
 

Automated Analysis of Complex Oligosaccharides 

via 

Ion Mobility-Mass Spectrometry 

 

Master Thesis 

of  

Christian Manz 

 

submitted to the Department of Biology, Chemistry and Pharmacy 

of Freie Universität Berlin 

 

 

 

 

 

 

 

28th of February 2017 



II 

 

  



III 

 

The work presented here was carried out from 29th of August 2016 to 28th of February 2017 

as a collaboration between the research groups of Prof. Dr. Kevin Pagel at the Institute of 

Chemistry and Biochemistry of Freie Universität Berlin and Dr. Gert von Helden at the 

Department of Molecular Physics of the Fritz Haber Institute of the Max Planck Society. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

First Examiner: Prof. Dr. Kevin Pagel 

Second Examiner: Prof. Dr. Beate Paulus  



IV 

 

  



V 

 

Acknowledgments 

An dieser Stelle möchte ich mich bei Prof. Dr. Kevin Pagel für die Vergabe des interessanten 

Forschungsthemas und dessen Betreeung bedanken. Zusätzlich möchte ich mich bei Prof. Dr. 

Beate Paulus für die schnelle Bereitschaft bedanken, diese Arbeit als Zweitprüferin zu 

bewerten. Außerdem danke ich Dr. Gert von Helden für die Erlaubnis zur Nutzung der 

Messinstrumente, ohne die eine Anfertigung der Arbeit nicht möglich gewesen wäre. 

Ein besonderer Dank geht an alle Mitglieder der Arbeitsgruppen von Dr. Gert von Helden 

und Prof. Dr. Kevin Pagel, die mir stets mit Rat und Tat zur Seite standen. Insbesondere 

danke ich Johanna Hofmann für die Einweisung am Synapt und das stets offene Ohr bei 

Problemen und der positive Rückhalt während der Anfertigung dieser Arbeit. Desweiteren 

möchte ich mich bei Ph.D. Mateusz Marianski für die Einarbeitung in den Informatikteil 

dieser Arbeit bedanken, ohne den die Fragestellung nicht hätte bearbeitet werden können. 

Desweiteren möchte ich mich bei Melanie Göth, Sebastian Malerz und Waldemar Hoffmann 

für die vielen Diskussionen und dem Korrekturlesen dieser Arbeit bedanken.  

Weiterhin möchte ich bei Patrick Schlecht und Christian Teßmar aus dem Elektroniklabors 

des Fritz Haber Instituts für die Hilfe beim Umbau und der Installation der Messgeräte 

bedanken. 

Bei meiner Familie und insbesondere meiner Freundin möchte ich mich für den sozialen 

Rückhalt und für die ermutigenden Worte bedanken, ohne die die Anfertigung dieser Arbeit 

nicht möglich gewesen wäre. 

  



VI 

 

  



VII 

 

Statutory Declaration 

I herewith confirm that I have prepared the master thesis entitled “Automated Analysis of 

Complex Oligosaccharides via Ion Mobility-Mass Spectrometry” exclusively with the help of 

the sources and resources specified in this work. 

 

Berlin, 28th of February 2017      _ _ _ _ _ _ _ _ _ _ 

         Christian Manz 

  



VIII 

 

  



IX 

 

Abstract 

Glycosylation is the most common post-translational modification in eukaryotic cells, 

making glycans ubiquitous in nature. They play a key role in a variety of physiological 

functions such as serving as recognition sites in molecular recognition or cell-cell 

communication. Due to their complex regio- and stereochemistry carbohydrate 

characterisation remains one of the greatest challenges in modern glycoproteomics.  

The frequent presence of isomers requires multidimensional analysis techniques to resolve 

the composition, connectivity and configuration of complex oligosaccharides. Recently, an 

orthogonal approach combining liquid chromatography (LC) and ion-mobility-mass 

spectrometry (IM-MS) emerged as a promising tool for carbohydrate analysis. The 

complementary separation techniques enable the differentiation of isomers based on polarity 

(LC), molecular size/ shape (IM), and mass-to-charge (MS). However, the combination of 

methods leads to an enormous increase of multi-layered datasets and processing tools to 

support such data collections are missing. Furthermore, existing databases lack the required 

quantity of reference data, therefore preventing the further utilization of this approach as 

routinely applied analyse tool. 

Within this thesis, this problem is addressed by using an instrumental setup of LC IM-MS to 

enable automatic online measurements in combination with a self-designed algorithm for 

processing ion mobility data (Aprid). For this purpose, the well-known oligosaccharides 

dextran and raffinose were used to characterize the automated setup based on sample 

consumption, time, robustness and accuracy in comparison to offline measurements. 

Furthermore, the biologically relevant milk sugar lacto-N-hexaose (LNH) as well as the 

blood group antigen Lewis Y were used to rate the automatic processing. The evaluation 

revealed the enormous potential of the automated setup. The processing time decreased by 

multiple orders of magnitude, while sample consumption and accuracy of the results stayed 

comparable to offline measurements and manual data processing. The so-obtained results 

demonstrate the potential of this approach as high throughput method to obtain reference 

data for future databases.  



X 

 

  



XI 

 

Content 

Acknowledgment V 

Statutory Declaration VII 

Abstract IX 

1 Introduction 1 

2 Fundamentals and Methods 3 
2.1 Carbohydrates 3 
2.2 Ion Mobility-Mass Spectrometry 6 
2.3 Automatic Data Interpretation 10 

3 Aim 11 

4 Automated Analysis of Biomolecules 12 
4.1 Data Acquisition 13 
4.2 Data Analysis 17 
4.3 Evaluation 27 

5 Conclusion and Outlook 30 

6 Experimental Section 33 
6.1 Instrumental Setup 33 
6.2 Data Interpretation 34 
6.3 Samples 35 

References 36 

Appendix 39 

  



XII 

 

 



 

1 

 

1 Introduction 

Carbohydrates represent one of the four major classes of biomolecules along nucleic acids, 

peptides and lipids. As a product of the photosynthesis, carbohydrates make up most of 

organic matter on earth and therefore represent an important biological and chemical class of 

molecules.[1] Beyond their function as an energy source in the metabolism and as a scaffold 

component in organic structures, carbohydrates can be attached to proteins or lipids on the 

cell membrane and act as recognition sites in biological signal processes.[2, 3] It is estimated 

that more than 50 % of proteins and lipids have glycosylation as post-translational 

modification.[3-5] A well-known example can be found on the surface of the red blood cells as 

small sugar antennas, serving as blood antigens for molecular recognition.[6, 7] Besides that, 

carbohydrates are involved in innate and adaptive immune responses and many more 

biological systems with a wide variety of physiological functions.[8-11] 

Despite their diverse biological role in nature, an assignment of functions to specific 

carbohydrate sequences remains elusive. This is due to their non-template driven formation 

and especially due to a vast diversity in their architecture caused by their branched and 

complex stereochemistry.[12, 13] The detailed structural analysis of carbohydrates is very 

challenging and usually techniques such as liquid chromatography (LC)[14, 15] or nuclear 

magnetic resonance (NMR) spectroscopy are employed.[16] However, LC methods require a 

minute to hour timescale and often lack to resolve stereoisomers, and while NMR 

approaches provide detailed structural information, they require a high amount of sample 

material, which is often not available. Gas-phase techniques like mass spectrometry (MS) 

have a high sensitivity and allow the fast investigation of samples in absence of solvent 

molecules.[17, 18] MS experiments can provide information about the sample composition by 

measuring the mass-to-charge ratio (m/z), but lack to distinguish between same-mass 

isomers.  

Multidimensional analysing approaches were proven to be useful for a more defined 

characterization. As such, fragmentation techniques are often used in tandem MS 

experiments, which in some cases allow the identification of stereoisomers based on specific 

fragments.[19, 20] Alternative approaches combine established techniques such as LC and 

MS.[21-24] Here, individual species in a complex mixture can be separated (LC) and further 



 

2 

 

analysed in the gas phase (MS). A similar separation of isomers can also be performed in the 

gas phase via ion mobility-mass spectrometry (IM-MS).[25-28] In IM-MS, ions are guided by a 

weak electric field through a cell filled with an inert buffer gas such as helium. During their 

migration ions with an extended structure collide with the buffer gas more often than 

compact ions. For that reason, compact ions traverse the cell faster and therefore have shorter 

drift times. This principle allows a separation of isomers based on their charge, mass, shape 

and size.[29, 30] The resulting drift time of ions can be converted into a rotationally averaged 

collision cross-section (CCS), which represents a molecular property.[31] Furthermore, the 

CCS of fragment ions can be utilized to identify specific carbohydrates motifs. The successful 

application of IM-MS for carbohydrates was demonstrated in many recent studies.[7, 27, 32] 

The complementing two dimensional dataset of m/z and CCS allows a more reliable and 

faster identification of carbohydrates when comparing with reference data.[33] These database 

approaches promise a full scale characterization of oligosaccharides in the near future. 

Similar to top-down proteomics, which is a method that allows high-throughput MS 

experiments with an associated database analysing process[34], glycan database approaches 

could help to significantly increase the analysing speed and quality of carbohydrate 

identification. The scores of such a glycan database could also be further increased by adding 

the highly complementary information of other separation techniques as HPLC to the 

multidimensional dataset. However, processing tools to support such data collections are 

missing and existing databases lack the required quantity of reference data, therefore 

preventing the further utilization of this approach as routine analyse tool.[35] 

The aim of this work is to establish a high throughput method using an experimental setup 

that combines HPLC and IM-MS with software supported data processing to enable 

automated measurements as well as automated data interpretation. The automated setup has 

the potential to increase the analysing speed and thus allow the accumulation of reference 

data for future database applications. Furthermore, the standardized procedure increases the 

reproducibility, therefore leading to more confidence in obtaining structural information of 

carbohydrates. 

  



 

3 

 

2 Fundamentals and Methods 

2.1 Carbohydrates 

The term carbohydrates goes back more than 100 years and is literally derived from naturally 

occurring “hydrates of carbon”, expressed in the general chemical formula Cx(H2O)n. 

Nowadays the term also involves the derivatives of the originally formula which contain 

other functional groups and heteroatoms like nitrogen and sulphur. They may be classified 

based on their degree of polymerization (mono-, di, trisaccharides) or on bigger subclasses 

like oligo- (3-9 monosaccharides) or polysaccharides (>9 monosaccharides). Today the names 

glycans, sugars and carbohydrates are used for this class of biomolecules and no sharp 

distinction in nomenclature exists.[13] Therefore, the different terms will be used 

interchangeably in this work. 

The composition of glycans is determined by the type of connected monosaccharides. The 

most common monosaccharides are composed of four to seven carbons and therefore 

grouped as tetroses, pentoses, hexoses or heptoses. In nature, they are present in a ring 

conformation as the result of an enthalpically favoured cyclization reaction. For hexoses, this 

reaction includes the binding of the hydroxyl group at position 4 or 5 with the aldehyde at 

C-1, leading to a five membered ring, called furanose, or a six membered ring, called 

pyranose, respectively (see Figure 1).[36] Pyranose rings are usually structurally preferred due 

to less torsional strain. Furthermore, the cyclization reaction leads to the creation of a new 

stereogenic centre at C-1, called the anomeric centre.[37] Depending on the configuration of 

the reference atom at C-5, the resulting monosaccharide configuration is either called alpha 

for a trans-relationship or beta for a cis-relationship as shown in Figure 1. Monosaccharides 

are often isomeric and only differ in the stereochemistry of a single hydroxyl group. 



 

4 

 

 
Figure 1: Structural relation between the open chain form and the ring conformation of glucose as example for a 
hexose. The first formula depicts glucose as open chain in a Fischer projection, after a cyclization reaction glucose 
can occur as closed ring as shown in the middle scheme. C-1 can adopt the two configurations alpha and beta. 

The structure of carbohydrates is defined by a building block chemistry, where each 

carbohydrate unit is connected to a second sugar via a glycosidic bond. These bonds are 

formed by a condensation reaction between two building blocks and vary in either bond 

position or anomeric state, which leads to a significant number of different oligosaccharides 

that differ in either composition, connectivity or configuration (see Figure 2). 

 

Figure 2: Main characteristics that define a carbohydrate structure. Carbohydrates can differ in their composition, 
e.g. the type of monosaccharides, in the connectivity between two monosaccharides, as well as in the 
configuration of the anomeric centre resulting in a large variety of isomers. 

The complex structure of sugars becomes even more obvious when compared to the linear 

structure of other biomolecules like peptides. The connection of three amino acids leads to 

six possible isomers, while the connection of three different hexoses could lead to several 

thousands of possible isomers.[38, 39] 

A simplified visual representation of the complex structure of carbohydrates is provided by 

the symbol nomenclature for glycans (SNFG) as presented in Figure 3. The SNFG depicts 



 

5 

 

monosaccharides in different geometrical shapes and colours to illustrate same-mass isomers 

and epimers. The reducing end of a glycan is drawn on the right side and different regio- 

and stereochemistry is indicated by the type and angle of the lines that connect the 

monosaccharides.[40] 

 
Figure 3: SNFG nomenclature of carbohydrates. Sugars are represented by different geometrical shapes and 
colours, while regio- and stereochemistry is indicated by the type and orientation of the linkage. 

Up until now it remains difficult to fully characterize the complex structure of 

carbohydrates. As mentioned before, an established method to separate and identify 

components of complex carbohydrate mixtures is LC, but despite the enormous resolving 

power of current LC systems, the separation of isomers is still not possible in every case and 

requires a timescale of minutes to hours. Multidimensional tools like sequential MSn or 

combined LC-MS/MS methods provide profound characterisation of sugar composition and 

connectivity, but still lack full separation for configurational isomers. 

  



 

6 

 

2.2 Ion Mobility-Mass Spectrometry 

Recently, IM-MS emerged as a promising addition to established MS methods for 

carbohydrate analysis. Ion mobility spectrometry (IMS) is a gas-phase separation technique 

to characterize and separate ionized molecules based on their drift time through a buffer gas. 

It has a variety of civil and military applications ranging from the detection of explosives at 

airports[41] to diagnostic functions in hospitals[42], while scientific applications use the method 

to study and characterize molecules in the gas phase.[43-45] 

 
Figure 4: Scheme of the separation process in an ion mobility cell. Ions are guided through the drift cell by a weak 
electric field and collide with a buffer gas. The shape and size of the ions affect the ion´s probability of colliding 
with the buffer gas and therefore influence the time needed to traverse the cell. Thus isomers with the same m/z 
but different shape can be separated. 

The general principle of IMS is shown in Figure 4. The ionized sample is injected into the 

drift cell, which contains an inert buffer gas like nitrogen or helium. The ions are guided 

through the cell by a weak, uniform electric field under constant pressure of 1-15 mbar and 

on their way undergo collisions with the buffer gas. The amount of collisions is dependent 

on their shape and influences the time needed to travel through the drift cell. As a 

consequence, compact ions and ions with high charge states have a higher mobility and 

travel faster through the cell than extended molecules and low charged molecules.[46, 47] The 

resulting drift times (tD) of ions are dependent on several instrument parameters, but can be 

converted into CCSs, which represent a molecular property. In order to obtain more 

structural information, the IM separation can be easily coupled with MS instrumentation due 

to their similar mechanics in terms of sample ionization, timescale and detection. The 

combination of both methods yields a two dimensional measurement method that stands out 

due to a low detection limit and response time. The commercial availability of different IM-

MS instruments increased the distribution of this technique immensely in the last ten years 

and provides the potential to be applied for routine analysis.[48] 



 

7 

 

2.2.1 Collision Cross-Section  

The CCS represents the rotationally averaged area of an ion which is able to interact with a 

buffer gas and depends on the conformational shape of a molecule without being dependent 

on instrumental parameters. It is an intrinsic value, which also can be calculated theoretically 

and allows direct comparisons of theoretical models with experimental results. Furthermore, 

its universal character allows the implementation in databases such as GlycoMob[49] to 

simplify the identification of unknown samples. CCSs are determined with the Mason-

Schamp-equation (1):[50, 51]  

𝐶𝐶𝑆 = 3𝑧𝑒
16𝑁

1
𝐾0 √

2𝜋
µ𝑘𝐵𝑇

     (1) 

The equation contains the reduced mobility K0, the ion charge z·e, the buffer gas number 

density N, the reduced mass µ of the buffer gas and the ion, the Boltzmann constant kB and 

the effective temperature T. The reduced mobility K0isderived from the ion´s drift velocity v 

through the drift cell, which can be described as a product of the electric field E and the 

mobility K of an ion (eq. 2). 

     𝑣 = 𝐾𝐸 = 𝐿
𝑡𝐷

      (2) 

The drift velocity v can be determined in experiments by measuring the time 𝑡𝐷 required for 

an ion to travel through a drift cell with the dimension L. The reduced mobility 𝐾0 of an ion 

is then normalized with respect to the pressure Pin the drift cell and temperature T (eq. 3). 

     𝐾0 = 𝐿
𝐸𝑡𝐷

273
𝑇

𝑃
760     (3) 

The experimental variables to solve for the reduced mobility K0 therefore are the intrinsic 

drift cell voltage and drift time, while the extrinsic parameters are temperature and pressure.  

  



 

8 

 

2.2.2 Application 

IM-MS combines conventional MS methods with an additional separation dimension and 

therefore has the potential to distinguish between configurational isomers, as well as stereo- 

and regioisomers. This approach has recently been shown for many oligosaccharides, 

including the separation and identification of different naturally relevant carbohydrates.[7] 

For this purpose, the intact precursor as well as fragment ions of several similar Lewis and 

blood group antigens were studied in order to obtain comparable m/z spectra and arrival 

time distributions (ATDs) as shown in Figure 5. The identification of the trisaccharides is 

based on the different drift times/CCSs of either precursor ions (see Lewis X vs. blood group 

H type 2) or fragment ions, which were generated prior to IMS separation and therefore 

allowed the assignment of defined structural features to the spectra (see Lewis Y). 

 
Figure 5: IM-MS analysis of the three antigens Lewis X (LeX), Lewis Y (LeY) and the blood group H type 2 (BG-
H2). The drift peak highlighted in blue depicts the precursor ion of LeY, while the red peaks either represent the 
first dissociation of a fucose building block by LeY or the precursor ions of Lex and BG-H2. The ATD of LeY shows 
two drift peaks for the first fragment (red), which can be identified by comparing to the precursor drift times of 
LeX and BG-H2 (both red). Further fragmentation of all three antigens leads to the identical disaccharide with the 
exact same drift time (green). The figure is adapted from HOFMANN ET AL.[7] 

The experiments were performed on a commercially available Synapt G2-S. The instrumental 

setup and the general workflow is presented in Figure 6. 



 

9 

 

 
Figure 6: Schematic setup of a Waters Synapt G2-S IM-MS instrument. 

Ions are generated in a nano-electrospray ionization source (nESI) using a metal-coated glass 

capillary and gently transferred into the gas phase. After entering the instrument, the ions 

are guided through an ion guide to maximize transmission and thus increase sensitivity. The 

following quadrupole enables the selection of specific m/z ion packages to traverse further to 

the ion-mobility region. Two collision cells allow fragmentation experiments before or after 

the drift cell as shown in Figure 7. The mobility separated ions are guided to a time-of-flight 

(ToF) analyser, where the ions are analysed via their m/z ratio and afterwards detected to 

generate a mass spectrum. 

 
Figure 7: Schematic depiction of the IM separation area in the Synapt G2-S. A trap collision cell prior to the drift 
tube and a transfer collision cell afterwards allow the fragmentation of the ionized precursor before or after IM 
separation.  

The Synapt G2-S is a travelling wave (TW) IM-MS instrument, whereby the ions traverse in a 

wave-like motion through the drift cell guided by a complex, non-uniform electric field.[52] 

The inhomogeneous electric field does not allow an accurate mathematical description, 

therefore the drift time measurements require calibration procedures to determine CCSs.[53] 

In this thesis, a modified Synapt was used, whereas the original travelling wave cell was 

replaced by a linear drift cell as described before.[54] This allows the direct conversion of drift 

times into CCSs, which enables a higher accuracy and faster processing of the measurements.  



 

10 

 

2.3 Automatic Data Interpretation 

Despite the rapid development of powerful tools for carbohydrate analysis like LC-MS/MS 

and IM-MS, the field of glycomics still lags behind the advances that have been made in 

genomics and proteomics.[35] One major reason for that is the absence of supporting 

computational methods to store and handle the growing quantity of data.[55, 56] Especially 

orthogonal approaches of combining analysing techniques with searchable databases and 

analysis processing tools would increase the sample characterisation in terms of speed and 

accuracy. While many existing glycan-related databases rely on MS and LC-MS 

information[57-59], IM-MS derived CCSs have the potential to represent an additional 

dimension of structural information.[60] CCSs are highly complementary to already existing 

m/z information and furthermore are easily combined with the results of other separation 

techniques such as HPLC.  

However, there is a need for bioinformatic tools to support such data processing and 

collection, especially software tools for analysing IM data. Data interpretation by hand is 

time consuming and the increasing quantity of data caused by the combination of multiple 

analysing techniques, complicates the data processing even more. Several software 

approaches concerning IM analysis have been released, but most of these tools focus on 

proteomics and fragment identification [61-63], while automatic processing of glycan data for 

high throughput analysis lacks behind. 

 

 

  



 

11 

 

3 Aim 

Carbohydrates are ubiquitous biological macromolecules with a wide range of biological 

functions. Due to their complex structure and stereochemistry, they are difficult to 

characterize using established techniques, therefore carbohydrate analysis remains elusive to 

date. Recent studies indicate that IM-MS could be an effective tool to characterize complex 

carbohydrates. 

The aim of this thesis is to establish a high-throughput method by using an experimental 

setup that combines HPLC and IM-MS, with software supported data processing. Several 

naturally occurring sugars, including Lewis antigens as well as different human milk 

oligosaccharides and synthetic sugars will be measured using IM-MS and analysed by a self-

developed software. The automation of both parts, data acquisition and processing, is 

essential to build up a database in the future. Furthermore, the development of an automated 

software could provide a faster data analysis and might increase the reproducibility and 

quality of the results due to a higher experimental repetition rate and standardized data 

processing. 

 

 

 

  



 

12 

 

4 Automated Analysis of Biomolecules 

This thesis is structured into three parts, which are illustrated as an interaction diagram of 

system components in Figure 8. The first part describes the data acquisition including the 

coupling of a HPLC with an ion mobility-mass spectrometer and the surrounding software 

as well as a discussion of the HPLC injection parameters. The second part focuses on the data 

analysis with a self-developed algorithm for processing ion-mobility data (Aprid). Details 

about the code and modules can be found there. The evaluation of the entire automation 

setup takes place in the last part, which focuses on evaluating the functionality, speed and 

accuracy of the implemented algorithm. 

 
Figure 8: Schematic diagram of interactions and workflow between all modules used in this thesis. The coupling 
of the HPLC to the IM-MS as well as the generated output is summarized in the data acquisition part (highlighted 
in blue) of this thesis. All software related modules are described in the data analysis part (red), where the used 
algorithms are shown in more detail. Furthermore, the algorithm for processing ion-mobility data (Aprid) is 
tested and evaluated in the third part of this thesis (green). 

  



 

13 

 

4.1 Data Acquisition 

4.1.1 Parameter Acquisition 

The pressure in the drift cell is regulated by an external flow controller and the temperature 

is measured with a standard temperature sensor PT100 (platinum measuring resistor) that is 

directly connected to the drift cell. Intrinsic parameters such as voltages in the drift cell as 

well as other tuning settings can be regulated with the IM-MS instrument software 

MassLynx. While intrinsic parameters for each acquisition are automatically recorded in the 

files _extern.inf and Header.TXT by MassLynx, external parameters such as pressure and 

temperature need to be stored manually. Therefore, both external instruments are coupled 

with the measuring computer to allow digital parameter acquisition. The acquisition is 

enabled using the self-written Logscript.py (see algorithm 4 in the appendix), which calls up 

both external instruments periodically to read the current values and appends them to a 

logfile. The script is integrated as system service on the operating system, therefore enabling 

the script to automatically start as soon as the computer is switched on. This allows a non-

stop recording of all relevant external parameters. In addition to temperature and pressure, 

the respective date and time of the measurement is added to allow a time-dependent search 

function within the logfile. The parameters are stored in a format similar to the automatically 

generated MassLynx files to allow comparability and simpler search mechanisms. Thus, the 

output of the instrument consists of two parts: The automatically generated tuning files 

_extern.inf and Header.TXT, and the self-generated logfile.txt, which are summed up as 

parameters, and the raw data files. 

In addition to Logscript.py, a similar script was designed to enable visual output for the user 

on the screen. It enables direct control of external instruments like pressure, therefore 

allowing remote control of all relevant parameters. 

4.1.2 Data characterisation 

The HPLC consists of a sample manager to automatically uptake samples from a sample 

plate and a solvent manager to regulate the flow rate and the gradient of the solvents. All 



 

14 

 

parameters of the HPLC as well as of the IM-MS can be controlled using MassLynx with a 

programmable sample list. It allows to regulate the recording time window as well as the 

tune settings for both instruments for each run. As the available amount of carbohydrates is 

often limited, the characterisation of the HPLC sample management, especially for the 

required concentration and injection volume, is very important. To obtain this information, 

two commercially available glycans (see Figure 9 and Figure 10) are measured under 

different conditions. Dextran is a complex, branched homoglycan, consisting of only glucose 

building blocks with an average molar mass distribution of 1000. The second sample is 

raffinose, which is a trisaccharide composed of galactose, glucose and fructose. Both glycans 

have well-characterized IM-MS properties and therefore are used as examples in this thesis 

for the characterisation of the HPLC as well as for the later evaluation of the automation 

process. To identify the influence of the HPLC sample management on the quality of the 

obtained data, dextran and raffinose were measured with several concentrations and 

different injection volumes. Figure 9 shows the total ion current as a function of the running 

time of a HPLC run with dextran. 

 
Figure 9: Comparison of total ion current against running time of HPLC for dextran. Each graph represents an 
injection volume, while the lines indicate the variation in concentration. 

The experiment compares the effect of concentration on the quality of signal intensity. The 

injection volume depends on the sample loop, which in this case can store up to 5 µL of 



 

15 

 

sample. While a full loop requires up to 7 µL due to additional sample uptake before and 

after the sample loop to guarantee an exact volume of 5 µL, the other five injection values 

represent a partial loop filling. Each graph represents one injection volume with several lines 

depicting the decreasing concentrations (5 µM - 100 µM). The full loop and the partial loop 

with 5 µL should result in data with similar in intensity due to the fact, that both have the 

maximum amount of sample in the sample loop. This is true for concentrations up to 50 µM, 

while the plots with 100 µM show a surprisingly large difference in intensity in favour of the 

partial loop. High injection volumes seem to lead to higher diffusion in the capillary 

resulting in tailing peaks and an overall low intensity in comparison to the smaller injection 

volumes. The experiments with lower injection volumes from 4 to 1 µL on the other hand 

show a very homogenous behaviour in terms of intensity and peak form. For decreasing 

injection volumes, the sample concentration has a minor influence and the overall signal 

intensity decreases accordingly. To fully characterize the influence of the HPLC running 

parameters, the impact of varying injection volumes was measured for different 

concentrations as shown in Figure 10. Comparable offline MS experiments use 3 to 5 µL of 

sample volume with a concentration of ≈ 5 to 20 µM. For that reason, the corresponding 

online experiment was done with a limited concentration range from 5 to 25 µM to increase 

the comparability to standard offline measurements. To validate the reproducibility of the 

experiment, the measurement was done with dextran as representative of the larger 

oligosaccharides as well as with the smaller trisaccharide raffinose. 

The comparison of dextran and raffinose shows an overall similar trend. While the 

maximum injection volume of 5 µL results in a quite low intensity, the injection volume of 

3 µL seems to be the optimum value to obtain high intensities for a wide variety of 

concentrations. The ideal concentration for this kind of measurements is difficult to 

determine, as even the lowest concentration of 5 µM results in sufficient intensity and 

spectra quality. It is heavily dependent on the ionization efficiency of the respective sample, 

therefore the concentration can vary between 5 and 25 µM, while the injection volume is 

optimal at 3 µL. Thus, the sample consumption for one HPLC run is similar as for a single 

offline injection. 

 



 

16 

 

 
Figure 10: Comparison of total ion current against running time of HPLC for dextran and raffinose within a 
particular concentration range and varying injection volumes as annotated. Each graph contains the data for one 
concentration while the injection volume is varied. 

 

  



 

17 

 

4.2 Data Analysis 

4.2.1 Graphic Interface for User Input 

The main factor to accelerate an automation process is a software supported data analysis, 

therefore an analysing tool was created to replace manual data processing. Aprid is a script 

which was developed in this thesis for processing ion mobility data in an automated fashion. 

It is implemented using Python 2.7 and can be operated by the user through a graphic 

interface devised in PyQtDesigner. The main goal of the script is to determine CCSs of 

specific m/z values. For that purpose, the script follows the mathematical approach of solving 

the Mason-Schamp equation (see eq. 1), therefore requiring several input values as shown in 

Figure 11. 

 
Figure 11: Screenshot of Aprids graphical interface and a description of the main input parameters. 



 

18 

 

The user has to select a dataset as well as a peaklist, which consists of m/z values and charge 

states of the desired peaks. Besides that, the user can choose to either manually input the 

external parameters or define the location of the logfile.txt, which can be used to 

automatically feed the parameters to the algorithm. After starting the calculation, the script 

follows a similar workflow to manual data processing. 

4.2.2 Workflow of Data Processing 

To calculate CCSs using the Mason-Schamp equation (see eq. 1), the reduced mobility needs 

to be calculated from measurements as described in equation 3.For that, the electric field E is 

defined as the quotient of the applied voltage V in the drift cell and the length of the tube L. 

By considering the definition for E, we obtain equation 4: 

     𝑡𝐷 = 𝐿2
𝐾
1
𝑉 + 𝑡0      (4) 

Discrete drift times of an ion are acquired by fitting the drift time peak with a gaussian 

function and taking the centre of that fit as tD. When measuring a dataset with several 

different drift voltages (at least eight different measurements), the resulting drift times tD can 

be treated as a function of the reversed voltages (1/V), therefore allowing equation 4 to be 

plotted in a linear fashion as shown in Figure 12. 

 
Figure 12: Illustration of the gaussian fitting for drift time peaks as well as the linear plot of drift times as 
described in equation 4 to obtain the mobility K. 

The time t0 describes the dead time required by ions to traverse the ToF analyser. While the 

dead time t0 is represented as the y-intercept, the residence time can be derived from the 

slope, which depends on the length of the tube L and the mobility of the ion K. Therefore, the 



 

19 

 

obtained mobility K can be used to calculate the reduced mobility K0as described before. The 

calculation of the CCSs then follows the Mason-Schamp equation (see eq. 1). 

4.2.3 Example of use: Calculation Algorithm for IM-MS data 

To illustrate the embedding of the processing workflow into the functioning script, the main 

algorithm of Aprid is given as the following pseudocode (Algorithm 1). 

Iterate through set_of_files: 

 # parameters 

 find parameter_file in raw_file: 

  voltage = GetVoltage (parameter_file) 

  pusher_frequency = GetPusherInterval (parameter_file) 

  timestamp = GetDate (parameter_file) 

# convert raw data 

 converted_file = Converter (raw_file + conversion_options) 

 # find specific peaks 

 find peaks in peaklist (user_input): 

  set_limit = peaks+/-sensitivity_threshold 

 iterate through m/z in converted_file: 

if lower_limit< (m/z) >upper_limit: 

 drift_time = GetDriftTime (m/z) 

   results.append (voltage, drift_time, charge) 

 # additional parameters 

 logfile = OpenTextFile (logfile.txt) 

 matching_time = FindDate (timestamp==logfile[time]) 

 temperature, pressure, drift_gas = GetParameter (matching_time) 

 temporary_list.append (temperature, pressure) 

repeat for all converted_files 

# write output 

findvoltage, drift_time, charge in results: 

 find temperature, pressure in temporary_list: 

 CCS, error_CCS = GetCCS (voltage, drift_time, charge, temperature, pressure) 

 output.append (CCS, error_CCS) 

write output_file (output) 

Algorithm 1: Calculation algorithm for processing IM-MS raw data files. The orange comments will be described in more 

detail in the following paragraph. 

The script starts by iterating through a set of data files chosen by the user. For each raw file 

selected, five main steps are accomplished, which are described in the following paragraph. 



 

20 

 

PARAMETERS. For later processing steps like drift time fitting and CCS calculation, different 

parameters need to be set. Therefore, the script will parse through the parameter file 

_extern.inf to search for the values of Helium Cell DC, Helium Cell Exit, IMS Bias as well as 

Transfer DC Entrance and pusher interval. Furthermore, the date and time of the 

measurement are searched for in the parameter file _HEADER.TXT. The pusher interval 

describes the frequency of MS scans executed for each IMS separation. When ions reach the 

IMS cell, they are separated based on their drift time as shown before. Each IMS run is 

divided into 200 individual MS scans, so-called drift bins. This is due to the detection 

mechanism following after the IMS cell, where the ions arrive at the ToF analyser. There, 

they are pushed to the detector as ion packages in a defined interval, so-called 

pusher_frequency. The value of the pusher interval differs for different mass ranges used 

during acquisition. The overall drift time of an ion can be calculated by the product of the 

pusher_frequency and the number of drift bins (200) as shown in equation 5.  

(Pusher_frequency + 0.00025) * drift bins = Drift time    (5) 

The pusher_frequency is saved as a rounded value in _extern.inf and needs thus to be shifted 

by an empirical factor (highlighted in blue in equation 5). The date and time of the 

measurement is necessary to find the setting details later in the logfile, therefore this values 

are stored in a way matching the format of the Logfile.py output. The drift voltage is 

calculated from the voltages applied in the drift and fragmentation cells (Figure 13). 

 
Figure 13: Scheme of the required voltages to apply a linear gradient in the drift cell. The ring electrodes illustrate 
the IMS and fragmentation region, while the black arrows indicate a potential energy diagram. 

The highlighted voltages Helium Cell DC and Helium Cell Exit represent the applied voltage 

for entering and exiting the Helium cell, while IMS Bias is applied to the IMS cell. The 



 

21 

 

Transfer DC Entrance voltage is the threshold for the ions to reach the following transfer cell. 

The actual applied drift voltage can be calculated using equation 6. 

 He Cell DC + IMS Bias + He Cell Exit – Transfer DC Entrance = Drift Voltage  (6) 

The stored values for pusher_frequency, timestamp and voltage are internal parameters that are 

automatically created by MassLynx during the measurement. Other parameters like 

temperature and pressure are measured externally and imported by the script in the later 

step additional parameters.  

CONVERT RAW DATA. The raw data files need to be converted to an accessible format first. 

Therefore, each file is processed by CDCReader.exe, a transformation script provided by 

Waters. It transforms the encoded data points into text files using two libraries (cdt.dll and 

MassLynxRaw.dll). The converted text files consist of three rows including the information for 

m/z, drift time and the signal intensity. The conversion is controlled by specific commands, 

from which the resolution value has the largest impact on the further procedure due to its 

influence on the accuracy of the measurements as shown in Figure 14. The resolution value 

can adopt values from zero to one, whereas the value represents the distance between m/z 

values in the converted data file.  

 
Figure 14 : Generic MS spectra to illustrate the impact of the conversion options on the quality of the spectra. Each 
line in the converted spectra possesses an own drift time peak, which shows the significantly increased 
processing time to gain discrete drift time information from conversion value 0, while conversion values of 0.3 
and 1 offer quite simple spectra and therefore are more rapid to interpret. 



 

22 

 

The original mass spectrum is zoomed in and shows three peaks. When converting the 

original file using a resolution value of zero, each peak is split up into several subpeaks, 

leading to a multiplication of signals. Each of this subpeaks possesses its own drift time peak. 

To obtain the actual drift time of the entire m/z peak, each drift time subpeak has to be fitted 

with a gaussian function. This extra step decreases the performance of the script 

significantly, therefore the resolution value of zero is not used. Increasing the resolution 

value leads to more simple spectra, which can be analysed faster and more accurate. The 

resolution value represents the distance between the m/z values in the converted file. When 

converting a file with a resolution value of one, all m/z peaks are one unit apart. Peaks in 

between are summed, resulting in rather inaccurate converted spectra. Testing different 

values lead to an optimal resolution of 0.3, which results in satisfying processing speed and 

adequate spectra quality. Other conversion parameters were set on default.  

FIND SELECTED PEAKS. After the conversion of the raw data, Aprid browses through the 

converted files looking for m/z values specified by the user in the peaklist. For this purpose, 

each m/z value of the peaklist is used to set delta parameters to define upper and lower 

bounds, which the algorithm will use to iterate through the converted data files. A peak that 

falls between the limits is stored with its corresponding drift bins. The overall drift time peak 

is calculated according to equation 5. This drift time peak is fitted with a gaussian function as 

depicted in the following pseudocode (algorithm 2). 

  



 

23 

 

# initial guess 

find maximum_intensity in dataset 

initial_guess = set point of maximum_intensity as starting point 

# single fit 

result_1 = FitSingleGaussian (initial_guess) 

standard_deviation_1 = CalculateError (result_1) 

shift initial_guess 

result_2 = FitSingleGaussian (shifted starting point) 

standard_deviation _2= CalculateError (result_2) 

repeat for multiple shifted starting points 

until residual_error is minimal 

if standard_deviation (SingleGaussian) is <given_threshold: 

 break algorithm 

# multiple fits 

else: 

 result_1 = FitDoubleGaussian (initial_guess) 

standard_deviation _1 = CalculateError (result_1) 

shift initial_guess 

result_2 = FitSingleGaussian (shifted starting point) 

standard_deviation _2 = CalculateError (result_2) 

repeat for multiple shifted starting points 

until residual_error is minimal 

if minimal_standard_deviation (DoubleGaussian) is <given_threshold: 

  break algorithm 

 else: 

  continue for multiple Gaussians 

repeat until minimal_standard_deviation (MultipleGaussian) is <given_threshold 

Algorithm 2: Generic algorithmfor the peak fitting process described as GetDriftTime function in algorithm 1. 

After determining the maximum signal intensity of a dataset as initial parameter, the 

algorithm starts fitting a single gaussian and calculates the root-mean-square deviation 

(RMSD) for this fit. RMSD is a statistical tool to represent the sample standard deviation of 

the discrepancy between the data and an estimation model.[64, 65] To find the optimum 

starting parameter for the fit, the algorithm shifts the initial guess and repeats the fitting 

process until it reaches a minimal RMSD value. If this minimum satisfies a certain threshold, 

the algorithm will stop at that point, otherwise it repeats the process with multiple gaussian 

functions until the threshold is reached. The fitting with multiple gaussian functions repeats 

several times and is applied especially in case of double/ multiple peaks or peak shoulders. 

The centre of the fitted gaussian functions represents an accurate value for the drift time tD of 

an ion. The results will be appended to a temporary list, which contains the voltage, the drift 



 

24 

 

time and charge for each found peak. The accuracy of the drift time fit is crucial for the CCS 

calculation later on, therefore the fitting algorithm is evaluated with two well-studied and 

biochemically relevant oligosaccharides. As shown before, the blood antigen Lewis Y can be 

identified by the drift time of its fragment ions. The study from HOFMANN ET AL.[7] utilized a 

travelling wave IM-MS, which gives a higher resolution than the modified drift tube 

instrument used in this thesis. Nevertheless, Lewis Y was measured to evaluate the 

capability of the algorithm to fit different kinds of peak shapes. The ATD of the fragment 

m/z 552 measured on both instruments is shown in Figure 15a. 

 
Figure 15: a) Direct comparison of the original travelling wave data (upper panel) with the new data measured 
with a linear drift tube (lower panel) in positive ion mode. The data shows the sodium adducted species at m/z 
552, resulting from the neutral of fucose from the precursor ion. b) Scheme of the stepwise fitting process of the 
algorithm. It first tries to fit a single gaussian (green) into the data points (red). When the RMSD value does not 
satisfy a certain threshold, the algorithm continues to fit multiple gaussians as shown here for the double 
gaussian fit (green and blue), which satisfies the threshold and stops the fitting algorithm. 

The difference in resolution between the travelling wave cell and the linear drift cell is quite 

significant. While the travelling wave cell can baseline separate both isomers (Figure 15a, 

upper panel), the linear drift cell shows a broad double peak (Figure 15a, lower panel). The 

peak fitting algorithm starts the fitting procedure as described before with fitting a single 

gaussian function to the data (Figure 15b, upper panel). Because the RMSD does not satisfy 

the threshold, the algorithm adds a second gaussian function (Figure 15b, lower panel). The 

two gaussians represent the actual measurement accurately, therefore satisfying the 

threshold and the algorithm stops at this point. Another biologically relevant oligosaccharide 

used for testing the algorithm is lacto-N-hexaose (LNH), which can be found in human 

milk.[28] 



 

25 

 

The measurement of the deprotonated precursor ion (m/z 1071) is shown in Figure 16. 

 
Figure 16: Measurement of LNH as deprotonated precursor ion (m/z 1071) and the peak fitting process performed 
by Aprid. The red line represents the measured data points, while the green illustrates the first gaussian fit, blue 
the second and yellow the third. 

The deprotonated precursor shows multiple features due to synthetic impurities. This leads 

to a broad drift peak with a shoulder (5.5 to 6 ms) and a small second peak (4.5 ms). The 

algorithm starts by default with a single gaussian at the maximum point (6 ms), which does 

not represent the actual measurement. The two gaussians depict the overall peak shape 

pretty well, but the small peak at lower drift time is ignored due to the low intensity. Despite 

the missing peak fit, the RMSD is satisfying the threshold and the algorithm would stop at 

that point. When manually lowering the threshold, the algorithm continues and fits a third 

gaussian function to the missing peak. The actual difference between two and three 

gaussians is somewhat small in terms of standard deviation due to the small occupied area in 

comparison to the broadened peak. In ideal case, the threshold should be minimal to allow 

realistic fits, but the data at times has a high signal-to-noise ratio, which would lead to 

mismatches in the process. Several experiments lead to an empirical threshold, which has a 

good balance of accuracy and performance. 

 

 



 

26 

 

ADDITIONAL PARAMETERS. Certain parameters like temperature, pressure, and type of drift 

gas are extrinsic values measured with the help of external instruments, but they are needed 

to convert the drift time into a CCS. There are two ways to provide the program with these 

data. The user can either input the external parameters manually for each calculation or 

specify the location of the logfile.txt, which allows the algorithm to import the desired 

parameters automatically. In order to do that, each data file in the dataset is examined for its 

time of measurement. After that, Aprid searches for that points of time in the logfile.txt to 

assign the respective pressure and temperature values to each data file, which are afterwards 

stored in two temporary lists. The lists consist of at least eight values, which are averaged to 

result in a single value of pressure and temperature for each dataset that can be used for later 

calculations. If one or more values deviate more than a defined threshold from the others, the 

user will receive a warning message to check the logfile.txt manually. 

WRITE OUTPUT. To calculate a CCS using the Mason-Schamp equation 1, the reduced mobility 

K0 needs to be calculated from the measurements as shown in Figure 12 before. The slope of 

the linear fit results in the mobility K, which can be used to calculate the reduced mobility K0 

as described in equation 3. The calculation of the CCS then follows the Mason-Schamp 

equation 1. The final output file contains two sections, with the searched values for m/z and 

charge in one section, and the found values for m/z and CCS in the other row. Furthermore, 

the error of each CCS value is given as well as the acquired parameter values for 

temperature, pressure, and drift gas used for the calculation. It is written to a simple comma 

separated file (csv) to allow a fast summary of the results. The evaluation of the results can 

be carried out in various ways. The accuracy of the results can either be obtained by the R2 

value from the linear drift time plot or as calculated error from slope, mobility or CCS. 

Besides numerical values, graphical output can also be obtained with minor changes in the 

output algorithm. The final output format is yet to be determined due to a missing database 

to upload the results and will be adapted in the near future. 

 

  



 

27 

 

4.3 Evaluation 

4.3.1 MS Experiments 

To evaluate the automated setup, dextran was measured several times to track possible 

deviations in the results and external parameters. The CCSs in this part are obtained by 

utilizing the predetermined optimum concentration range of 5 to 25 µM and injection 

volume of 3 µL. Dextran is very suitable for online MS experiments due its broad molar mass 

distribution which allows observing multiple ions in the spectrum without the need to 

isolate or fragment specific ions. Figure 17 shows the measured IM-MS data for dextran and 

the calculated CCS information. 

 
Figure 17: Evaluation of stability trends of CCS determination using dextran. a) Table of the measured CCSN2 (in 
Å2) for four [M+Na]+ ions of dextran. The table also illustrates the average (CCSAVG) and standard deviation (STD) 
of each dataset. b) Online MS spectrum of dextran. Several peaks of the spectrum are identified, but for reasons of 
simplicity, only the highlighted peaks are focused on in this thesis. c) Illustration of the CCS deviation for a high 
number of experimental repetitions.  

There are several observed peaks in the positive ion mode spectrum, representing 

protonated and adduct species, but only four specific ions were examined in order to 

simplify the evaluation. The four highlighted peaks in the depicted spectrum represent the 

sodium adduct-ions of the respective tri-, tetra-, penta- and hexasaccharide. The comparison 



 

28 

 

of their CCSs for the repetitive measurements shows minimal fluctuation between the 

calculated CCS. This can be observed in the small standard deviation of the datasets as well 

as in the deviation chart (Figure 17a/c), which illustrates the overall steady trend of the 

repetitive CCS measurements. To further prove the concept for MS/MS experiments, 

raffinose was measured in a similar approach. 

4.3.2 MS/MS experiments 

Raffinose is a well-studied non-reducing trisaccharide, consisting of galactose, glucose and 

fructose. Unfortunately, the amount of CCS reference data is quite low, but as an 

oligosaccharide, it represents a typical target of the relevant substance class, therefore 

allowing to draw conclusions about the results as proof of principle. Furthermore, it has a 

simple fragmentation pattern in positive ion mode and thus the fragmentation experiments 

in MS/MS mode are carried out with raffinose as sample. The results of the repetitive CCS 

measurements in MS/MS mode are shown in Figure 18.  

 
Figure 18: Evaluation of automated MS/MS experiments with raffinose. a) Table of the measured CCS (in Å2) for 
the [M+Na]+ precursor  and fragment ion of raffinose. The table provides the average (CCSAVG) and standard 
deviation (STD) of both datasets. b) Online MS/MS spectrum of raffinose, which was produced using a collision 
energy of 30 V in the trap cell. The peaks represent the precursor ion (blue) and the fragment ion (green). 
c) Illustration of the CCS deviation for a high number of experimental repetitions. 



 

29 

 

The fragmentation pattern of raffinose shows one fragment, which represents the cleavage of 

one building block. The comparison of the CCSs of the precursor ion as well as of the 

fragment ion over different experimental repetitions shows a higher fluctuation than for 

dextran before (Figure 17). While the maximum standard deviation for dextran lies at one Å2 

(0.5 %), raffinose reveals a relatively high standard deviation of two to three Å2 (1 to 1.5 %), 

especially for the fragment ion. This could indicate a bigger impact on smaller m/z in terms of 

fluctuation between measurements. The reason could lie in software problems regarding the 

control of the gas flow in the trap cell. Despite the input of a specific value, MassLynx shifts 

the value to lower regions, therefore leading to an inconstant gas flow in the trap cell. This 

could influence the collisions of the ions with the buffer gas in the fragmentation cell, from 

which larger ions are more affected than smaller ions. Nevertheless, the repetition of the CCS 

measurements in MS/MS mode shows a similar trend to the MS mode, therefore proving that 

the approach can be applied to both acquisition modes. Both showed the anticipated results 

and can compete with offline measurements in terms of signal intensity and quality. 

Moreover, the timescale of data acquisition for online measurements is comparable to the 

time required to measure offline data, but there is still a major flaw in terms of sample 

consumption and time. Due to the modified IM-MS instrument, the voltage regulation for 

the sample list of MassLynx is constrained to one value only for each run. While one 

injection would be more than enough to record IM spectra at different voltages, the software 

does not allow voltage regulation inside one run. This means, that for efficient CCS 

measurements, each sample needs to be sprayed eight times, therefore needing eight times 

the usual sample amount and time. Future application focus on circumvent this limitation. 

Nevertheless, the overall timescale of the entire automated setup decreased dramatically due 

to the software supported processing. Aprid allows the analysis of datasets in few minutes, 

independent from the number of peaks and enabling the analysis of even complex 

oligosaccharides. Furthermore, the small deviations in the CCS calculation indicate an 

accurate processing of the data. This means, that the automated setup works and could 

enable the measurement of a high number of samples in a short amount of time.  



 

30 

 

5 Conclusion and Outlook 

In the frame of this thesis, a high throughput setup for an automated IM-MS data acquisition 

and data analysis were established. The automated data acquisition is realised by the 

coupling of IM-MS to HPLC to allow the measurement of multiple samples in an automated 

fashion, while the data analysis is performed by a self-designed software tool. 

Dextran and raffinose were used to characterize the new established setup for the automated 

online measurements in terms of sample consumption, time, robustness and accuracy. The 

systematic analysis showed a similar sample consumption and time amount as it is the case 

for offline methods. Using an injection volume of 3 µL, an ideal concentration range from 5 

to 25 µM was observed. This shows, that the sensitivity of the new setup is very high with a 

sample requirement of pmol or ng scales per run.  

The modification of the Synapt G2-S instrument with a new linear drift cell and the old 

MassLynx software does, however, not allow the simultaneous adjustment of the drift 

voltage during HPLC runs. Multiple runs are required to obtain reliable CCS values derived 

from at least eight different drift voltage, which further increase the actual required sample 

amount. In order to overcome this software problem for future applications, the instrument 

and software supplier is now involved.  

Nevertheless, the total sample consumption is still below alternative techniques like NMR 

which usually requires mg scales. 

The self-developed software Aprid is implemented using Python 2.7 and showed enormous 

potential to decrease the processing time of IM-MS data by replacing the manual data 

interpretation. Besides the decrease in timescale to determine CCSs, Aprid has the ability to 

analyse even complex ATDs of oligosaccharides. This was validated on the basis of complex 

drift time peaks of Lewis Y and LNH, which showed multiple peaks and peak shoulders. 

The stepwise approach of fitting an increasing amount of gaussian functions leads to a 

reliable data interpretation. Nevertheless, the limitation of this new approach relies in fitting 

low intensity peaks and needs to be further improved. This observation was obtained for the 

low intensity drift time peaks of LNH, caused by impurities of the synthesis. The threshold, 

which determines the accuracy of the fitting procedure, was too high to recognise this low 



 

31 

 

intensity peak and therefore a mismatch in the estimation model was observed. High signal-

to-noise ratios do not allow to set small threshold values and instead a compromise between 

accuracy and performance has to be made. The automated fitting procedure could in future 

benefit from adjustments of specific fitting parameters such as baseline correction, width and 

height of the gaussian fits, which would further allow to set a lower threshold value for CCS 

determination. 

The entire instrumental setup, including the software-supported data processing, was 

evaluated in MS mode using Dextran as well as in MS/MS mode using raffinose. The signal 

intensity and quality of the recorded spectra is in excellent agreement with previous offline 

experiments. A high repetition number showed small fluctuations of 0 to 1.5 % in the 

calculated CCSs for precursor as well as fragment ions. These fluctuations are also often 

observed for individual offline measurements and therefore the new described automated 

method can be used to obtain reference data for future implementations in databases. The 

experiments in this thesis were exclusively performed in the positive ion mode. Further 

measurements will be performed in future to also validate this new method in the negative 

ion mode as well as for the investigation of adduct-ion species. 

The current combination of HPLC and IM-MS in this work is managed without separation 

column. Future applications should include this additional separation step to acquire 

retention times from HPLC runs as an additional characterisation factor for the carbohydrate 

analysis. This could increase the accuracy of the identification as well as the possibilities of 

applications, e.g. in terms of mixture separation as well as derivatisation of samples as 

shown in Figure 19. 

 
Figure 19: Modified setup of the instrument used in this thesis. Adding a column to the HPLC would allow 
chromatographic separation as complementary information, which increases the resolution of the method. 



 

32 

 

Furthermore, the timescale of IM-MS experiments is complementary to HPLC runs, allowing 

to combine both, the retention time, mass and CCSs in future databases. Such a database 

could set the benchmark for carbohydrate characterisation. The quality of the database, 

however, correlates with the amount of data stored within and therefore it is crucial to 

accumulate an enormous amount of reference data and to build up the basic framework for a 

software supported database browse. Methods for database searching will rely on specific 

properties of smaller oligosaccharides to draw conclusions on the structure of larger 

polysaccharides. Especially small oligosaccharides with a specific repeating core unit as 

lactose and mannose structure as well as the already studied antigens will take up an 

important role to allow automatic identification of their larger counterparts in database 

searches. 

  



 

33 

 

6 Experimental Section 

6.1 Instrumental Setup 

Experiments were performed on a nanoAcquity UPLC system (Waters, Milford, USA) and a 

modified Synapt G2-S HDMS (Waters, Milford, USA) equipped with a nano-electrospray 

ionization source (nESI) as shown inFigure 20. The originally built-in travelling wave cell of 

the Synapt G2-S was replaced by a linear drift cell to allow the direct conversion of measured 

drift times into CCSs. The instrument is coupled to a UPLC to enable automatic sample 

uptake with the help of the autosampler.  

 
Figure 20: Schematic setup of an UPLC coupled to an IM-MS instrument. The UPLC system is used without 
column and acts as autosampler to directly inject samples through the nESI source into the ion mobility-mass 
spectrometer. 

6.1.1 Nano UPLC 

The nano UPLC system is made up of a sample manager containing an autosampler with 

two 24 position 1.5 mL vial plates and a binary solvent manager with two HPLC pumps with 

solvent degasser and a high pressure gradient mixer. The UPLC contained a sample loop 

that takes up to 5.0 µL of sample and was operated with a flow rate of 1.0 µL/min using a 

defined gradient of solvent, usually acetonitrile (ACN) and water (v/v, 1:1), both containing 

0.1 % formic acid (FA). The column was replaced by a fused silica capillary with the 

attributes of 360 µm outer-diameter (OD) and 100 µm inner diameter (ID) (Idex Health & 

Science, Oak Harbor, USA), which was directly connected to the ion mobility-mass 

spectrometer.  



 

34 

 

6.1.2 Ion Mobility-Mass Spectrometer 

The IM-MS instrument is composed of a nESI source with a pre-cut TaperTip online emitter 

(360 µm OD x 20 µm ID, Waters, Milford, USA), an ion guide, a quadrupole, two 

fragmentation cells (trap and transfer cell) as well as an ion mobility cell in between and a 

time-of-flight mass analyser. The originally installed travelling-wave drift cell was replaced 

by a linear drift tube using a design reported previously. The online emitter was used for 

ionizing samples provided by the UPLC, while offline measurements were performed using 

in-house made metal-coated glass capillaries. Typical instrument setting were: capillary 

voltage, 2.0-3.5 kV (0.8 kV for offline measurements); sample cone, 70.0 V; source offset, 

40.0 V; source temperature, 30 °C; Trap DC Entrance, 2.0 V; Trap DC Bias, -15.0 V; Trap DC 

Exit, 2.0 V; IMS DC Entrance, -20.0 V; Helium Cell DC, 110.0-160.0 V; Helium Exit, -40.0 V; 

IMS Bias, 110.0-160.0 V; Transfer DC Entrance, 5.0 V; Transfer DC Exit, 10.0 V; backing 

pressure, 3.8 mbar; trap pressure, 2.45x10-2 mbar; ion mobility gas, N2 or He; ion mobility cell 

pressure, 3.5 mbar; time-of-flight analyser pressure, 1.0×10-6 mbar. Each of the parameters 

were, however, optimized in order to have an abundant signal for the parent ion.  

Both instruments, the Synapt G2-S as well as the UPLC, are controlled by MassLynx V4.1 

(Waters, Milford, USA) with either direct manual control or with the help of a sample list, 

which allows to automatically run the entire instrumentation for longer periods of time 

without user interference. 

6.2 Data Interpretation 

For manual data analysis the resulting data points were extracted with MassLynx V4.1 and 

the drift times were fitted with a Gaussian distribution using OriginPro 2015G (OriginLab 

Corporation, Northampton, USA). Fitted drift times were converted to collision cross-

sections as described before. All graphics were produced using Adobe Illustrator CS6 

(Adobe Systems GmbH, München, Germany).  

 



 

35 

 

6.3 Samples 

Prior to HPLC-IM-MS the samples were typically diluted in water/methanol (1:1, v/v) or 

water/ACN (1:1, v/v). Commercially available samples were used without any further 

purification.  

Dextran and raffinose were purchased from Sigma Aldrich (Munich, Germany). 

LNT/LNnT and LNH/LNnH standards were purchased from Carbosynth Limited (Berkshire, 

UK). 

Lewis antigens were purchased from Dextra Laboratories (Reading, UK), with the exception 

of BG-H1, which was purchased from Elicityl SA (Crolles, France). 

Non-commercial samples were prepared by solid phase synthesis by Heung Sik Hahm 

(Group of P. Seeberger, Max Planck Institute of Colloids and Interfaces) and were diluted in 

water/methanol (1:1, v/v).  

 

 



 

36 

 

References 

[1] J. Berg, J. Tymoczko, L. Stryer, Biochemistry, 5th ed., W. H. Freeman, New York, 2002. 

[2] M. D. Disney, P. H. Seeberger, Chem. Biol. 2004, 11, 1701-1707. 

[3] R. Kleene, M. Schachner, Nat. Rev. Neurosci. 2004, 5, 195-208. 

[4] G. A. Khoury, R. C. Baliban, C. A. Floudas, Sci. Rep. 2011, 1. 

[5] R. S. Haltiwanger, J. B. Lowe, Annu. Rev. Biochem. 2004, 73, 491-537. 

[6] N. G. Karlsson, K. A. Thomsson, Glycobiology 2009, 19, 288-300. 

[7] J. Hofmann, A. Stuckmann, M. Crispin, D. J. Harvey, K. Pagel, W. B. Struwe, Anal. 

Chem. 2017, 89, 2318-2325. 

[8] R. P. Estrella, J. M. Whitelock, N. H. Packer, N. G. Karlsson, Biochem. J. 2010, 429, 359-
367. 

[9] L. Schofield, M. C. Hewitt, K. Evans, M.-A. Siomos, P. H. Seeberger, Nature 2002, 418, 
785-789. 

[10] D. B. Werz, P. H. Seeberger, Angew. Chem. Int. Ed. 2005, 44, 6315-6318. 

[11] B. Aussedat, Y. Vohra, P. K. Park, A. Fernández-Tejada, S. M. Alam, S. M. Dennison, 
F. H. Jaeger, K. Anasti, S. Stewart, J. H. Blinn, H.-X. Liao, J. G. Sodroski, B. F. Haynes, 
S. J. Danishefsky, J. Am. Chem. Soc. 2013, 135, 13113-13120. 

[12] R. A. Dwek, Chem. Rev. 1996, 96, 683-720. 

[13] C. R. Bertozzi, D. Rabuka, in Essentials of Glycobiology, 2nd ed. (Eds.: A. Varki, R. D. 
Cummings, J. D. Esko, H. H. Freeze, P. Stanley, C. R. Bertozzi, G. W. Hart, M. E. 
Etzler), Cold Spring Harbor (NY), 2009. 

[14] T. R. I. Cataldi, C. Campa, M. Angelotti, S. A. Bufo, J. Chromatogr. A 1999, 855, 539-
550. 

[15] U. M. Abd Hamid, L. Royle, R. Saldova, C. M. Radcliffe, D. J. Harvey, S. J. Storr, M. 
Pardo, R. Antrobus, C. J. Chapman, N. Zitzmann, J. F. Robertson, R. A. Dwek, P. M. 
Rudd, Glycobiology 2008, 18, 1105-1118. 

[16] J. Ø. Duus, C. H. Gotfredsen, K. Bock, Chem. Rev. 2000, 100, 4589-4614. 

[17] A. Dell, H. R. Morris, Science 2001, 291, 2351-2356. 

[18] D. J. Harvey, Proteomics 2001, 1, 311-328. 

[19] D. J. Harvey, J. Am. Soc. Mass Spectrom. 2005, 16, 631-646. 

[20] D. J. Harvey, J. Am. Soc. Mass Spectrom. 2005, 16, 647-659. 

[21] N. G. Karlsson, B. L. Schulz, N. H. Packer, J. Am. Soc. Mass Spectrom. 2004, 15, 659-672. 

[22] J. M. Prien, B. D. Prater, S. L. Cockrill, Glycobiology 2010, 20, 629-647. 

[23] M. Pabst, J. S. Bondili, J. Stadlmann, L. Mach, F. Altmann, Anal. Chem. 2007, 79, 5051-
5057. 



 

37 

 

[24] G. R. Guile, P. M. Rudd, D. R. Wing, S. B. Prime, R. A. Dwek, Anal. Biochem. 1996, 240, 
210-226. 

[25] M. Zhu, B. Bendiak, B. Clowers, H. H. Hill, Anal. Bioanal. Chem. 2009, 394, 1853-1867. 

[26] K. Pagel, D. J. Harvey, Anal. Chem. 2013, 85, 5138-5145. 

[27] J. Hofmann, H. S. Hahm, P. H. Seeberger, K. Pagel, Nature 2015, 526, 241-244. 

[28] W. B. Struwe, C. Baldauf, J. Hofmann, P. M. Rudd, K. Pagel, Chem. Commun. 2016, 52, 
12353-12356. 

[29] D. C. Collins, M. L. Lee, Anal. Bioanal. Chem. 2002, 372, 66-73. 

[30] R. Cumeras, E. Figueras, C. E. Davis, J. I. Baumbach, I. Gracia, Analyst 2015, 140, 1376-
1390. 

[31] L. S. Fenn, J. A. McLean, Phys. Chem. Chem. Phys. 2011, 13, 2196-2205. 

[32] H. Hinneburg, J. Hofmann, W. B. Struwe, A. Thader, F. Altmann, D. Varon Silva, P. 
H. Seeberger, K. Pagel, D. Kolarich, Chem. Commun. 2016, 52, 4381-4384. 

[33] K. F. Aoki-Kinoshita, PLoS Comput. Biol. 2008, 4, e1000075. 

[34] J. C. Tran, L. Zamdborg, D. R. Ahlf, J. E. Lee, A. D. Catherman, K. R. Durbin, J. D. 
Tipton, A. Vellaichamy, J. F. Kellie, M. Li, C. Wu, S. M. Sweet, B. P. Early, N. Siuti, R. 
D. LeDuc, P. D. Compton, P. M. Thomas, N. L. Kelleher, Nature 2011, 480, 254-258. 

[35] J. F. Rakus, L. K. Mahal, Annu. Rev. Anal. Chem. 2011, 4, 367-392. 

[36] G. Lauc, J. Kristic, V. Zoldos, Front. Genet. 2014, 5, 145. 

[37] E. Juaristi, G. Cuevas, The anomeric effect, CRC Press, Boca Raton and London, 1995. 

[38] R. A. Laine, Glycobiology 1994, 4, 759-767. 

[39] R. D. Cummings, Mol. BioSyst. 2009, 5, 1087-1104. 

[40] A. Varki, R. D. Cummings, M. Aebi, N. H. Packer, P. H. Seeberger, J. D. Esko, P. 
Stanley, G. Hart, A. Darvill, T. Kinoshita, J. J. Prestegard, R. L. Schnaar, H. H. Freeze, 
J. D. Marth, C. R. Bertozzi, M. E. Etzler, M. Frank, J. F. Vliegenthart, T. Lutteke, S. 
Perez, E. Bolton, P. Rudd, J. Paulson, M. Kanehisa, P. Toukach, K. F. Aoki-Kinoshita, 
A. Dell, H. Narimatsu, W. York, N. Taniguchi, S. Kornfeld, Glycobiology 2015, 25, 
1323-1324. 

[41] K. M. Roscioli, E. Davis, W. F. Siems, A. Mariano, W. Su, S. K. Guharay, H. H. Hill, Jr., 
Anal. Chem. 2011, 83, 5965-5971. 

[42] V. Ruzsanyi, J. Breath. Res. 2013, 7, 046008. 

[43] L. S. Fenn, M. Kliman, A. Mahsut, S. R. Zhao, J. A. McLean, Anal. Bioanal. Chem. 2009, 
394, 235-244. 

[44] J. Seo, W. Hoffmann, S. Warnke, M. T. Bowers, K. Pagel, G. von Helden, Angew. 

Chem. Int. Ed. Engl. 2016, 55, 14173-14176. 

[45] K. Thalassinos, M. Grabenauer, S. E. Slade, G. R. Hilton, M. T. Bowers, J. H. Scrivens, 
Anal. Chem. 2009, 81, 248-254. 



 

38 

 

[46] D. R. Hernandez, J. D. DeBord, M. E. Ridgeway, D. A. Kaplan, M. A. Park, F. 
Fernandez-Lima, Analyst 2014, 139, 1913-1921. 

[47] W. B. Struwe, J. L. Benesch, D. J. Harvey, K. Pagel, Analyst 2015. 

[48] B. C. Bohrer, S. I. Merenbloom, S. L. Koeniger, A. E. Hilderbrand, D. E. Clemmer, 
Annu. Rev. Anal. Chem. 2008, 1, 293-327. 

[49] W. B. Struwe, K. Pagel, J. L. Benesch, D. J. Harvey, M. P. Campbell, Glycoconj. J. 2016, 
33, 399-404. 

[50] E. A. Mason, H. W. Schamp, Ann. Phys. 1958, 4, 233-270. 

[51] H. E. Revercomb, E. A. Mason, Anal. Chem. 1975, 47, 970-983. 

[52] K. Giles, S. D. Pringle, K. R. Worthington, D. Little, J. L. Wildgoose, R. H. Bateman, 
Rapid Commun. Mass Spectrom. 2004, 18, 2401-2414. 

[53] J. Hofmann, W. B. Struwe, C. A. Scarff, J. H. Scrivens, D. J. Harvey, K. Pagel, Anal. 

Chem. 2014, 86, 10789-10795. 

[54] S. J. Allen, K. Giles, T. Gilbert, M. F. Bush, