
A Numerical Study of Horizontal Roll Vortices in Neutral and Unstable Atmospheric 
Boundary Layers 

Andreas Chlond 

Max-Planck-Institut für Meteorologie, Hamburg 

(Manuscript received 17.07.1986, in revised form 11.12.1986) 

Abstract ; 
The non-linear dynamics of horizontal roll vortices in neutral and unstable atmospheric boundary layers are 
investigated by means of a numerical spectral model. The large-scale eddies are assumed to be two-dimensional 
and they are modeled explicitly in a vertical plane with variable orientation with respect to the geostrophic 
wind. 
First, the linear stability of the system is discussed for various Richardson numbers to confirm that the 
fundamental instability mechanisms leading to the occurence of rolls are the inflection point instability and 
shear organized buoyant convection. In addition, finite amplitude integrations are performed. From this, it 
is found that the perturbations come to a non-linear equilibrium, producing a modified mean flow and a 
helical roll secondary circulation with a horizontal wavelength of about three times the convection layer depth. 
Emphasis is placed on Ute roll kinetic energy budget to evaluate the importance of the various energy ex- 
change processes in the production and maintenance of rolls. The model results indicate that the rolls in an 
atmospheric boundary layer with thermally unstable stratification are maintained primary by buoyancy and 
secondary by production of energy from the cross-roll component of the mean wind spiral (inflection point 
instability)4 
Finally, the calculated roll parameters such as aspect ratio and orientation angle as well as the calc 
profiles of roll-scale velocity variances, transports of temperature, along- and cross-roll momentum are 
compared with measurements. 
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Zusammenfassung: Eine numerische Studie von Wirbekollen in neutralen und instabil geschichteten 
atmosphärischen Grenzschichten 
Die nichtlineare Dynamik von Rollen wird mit Hilfe eines numerischen spektralen Modells in neutralen und 
instabilen atmosphärischen Grenzschichten untersucht. 
Bei der Beschreibung rollenartiger Bewegungen wird von der zweidimensionalen Näherung Gebrauch gemacht 
so daß die Rollen explizit in einer Ebene, die hinsichtlich der Richtung des geostrophischen Windes eine 
beliebige Orientierung aufweisen kann, modelliert werden können. 
Zunächst wird mit Hilfe einer linearisierten Version des Modells gezeigt, daß die Bildung von Wirbeln mit 
horizontaler Rotationsachse zum einen durch die Wendepunktsinstabilität und zum anderen bei labiler Dichte 
Schichtung durch die thermische Instabilität ausgelöst werden kann. 
Außerdem wurden Integrationen der nichtlinearen Gleichungen durchgeführt. Die Rechnungen zeigen, daß 
sich Zellstrukturen mit einem Aspektverhältnis von ca. drei entwickeln, die durch Rückkoppelungsprozesse 
die instabilen Grundstromprofile so verändern, daß sie in Verbindung mit der Sekundärzirkulation eine 
stabile Konfiguration darstellen. Bei den Berechnungen wird ein besonderes Augenmerk auf die Energetik der 
Rollen geworfen, die direkte Einblicke in die Instabilitätsmechanismen ermöglicht. Es kann gezeigt werden, 
daß bei labiler Dichteschichtung die Rollen primär durch die durch Auftrieb produzierte Energie und sekun- 
där durch die durch Scherung produzierte Energie gespeist werden. 
Schließlich werden die berechneten Rollenparameter, wie Aspektverhältnis und Orientierungswinkel, sowie 
die berechneten l-löhenprofile der Geschwirıdigkeitsvarianzen. der Transporte von Temperatur, lateralem um; 
longitudinalem Impuls in der Rollenskala mit Meßdaten verglichen. 
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Résumé: Une étude numérique de tourbillons horizontal dans des couches limites atmosphériques neutres 
et instables 
On étude la dynamique non linéaire de tourbillons horizontaux dans des couches limites atmosphériques 
neutres et instables 8 l'aide d'un mod le numérique spectral. Les perturbations de grande eachelle sort 
supposées étre 8 deux dimensions et sort modélisées explicitement dans un plan vertical d'orientation variable 
par rapport au vent géostrophique. 
On discute d'abord la stability linéaire du systéme pour divers hombres de Richardson a i r  de confirmer que 
les mécanismes fondamentaux d'instabilité conduisant 8 Fapparition de rouleaux sort 1'instabilité de point 
d'inflexion et la convection de flottabilité organisée par je cisaillement. De plus, des integrations avec ampli- 
tudes fines sort réalisées. On trouve alors que les perturbations attaignent un équilibre non linéaire 
engendrant un écoulement moyen modified et one circulation secondaire constitute d'un tourbillon héli- 
coidal dent la longueur d'onde horizontale vaut environ rois fois la profondeur de la couche convective. 
Afin d'évaluer l'importance des divers processus d'échange d'énergie dans la production et je maintien des 
rouleaux, on s'intéresse particulierernent au bilan de lour énergie cinétique. Les résultats du module indiquent 
que lorsque la stratification thermique est instable, les rouleaux sort maintenus en premier lieu par la 
flottabilité et en deuxiéme lieu, par la production d'énergie 8 partir de la composante du vent moyen trans- 
versalement aux rouleaux (instability de point d'inflexion) . 
Finalement, les paramétres calculus des rouleaux comme je rapport de forme et Tangle d'orientation de 
mime que les profits des variances du champ de vitesse 8 l'échelle des rouleaux, des transports de tempéra- 
ture, de la quantity de mouvement je long et transversalement aux rouleaux sort compares avec les mesures. 

