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Abstract

Glycosylation is the most common post-translational modification in eukaryotic cells,
making glycans ubiquitous in nature. They play a key role in a variety of physiological
functions such as serving as recognition sites in molecular recognition or cell-cell
communication. Due to their complex regio- and stereochemistry carbohydrate

characterisation remains one of the greatest challenges in modern glycoproteomics.

The frequent presence of isomers requires multidimensional analysis techniques to resolve
the composition, connectivity and configuration of complex oligosaccharides. Recently, an
orthogonal approach combining liquid chromatography (LC) and ion-mobility-mass
spectrometry (IM-MS) emerged as a promising tool for carbohydrate analysis. The
complementary separation techniques enable the differentiation of isomers based on polarity
(LC), molecular size/ shape (IM), and mass-to-charge (MS). However, the combination of
methods leads to an enormous increase of multi-layered datasets and processing tools to
support such data collections are missing. Furthermore, existing databases lack the required
quantity of reference data, therefore preventing the further utilization of this approach as

routinely applied analyse tool.

Within this thesis, this problem is addressed by using an instrumental setup of LC IM-MS to
enable automatic online measurements in combination with a self-designed algorithm for
processing ion mobility data (Aprid). For this purpose, the well-known oligosaccharides
dextran and raffinose were used to characterize the automated setup based on sample
consumption, time, robustness and accuracy in comparison to offline measurements.
Furthermore, the biologically relevant milk sugar lacto-N-hexaose (LNH) as well as the
blood group antigen Lewis Y were used to rate the automatic processing. The evaluation
revealed the enormous potential of the automated setup. The processing time decreased by
multiple orders of magnitude, while sample consumption and accuracy of the results stayed
comparable to offline measurements and manual data processing. The so-obtained results
demonstrate the potential of this approach as high throughput method to obtain reference

data for future databases.
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1 Introduction

Carbohydrates represent one of the four major classes of biomolecules along nucleic acids,
peptides and lipids. As a product of the photosynthesis, carbohydrates make up most of
organic matter on earth and therefore represent an important biological and chemical class of
molecules.l!l Beyond their function as an energy source in the metabolism and as a scaffold
component in organic structures, carbohydrates can be attached to proteins or lipids on the
cell membrane and act as recognition sites in biological signal processes.> 31 It is estimated
that more than 50 % of proteins and lipids have glycosylation as post-translational
modification.**! A well-known example can be found on the surface of the red blood cells as
small sugar antennas, serving as blood antigens for molecular recognition.l> 71 Besides that,
carbohydrates are involved in innate and adaptive immune responses and many more

biological systems with a wide variety of physiological functions.[®11l

Despite their diverse biological role in nature, an assignment of functions to specific
carbohydrate sequences remains elusive. This is due to their non-template driven formation
and especially due to a vast diversity in their architecture caused by their branched and
complex stereochemistry.'> 13 The detailed structural analysis of carbohydrates is very
challenging and usually techniques such as liquid chromatography (LC)!* 131 or nuclear
magnetic resonance (NMR) spectroscopy are employed."® However, LC methods require a
minute to hour timescale and often lack to resolve stereoisomers, and while NMR
approaches provide detailed structural information, they require a high amount of sample
material, which is often not available. Gas-phase techniques like mass spectrometry (MS)
have a high sensitivity and allow the fast investigation of samples in absence of solvent
molecules.l'” 181 MS experiments can provide information about the sample composition by
measuring the mass-to-charge ratio (m/z), but lack to distinguish between same-mass

isomers.

Multidimensional analysing approaches were proven to be useful for a more defined
characterization. As such, fragmentation techniques are often used in tandem MS
experiments, which in some cases allow the identification of stereoisomers based on specific
fragments.['” 201 Alternative approaches combine established techniques such as LC and

MS.21241 Here, individual species in a complex mixture can be separated (LC) and further
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analysed in the gas phase (MS). A similar separation of isomers can also be performed in the
gas phase via ion mobility-mass spectrometry (IM-MS).?>21 In IM-MS, ions are guided by a
weak electric field through a cell filled with an inert buffer gas such as helium. During their
migration ions with an extended structure collide with the buffer gas more often than
compact ions. For that reason, compact ions traverse the cell faster and therefore have shorter
drift times. This principle allows a separation of isomers based on their charge, mass, shape
and size.? 30 The resulting drift time of ions can be converted into a rotationally averaged
collision cross-section (CCS), which represents a molecular property.*!l Furthermore, the
CCS of fragment ions can be utilized to identify specific carbohydrates motifs. The successful

application of IM-MS for carbohydrates was demonstrated in many recent studies.” 27 32

