der Strömung zu erwarten ist. 
In der Studie werden zunächst die stationären Gleichgewichtslösungen des Modells ermittelt und ihre Stabili- 
tät mit Hilfe einer linearen Störungsanalyse überprüft. Zusätzlich werden numerisch ermittelte Lösungen der 
Gleichungen angegeben, um die Existenz zeitlich periodischer Lösungen für bestimmte Parameterbereiche 
nachzuweisen. 
Schließlich werden die berechneten Vertikaltransporte von lateralem Impuls in der Rollenskala mit Meßdaten 
verglichen. 

Résumé: Une étude des tourbillons en rouleaux dans la couche limite atmosphérique 
On étude, 8 l'aide d'un models spectral 8 quatre composantes, la dynamique de tourbillons en rouleaux 8 
deux dimensions, engendrés dynamiquement, dans la couche limite atmosphérique neutron. Bien qu'on ne 
puisse pas attendre, en raison du cisaillement tronqué, we je models derive en detail la configuration du 
développement, on obedient de l'information sur les points critiques of je caractere de l'écoulement est 
susceptible du changer. 
L'étude consiste 8 trouver les solutions stationnaires d'équilibre et 8 effectuer alors one analyse linéarisée 
pour determiner lour stability vis-8-vis de petites perturbations. En out re, on a réalisé des integrations numéri- 
ques des trajectoires des solutions dans l'espace de phase, en vue de révéler I'existence de solutions périodi- 
ques pour one certain g a m e  des paramétres externs. Finalement, on a compare avec des données d'ob- 
servation les transports vertical calculus d'impulsion latérale 81'échelle des rouleaux. 
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1 Introduction 
There exists ample observational evidence, for instance due to the KonTur experiment, that the 

dynamic state of the atmospheric boundary layer is often characterized by the presence of coherent 
motions, whose amplitudes are significant and at scales comparable to the thickness of the atmospheric 
boundary layer. 
When the wind is suffenciently high and the heat flux not too strong, longitudinal roll vortices aligned 
approximately parallel to the mean wind seem to be the most obvious manifestation of organized con- 
vection. 
The rolls under discussion here are the result of a dynamic shear instability, in contrast to convective 
rolls associated with a strongly unstable boundary layer with streamwise shear. Several experimental and 
theoretical studies have revealed the existence and nature of a shearing instability in the boundary layer 
and found that the mechanism of instability is associated with a point of inflection in the profile of 
velocity perpendicular to the rolls (e.g. KAYLOR and FALLER , 1966; LILLY, 1966; BROWN, 1970 and 
1980, arunc and WIPPERMANN, 1975). 
In order to get more insight into some of the nonlinear aspects of the secondary flow in the neutral 
Ekman-layer, we study a low-order~spectra1 model of two-dimensional convection in presence of a mean 
wind component orthogonal to the rolls. 
We adopt the philosophy proposed by LORENZ (1960, 1963) that essential aspects of the physics of 
complex hydrodynamical systems are revealed by models that are simplified to the point containing the 
nonlinearity in its most basic manifestation. We use the observed fact that under convective conditions 
the flow is dominated by a few spatial harmonics and cut-off the representation after four terms. In the 
study only nonlinear interactions between the mean flow and the secondary flow are included and 
interactions among the eddy terms are ignored. Such simplified models are often considered to in- 
corporate the essential features of die nonlinear interactions and are of course simpler to analyse than 
die fully nonlinear system. The most striking consequence of the nonlinearity of the problem is dlat the 
nature of the solutions can change as the parameters of d1e problem are varied. Most significantly, stable 
solutions become unstable and there are combinations of parameters for which multiple solutions 
appear. 
In Section 2 we present the basic equations and the Fourierrepresentation for the flow. In Sections 3 
and 4 the steady-state solutions of the system and their stability depending on the external parameters 
are examined while Section 5 contains the results of the numerical time integrations. In Section 6 we 
compare our qualitative results with measurements reported by BRUMMER et al. (1984). 

I 
l 

2 Governing Equations 
To simplify the problem we assume that all motions are parallel to the y-z-plane and 110 varia- 

tions occur in the direction of the x-axis, which is in line with the roll axis. This assumption is equivalent 
to the requirement of two~dimensional disturbances, which realize only the shear in the plane perpendi- 
cular to their axis. 
Starting point of the analysis are the continuity equation and the two equations of motion for an in- 
compressible, neutrally buoyant, conservative fluid. By cross differentiating the equations of motion 
and introducing a streamfunction W, the vorticity equation of the problem is obtained. 

v II 

aw 
Hz W ln-  in 

ay 
v 2 w + J ( ¢ , v 2 w ) = 0  

(1) 
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I 
Here V2 II/ represents the vorticity of the motions in the plane normal to the horizontal axis of the 
vortices and the Jacobian operator is defined as 

J (a, b) II 

Babb 
By E)z 

Barb 
Hz é}y 

To represent the effects of the small scale turbulence, a constant eddy diffusivity coefficient Km is used. 
The processes, which set up a mean lateral velocity profile are not explicitly included in the model. With 
respect to this production of energy it is assumed that all mechanisms involved could be interpreted as 
a time independent forcing field go-, which has to be determined by observational data. For simplicity 
the time scales of the forcing and of the diffusive processes are assumed to be the same. The model is 
then specified by 

vow + Jo, vi no) = Km VW - J). r (2) 

It is convenient to nondimensionalize the equations, using the convection layer depth H and the R.M.S. 
value of the forcing velocity V0 as characteristic velocity and height scale so that we can rewrite the 
variables of the problem in terms of nondimensional variables to be denoted by an asterisk as follows 

y = H ° y *  
H 

1 
H 

t v i  

Vo 

Z = H - Z *  ¢ = V o ' H ° ¢ *  

H 1/2 

v0'= dz 
2 

Bz 

t* 

0 

By introduction of these transformations in Equation (1), we obtain the vorticity equation in non- 
dimensional form, containing the turbulent Reynoldsnumber Re as a nondimensional parameter. 

a 
fit* VI*+ * 

J (al/*v 2 II Re" v*4 W* _ ¢7*) 

Re 
H (3) 

\b*__V*21p* 0 

We shall apply the vorticity equation to a flow confined between two surfaces and assume that go* is 
periodic in the y-direction. The problem is most tractable, if free slip boundary conditions are adopted. 
In this case W* and V*2 if* vanish at both horizontal boundaries. 

for 
Z* 
Z* 

0 
1. 

With respect to atmospheric applications the no-slip boundary condition at the lower border would 
be more realistic. But for simplicity we make no attempt to incorporate this condition, because in most 
respects the results may differ only quantitatively when the fluid is forced to be motionless at thelower 
boundary. 
To obtain a solution of the vorticity equation, which gives insight into the complicated forms of non- 
linearity, the spectral method is applied. The flow field is represented as a double Fourier-series ac- 
cording to 

ES _ 'k ' ¢*(y*, z*, t*) - a5(t*) - e'- 
ii 
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_k (kmlm) 

With vector 5 and the wavenumber vector _k 

8. = (y*, z*) 
_ 2 - ii -n 2 Tf ~m 

L/H ' 2 

Where m and al are integers representing the horizontal and vertical Fourier mode numbers and L/H, 2 
are the fundamental wavelengdts in the y*-direction and in the z*-direction, respectively. 
The infinite set of ordinary differential equations governing the time variations of the Fourier-coeffi- 
cients for the motion are formally obtained via Fourier-transformation of the vorticity equation. 

<1 , __ 'as as_. gm, + Z Co Rell gr* (Q -Q) 
p,q 

{ (ag l " - lg l " ) (pyqz-pzqy)  g+g=l  
0 otherwise I 

O
 

'u
ln

a
 

In
 

II 

(4) 

Here the dot denotes a derivate with respect to the dimensionless time. Note that the quadratic terms 
represent nonlinear interactions among the spectral components of the motion field and the linear 
terms on the right hand side represent viscous damping and forcing, respectively. The interaction co- 
efficient c}'-'S is non-zero, if the selection rule_l = B + 9- is fullfilled. 
In accordance with the remarks in the introduction we shall restrict our attention to a representation 
consisting of only a small number of modes. The highly truncated system is formed by retaining only 
four terms in the expansion of the streamfunction, with two variables representing the mean velocity 
profile and the other two representing the secondary flow. 
Let 

b* (2)-1/2 ' X I  -sin(l ° z*) + (2)-*I/2 ' X 2  -sin(m -z*) + \J*A'*kn ( 

+ Xa °COS(k1 'y*) . sin(q -z*) + X4 -sin(k, ~y*) -sin(p -z*). 

1 
(5) 

The forcing function is taken as 

$* = (2)*1/2 -xi -sin(l'z*) + (2)-1/2 -x2 sin (m ~z*). 

Introducing the shape-parameter 0 = arctg(m 822 /l 841), the forcing function can be rewritten as 

¢7* = (2)1/2 -I-1 -cos ~sin(l -z*) + (2)1/2 .m-1 -sin -sin(m-z*) 
since 

RIP + 
4 

~2  2 1/2 
X2 ' M  ) 

4 

II 1. 

In Equation (5) the first two terms on the right are independent of y* and therefore represent the mean 
velocity profile. The vertical wavenumbers are chooser to be I = 7T and in = 3 n. 
The remaining terms represent the secondary flow disturbances with Ure horizontal wavenumber 
Kr = 21r/L/H. In order that they may interact with the mean How their vertical wavenumbers p and q 
must satisfy the selection rules m = p + q and I = p - q, which require p = 2 * to and q = 7l'. Together they 
describe a wave of a single horizontal wavenumber, but a variable shape and a variable phase. Because 
there are so few degrees of freedom, the shape of the wave depends upon the phase, so that the model 
cannot picture the motion of disturbances without change of shape. 
The governing equations of the truncated model are obtained either from the universal spectral vortici- 
ty equation (4), or by substituting Equation (5) directly into Equation (3). 
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The four-coefficient model is now specified on the domain 0 < y* < L/H, 0 < z* $1 by 

2-cos6 
X 1  ' H' X 

2 sin 0 

Re 1 ' _ X3!X4 1 T 2 ' X 1 - F x l  ' X 3 ' X 4  4 - vr 

2 . 91r ' X 2  Re 1 

X 4  X4 

+ I - ; X 4 ' X 3 ' X 4  - -81 '7T4 ' 

2 2 ' _ s s _ ( k 1 + 1 r ) - x 3 - F ;  'X1 'X4+ ' ;23  ' X 2 ' X 4  Re -(k§+1¢2)2-X3 

2 2 . _ 1, 3 2 '  3 _ - ( k 1 + 4 - n ) x 4 - 1 " § 4 *  ' X 1 ' X 3 + ' X x 4 X  ' X 2 ' X 3  Re I (k% +4'1r2)2~x4. 

\ 

(6) 

(7) 

(8) 

(9) 

Where 

1"X3= X4 
X1 

FX1 
X3 

FXls X3 
X4 

FXS! X4 
XI 

_ 3113 -k1 _ 9ui-k, 
-.-- 2-6 - i t  

5x4_3T f ' 3 ' k1 ' * ' k31 "N '  _-37rk31+151r8"k1 

2-v5 2 -\/- Q 

_ k - 1 1  _ 31rk31-24Tr3k1 

- - 2-J? ` 2- ' 

Under Equations (6) (9) two integral quantities, namely the mean ldnetic energy E 

E = § ( # - x §  +9-112  ~x§ +(k21 +7/12)-x2 +(k§ +41r2)-x42) 

I-IX29 XI 
X3 

l*X2sX3 
X4 

and the mean square vorticity V 

1 = §("4 -x21 + 81 ~174 V xi + (kg + 7/2)2 -xi + (kg + 47r2)2 xi) 
I 

are readly seen to be conserved in the limit Re -> oo_ 

The simple system may seem to be a rather crude approximation of a hydrodynamical system, it can 
however picture the nonlinear interaction between the mean flow and the superposed disturbances. 
To study the growth of intensity of the roll vortices, the initial conditions consist of the basic mean 
velocity profile plus a infinitesimal disturbance in the component X 3 .  Thus we choose 

I 
I 

X1 

II 

2-cos9 
TI' X2 

II 

2~sin0 
3-11 Xa 

II € X4 

II 0 le l<1.  

Figure 1 shows some of the investigated mean velocity profiles as function of the shape-parameter 6. 
This parameter could be regarded as a measure of steepness of the inflection point, that is, so the smaller 
the value of the shape-parameter, the greater is the vorticity of the mean velocity profile at z* = 0.5. 
There are obviously two additional i.-points between z* = .5 and the boundaries, if 0 < 174o, but the 
magnitude of the velocity gradient at these points is surely much smaller than at z* = 0.5 . Thus, only 
the inflection point at z* = 0.5 is likely to have measureable significance. In the atmospheric boundary 
layer, whose mean flow is produced by a balance of viscous-, coriolis- and pressure forces, two dimen- 
sional velocity profiles (Ekman spirals) may develop with inflection points in the lateral wind compo- 
nent (see Figure 16 in the paper of LILLY, 1966). These profiles exhibit some similarities to those used 
in the model, but, on the other hand, the profiles used in the model seem to be arbitrary in some way, 
since the heigth of the inflection point and the corresponding velocity in this point are fixed. Never- 
theless, we think that these restrictions do not affect essential aspects for the understanding of boundary 
layer roll phenomena. 
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. Fig. 1 
Investigated mean velocity profiles for different values 
of the shape-parameter 6. 

1 

_ / 5 '  s 0 . s ¬ıä¬ 
V* ( z * )  I 

In the next sections we will examine the solutions and their stability as functions of the Reynoldsnumber 
Re, the domain aspect ratio L/H and the shape-parameter 6. In this way we can investigate how the roll 
circulation will develop in response to different mean velocity profiles. 

3 Stationary Solutions and their Stability 
The stationary solutions are a crucial subclass of solutions to the spectral system. They can be 

determined analytically as an algebraic function of the model parameters Re, L/H and 8. Besides their 
intrinsic value, the stationary solutions are the foundation for the investigation of the asymptotic 
properties of the temporally varying solutions of Equations (6)-(9). 
For the steady state time derivates vanish and from Equations (6)-(9) we can write 

._ X3,X4 0 - .  l"X1 ' X 3 . X 4  
-1 -- Re XI 2-cos6 

TT (10) 

II 
o X3, X4 

FX2 
-1 

' X 3 ' X 4  -Re 2~sin0 
.A 

\ 

0 u X1 

X3 

-81 -w"~x2 

I*Xx;»*4 . X 4 _ * _ F ; § , x 4 . X 2 _ x 4 _ R e - 1  .(Ki +1n2)2 'Xa 

0 = 1*,'§}*»"° ' X I  ' X 3  + 1*§§s ' X 2  ' X 3  "R€-1 + 4-7T2)2 ' X 4 .  

By eliminating xl ,  X2 and X4 from Equations (10)~(13) we derive a fifth degree polynomial in X3 

x; +?\1-x3 +x2»x3 = 0  

(11) 

(12) 

(13) 

(14) 
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I 

that governs the stationary solutions. The coefficients Ki are functions of the Reynoldsnumber Re, the 
shape-parameter 6 and the domain aspect ratio L/H and are listed in the Appendix. Since the coefficients 
are real, complex roots must occur in conjugate pairs. Hence, there is always at least one real root for 
Equation (14) and may be more depending on the parameter values K1 and M. The solutions are easily 
calculated from Equations (14) and (10)-(13), and the expression for the first is 

s 
X1 

2-cos6 
'IT kg 

2-sin6 
3-fr 

s _ s _ X3 -- 0 X4 - 0. (15) 

The solution (15) will be called the $1 trivial branch, because it corresponds to the undisturbed basic 
state consisting of the initial mean velocity profile and vanishing amplitudes of the coefficients de- 
scribing the secondary flow. It is clear from Equations (10)-(13) that this configuration is always a 
solution. But when 7\2 is forced to negative values, additional solutions emerge, branching off from the 
basic solution. We obtain 

xI 2-cos9 _ 
Tl' 

'x§°x2 

s 
X2 

xi i 

2-sin6 
3-11 

. X53 . XI 

3'RC'k1 
2-v-2-1r 

R€'k1 + 
18 

K? 1/2 

4 2 

A - +  
2 

.t.,, 

(» (-~ )'") 
(16) 
(16) 

s 
X4 

_ -_  
CO ' x'§ 

(Cs + C6 ' (xi )'2. ) 
for the Ci defined in the Appendix. 
Note that two more solutions (corresponding to the plus or minus sign in Equation (16)) appear, which 
will be called the $2 and so primary branches. These solutions are physically equivalent differing only 
in phase by 180o and correspond to nontrivial steady states of convection in which the finite amplitude 
roll circulation coexists with a modified mean flow. We will discuss the implication of the bifurcation 
and stability of these stationary solutions in Section 4. 

4 Stability and Bifurcation Properties 
In this section we examine the stability properties of the stationary solutions with respect to 

infinitesimal disturbances. 
We have seen that nonlinear differential equations such as those that govern the present mathematical 
model of inflection point instability usually have multiple solutions for some values of the controling 
parameters. The critical values of the external parameters at which two or more solutions coalesce are 
called bifurcation points. Although bifurcation arises from nonlinearity, the stability characteristics of 
the solutions can be determined from the linearized form of Equations (6)-(9). Because one solution 
looses its stability at the bifurcation point, the two concepts of bifurcation and stability are intimately 
related. Thus, in order to discover the physically realizable configurations, we study the linearized 
equations in the neighborhood of the bifurcation points. 
Denoting die stationary solution by A = (xi, xi, xi, xi) and the perturbations by Q = (X1 a x2, X I 5  x4) 
we derive from Equations (6)-(9) the perturbation equations by ignoring products of perturbations. If 
the linear matrix operator is denoted by _LA the linearized equation is now 

Q + LA (Q : 0 (17) 
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solutions exchange stability via Hopi' bi- 
furcation with periodic solutions'Pl and Pi- 

Since Equation (17) has solutions of the form g(t*) 
son 

= Q exp (0 - t*), we obtain the characteristic equa- 

4 2 0 + q 3 • U 3 + q 2 ' 0  ' * ' q 1 ' O ' + q 0  

O ` = 0 R + i ° 0 i  

0 
(18) 

where the ii are functions of Re, 0, L/H and A_. Hence, a time independent solution A_ will become 
unstable, if the real part of one eigenvalue a passes through zero as the magnitude of a parameter is 
varied. Whenever the imaginary part of Cr also vanishes at a critical point, then other steady solutions are 
expected to emanate from the stationary solution. If two eigenvalues cross the imaginary axis as a 
conjugate pair a Hopf bifurcation to a periodic solution is expected (SHIRER and WELLS , 1983). 
Direct numerical solutions of Equation (18) yield the following results, which are summarized by means 
of a bifurcation diagram and are sketched in Figure 2. 
The coordinates are the Reynoldsnumber and any Fourier-amplitude of the secondary circulation (scales 
are arbitrary). The trivial branch (see Equation (15)), labeled by 81 , lies on the abscissa, die primary 
branches (see Equation ( l 6)) that bifurcate from it are denoted by So and S? and the suspected periodic 
solutions are identified by P, and P'l'- Full lines are used to denote the stable portions of the solutions. 
in Figure 2, the basic solution $1 looses its stability at Re := ReS, but two other solutions Se and So' 
corresponding to the steady state of roll circulation emanate from this bifurcation point. The solutions 
$2 and S? are stable in the Reynoldsnumber interval Res < Re < Rep, but at Re = Rep these solutions 
exchange stability via Hopf bifurcation with periodic solutions P, and P1l'. 
The physical explanation leading to the branching hierarchy in our model of shear flow lies in the 
inability of a slightly viscid fluid to maintain local extremes in vorticity of the mean flow profile. If the 
frictional forces are not strong enough to support these local strains in the fluid, the flow becomes 
unstable to small perturbations. Tile fluid develops waves to relieve the vorticity maximum at z* = .S. 
The unstable perturbations equilibrate at. some finite value, wherein the energy drawn from the mean 
flow exactly balances the secondary dissipation. In addition, the finite amplitude disturbances tend to 
alter the dynamically unstable mean flow profile so that it becomes stable in combination with the 
secondary flow. Finally, a transition to a temporally periodic changing flow pattern is possible, if the 
ratio of inertial to frictional forces exceeds a certain value. in this ease oscillatory time variations of the 
perturbation kinetic energy and the mean flow kinetic energy will be observed excited by a cyclic 
interchange of energy between the mean flow and the secondary flow. 
Apparently the inflection point instability mechanism due to the two other inflection points is filtered 
by the restriction to only two vertical wavenu robers in the representation of the secondary circulation, 
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additional harmonics would be needed in order to capature the effect of the other inflection points and 
hence give rise to additional roll modes. 
The numerical values of the Reynoldsnumber Res and Rep at which branching occurs are functions of 
the parameters 6 and L/H. Figure 3 gives a typical example of a stability diagram in which Re is plotted 
against the horizontal wavenumber ki = 21r/L/H. The point, which gives the minimum value of Re on 
the neutral curve is called the critical point. The Reynoldsnumber and wavenumber corresponding to 
the critical point are called the critical Reynoldsnumber Red and the critical wavenumber ki , respective- 
ly. In order to reduce the number of external parameters in our problem, the horizontal wavenumber 
k1 will hereafter be chooser to be equal to ki . 
The dependence of the critical Reynoldsnurnber Red and the critical wavenumber kc1 as function of the 
shape-parameter 0 is illustrated in Figure 4. It is seen that Red (kg) decreases (increases) with decreasing 
values of the shape-parameter 0, that is, so the steeper the inflection point, the sooner branching occurs 
and the smaller is the horizontal scale of the roll circulation. 
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Fig. 4 Critical Renoldsnumber Reg and critical wavenumber kcal versus shape-parameter 6. 
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The dependence of the Reynoldsnumber Rep and the period 27r/0i of the expected periodic solutions 
corresponding to this Reynoldsnumber is given in Figure S. Similar as in the case before Rep is mono- 
tonously decreasing with decreasing values of 6,  the periods of the periodic solutions show also this 
behaviour. Periodic solutions exist also for 0 > I70o, but the values of the Reynoldsnumber Rep at 
which branching occurs and the corresponding period 21rl0i are out of the range to be plotted. From 
the non-dimensionalisation in the present model we note that the dimensional period T is given by 
:L ":'. 1000 m the non-dimensional 

period 2vrfoi = 15 corresponds to a dimensional period of approximately 4 hours. Thus, a temporally 
periodic changing flow pattern may be realized in the atmosphere, since the predicted periods of the 
oscillations are short compared to the intervall of time in which steady external conditions could be 
expected. 

T For typical atmospheric conditions with -v0 = lm/s and H 

I 

5 Numerical Integrations 
To obtain numerical solutions of the system of Equations (6)~(9), numerical values for the 

external parameters must be specified. We shall let 6 = 160o so that Ki = 2.45, Red = 22 and Rep ::: $1 
(see Figures 4 and 5). Since the behavior of the system in the vincinity of the branching points is of 
special interest, we choose supercritical values of Re with respect to Red and Rep, respectively. For 
initial conditions we have chooser a slight departure from the basic state and of the state of steady con- 
vection, respectively. 
A geometrical interpretation of the time dependent dynamics of the system could be given in the phase 
space, which is set up by the four variables (x, , Xa. Xa. Xa). The trajectories were derived by numerical 
integration of Me time dependent system of Equations (6)-(9) by use of the Euler-backward time 
integration scheme. 
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X 3 . Fig. 6a Projection of the four-dimensional trajectory into the X1 -x3  phase plane. The trajectory was obtained by 

numerical integration of Equations (6)-(9) with 9 = 1600, Re = 40. Initial conditions are denoted by an open circle, 
while stationary points are indicated by dots. The position of the Separatrix is also given. 

Fig. 6b As in Figure 6a except Re : 52. The figure displays the behavior of the system as it settles into the limit cycle. 

In Figures 6a and 6b the four-dimensional trajectories are depicted by showing the projections in the 
(Xl . -  x3) phase plane. This initial condition is indicated by an open circle and the arrowheads point at 
the positions of the projections of the stationary solutions $2 and S? marked with dots. The trajectories 
chooser for illustration in the pictures are representative of numerous trajectories obtained for other 
initial conditions. 
In Figure 6a a phase plane representation of the transient behaviour of the four-variable system as it 
settles to the stationary solution $2 is given. The trajectory spirals into $2 , which is called a stable focus, 
since all trajectories in its sourrounding were attracted. This behavior is characteristic for all cases in 
the parameter range Red < Re < Rep. In the middle of the picture the projection of the Separatrix is 
seen, which separates the basins of attraction of the both attractors. 
The topologic structure of the attractor will change, if the Reynoldsnumber is raised above Rep. Figure 
6b displays the behaviour of the system in the case in which periodic solutions may be suspected. The 
trajectory is apparently approaching a limit cycle and the apparent period is approximately if 
Figure 5)- 

(see 

6 Comparison of Model Results with Measurements 
Cloud street observations were performed on four days during the KonTur experiment, on 

September 18, 20, 26 and 28, 1981. In this section we will compare our qualitative results with measure- 
ments performed on September 20, 1981 reported by BRUMMER et al. (1984). 
The wind profile measured on September 20 is presented in Figure 7. Neglecting the details of wind 
fluctuations, the along-roll component (UR) has approximately a triangular shape and the cross-roll 
component (VR) a tangent like profile with an inflection point at about 850 m. This indicates the 
dYnamic instability as a possible mechanism of roll generation, because the heating from below is small. 
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Mean wind components parallel 
(UR) and normal (VR) to roll 
orientation measured by the air- 
craft FALCON on September 20, 
1981 (after BRUMMER et al.,1984)- 

The sea surface was only 0.5 K warmer than the air. The horizontal wavelength of the boundary layer 
rolls was found to be about 3.1 times the convection layer depth H. Since the cloudy part of the roll 
circulation was observed to be rather small, we assume that the release of latent heat due to condensa- 
tion was not essential to the formation of convective streets. Therefore a test of the model results against 
observational data may be justified. 
To compare the measurements of roll-scale transports of cross-roll momentum with momentum trans- l 
ports derived from the model, we have to specify the values of the external parameters. We choose 
6 = 169o so that the corresponding horizontal wavelength L/H = 211/k'i is in accordance with the ob- 
served value. The scaling velocity V0 was estimated from the measured cross~roll wind profile to be 
" vU = 0.9 m/s. The value H = 1300 m has been chooser for the height of the convection layer, which core 
responds to the height of the inversion base. Finally, Km = 40 rn'/s was jugded to be a realistic value for 
the momentum diffusion coefficient. The Reynoldsnumber Re = 30 belonging to this parameter constel- 
lation lies in the range Red < Re < Rep in which steady solutions exists (see Section 4). 
Figure 8 shows the computed secondary flow pattern corresponding to the $2 solution in the y* - z* 
plane. The secondary flow consists of counterrotating skewed vortices, indicating energy transfer from 
the mean flow to the secondary circulation. 
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169o and Re = 30. The stream- 
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The calculated and measured mean vertical roll-scale transports of cross-roll momentum as function of 
height are sketched in Figure 9. Data are marked with dots and crosses and refer to aircraft measure- 
ments from FALCON and HERCULES, respectively. The fluxes vanish at the boundaries and reach their 
maxima arround mid-levels, corresponding to the heigth of the inflection point, where the largest shear 
is present. The computed fluxes are not inconsistent with the observatational data, and we believe that 
the observations of cloud streets during the KonTur experiment could be explained with the inflection 
point instability mechanism. 

7 Conclusions 
The stationary and evolutionary solutions of a four-component spectral model designed to 

represent dynamically forced boundary layer rolls have been examined for the case in which the cross- 
roll mean flow interacts with smaller scale disturbances. 
We have revealed the possibility of stationary and periodic solutions with varying stability domains of 
attraction or repulsion. Bifurcations occur in the model as the external parameters are modified. 
When our results are tested against observatational data, qualitative agreement was obtained. Certainly, 
this agreement should not be overestimated, because of the highly restrictive model asumptions. It 
should be realized that our highly tnincated spectral model could give only a poor description of a real 
fluid system with infinite many degrees of freedom. In addition, since the interaction between the 
velocity and thermal fields and the effects of condensational heating are completely neglected, it works 
best for rather confined fluids with "dry streets" where all modes of motion, except for a few selected 
ones, are highly damped. 
Nevertheless, our results are encouraging for further work and we hope that this study provides a basis 
for further discussion to clarify our understanding of boundary layer roll phenomena. 
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Appendix 
Derivation of the Polynominal Equation (14) 

I . X3 . X4 

Where 

X2 
| X3 . X4 

Combination of Equations (10) and (11) yields 

2~cos6 3'RC°k1 
XI  = 'IT -. 2 \/-2-fr 

= 2-sin6 + R€'k1 
3 ' 77 18 - \/-2-fr 

Inserting these expressions into Equations (12) and (13) gives 

0 = C1 ' X 4  +C, 'X3 +C3 ~x3 'xi 
0 = C4 -xg +C5 °X4 +C6 °x§ 'X4- 

C1 = 2k1 -7r2 ~(3 'cos + sin 6) + 2 'k31(cos0 - s i n )  
c2 = -2-I-Re'1(ki +w2)2 
co = -ki -Re(sk§ + 111r2)/3 - t  
C4 = -(16k1 -112 -sin + 2k3i(cos6 -sin0)) 
co = -- 2 w/-2'Re"(kI + 4n2)2 
co = -ki -Re-(4112 - Ski)/3 »\/i 

From Equation (A2) we obtain 

_ C4 'Xa 
X4 - -(C5 +C»s'X23) ¢ 

Finally, after inserting Equation (A3) into (Al), we get 

0 = xi +A1 -xi +A2'x3. 

(Al) 
(A2) 

(As) 

Where 
(C3-C3 +l2'C2IC5'C1'C4)'C6) 

7\1= 2 
C2°Cs 

7\2 
(C2°C5 "C1 'C4)ICs 

C2'C§ 
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