1 Introduction 

Satellite imagery of the Earth's surface has revealed the frequent occurrence of large areas of 
organized linear cloud patterns, particularly over the oceans. These areas are usually associated with the 
flow of cold air over warm water such as in cold air outbreaks in mid-latitudes. Since these organized 
convective motions transport and redistribute momentum energy and matter it seems reasonable to 
suppose that there are substantial feedback effects between these motions and the larger scale mean 
flow. It is consequently of interest to study these phenomena in order to understand the mechanisms 
inherent to them and to estimate their importance in large scale atmospheric processes. 
Observations of KUTTNER (1971) clearly show the character of these circulations. When the wind is 
sufficiently high and the heat flux not too strong the data show that the convective patterns exhibit 
nearly a two-dimensional structure. The conception is that these mesa-scale eddies consist of ahnost 
longitudinal vortex rolls which extend throughout the depth of the boundary layer, bounded by an in- 
version layer above. They are superimposed upon and interact with both the basic boundary layer flow 
and a fine grained turbulence field, yet are capable of retaining their characteristic form. Their axis is 
almost in the direction of the basic flow and parallel stripes of upward motion within these helical 
motions may be marked with clouds. The spacing between adjacent cloud lines is normally between 2 
and 8 km and the lines can be up to 500 km length. 
The connation of longitudinal vortex rolls in fluid layers has been subjected to numerous experimental 
and theoretical studies. These studies suggest that cloud streets occur as a result of a combination of two 
dYnamic and one thermodynamic mechanism, commonly labeled the inflection point, the parallel, and 
the Rayleigh-Bénard instability. Realistic roll wavelength- to height ratios and orientations to the geo- 
strophic wind are reproduced by linear models based on inflectional instability (e.g., those of LILLY , 
1966; Bruno and WIPPERMANN, 1975) or buoyancy combined with shear (kg. BROWN, 1972, ASAI, 
19"/3,WrPPERMANN et. al., 1978). 
However, the linear theory is only valid at the onset of convection when the non-linear advection terms 
In the governing equations are small. The principal merit of the non-linear solution is the possibility of 
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investigation of finite amplitude steady state disturbances and determination of transports of momentum 
and energy provided by the rolls. A finite amplitude study of boundary layer rolls in an asymptotic 
boundary layer has been performed by BROWN (1970). He assumed that the finite perturbations 
preserve the structure of the infinitesimal perturbations for the dynamic instability of the Ekman 
boundary layer. In addition, he hypothesized that the helical roll secondary circulations come to an 
equilibrium. To establish this equilibrium, an energetic criterion, zero net energy transfer from the mean 
flow to the perturbations, was employed. BROWN (1970) computed-finite amplitude equilibrium 
roll magnitudes over a wide range of tire external parameters and found that these finite disturbances 
alter the mean velocity profile such that it becomes stable. 
MASON and SYKES (1982) numerically integrated the Boussinesq equations in finite difference form and 
found that in the convective case of an unstable boundary layer the thermal instability mode to be 
dominant with an orientation of the vortex rolls in agreement with the observations. in addition, their 
study has provided a better understanding of the physical processes involved, and has given a detailed 
information on roll-scale velocity variances and roll-scale vertical transports . 
Although observations and satellite pictures indicate that there are three-dimensional elements within 
the quasi-two-dimensional roll organization, nearly all linear and non-linear studies on the boundary 
layer roll problem have assumed homogeneous conditions in the direction of the roll axis. BECKER 
(1987) discarded this asumption. His model allows the energy containing eddies to be modeled in three 
dimensions, along with the imposition of a lid at a higher level above the boundary layer. A key result 
was that the resolved structure resembles that of thermal instability theory and that the model is capable 
to give the relation between longitudinal and lateral velocity variance in a right manner. 
Other investigators have studied low-order spectral models of thermal and dynamic convection (e.g. 
SHLRER, 1980; CHLOND, 1985) in order to gain more insight into some of the non-linear aspects of 
convection in the atmospheric boundary layer. However, due to the severe truncation they use to 
represent the convective solutions it cannot be expected that these models describe the developing 
structures in detail. 
LE MONE (1973) has done a very thorough observational analysis of the rolls, using aircraft and tower 
data. Their observations have provided a better understanding of the instability mechanisms operating in 
the atmosphere and have allowed to determine structure and related statistics of energy containing 
eddies within the atmospheric boundary layer. In addition, she compared observed roll magnitudes to 
those obtained for BROWNs (1970) finite-amplitude equilibrium inflectional instability rolls. She in- 
ferred that the rolls had a shape well determined by shear theory but with amplitudes systematically to 
low. LE MONE (1973) concluded that some additional surface heating is needed in order to provide larger 
equilibrium secondary l`1ow magnitudes. BRUMMER (1985) also presented aircraft measurements made in 
the presence of boundary layer rolls and was able to analyse the roll strucutre and Io determine some of 
the generation tennis in the roll kinetic energy budget. He reported on three cases of boundary layer roll 
observations for which it has been possible to quantify the processes leading to the formation of rolls. 
His observations so far indicate that dynamic and convective instability usually dominate roll develop- 
ment, but the relative importance of these two mechanisms varies from case to case and still has to be 
investigated in more detail. 
In the present study, the objective is to investigate the non-linear dynamics of horizontal roll vortices in 
an inversion capped boundary layer generated by the combined effect of inflection point instability and 
instability due to heating from below. The large scale eddies are assumed to be two-dimensional and they 
are modeled explicitly in a vertical plane of variable orientation with respect to the geostrophic wind. In 
contrast to the models of MASON and SYKES (1982) and BECKER (1987) which use the grid point 
method we apply the spectral method to solve the partial differential equations because die spectral 
method is much more accurate (MACHENHAUER, 1979). In the grid point method the major source of 
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truncation error is distortion of space derivatives through approximation with finite differences resulting 
in pseudo-diffusion of momentum and heat. In addition, another advantage of the spectral method is to 
trace in which way energy and momentum are interchanged between convective elements of different 
horizontal sizes. Therefore, emphasis is placed on the spectral roll kinetic energy budget to evaluate the 
importance of the various energy exchange processes in the production and maintenance of rolls. The 
aim of the work is therefore to understand how the properties and dynamics of such rolls depend upon 
the relative importance of shear and buoyant forces. 
In Section 2 the basic equations and numerical techniques are outlined. The subsequent Sections will 
report on the information which the model yields concerning the linear stability of the system and the 
properties of the full non-linear integrations. In addition, a comparison of the model results with 
measurements is performed to demonstrate possibilities and limitations of two-dimensional modelling. 

2 Model 

2.1 Governing equations 

To develop the model we consider here shallow Boussinesq-convection arising in a rotating fluid 
that is forced both thermally and dynamically. The analysis is carried out in a coordinate system whose 
x-axis is orientated along the roll axis and is turned by an angle 1\ against the geographic east direction 
(see Figure 1). In addition, the vortices are assumed to be two-dimensional, i.e. there are no variations in 
the x-direction except for a background pressure gradient which, together with its y-component, 
provides a geostrophic flow malting an angle - 6  with the x-axis. 

For convenience of numerical analysis we divide the velocity- and temperature fields into two parts, a 
barotropic horizontal homogenous mean state, denoted by an overhear, and a finite amplitude per- 
turbation, denoted by a prime. Hence, the velocity and state variables can be written as 

f v 

y(y,z , t )=y(z, t )+ y'(y,z,t) (1) 
T(y,z,t)=T(z, t )+T'(y,z, t) .  (2) 

Because Bv'/BY + OwI/Bz = 0 in the Boussinesq-system we introduce a stream function II/ with the definition 

if = in' 
8 z By ' 

I 
W (3) 

I 

e 
y 

' " \  
\ n 

Gr tO 

E 

. Figure 1 
Illustrating the coordinate system used for 
numerical integrations. 
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The two-dimensional convection equations are now expressed in terms of two sets of differential equa- 
tions. One is for momentum and temperature of the horizontal homogeneous base state. The second is 
for the perturbations of the longitudinal wind component, the temperature, and the vorticity of the 
motions normal to the x-axis. With the definitions of the vorticity V2 it/ and the Jacobian operator J, 

BV' 
Bz v2t,b 

J(a, b) 

Bw' 
He 
pa Tb pa Tb 
By az Elz ay 

(4) 

we have 
as 
a t 
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8t  
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The overbears indicate the horizontal average over an area equal in size to that treated, Iygl denotes the 
modulus of the geostrophic wind, assumed to be constant in space and time, V ER is a rate of tempera- 
ture change associated with the divergence of radiative flux, fl and f, are the vertical and the horizontal 
component of the Coriolis parameter, respectively, and KM and KT are taken to be eddy values of 
viscosity and thermometric conductivity. 

-(vi) + 

(8) 

(9) 

(10) 

2.2 Region treated and boundary conditions 

148 

The domain extended to a height of z = Z1 where a lid was imposed in crude simulation of an 
inversion base, assuming that its height is known from observations. Furthermore, we introduce into the 
problem a surface layer, whose depth Zp we assume to be given. 
We consider neutral and unstable atmospheric boundary layers and suppose that the rolls develop only 
in the layer between the surface layer and the inversion layer in which the flow field is determined by 
the Equations (5)-(10). In the surface layer between Z0 < z é Zp the similarity hypothesis of Morin 
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and Obukhov has been used as a basis for the description of mean wind speed and temperature. Therefore, 
we obtain the relations 

Zo <z<zp 
my) = K" u* cost rlntzlzo) - am(zlL)} 
V(z) = K-1 u* sin a {in(z/zo) - II/m(Z/L)} 

T(2) = K-1 T* {1H(z/20) -.- ll/H(2»/L)} 
where K is the von Kérmén constant, Zo the roughness length, a is the angle between the surface stress 
and the x-axis of the coordinate system and the scaling velocity and temperature are defined from the 
vertical turbulent eddy fluxes of momentum u'w' and sensible heat w'T ' 

(11) 
(12) 
(13) 

u* = {lu'w'l) 1 / 2  

a = arctan {V(zp)/&(zp)} 

_ in lwzp) +v"(zp)}"' 
-- {h"(2p/Z0) 'I/m(Zp/L)} 
= K iT(Zp)"T(Zo)} 

{in (2pfzo) ' WH (2p/L)] T* = - .  (WTI)/U* 

J 

(14) 

(15) 

z 

L is the Monin-Obukhov scale height 

up L = 
ac (S/To) T* 

where g is the acceleration due to gravity. The functions 1,1/M and WH are defined by 

1 " QM (Z/L) 
Z dz II/M(Z/L) = (17) 

Z0 

z 
1 - CID (z/L) 

WH(Z/L) = - "Z dz 
Z0 

where q>m and <I>H are non-dimensional shear functions for momentum and sensible heat respectively. 
In this study, we assume the following empirical relations with reference to BUSINGER (1971) for these 
functions 

<I>M(2/L) = 
'DH (zlL) = 

{1 - 16(z/L)}""' 
0.74{1 -- 9(z/L)r"' 

z / L < 0  

(18) 

(19) 
(20) 

For the eddy diffusivities KM and KT in the lowest shallow layer between Zo and Zp we assume the 
following relations 

. 