The complementing two dimensional dataset of m/z and CCS allows a more reliable and
faster identification of carbohydrates when comparing with reference data.l®® These database
approaches promise a full scale characterization of oligosaccharides in the near future.
Similar to top-down proteomics, which is a method that allows high-throughput MS
experiments with an associated database analysing process®, glycan database approaches
could help to significantly increase the analysing speed and quality of carbohydrate
identification. The scores of such a glycan database could also be further increased by adding
the highly complementary information of other separation techniques as HPLC to the
multidimensional dataset. However, processing tools to support such data collections are
missing and existing databases lack the required quantity of reference data, therefore

preventing the further utilization of this approach as routine analyse tool.[*!

The aim of this work is to establish a high throughput method using an experimental setup
that combines HPLC and IM-MS with software supported data processing to enable
automated measurements as well as automated data interpretation. The automated setup has
the potential to increase the analysing speed and thus allow the accumulation of reference
data for future database applications. Furthermore, the standardized procedure increases the
reproducibility, therefore leading to more confidence in obtaining structural information of

carbohydrates.




2 Fundamentals and Methods

21 Carbohydrates

The term carbohydrates goes back more than 100 years and is literally derived from naturally
occurring “hydrates of carbon”, expressed in the general chemical formula Cx(H2O)n.
Nowadays the term also involves the derivatives of the originally formula which contain
other functional groups and heteroatoms like nitrogen and sulphur. They may be classified
based on their degree of polymerization (mono-, di, trisaccharides) or on bigger subclasses
like oligo- (3-9 monosaccharides) or polysaccharides (>9 monosaccharides). Today the names
glycans, sugars and carbohydrates are used for this class of biomolecules and no sharp
distinction in nomenclature exists.'3l Therefore, the different terms will be wused

interchangeably in this work.

The composition of glycans is determined by the type of connected monosaccharides. The
most common monosaccharides are composed of four to seven carbons and therefore
grouped as tetroses, pentoses, hexoses or heptoses. In nature, they are present in a ring
conformation as the result of an enthalpically favoured cyclization reaction. For hexoses, this
reaction includes the binding of the hydroxyl group at position 4 or 5 with the aldehyde at
C-1, leading to a five membered ring, called furanose, or a six membered ring, called
pyranose, respectively (see Figure 1).%¢ Pyranose rings are usually structurally preferred due
to less torsional strain. Furthermore, the cyclization reaction leads to the creation of a new
stereogenic centre at C-1, called the anomeric centre.’”l Depending on the configuration of
the reference atom at C-5, the resulting monosaccharide configuration is either called alpha
for a trans-relationship or beta for a cis-relationship as shown in Figure 1. Monosaccharides

are often isomeric and only differ in the stereochemistry of a single hydroxyl group.
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Figure 1: Structural relation between the open chain form and the ring conformation of glucose as example for a
hexose. The first formula depicts glucose as open chain in a Fischer projection, after a cyclization reaction glucose
can occur as closed ring as shown in the middle scheme. C-1 can adopt the two configurations alpha and beta.

The structure of carbohydrates is defined by a building block chemistry, where each
carbohydrate unit is connected to a second sugar via a glycosidic bond. These bonds are
formed by a condensation reaction between two building blocks and vary in either bond
position or anomeric state, which leads to a significant number of different oligosaccharides

that differ in either composition, connectivity or configuration (see Figure 2).
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Figure 2: Main characteristics that define a carbohydrate structure. Carbohydrates can differ in their composition,
e.g. the type of monosaccharides, in the connectivity between two monosaccharides, as well as in the
configuration of the anomeric centre resulting in a large variety of isomers.

The complex structure of sugars becomes even more obvious when compared to the linear
structure of other biomolecules like peptides. The connection of three amino acids leads to
six possible isomers, while the connection of three different hexoses could lead to several

thousands of possible isomers. 3 3

A simplified visual representation of the complex structure of carbohydrates is provided by

the symbol nomenclature for glycans (SNFG) as presented in Figure 3. The SNFG depicts




monosaccharides in different geometrical shapes and colours to illustrate same-mass isomers
and epimers. The reducing end of a glycan is drawn on the right side and different regio-
and stereochemistry is indicated by the type and angle of the lines that connect the
monosaccharides. %l
6
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Figure 3: SNFG nomenclature of carbohydrates. Sugars are represented by different geometrical shapes and
colours, while regio- and stereochemistry is indicated by the type and orientation of the linkage.

Up until now it remains difficult to fully characterize the complex structure of
carbohydrates. As mentioned before, an established method to separate and identify
components of complex carbohydrate mixtures is LC, but despite the enormous resolving
power of current LC systems, the separation of isomers is still not possible in every case and
requires a timescale of minutes to hours. Multidimensional tools like sequential MS» or
combined LC-MS/MS methods provide profound characterisation of sugar composition and

connectivity, but still lack full separation for configurational isomers.




2.2 Ion Mobility-Mass Spectrometry

Recently, IM-MS emerged as a promising addition to established MS methods for
carbohydrate analysis. Ion mobility spectrometry (IMS) is a gas-phase separation technique
to characterize and separate ionized molecules based on their drift time through a buffer gas.
It has a variety of civil and military applications ranging from the detection of explosives at
airportsi*!l to diagnostic functions in hospitalsi?, while scientific applications use the method

to study and characterize molecules in the gas phase.*>4]
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Figure 4: Scheme of the separation process in an ion mobility cell. Ions are guided through the drift cell by a weak
electric field and collide with a buffer gas. The shape and size of the ions affect the ion’s probability of colliding
with the buffer gas and therefore influence the time needed to traverse the cell. Thus isomers with the same m/z
but different shape can be separated.

The general principle of IMS is shown in Figure 4. The ionized sample is injected into the
drift cell, which contains an inert buffer gas like nitrogen or helium. The ions are guided
through the cell by a weak, uniform electric field under constant pressure of 1-15 mbar and
on their way undergo collisions with the buffer gas. The amount of collisions is dependent
on their shape and influences the time needed to travel through the drift cell. As a
consequence, compact ions and ions with high charge states have a higher mobility and
travel faster through the cell than extended molecules and low charged molecules.* 47l The
resulting drift times (to) of ions are dependent on several instrument parameters, but can be
converted into CCSs, which represent a molecular property. In order to obtain more
structural information, the IM separation can be easily coupled with MS instrumentation due
to their similar mechanics in terms of sample ionization, timescale and detection. The
combination of both methods yields a two dimensional measurement method that stands out
due to a low detection limit and response time. The commercial availability of different IM-
MS instruments increased the distribution of this technique immensely in the last ten years

and provides the potential to be applied for routine analysis. !




2.2.1 Collision Cross-Section

The CCS represents the rotationally averaged area of an ion which is able to interact with a
buffer gas and depends on the conformational shape of a molecule without being dependent
on instrumental parameters. It is an intrinsic value, which also can be calculated theoretically
and allows direct comparisons of theoretical models with experimental results. Furthermore,
its universal character allows the implementation in databases such as GlycoMob™®’ to
simplify the identification of unknown samples. CCSs are determined with the Mason-

Schamp-equation (1):50.51

_3ze1 | 2m
¢Cs = 16N Ko A| pkgT (1)

The equation contains the reduced mobility Ko, the ion charge z-e, the buffer gas number
density N, the reduced mass u of the buffer gas and the ion, the Boltzmann constant ks and
the effective temperature T. The reduced mobility Koisderived from the ion’s drift velocity v
through the drift cell, which can be described as a product of the electric field E and the

mobility K of an ion (eq. 2).
v=KE=— (2)

The drift velocity v can be determined in experiments by measuring the time ¢t required for
an ion to travel through a drift cell with the dimension L. The reduced mobility K, of an ion
is then normalized with respect to the pressure Pin the drift cell and temperature T (eq. 3).

K, _ L 273 P 3)

T Etp T 760
The experimental variables to solve for the reduced mobility Ko therefore are the intrinsic

drift cell voltage and drift time, while the extrinsic parameters are temperature and pressure.




2.2.2  Application

IM-MS combines conventional MS methods with an additional separation dimension and
therefore has the potential to distinguish between configurational isomers, as well as stereo-
and regioisomers. This approach has recently been shown for many oligosaccharides,
including the separation and identification of different naturally relevant carbohydrates.”!
For this purpose, the intact precursor as well as fragment ions of several similar Lewis and
blood group antigens were studied in order to obtain comparable m/z spectra and arrival
time distributions (ATDs) as shown in Figure 5. The identification of the trisaccharides is
based on the different drift times/CCSs of either precursor ions (see Lewis X vs. blood group
H type 2) or fragment ions, which were generated prior to IMS separation and therefore

allowed the assignment of defined structural features to the spectra (see Lewis Y).
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Figure 5: IM-MS analysis of the three antigens Lewis X (LeX), Lewis Y (LeY) and the blood group H type 2 (BG-
H?). The drift peak highlighted in blue depicts the precursor ion of LeY, while the red peaks either represent the
first dissociation of a fucose building block by LeY or the precursor ions of Lex and BG-H2 The ATD of LeY shows
two drift peaks for the first fragment (red), which can be identified by comparing to the precursor drift times of
LeX and BG-H? (both red). Further fragmentation of all three antigens leads to the identical disaccharide with the
exact same drift time (green). The figure is adapted from HOFMANN ET AL.I"]

The experiments were performed on a commercially available Synapt G2-S. The instrumental

setup and the general workflow is presented in Figure 6.
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Figure 6: Schematic setup of a Waters Synapt G2-S IM-MS instrument.

Ions are generated in a nano-electrospray ionization source (nESI) using a metal-coated glass
capillary and gently transferred into the gas phase. After entering the instrument, the ions
are guided through an ion guide to maximize transmission and thus increase sensitivity. The
following quadrupole enables the selection of specific m/z ion packages to traverse further to
the ion-mobility region. Two collision cells allow fragmentation experiments before or after
the drift cell as shown in Figure 7. The mobility separated ions are guided to a time-of-flight
(ToF) analyser, where the ions are analysed via their m/z ratio and afterwards detected to

generate a mass spectrum.

Trap Drift cell Transfer
. G . . Vo Vo Ve Ve N Y T PR———
ey a G & . g
1.7 .
_)_ s —>
R A" “ - W
LLLL WLLLLLLL

® W] et

lonized lon Mobility Fragmentation
Precursors Separation

Figure 7: Schematic depiction of the IM separation area in the Synapt G2-S. A trap collision cell prior to the drift
tube and a transfer collision cell afterwards allow the fragmentation of the ionized precursor before or after IM
separation.

The Synapt G2-S is a travelling wave (TW) IM-MS instrument, whereby the ions traverse in a
wave-like motion through the drift cell guided by a complex, non-uniform electric field.[
The inhomogeneous electric field does not allow an accurate mathematical description,
therefore the drift time measurements require calibration procedures to determine CCSs.1*l
In this thesis, a modified Synapt was used, whereas the original travelling wave cell was
replaced by a linear drift cell as described before.? This allows the direct conversion of drift

times into CCSs, which enables a higher accuracy and faster processing of the measurements.
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2.3  Automatic Data Interpretation

Despite the rapid development of powerful tools for carbohydrate analysis like LC-MS/MS
and IM-MS, the field of glycomics still lags behind the advances that have been made in
genomics and proteomics.® One major reason for that is the absence of supporting
computational methods to store and handle the growing quantity of data.l>> 501 Especially
orthogonal approaches of combining analysing techniques with searchable databases and
analysis processing tools would increase the sample characterisation in terms of speed and
accuracy. While many existing glycan-related databases rely on MS and LC-MS
information®®-*’, IM-MS derived CCSs have the potential to represent an additional
dimension of structural information.l®) CCSs are highly complementary to already existing
m/z information and furthermore are easily combined with the results of other separation

techniques such as HPLC.

However, there is a need for bioinformatic tools to support such data processing and
collection, especially software tools for analysing IM data. Data interpretation by hand is
time consuming and the increasing quantity of data caused by the combination of multiple
analysing techniques, complicates the data processing even more. Several software
approaches concerning IM analysis have been released, but most of these tools focus on
proteomics and fragment identification [©1%3], while automatic processing of glycan data for

high throughput analysis lacks behind.
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3 Aim

Carbohydrates are ubiquitous biological macromolecules with a wide range of biological
functions. Due to their complex structure and stereochemistry, they are difficult to
characterize using established techniques, therefore carbohydrate analysis remains elusive to
date. Recent studies indicate that IM-MS could be an effective tool to characterize complex

carbohydrates.

The aim of this thesis is to establish a high-throughput method by using an experimental
setup that combines HPLC and IM-MS, with software supported data processing. Several
naturally occurring sugars, including Lewis antigens as well as different human milk
oligosaccharides and synthetic sugars will be measured using IM-MS and analysed by a self-
developed software. The automation of both parts, data acquisition and processing, is
essential to build up a database in the future. Furthermore, the development of an automated
software could provide a faster data analysis and might increase the reproducibility and
quality of the results due to a higher experimental repetition rate and standardized data

processing.
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4  Automated Analysis of Biomolecules

This thesis is structured into three parts, which are illustrated as an interaction diagram of
system components in Figure 8. The first part describes the data acquisition including the
coupling of a HPLC with an ion mobility-mass spectrometer and the surrounding software
as well as a discussion of the HPLC injection parameters. The second part focuses on the data
analysis with a self-developed algorithm for processing ion-mobility data (Aprid). Details
about the code and modules can be found there. The evaluation of the entire automation
setup takes place in the last part, which focuses on evaluating the functionality, speed and

accuracy of the implemented algorithm.

Instrumentation

Parameter

28.1°C
2.27Torr

|

Data acquisition

| Logging ———> Aprid &—— Converterl Data analysis

Figure 8: Schematic diagram of interactions and workflow between all modules used in this thesis. The coupling
of the HPLC to the IM-MS as well as the generated output is summarized in the data acquisition part (highlighted
in blue) of this thesis. All software related modules are described in the data analysis part (red), where the used
algorithms are shown in more detail. Furthermore, the algorithm for processing ion-mobility data (Aprid) is
tested and evaluated in the third part of this thesis (green).
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4.1 Data Acquisition

4.1.1 Parameter Acquisition

The pressure in the drift cell is regulated by an external flow controller and the temperature
is measured with a standard temperature sensor PT100 (platinum measuring resistor) that is
directly connected to the drift cell. Intrinsic parameters such as voltages in the drift cell as
well as other tuning settings can be regulated with the IM-MS instrument software
MassLynx. While intrinsic parameters for each acquisition are automatically recorded in the
files _extern.inf and Header. TXT by MassLynx, external parameters such as pressure and
temperature need to be stored manually. Therefore, both external instruments are coupled
with the measuring computer to allow digital parameter acquisition. The acquisition is
enabled using the self-written Logscript.py (see algorithm 4 in the appendix), which calls up
both external instruments periodically to read the current values and appends them to a
logfile. The script is integrated as system service on the operating system, therefore enabling
the script to automatically start as soon as the computer is switched on. This allows a non-
stop recording of all relevant external parameters. In addition to temperature and pressure,
the respective date and time of the measurement is added to allow a time-dependent search
function within the logfile. The parameters are stored in a format similar to the automatically
generated MassLynx files to allow comparability and simpler search mechanisms. Thus, the
output of the instrument consists of two parts: The automatically generated tuning files
_extern.inf and Header.TXT, and the self-generated logfile.txt, which are summed up as

parameters, and the raw data files.

In addition to Logscript.py, a similar script was designed to enable visual output for the user
on the screen. It enables direct control of external instruments like pressure, therefore

allowing remote control of all relevant parameters.

4.1.2 Data characterisation

The HPLC consists of a sample manager to automatically uptake samples from a sample

plate and a solvent manager to regulate the flow rate and the gradient of the solvents. All
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parameters of the HPLC as well as of the IM-MS can be controlled using MassLynx with a
programmable sample list. It allows to regulate the recording time window as well as the
tune settings for both instruments for each run. As the available amount of carbohydrates is
often limited, the characterisation of the HPLC sample management, especially for the
required concentration and injection volume, is very important. To obtain this information,
two commercially available glycans (see Figure 9 and Figure 10) are measured under
different conditions. Dextran is a complex, branched homoglycan, consisting of only glucose
building blocks with an average molar mass distribution of 1000. The second sample is
raffinose, which is a trisaccharide composed of galactose, glucose and fructose. Both glycans
have well-characterized IM-MS properties and therefore are used as examples in this thesis
for the characterisation of the HPLC as well as for the later evaluation of the automation
process. To identify the influence of the HPLC sample management on the quality of the
obtained data, dextran and raffinose were measured with several concentrations and
different injection volumes. Figure 9 shows the total ion current as a function of the running

time of a HPLC run with dextran.

Full loop 5 pL Partial loop 5 L Partial loop 4 uL — 100 uM
— 50 pM
— 25uM
20 uM
10 uM
5uM

Partial loop 3 pL Partial loop 2 pL Partial loop 1 pL

Relative Intensity (a.u.)

2 3 4 5 6 7 2 3 456 7 2 3 4 5 6 7
Time (min) Time (min) Time (min)

Figure 9: Comparison of total ion current against running time of HPLC for dextran. Each graph represents an
injection volume, while the lines indicate the variation in concentration.

The experiment compares the effect of concentration on the quality of signal intensity. The

injection volume depends on the sample loop, which in this case can store up to 5 uL of
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sample. While a full loop requires up to 7 uL due to additional sample uptake before and
after the sample loop to guarantee an exact volume of 5 uL, the other five injection values
represent a partial loop filling. Each graph represents one injection volume with several lines
depicting the decreasing concentrations (5 uM - 100 pM). The full loop and the partial loop
with 5 puL should result in data with similar in intensity due to the fact, that both have the
maximum amount of sample in the sample loop. This is true for concentrations up to 50 uM,
while the plots with 100 uM show a surprisingly large difference in intensity in favour of the
partial loop. High injection volumes seem to lead to higher diffusion in the capillary
resulting in tailing peaks and an overall low intensity in comparison to the smaller injection
volumes. The experiments with lower injection volumes from 4 to 1 uL on the other hand
show a very homogenous behaviour in terms of intensity and peak form. For decreasing
injection volumes, the sample concentration has a minor influence and the overall signal
intensity decreases accordingly. To fully characterize the influence of the HPLC running
parameters, the impact of varying injection volumes was measured for different
concentrations as shown in Figure 10. Comparable offline MS experiments use 3 to 5 uL of
sample volume with a concentration of = 5 to 20 uM. For that reason, the corresponding
online experiment was done with a limited concentration range from 5 to 25 uM to increase
the comparability to standard offline measurements. To validate the reproducibility of the
experiment, the measurement was done with dextran as representative of the larger

oligosaccharides as well as with the smaller trisaccharide raffinose.

The comparison of dextran and raffinose shows an overall similar trend. While the
maximum injection volume of 5 uL results in a quite low intensity, the injection volume of
3 uL seems to be the optimum value to obtain high intensities for a wide variety of
concentrations. The ideal concentration for this kind of measurements is difficult to
determine, as even the lowest concentration of 5 uM results in sufficient intensity and
spectra quality. It is heavily dependent on the ionization efficiency of the respective sample,
therefore the concentration can vary between 5 and 25 uM, while the injection volume is
optimal at 3 pL. Thus, the sample consumption for one HPLC run is similar as for a single

offline injection.
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Dextran

Raffinose

Relative Intensity (a.u.)

r ——TT
2 3 4 5 6 7
Time (min)

2 3 4 5 6 7
Time (min)

full loop 5 pL
partial loop 5 pL
partial loop 4 pL
partial loop 3 pL
partial loop 2 pL
partial loop 1 pL

Figure 10: Comparison of total ion current against running time of HPLC for dextran and raffinose within a

particular concentration range and varying injection volumes as annotated. Each graph contains the data for one

concentration while the injection volume is varied.
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4.2

4.2.1 Graphic Interface for User Input

Data Analysis

The main factor to accelerate an automation process is a software supported data analysis,

therefore an analysing tool was created to replace manual data processing. Aprid is a script

which was developed in this thesis for processing ion mobility data in an automated fashion.

It is implemented using Python 2.7 and can be operated by the user through a graphic

interface devised in PyQtDesigner. The main goal of the script is to determine CCSs of

specific m/z values. For that purpose, the script follows the mathematical approach of solving

the Mason-Schamp equation (see eq. 1), therefore requiring several input values as shown in

Figure 11.

#.| Automatic CCS Calculation

Home Options

RawData File Selection

[ | Select Data |

Number of selected files:

Searchlist Selection

[ | selectpeakist |
—_—

Parameter Input

| D Automatic Parameter Input

Temperature (in °C)

Pressure (in Torr)

Drift Gas
) Helium

) Nitrogen

< Run Calculation

Select Logfile

Clear Input ] [Open Summary ] [

User Input:

Dataset

- multiple measurements of
same sample with
different drift voltages

Peaklist
- m/z and charge state
of each desired peak
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Figure 11: Screenshot of Aprids graphical interface and a description of the main input parameters.
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The user has to select a dataset as well as a peaklist, which consists of m/z values and charge
states of the desired peaks. Besides that, the user can choose to either manually input the
external parameters or define the location of the logfile.txt, which can be used to
automatically feed the parameters to the algorithm. After starting the calculation, the script

follows a similar workflow to manual data processing.

4.2.2  Workflow of Data Processing

To calculate CCSs using the Mason-Schamp equation (see eq. 1), the reduced mobility needs
to be calculated from measurements as described in equation 3.For that, the electric field E is
defined as the quotient of the applied voltage V in the drift cell and the length of the tube L.

By considering the definition for E, we obtain equation 4:

L1

Discrete drift times of an ion are acquired by fitting the drift time peak with a gaussian
function and taking the centre of that fit as to. When measuring a dataset with several
different drift voltages (at least eight different measurements), the resulting drift times to can
be treated as a function of the reversed voltages (1/V), therefore allowing equation 4 to be

plotted in a linear fashion as shown in Figure 12.
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Figure 12: Illustration of the gaussian fitting for drift time peaks as well as the linear plot of drift times as
described in equation 4 to obtain the mobility K.

The time to describes the dead time required by ions to traverse the ToF analyser. While the
dead time to is represented as the y-intercept, the residence time can be derived from the

slope, which depends on the length of the tube L and the mobility of the ion K. Therefore, the
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obtained mobility K can be used to calculate the reduced mobility Koas described before. The

calculation of the CCSs then follows the Mason-Schamp equation (see eq. 1).

4.2.3 Example of use: Calculation Algorithm for IM-MS data

To illustrate the embedding of the processing workflow into the functioning script, the main

algorithm of Aprid is given as the following pseudocode (Algorithm 1).

Iterate through set_of _files:

find parameter_file in raw_file:
voltage = GetVoltage (parameter_file)
pusher_frequency = GetPusherInterval (parameter_file)
timestamp = GetDate (parameter_file)

converted_file = Converter (raw_file + conversion_options)

find peaks in peaklist (user_input):
set_limit = peaks+/-sensitivity_threshold
iterate through m/z in converted_file:
if lower_limit< (m/z) >upper_limit:
drift_time = GetDrift Time (m/z)
results.append (voltage, drift_time, charge)

logfile = OpenTextFile (logfile.txt)
matching_time = FindDate (timestamp==logfile[time])
temperature, pressure, drift_gas = GetParameter (matching_time)
temporary_list.append (temperature, pressure)

repeat for all converted_files

findvoltage, drift_time, charge in results:
find temperature, pressure in temporary_list:
CCS, error_CCS = GetCCS (voltage, drift_time, charge, temperature, pressure)
output.append (CCS, error_CCS)

write output_file (output)

Algorithm 1: Calculation algorithm for processing IM-MS raw data files. The orange comments will be described in more
detail in the following paragraph.

The script starts by iterating through a set of data files chosen by the user. For each raw file

selected, five main steps are accomplished, which are described in the following paragraph.
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PARAMETERS. For later processing steps like drift time fitting and CCS calculation, different
parameters need to be set. Therefore, the script will parse through the parameter file
_extern.inf to search for the values of Helium Cell DC, Helium Cell Exit, IMS Bias as well as
Transfer DC Entrance and pusher interval. Furthermore, the date and time of the
measurement are searched for in the parameter file _"HEADER.TXT. The pusher interval
describes the frequency of MS scans executed for each IMS separation. When ions reach the
IMS cell, they are separated based on their drift time as shown before. Each IMS run is
divided into 200 individual MS scans, so-called drift bins. This is due to the detection
mechanism following after the IMS cell, where the ions arrive at the ToF analyser. There,
they are pushed to the detector as ion packages in a defined interval, so-called
pusher_frequency. The value of the pusher interval differs for different mass ranges used
during acquisition. The overall drift time of an ion can be calculated by the product of the

pusher_frequency and the number of drift bins (200) as shown in equation 5.
(Pusher_frequency + 0.00025) * drift bins = Drift time )

The pusher_frequency is saved as a rounded value in _extern.inf and needs thus to be shifted
by an empirical factor (highlighted in blue in equation 5). The date and time of the
measurement is necessary to find the setting details later in the logfile, therefore this values
are stored in a way matching the format of the Logfile.py output. The drift voltage is

calculated from the voltages applied in the drift and fragmentation cells (Figure 13).

Voltage (V)
1 - Ve Vo Y. é) e
R % lHeCeIIEXit "FPF
T - <8
- 2 Transfer DC E""?‘.’.‘-.‘;.? L ¢

) Il . J

Trap Cell Helium Cell IMS Cell Transfer Cell

Figure 13: Scheme of the required voltages to apply a linear gradient in the drift cell. The ring electrodes illustrate
the IMS and fragmentation region, while the black arrows indicate a potential energy diagram.

The highlighted voltages Helium Cell DC and Helium Cell Exit represent the applied voltage
for entering and exiting the Helium cell, while IMS Bias is applied to the IMS cell. The
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Transfer DC Entrance voltage is the threshold for the ions to reach the following transfer cell.

The actual applied drift voltage can be calculated using equation 6.
He Cell DC + IMS Bias + He Cell Exit — Transfer DC Entrance = Drift Voltage (6)

The stored values for pusher_frequency, timestamp and voltage are internal parameters that are
automatically created by MassLynx during the measurement. Other parameters like
temperature and pressure are measured externally and imported by the script in the later

step additional parameters.

CONVERT RAW DATA. The raw data files need to be converted to an accessible format first.
Therefore, each file is processed by CDCReader.exe, a transformation script provided by
Waters. It transforms the encoded data points into text files using two libraries (cdt.dll and
MassLynxRaw.dll). The converted text files consist of three rows including the information for
m/z, drift time and the signal intensity. The conversion is controlled by specific commands,
from which the resolution value has the largest impact on the further procedure due to its
influence on the accuracy of the measurements as shown in Figure 14. The resolution value
can adopt values from zero to one, whereas the value represents the distance between m/z

values in the converted data file.

Conversion Value =0

R

Original MS (Zoom) Conversion Value = 0.3

Intensity (a.u.)
A4

Conversion Value = 1
m/z

| ! I

m/z
Figure 14 : Generic MS spectra to illustrate the impact of the conversion options on the quality of the spectra. Each
line in the converted spectra possesses an own drift time peak, which shows the significantly increased
processing time to gain discrete drift time information from conversion value 0, while conversion values of 0.3
and 1 offer quite simple spectra and therefore are more rapid to interpret.
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The original mass spectrum is zoomed in and shows three peaks. When converting the
original file using a resolution value of zero, each peak is split up into several subpeaks,
leading to a multiplication of signals. Each of this subpeaks possesses its own drift time peak.
To obtain the actual drift time of the entire m/z peak, each drift time subpeak has to be fitted
with a gaussian function. This extra step decreases the performance of the script
significantly, therefore the resolution value of zero is not used. Increasing the resolution
value leads to more simple spectra, which can be analysed faster and more accurate. The
resolution value represents the distance between the m/z values in the converted file. When
converting a file with a resolution value of one, all m/z peaks are one unit apart. Peaks in
between are summed, resulting in rather inaccurate converted spectra. Testing different
values lead to an optimal resolution of 0.3, which results in satisfying processing speed and

adequate spectra quality. Other conversion parameters were set on default.

FIND SELECTED PEAKS. After the conversion of the raw data, Aprid browses through the
converted files looking for m/z values specified by the user in the peaklist. For this purpose,
each m/z value of the peaklist is used to set delta parameters to define upper and lower
bounds, which the algorithm will use to iterate through the converted data files. A peak that
falls between the limits is stored with its corresponding drift bins. The overall drift time peak
is calculated according to equation 5. This drift time peak is fitted with a gaussian function as

depicted in the following pseudocode (algorithm 2).
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find maximum_intensity in dataset
initial_guess = set point of maximum_intensity as starting point

result_1 = FitSingleGaussian (initial_guess)

standard_deviation_1 = CalculateError (result_1)

shift initial _guess
result_2 = FitSingleGaussian (shifted starting point)
standard_deviation _2= CalculateError (result_2)
repeat for multiple shifted starting points
until residual_error is minimal

if standard_deviation (SingleGaussian) is <given_threshold:
break algorithm

else:
result_1 = FitDoubleGaussian (initial_guess)
standard_deviation _1 = CalculateError (result_1)
shift initial_guess
result_2 = FitSingleGaussian (shifted starting point)
standard_deviation _2 = CalculateError (result_2)
repeat for multiple shifted starting points
until residual_error is minimal
if minimal_standard_deviation (DoubleGaussian) is <given_threshold:
break algorithm
else:
continue for multiple Gaussians
repeat until minimal_standard_deviation (MultipleGaussian) is <given_threshold

Algorithm 2: Generic algorithmfor the peak fitting process described as GetDriftTime function in algorithm 1.

After determining the maximum signal intensity of a dataset as initial parameter, the
algorithm starts fitting a single gaussian and calculates the root-mean-square deviation
(RMSD) for this fit. RMSD is a statistical tool to represent the sample standard deviation of
the discrepancy between the data and an estimation model.l* ¢ To find the optimum
starting parameter for the fit, the algorithm shifts the initial guess and repeats the fitting
process until it reaches a minimal RMSD value. If this minimum satisfies a certain threshold,
the algorithm will stop at that point, otherwise it repeats the process with multiple gaussian
functions until the threshold is reached. The fitting with multiple gaussian functions repeats
several times and is applied especially in case of double/ multiple peaks or peak shoulders.
The centre of the fitted gaussian functions represents an accurate value for the drift time to of

an ion. The results will be appen