KM 

KT 

K(M,T) 

Ku*z 
: <I>M (2/L) 

K u* z 
= <I>H (ZlL) 

Values of KM and KT above the surface layer are given by an interpolation formula 

K ( m , T ) ( Z = Z p ) + " / 1 ( Z ° Z p )  Z P < Z < ~ Z M  

K(m,T) (z = Z M )  eXP("Y2 (z °ZM)) Z M < Z  <21 

Z0 \<Z\<Zp 
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which yields a profile with a linear increase of K(m.1°) from the top of the surface layer to some level at 
z =zm within the atmospheric boundary and then an exponential decrease with height. The constants 71 
and 72 could be determined by specifying values of K(M.T) at the level Z=ZM and at the inversion base 
In the present study it is assumed that the maximum of K(M.T) lies 0.4 IZFZp) above the top of the 
surface layer where the diffusion coefficients are 5.5 times larger than at the top of the surface layer. 
At the inversion base a small near zero value for K(m ,T) is specified (5% of K(m .T) (2p))- 
The boundary conditions for the perturbation Equations (8)-(10) are based on the assumptions that 
the boundaries z = Zp, z =zI, are perfect conductors of heat and are flat and stress free. Then the con- 
ditions are 

ilu' 
Hz 1,1/=v2yb=T'=0 9 onz = Z P , Z I  (25) 

2.3 
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do 
dz 

V = - l y g l s i n e  QT 
dz 0 

In the cross-stream (y)-direction the width of the model domain was L = 9.6 (Zi *Zp) in the neutral case 
and 5.6 (21 -zp) in the unstable cases. At the vertical sides of the volume treated, cyclic boundary 
conditions are imposed upon uI, al/ and T '. 
With respect to the mean flow we require geostrophic and adiabatic conditions at the upper boarder, 
respectively. 

U =|  V-s I cos e 

At Z = Z p  the conditions 
U* cost q; /L 

K Zp M(ZP ) 

do' _. u* sind - f (  Zp <I'm(Zp/L) 

d-T T* - = z L ac Zp <1>H( a l  ) 

were specified, providing the continuity of Tr, V, T, 65/dz, (iV/dz and BT/Eiz at z : Zp 

on z ZI 

EZ on z Zp .1 
e' 

I 
I 
i 

(25) 

(26) 

I 

dz 

Non-dimensional forms 

an 
E)t 

Z = 
(it v', 

T(Z0))TH 

Zp + (21 "Zp)2, 
w') = (a', v7', w')|!g|, 

T' = cTczp)-T(z0))T' 

t = t l Z I " Z p ) / ' v _ g l  

\ l /= I D / 8 l ( Z 1 " ' Z p )  

We will cast the equations in non-dimensional form by using (Zi 'Zp)7 lyell, (T(zp)--T(z0)) and 
KM (zp) as scale factors for length, velocity, temperature and diffusivity. The non-dimensional variables 
are denoted by the symbol ""' as follows 

Y = (21 -- Zp)§', 
(G, V) = (6, Qly8l, 

T = -T(Z0) + (T(ZP) 
K(m,T` = KM(-ZP)K(M,T) 

Introducing these transformations into Equations (5)-(10) and dropping hats leads to 

au 

ad = -Roll (6 -case) + Re* - KM ...- i t  Hz Hz 

_ a Ro-1(v+s1ne) +Re 1 - Km 5; 

ô ad 

a f l  5§(\1w) 

_ l  1-7 
a s ( V W )  
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aT 
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The corresponding boundary conditions are 
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9 
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v 

the Rossby numbers , 

the Reynolds number , 

the Prandtl number, 

the Richardson number. 

ilu' 
82 w V2 .r on z ~0,1 (33) 

Q 
dz 

du ( Z I - Z P ) U *  - =  -cosad> z L dz Zp f( m a p / )  

I I '  P ) U  = z z i china®m(zp/L) 
Zp  K 

(21 

Zp 
<11 
dz ZP) Q <1>H(zp/L) 

on z = 0  (34) 

u- = C O S t  v' sin e Q 
dz 0 o n z = 1  (35) 

The non-dimensional parameters Ro, Ro*, Pr, Ri, Re, (zl-zp)/zp, Zp/L and in(zp/zo) appearing in Equa- 
ti0I1s (27)-(35) are not independent from each other. In particular, Re and Pr cannot be treated as 
variable parameters since the eddy diffusivities included in these quantities are not a property of the 
fluid but depend upon the flow conditions. Therefore, Re, Pr as well as zp/L are itself a part of the 
results of the calculations and could be determined as functions of the other parameters. Hence, the 
"0H-dimensional parameters to be varied independently are Ro, Ro*, (21 -zP)/zp, in (zp/z0) and Ri. 
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In Equation (29)* the divergence of the radiative flux and the rate at which the surface value Of-T(Z0) 
increases with time have to be specified. Since heat, in general, is continually being fed into the air from 
the surface in this problem and none leaves the level Z = 1, the temperature T itself cannot attain an 
equilibrium profile. However, T depends upon T '-T(Zo)s so that T can indeed achieve a steady state. 
This requires the first term in Equation (29)* to balance the vertical divergence of the turbulent and 
convective heat flux. The condition for this balance, from Equation (29)*, is 

(21 - 2p) 6'T(20) a aT a 
ly; I (-T(Zp) - T(Zo)) at dz Hz 

From Equation (36), we see that either the terms on the left hand side could be individually specified, 
or, equivalently the total heat flux Hror could be specified. The latter procedure was employed so that 
realistic temperature and heat flux profiles would be achieved. The assumed profile of the total heat flux 
is defined by use of a forcing function TF 

dTF 
- HTOT dz 

Pt" Re'l KT 52 w'T' HTOT 

Prll Re'l KT 

(36) 

Equation (29)* then becomes 

aT 
at PII-1 R6-1 1; 

Elzl r 
. J  

-(T-TF)} 
a . _ _  I T !  

Hz (w ) (29) 

The profile assumed for TF is designed in a manner SO that vertical gradients of the mean temperature T 
are confined to the lower third of the atmospheric boundary layer. _ . -  ZP) 1 

TF - <I)H (zp/L) 6 9 { I  - exp (-6.9 z)} 1 +2 (ZI 
K Zp 

I 

2.4 Method of solution 

u'(y, z, t) 

The equations for the mean flow quantities (27)-(29) are replaced by finite difference as 
proximations using (N - .  1) constant intervals of  width Az = I/(N - 1) in the vertical direction. The 
variables E, v`, and T are defined at discrete intervals of z, i.e. z = 0, Az, 2Az, , (N - l)Az and the 
derivatives of these variables are replaced by centered differences. There are N = I I  mesh points in the 
vertical direction for all cases investigated. 
In contrast, the perturbation Equations (30)-(32) are solved using spectral methods. In accord with the 
remarks in the introduction we assume that the evolved secondary motion field after instability has the 
form of two-dimensional rolls, independent of the x-direction and with a basic horizontal wavenumber 
denoted by 21r/L/H which will be specified later. Then a general spatial representation which satisfies 
the boundary conditions is 

P M 
2' 2 - . . . 

n=_P m=0Un,m(t) exp 1 n L/H cos(m ii z) 

P M . 

11/(y, 2, t) = 2 2 II/n,m(f) exp 1 n I 
n=-P m = 1 

P M 
T'(y, z, t) = 2: 2 Tnm(t) exp 

n-'= -P m = 1 

211 

sin(m - - z) 7l' 
( 

( nL/H)sin(m . 1r -2) 

(37) 
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where the Un,I`l'1> rpm and Tn,m are generally functions of time. In our treatment we shall truncate the 
representations by choosing finite values of P and M. In the present study the truncated system consists 
of the components included by the components n < P  = 8 and in S M = 7. The set of 2P(3M +I )  
ordinary differential equations governing the time variations of the amplitudes of the harmonic com- 
ponents is obtained via Fourier-transformation of Equations (30)-(32). 

These are in symbolic form 

- ( )  * ( )  ( )  it 1 12 (Quo +S2ii )ii" + 2 2 n ,o ,p  1 
d e(N) = Di,1',k € ( 0 ) € )  

o,p l , k  

where of" denotes a vector gathering up all Fourier-components of the motion and temperature fields 
with the horizontal wavenumber n. 

i01) =(Un,o= Ur,1> 5 Un,M=\l/n,1s 3 II/n,ma TI1,1> J Tn,M) 

(38) 

The non-linear interactions of each wave with the mean flow are represented by the terms E §§i )e") 
convolution integrals which appear in the matrix s2§j ) like e.g. 

1 
fs? sin(i ' or • z) sin(j • z)dz 

0 
Tl' 

are calculated at each time step using Simpsons rule. Effects of rotation, buoyancy production and of 
viscous damping are included in the terms 2 rzfj )€1r1). Finally, the quadratic terms represent non-linear 
interactions among the waves. 

For time integration of Equation (38) and of the finite-difference form of Equations (27) (29) ,  the 
Runge-Kutta explicit scheme was choose. The time step usually employed had a dimensionless 
magnitude of At = 1. Each time step required 6s  CPU time for CDC 830 computer. 

3 Results 

3.1 Parameters considered and initial conditions 

I 

This paper concentrates on results obtained with parameters typical of those under which large 
scale rolls are seen in atmospheric observations. In the present study the following values for the non- 
dimensional parameters are used 

in ( 11 Ro 1 7.2 a 10-3 R0*'1 0 ( I p) z Z : 23 
Z p  

The parameters used are based on observations of the mean kinematic state of the atmosphere during 
the period 12.00-14.00 GMT on the 20th September 1981 in the KonTur experiment. During this 
period destinct cloud streets aligned nearly parallel to the mean wind direction were observed with a 
horizontal wavelength of about three times the convection layer depth. The geostrophic wind speed was 
about Iyo I = 20m/s and the depth of the roll layer was estimated to be 1200m thick (see BRUMMER, 
1985). Therefore, with a Coriolis parameter of fl = 1.2 10"4 8-1 , aroughnesslength of Z0 = 8.35 - 10l4m 
and a surface layer depth of Zp = 50m a detailed comparison between results obtained from the model 
and measurements performed during this day is possible . go Particular, we are seeking to see to what extend the model is capable of reproducing organized cloud 
ands and is able to give quantitative results concerning the nature of heat and momentum fluxes. Since 
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the cloudy part of the roll circulation was observed to be rather small we assume that the release of 
latent heat due to condensation was not essential to the formation of convective streets. Therefore, a 
test of the model results against the observational data may be justified. 
In order to understand how the structure and dynamics of such rolls depend upon the relative importance 
of shear and buoyant forces a series of numerical integrations for values of the Richardson number 
equal to 

Ri=(0., -0.05, -0.10, -0.15) 

have been conducted. Results of these integrations are presented and discussed in subsequent sections. 
With I!! I = 20m/s, (21 - zp) = 1150m, and a buoyancy parameter org/To = 3 .4 - 10l2m/(s2K) these 
Richardson numbers correspond to temperature differences between the top and the bottom of the sur- 
face layer of about 0 K, -0.5 K, -1 K, and -1,5 K, respectively. 
The initial condition for the integration is the steady state, horizontal homogeneous boundary layer 
solution, obtained by solving Equations (2'7)-(29) in which the divergence terms are neglected. In order 
to drive the system this initial, steady state, one-dimensional solution is then perturbed by imposing 
small perturbations on the complex Fourier-coefficients et") at the first time step . 
In addition, results of a perturbation analysis were used as a basis for selecting the length of the hori- 
zontal domain and the angle e of the domain relative to the geostrophic wind. The orientation angle and 
the length treated in the cross-stream direction are chooser so as to include four wavelengths of the most 
unstable linear mode. 

I 

3.2 

154 

Results of perturbation analysis 

The first objective of this work was to examine the stability of the homogeneous, steaiiy state 
boundary layer solution with respect to infinitesimal disturbances. 

i 

The relevant equation governing small amplitu de perturbation motions is Equation (38) in which qua- 
dratic terms are neglected. The linearized equation may be written as follows 

dt 

A ) çı) (ñıfl)+9(N)e 
2 

ı 

_e§fl) j 
d ._ 

- .  15 11 J 

Since Equation (39) has solutions of the form e§"'(t) = of" exp(o?'l t), the one-dimensional boundary 
layer solution is considered to be unstable, if at least one real part of the complex eigenvalues of" = Ag + i  - u53 of the matrix (ii + is positive . 
For fixed external parameters (Zi -zp)fzp, In (zp/z0 ), Ro, Ro* and Ri, the eigenvalues as") have been 
computed for many combinations of the horizontal wavenumber by and the orientation angle e. This has 
been done for (21 - zp)/zp = 23, I17(Zp/Zo) = l 1 , Ro" = 7.2 - 10l3, Ro*"I = 0, Ri = 0 (a), Ri = -0.05 (b) 
Ri = - 0.10 (c) and Ri = -0.15 (d). 

For neutral stratification (Ri = 0), the results are shown in Figure 2a. Amplification rates denoted by 
solid lines are in units of 128 I/(Zi -zp) • 10" , the radial coordinate is the inverse aspect ratio and the 
angular coordinate is the orientation angle which is measured counterclockwise from the direction of the 
geostrophic flow to the axis of the rolls. The isoline Ula) = 0 fixes the areal limits in the (ky/(21r), e)-plane 
in which the inflection point instability can occur. The maximum amplification occurs with aspect ratio 
L/H = 2.4 and angle e = -10o. The phase speed of the most unstable perturbation is c = 0.219 which 
equals approximately the value of V at the position of the inflection point. 
Figures 2b -2d show amplification rates as functions of inverse aspect ratio and orientation angle for 
unstable stratification. 
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Figure Za Non-dimensional growth rates 05; - 102 of unstable perturbations as functions of the inverse aspect ratio 
H/L = ky/(2-rr) (radial coordinate) and orientation angle e (angular coordinate) for (ZI - zp)/zp = 23, In (zp/zo) = 11, 
Ro = 7.2 r 10-3,R0*-1 = 0 a n d  R i = 0 .  

Figure 2b Same as Figure Za, except Ri = -0.05. 

Figure 2c Same as Figure 2a, except Ri = -0.10. 

Figure 2d Same as Figure Za, except Ri = -0.15. 

For Ri = -0.05 the maximum growth rate position shifts to a roll orientation of e = 0o. The aspect ratio 
remains fairly constant at L/H = 2.4. The phase speed of the most unstable perturbation is c = 0.052. 
Moreover, an additional mode emerges at e = 0O and L/H = 1.48 which propagates with c = 0.146. It 
appears that the latter is caused by tllenual instability modified by shear flow and the former is attri- 
buted essentially to dynamic instability associated with shear flow having a point of inflection in its 
velocity profile. The unstable mode of thermal type seems to move at the velocity of the vertical mean 
off and its amplification rate is about 0.25 times the amplification rate of the dynamic mode . 
For Ri = -0.10 two distinct unstable regions exist in the (ky/(211), e)-plane. The maximum growth rate 
position of the dynamical mode is now located at e = 18o and L/H = 2.8, the mandmum amplification 
rate of the thermal mode occurs with e = -2o and L/H = 1.48. The growth rates of the two modes are of 
about equal magnitude at this Richardson number. 
A Comparison of Figure 2c and 2d shows that the growth rates of the thermal mode increase with in- 
Cfeasing static instability. For Ri = -0.15 the maximum growth rate is about 1.5 times that of the 
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dynamic mode, also the area in the (ky/(211), e)-plane, in which thermal instability can occur, is enlarged 
with increasing unstable stratification . 
In contrast, enhanced turbulent diffusivities tend to stabilize the dynamic mode as the Richardson num- 
ber decreases. In addition, the aspect ratio L/H and the angle e, at which the maximum instability of the 
dynamic mode occurs, increase with increasing unstable stratification. 

I 

I 
r 

3.3 Results of non-linear integrations 

3.3.1 Variation of mean flow kinetic energy and roll kinetic energy with time 

A number of time integrations of Equation (38) and of Equations (27)-(29) was made using 
the parameters given in Section 3.1. The angle of the domain relative to the direction of the geostrophic 
wind was e = -10o (Ri = 0), E = Oo (Ri = -0.05), and E = -2o (Ri = -0.10 and Ri = -0.15). The fun- 
damental horizontal wavelength was L/H = 9.66 (Ri =0), L/H = 5.91 (Ri = ~0.05, Ri = -0.10, Ri = -0.10, 
Ri = -0.15), respectively. 
Figure 3a shows the variation of the mean flow ldnetic energy E and of the one-dimensional roll ldnetic 
energy spectrum E,. by with time for Ri = 0. E ist plotted as a departure from Et the value of the mean 
flow kinetic energy of the unperturbed initial state and the one-dimensional roll ldnetic energy spectrum 
is nomialized by means of the square of the geostrophic wind. Times on the abscissa are given in frac- 
tions of the dimensionless inertial period PT = 27Tlf1 lyell/(zl .. up) = 21r ° Ro = 872. 
The initial development of  the roll kinetic energy spectrum consists of a short exponential growth phase, 
followed by a noisy time series consisting of variations on a time scale determined by the large eddies. In 
the new statistically steady state the time averaged kinetic energy contained in the Fouriencomponents 
with the wavenumbers ky = 1.30, by = 1.95 and ky = 2.6 is nearly equal. The contribution or these 
wavenumbers to the total roll ldnetic energy amounts to about 70%. Due to the normalizatibn of 
Er, ky with lyg 12 it is apparent that the perturbation energy is only a small fraction of the total energy. 

The oscillations in the mean flow ldnetic energy E were a small percentage of E and represented very 
small variations of the mean flow velocities. The mean flow kinetic energy exhibits an initial decrease 
due to the drain of energy from the developing perturbations and then shows a damped oscillation with 
period approximately PT. The long time-scale oscillation is clearly an inertial oscillation exited initially 
by the amplifying perturbations. 
In the unstable cases (Figures 3b-3d) a time from 1 to 2 periods PT was usually required for the per- 
turbations to adjust from the initial state to a new statistically steady state. In contrast with the neutral 
case, the . time series of the roll kinetic energy spectrum exhibits a less erratic behaviour. As shown in 
Figures 3b-3d, a more or less unharmonic periodic solution is achieved with periods in the range 
between 1/20-1/3 Pr- At Ri = -0.05 61% of the total roll kinetic energy is included in the Fourier- 
components with the horizontal wavenumber by = 1.062. At Ri = -0.10 and Ri = ~0.15 the maximum 
of the roll kinetic energy spectrum occurs at the horizontal wavenumWr by = 3.l87; the contribution 
of this wavenumber to the total roll kinetic energy amounts to 43% and 58%, respectively. The time 
history of the mean flow kinetic energy is again well represented by a damped inertial oscillation where 
amplitude and decay rate of  this oscillation increase with increasing static instability. 

3.3.2 Spectral energetics 

In this section we consider in detail the mechanisms by which the rolls obtain energy and in- 
vestigate how the dynamics of such rolls depend upon the relative importance of shear and buoyant 
forces. 
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Physical instability mechanisms leading to the occurence of rolls are known. Roll vortices can be generat- 
ed by buoyancy or by shear or a com bination of the two. In order to identify the instability mechanism; 
responsible for the generation of rolls we examine the spectral roll kinetic energy budget. In this way we 
quantify the various energy exchange processes in the production and maintenance of rolls and also trace 
in which way energy is interchanged between convective elements of different sizes. 
It is convenient to split the kinetic energy of the secondary motion in two parts. The first is the roll 
ldnetic energy E, which is the energy of the wind components in the y-z plane and the second is the 
longitudinal energy E, which is the energy of the along roll wind component. Hence, the volume average 
of E, and E, are defined as 

I 

( E )  

(E,) 

1 
LH 

1 
LH 
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where E,. by and EI, by are the one-dimensional spectra of roll kinetic energy and of the longitudinal 
energy, respectively. The spectral energy budget equations for two-dimensional flows can be derived 
from Equation (38) and can be written as : 

BE ky 

it 

= - (u'w 

The various terms on the right hand side of these equations have the same significance here as they have 
in the physical space versions except that they relate only to production interchange and abstraction as 
these processes affect a single wavenumber component in the structure . 
The first term on the right hand side of Equation (40a) and (40b) represents the production of roll 
energy and longitudinal energy from the kinetic energy of the mean cross roll and along roll wind 
components, respectively. The shear production arises from the interaction of the Reynolds stresses and 
the mean wind components. The second term in Equation (40a) is the production of roll energy by 
buoyancy which describes the flow of energy from the reservoir of potential energy to roll ldnetic 
enemy by means of a positive heat flux. The term fi {u'v')k¥ represents the conversion of roll kinetic 
energy between the longitudinal and the lateral wind components through the action of the Coriolis 
acceleration. Tr,ky and T.f,ky stand for the spectral transport or the divergence of the transfer of energy 
between different scales of motion. It is this transfer, non-linear in nature, which is responsible for the 
transmission of energy through the spectrum. Since these terms contribute nothing to the total energy 
(the non-linear transfer terms sum up to zero over all by), they only must serve to redistribute energy 
among wavenumbers. The last terms in Equation (40a) and (40b) represent the secondary dissipation, 
i.e the energy loss due to the interaction of the rolls with the three-dimensional turbulence field. In 
equilibrium, the exchange of roll-scale energy with smaller scale turbulence, i.e. the secondary dissipa- 
tion, must equal the production, transfer and redistribution terms. 
in summary, the metamorphosis of roll-scale turbulence comprehends four phenomena: productioIl» 
non-linear transfer, interchange and dissipation. Figure 4 schematically illustrates these energy ericha"B° 
processes which take place in finite amplitude rolls. In the picture the term (p'Bu'/Bx) represents an 
additional mechanism interchanging energy from the u' to the v' and w' components. The pressure- 
gradient transfer term neither creates l1OI` destroys energy, but it does act to transfer it among the lon- 

(40a) 

(40b) 
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gitudinal and lateral components. The effect of this correlation is to make the velocity field less ani- 
sotropic since the transfer of energy is from the higher intensity to the lower intensity components. 
However, this equalisation is only possible in models with three-dimensional dynamics since the two- 
dimensional approximation requires Bu'/dx = 0. 
The non-dimensional roll kinetic energy budget terms for neutral and unstable conditions are presented 
in Figures 5a~5d. Shown are in semi-logarithmic plots spectra of shear production Pay (solid), of 
buoyancy production Any (dashed), of Coriolis transfer Coy (dotted), of non-linear transfer Try (dash- 
dotted) and of dissipation Doy (thick solid) as functions of the wavenumber kg' The spectra are ob- 
tained by computing these quantities at each time step, then averaging these spectra over a long time 
period. For the results presented below, the integration was continued up to t 5 4.5PT and the time 
Hveragc was taken over the last inertial period PT . 
In the neutral case (Figure Sa) energy is fed from shear into roll ldnetic energy in the wavenumber 
range between ky = 0.65 and ky == 3.25. Energy loss due to secondary dissipation also takes place 
mainly in this range. Inertia forces, or vortex stretching due to the fluctuating velocity gradient, mainly 
serve to transfer the rest of the energy gain from lower to higher wavenumbers. The Fourier-components 
in the higher wavenumber range between ky = 3.9 and ky = 5.2 receive their energy mainly due to non- 
llnear transfer. In equilibrium this energy is released to the reservoir of the turbulent ldnetic energy and 
Igor: lateral mean flow energy, respectively. The energy gain (loss), due to the Coriolis forces is much 
5M 61l11 than due to the dominant processes in the energy budget so that the Coriolis transfer can be 
(1985)edhfrom the considerations. This IS in agreement with observational results obtained by BRUMMER 
to the lat 0 also proved the Coriolis terms to be insignificant in transferring energy from the longitu d i a l  

era velocity component. 
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In the unstable cases (Figures Sb-sd) energy from the buoyancy forces feeds into most of the parts of 
the wavenumber space. The maximum of the buoyancy production spectrum occurs at by = 4.250 
(Ri = -0.05) and shifts to smaller wavenumbers with an increasing maximum of spectral density with 
increasing instability. It turns out that roll ldnetic energy is produced mainly by release of potential 
energy contained in the unstable stratified fluid layer through upward heat transport and shear produc- 
tion, though significant, is not dominant. The shear production of the roll motions is confined to the 
lower wavenumber range and the ratio between the maxima of buoyant and shear production gives 
values between 1 (Ri = -0.05), 20 (Ri = -0.10) and 100 (Ri = -0.15). In addition, the non-linear trans- 
fer spectrum is negative at low wavenumbers and positive at high numbers, i.e. it tends to transform low 
wavenumber energy to high wavenumbers. Finally, since the vertical momentum flux is against the shear 
of the basic lateral flow a transformation of kinetic energy of the perturbations to that of the basic flow 
occurs, resulting in negative values of the shear production spectrum at intermediate and high wave- 
numbers. It should be emphasized that the wavelengths of the modes receiving the most buoyant and 
shear energy roughly correspond to those predicted from the perturbation theory. Perhaps this could be 
important for modelers worldng with low-order spectral models. 
Summarizing the above discussion the rolls at Ri = 0 were driven by the mean wind shear while those at  
Ri = -0.10 and Ri = -0.15 seem to have been thermally driven since the buoyancy term significantly 
exceeds the shear production term. At Ri = -0.05 the vortices were generated by a combination of the 
inflection poiht and the thermal instability since the energy supplied to the rolls by these two 
mechanisms is nearly equal in magnitude . 

3.3.3 Mean profiles 

1 I 

In this section we present dimensionless vertical profiles of mean velocity (U, V) and tempera- 
ture T, dimensionless roll scale variance profiles of longitudinal momentum u', of lateral momentum v' 
and of vertical velocity w', non-dimensional profiles of roll scale temperature transports and non-dimen- 
sional shear stress profiles. The flow statistics were obtained by averaging results from realisations over a 
inertial period PT starting 3.5 inertial periods from the initial perturbation. 
Figures 6a-6d show the mean velocity and temperature profiles for Ri = 0 (a), Ri = -0.05 (b), 
Ri = -0.10 (c) and Ri = -0.15 (d). Solid lines are used to denote the initial profiles and broken lines to 
denote the profiles in the statistical equilibrium after roll vortices have been generated. 
For all Richardson numbers the initial along-roll wind component al is characterized by a weak maxi- 
mum in the upper part of the roll layer and the cross roll component v exhibits a tangent like profile 
with an inflection point at about z = 0.75. Initial profiles of temperature show gradients in the lower 
third of the atmospheric boundary layer with a well mixed layer above. 
At Ri = 0 a comparison between initial profiles and equilibrium profiles after the rolls have generated 
show that the divergence of the longitudinal momentum transports associated with the rolls reduce the 
mean vertical gradients of U-momentum. In addition, the action of the cross-roll momentum flux 
divergence reduces the wind difference above and below the inflection point to relieve the vorticity 
Maximum in the V-component . 
In the u .stable cases (Figures 6b-6d) the divergence of the longitudinal momentum flux also decreases 
U-momentum in the upper part of the boundary layer and increases U-momentum in the lower part. In 
Contrast, the mean lateral momentum F seems to be enhanced in all levels since buoyancy generated roll 
lllnetic energy is transfered to the reservoir of the lateral mean flow energy (see Section 3.3.2). Finally, 
temperature fluxes associated with the rolls lower the temperature difference between the top arid the 
bottom of the Ekman layer. lt should be mentioned that in Figures 6b-6d the non-dimensional tem- 
Perature increases with height, which corresponds to a decrease in the dimensional temperature with 
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Figure 7 Calculated and measured non-dimensional mean vertical roll-scale transports of temperature, of along-roll and 
gross-roll momentum as functions of dimensionless height for the cases (ZI - ZP)/Zp = 23, 1n(zplz0) = 11, 
Ro = 7.2 - 10'3, Ro*'1 = 0, Ri = 0 (solid), Ri = -0.05 (dashed), Ri = -0.10 (dotted) and Ri = 
(dash-dotted). Data are marked with dots and crosses and refer to aircraft measurements from FALCON and 
HERCULES on September 20, 1981 (after BRUMMER, 1985). The normalization factors are lv§l2 = 400 v m2$-2 
and Ivgl - (T(zp) - T(z0)) = -20 msll K, respectively. 

height (which would be a more"conventional" graph), since the latter is made dimensionless by the 
temperature difference between the top and the bottom of the Prandtl-layer (T(zp) - T(z0)) which is 
negative in an unstable boundary layer. 
Roll-scale vertical fluxes of temperature T', u'- and v'-momentum are presented in Figure 7 for Ri = 0 
(solid), Ri = -0.05 (dashed), Ri = -0.10 (dotted) and Ri = -0.15 (dash-dotted). Measured values shown 
by data points in Figure 7 are from aircraft observations of BRUMMER et al. (1985) performed on the 
20th September 1981 during the KonTur experiment. These are normalized using I yg 12 = 400m2s-2 
and Ivy I (-T(Zp) -- T(z0)) = -20 ms"K as scale factors, respectively . 
Cloud streets observed during this day seem to have been thermally driven. BRUMMER (1985) calculated 
several of the energy production terms and shows that the buoyancy term was large on this day and 
shear production was insignificant. 
The measured along-roll momentum flux has its maximum around z = 0.2 and decreases rapidly with 
height to values near zero at the top of the boundary layer. The cross roll momentum flux was generally 
smaller and scattered around zero. The slightly unstable stratification near the sea surface iS reflected in 
positive temperature fluxes in the lower part of the boundary layer. The temperature flux decreases with 
height and becomes negative at higher levels due to the entrainment of warmer air above the inversion. 
The profiles calculated for unstable conditions compare qualitatively well with the observational data. 
The rolls transport along-roll momentum downward, temperature upward and cross-roll momentum 
upward in the lower part of the convection layer and downward in the upper part. However, for the 
Richardson number Ri = -0.10, which corresponds roughly to the observations, the model seems to 
Overestimate the along-roll momentum flux. In addition, the calculated temperature flux is positive in 
the whole layer and designed to give zero flux at z = 1. The actual heat flux must be negative at z = l 
due to downward entrainment of warm stable air into the convective region. However, this mechanism 
and the resulting tendency for the inversion base to increase with time could not modeled here. 
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I 

Calculated and measured profiles of the roll-scale horizontal and vertical velocity intensities are shown in 
Figure 8 (normalization factors as in Figure 7). 
For Ri = 0 the roll~scale w'-variance appears to have a broad ma)dmum in the upper part of the roll 
layer, not far away from the inflection point in the mean lateral wind component, where the largest 
shear is present. The roll-scale v'-variance has two mamma, at z = 0 and z = 1, as expected for a roll 
circulation. The ratio between the maximum variances of v' and w' is about 6 : l .  The intensities of the 
longitudinal u'-variance and the v'-variance are of the same order. 
In the unstable cases the maximum of the vertical velocity variance occurs at z = 0.3. Form and maxi- 
mum value of w-2 are very close to that seen in the KonTur observations. The roll-scale u'-variance has 
a mandmum at z = 0 and decreases with height. 
The most striking feature in Figure 8 is the enormous peak in the longitudinal energy as the Richardson 
number becomes negative. The calculated u'-variance in three times larger than the observed longitudinal 
energy intensity while the predicted values of v'-variance are the right order of magnitude, but systemati 
cally to small especially in the upper part of the boundary layer. The model predicts a ratio of (u'*)max 
to (v12)max between 4:1 and 10:1 , while observation indicates that (u12 ),,,ex and (v12)max are of the 
same order. 

. 

The too large u' seems common (if not universal) in previous hvo-dimensional roll theories (e.g. that of 
BROWN, 1970 or that of MASON and SYKES, 1982). Hence, the apparent discrepancy between results 
obtained from the model and observations highlights the inability of two-dimensional models to correctly 
describe the transport of along-roll perturbation into the cross-roll directions. The (u12)-profile is deter- 
mined by the roll motion producing a vertical interchange of U. Since the rolls are nearly aligned in the 
x-direction large deviations can be produced in the longitudinal component by the two~dimensional 
circulations sweeping fast moving fluid from outside the surface layer downwards. As a consequence of 
the two-dimensional approximation the longitudinal component is virtually decoupled from the dynamics 
of the other components resulting in an enhanced maximum in this component. Therefore, the apparent 
deficiency in the longitudinal energy intensity seems to be caused by the lack of efficient mechanisms 
transferring energy from the u'-component to the v'- and w'-components. 
Three-dimensional effects would probably reduce the roll-scale variance ratio (u '2/v'2) because as a result 
of the pressure-velocity-gradient correlation p'Bu'/8x coupling of u'-momentum to v'- and w'-momentum 
is stronger than two-dimensional models suggest. As pointed out in Section 3.3.2 the effect of this 
correlation is to produce a equipartition of roll kinetic energy since the transfer of energy, via pressure 
forces, is from high-intensity to the lower-intensity component. 
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This assumption is supported by BECKERs (1987) three-dimensional boundary layer model which pro- 
duces a considerably more realistic ratio of roll-scale uI- and v'-variance. 

3.3.4 Secondary flow structure 

I 

Figures 9-12 illustrate typical realisations of the secondary flow pattern for fully developed 
rolls for integrations with different values of the Richardson number. Plotted are the isolines of the 
strearnfunction Tb (a), of the vertical velocity w' (b), of the longitudinal velocity perturbation u' (c), 
and of the temperature perturbation T' (d) in y-z cross sections through the vortex rolls. Streamfunction, 
velocity and temperature perturbations were normalized by using the maxima of these quantities 
occuring in the domain. 
In Figure 9a three counterrotating vortex pairs are to be seen. The slope of the perturbations with height, 
indicated most clearly by the 1,0 : 0 lines, is characteristic of perturbations which are drawing energy 
from the mean lateral flow. These structures are not steady in form or highly regular though rolls pro- 
pagating down the positive y-axis are the dominant feature. The phase speed of the vortices corresponds 
roughlY to the velocity of the mean lateral wind component at the height of the inflection point. The 
centers of the cells and the maximum amplitudes of w' and u' occur at z = 0.7 which corresponds roughly 
to the height of the inflection point in the mean lateral wind profile. Dimensionless maximum values of 
w' and u' are 0.025 and 0.048, respectively (normalization factor is lygl). The aspect ratio of the rolls 
was determined by calculating horizontal distances between neighbouring updrafts at each time step, 
then averaging these quantities over an inertial period PT. In the neutral case the time averaged aspect 
ratio is K = 2.7 and the standard deviation is 0 = 0.86 . 
Typical realisations of the secondary flow pattern for unstable conditions are presented in Figures 10-12. 
In these cases more vigorous eddies are produced. The flow is determined by three rolls propagating 
down the positive y-axis with a phase speed which corresponds roughly to the vertical mean of V. Note 
that the centers of the cells and the maximum amplitudes of the vertical and the longitudinal velocity 
perturbations occur now (except for Ri = -0.05) significantly below the mid-level. The picture of the 
secondary flow pattern shown here is in qualitative agreement with model results obtained by MASON 
and SYKES (1982). Their modeling effort also produces roll vortices which resemble structures con- 
sistent with instability theories. 
The magnitude of the roll motions varies from case to case. With Ri = -0.05, Ri = -0. 10 and Ri = -0.15, 
the dimensionless peak vertical motions are 0.025, 0.030, and 0.037, respectively (normalization factor 
is ly$l). The non-dimensional peak amplitudes of the longitudinal velocity perturbations are (u')max = 
0.143 (Ri = ~0.05), (u')max = 0.149 (Ri = -0.10), (u')max = 0.141 (Ri : -0.15). The temperature per- 
turbations T' are determined largely by the vertical advection of the mean temperature T. Hence, large 
values OfT' were confined to the region below z = 0.3, the region of strong gradients in T. The non- 
dimensional peak amplitudes are (T')max : 0.0598 (Ri = -0.05), (T')max = 0.060 (Ri = -0.10) and 
(T')max = 0.0566 (Ri = -0.15) (normalization factor is (T(zp) . -  T(z0)). , 

that in the average the slope of the rolls at the more unstable Richardson numbers (Ri 

The most remarkable feature is that the pattern of the vertical velocity field is in phase with the tem- 
Perature perturbation field, i.e. maximum temperature perturbations coincide with the strongest upward 
motions and vice versa, indicating conversion between the potential energy and roll kinetic energy. In 
addition, the vertical velocity field shows a phase shift of roughly 5 (L/H) with respect to the field of the 
!°"simdma1 velocity component, forming a roll-scale downward momentum flux. It should be noted 

. = -0.10 and 
RI : '0.lS) is invers to that in the neutral case, implying that the rolls are returning energy to the mean 
lateral flow (this is indicated most clearly in the upper part of the boundary layer). 

Beitr. Phys. Atmosph. Vol. 60, No. 2, May 1987 165 

A 



o o 

*Jo*-/ '° \  
_ 9 

ID 
¢ J 

8. 

I . 
-r"4 
:of 

' D  

N 
* 

Q 
an 

I 

| 

I 

N o 
I 

e Q 

o 

U 

:r 
¢ 

Q 

N 

up 
n 

Q 

o 
of 
o *T 

o 
o 

| 

N 
I 

D 

>s 

. | "  

(Q) s 
=.'?\ 

'E 
o 

»4 o 0 \ 
Q . )  3 

N 

'F 
t 
N 
d 

* o 

- o 
\., 

3 J 

I 

l 

<§::> 

i§§3w J/ 
n - 
.D 

m 
Q 

:r 
Q 

N 

o 
o 

ru 
G 

o.
D

D
 

ca 
Q 

:- 

0D
'Z 

lJ0'D
 CVO 

. 
r *  

:J r 

\ @ 

J 

6.
00

 

r 

\ 

/ 
>\ 

I. 

. - 
r'--1 

ca 

.r 
| h 

o on . 
<5 D c: 

r £3 (5 8 l 

\ a 

IQ-__i3_-2 
8 . 

6 co u- 
o 

Dru 
4 

I '  
LQ :- N 5 0  

Q Q 

N . 

<; r" 

>~ 

u.
0D

 

JI 3 . 

¢ 

8 
3 
l. 

I 

I 

.l 

r* 1 *8 

Q ®ll 
as J 

3 

8 

3. 

//é»,@l 
1 / ,  
i s  o 
_,r 

| f' o 8 -Q 

I ' / 9  I . 
D an 

C 

o 

:r 
o 

N 

so 
n 

D 

N 

:I 

\1
.D

D 

on*z 

0.
0 0.

00
 

> 

Fi
gu

re
 10

 S
am

e a
s F

ig
ur

e 
9,

 e
xc

ep
t R

i =
 -

0
.0

5
 an

d 
e 

= 
0.o

 . 
A

d
d
iti

o
n
a
lly

, c
on

to
ur

s 
of

 t
em

pe
ra

tu
re

 p
er

tu
rb

at
io

ns
 T

' (
d)

 

ar
e 

sh
ow

n.
 

. 

J 

0
0

'"' 
I 

w .pa ¢ 

- o  

I f i g .  
n 

\ ,i 

i 

| | 
l I )  fifnt 

LIQ 
- o  
r 

- o  

a a 
- o  

~._, 
- §  

® / '1 

' 

I I 

I 
o 

O 

u 
» 

o 
N 

:r 
a mD1:1 

re • 
D 

D
S

.l 

5.
00

 
2.

50
 

0.
0 0.

00
 

>- 

_...JI \ - 

I ,1 
'SQ 
é'=5 

o 

| . 
..| ¥. 

f I" 
8=-53O I n ,I 

0.5: J .I 

-o  

|. 

° 

GI 

J 

D up 
Q 

:r 

D 

N 

w 
I 

o 

N . 
D 

0
[]°

"
 

n
c

'f
 

5.
00

 

Q 
ı.rı 
ı 

N 

be
! 0.

00
 

.o 

> 

0O
"`° 

I 

\ 

<1 
.I 

/ 
O'.l. O 

_Gil 

/' I Q 
1 of; 
.¢'wI 

-it O » N  "Q 
- Q  
» n  |' 

-é  

U/ . r  -J.'.p_ 
"`- 
-d 

u 

Q 4 

5- o 

l. > 
0 

*r 

c; 
*'§? 

l 
Q m 

I 

ca 

:' 

|: 

N 

to 
u 

a 
N 
cl 

cl 
UP 

I 
f- 

5.
00

 

O m . 
N 

Q 
* 

on 
ID 

¢:\ 
| 

c: 

y 
1 

-1
 =

 7.
2 "

 1
0-

3 a
 

Fi
gu

re
 9

 
T

yp
ic

al
 re

al
is

at
io

n 
of

 th
e 

se
co

nd
ar

y f
lo

w
 p

at
te

rn
 fo

r 

th
e 

ca
se

 (2
1 -

zp
)I

zp
 = 

23
, I

n 
(Z

P
lZ

o)
 = 

11
, 

R
o"

 
= 

7.
2 

1
0
",

 

R
o*

-1
 =

 0
 a

nd
 R

e =
 0

 a
nd

 e 
= 

-1
0o

. 
P

lo
tte

d a
re

 co
nt

ou
rs

 o
f 

th
e 

st
re

am
fu

nc
tio

n 
11

/ (
a
),

 th
e 

al
on

g-
ro

ll u
' (

b
) a

nd
 th

e 
ve

rt
ic

al
 

ve
lo

ci
ty

 c
om

po
ne

nt
 w

' (
c
) in

 y
-z

 cr
os

s s
ec

tio
ns

. 

S
tr

ea
rn

fu
nc

tio
n 

an
d v

el
oc

ity
 pe

rtu
rb

at
io

ns
 

w
er

e 
no

rm
al

iz
ed

 

by
 u

si
ng

 th
e 

m
ax

im
a 

of
 th

es
e 

qu
an

tit
ie

s 
oc

cu
rr

in
g in

 th
e 

do
m

ai
n.

 

U 

Beitr. Phys. Atmosph, Vol. 60, No. 2, MaY 1987 

166 

.A 



The horizontal scale of the rolls is greater than the wavelength of the fastest growing linear mode but 
similar to atmospheric observations. Averaging horizontal distances between neighbouring updrafts yields 

7\=2.9 
n=3.2  
?\=2.5 

0 :  0.90 
O' = 0.97 
O' : 0.62 

Ri=-0.05 
Ri=-0.10 
Ri : -  0.15 

For the Richardson number of Ri = ~0.l0, which corresponds roughly to the situation on the 20.9.81, 
the calculated aspect ratio is in reasonable agreement with the observational mean value of 2.9. The 
agreement is not only restricted to the mean value, but also concerns the variability of the aspect ratio. 
In the observations the distance between individual cloud lines varies between 1.3 and 5 , while aspect 
ratios occuring in the model range from 1.5 to 6. 

4 Summary and Conclusions I 

The properties of large scale roll motions in neutral and unstable atmospheric boundary layers 
have been investigated by means of a numerical spectral model. The roll vortices are assumed to be two- 
dimensional and they are modeled explicitly in a vertical plane of variable orientation with respect to 
the geostrophic flow. » 

First, a linear stability analysis has been performed for various Richardson numbers to confirm Mat the 
fundamental instability mechanisms leading to the occurence of rolls are the inflection point instability 
and shear organized buoyant convection. In addition, the stability calculations have shown that the most 
unstable perturbations exhibit maximum growth rates for orientations close to the direction of the 
geostrophic wind. 
Second, finite amplitude integrations have illustrated a number of features worthy of note. It was found 
that the perturbations come to a non-linear equilibrium, producing a modified mean flow and a helical 
roll secondary roll circulation with a horizontal wavelength of about three times the convection layer 
depth. It was demonstrated that in the neutral case the eddies were driven by a shear flow instability. 
This contrasts with the study of a slightly unstable stratified boundary layer when Ri is less than -0.05 . 
In this case more vigorous eddies are produced. Examination of the energetics shows that the rolls are 
essential buoyancy driven and shear production, diough significant, was not dominant. In contrast to 
the roll motions, the component of the motion parallel to the rolls is the recipient of a large shear 
production. 
When Ri = -0.10, conditions are typical of observations of roll vortices on the 20th September 1981 
during the KonTur experiment. Comparison of the results obtained with the model and observations 
performed during this day exhibits possibilities and limitations of two-dimensional modeling. Whereas 
the predicted geometrical parameters of the flow, like orientation angle and band spacing, are within the 
limits to be observed the secondary flow statistics could only be qualitatively reproduced by the model. 
In particular, as pointed out in Section 3.3.3, the apparent deficiency in the longitudinal energy inten- 

-sity seems to be a consequence of using a two-dimensional model where the longitudinal component is 
'Virtually decoupled from the dynamics of the cross-roll components. 
Therefore, an extension towards a better representation of three-dimensionality would be desirable. In 
-addition, it is planned to extend the model to allow the entrainment process at the top of the boundary 
layer to be modeled and to include water vapor and liquid water to examine some of the effects of 
Moisture and clouds upon the roll motions. 
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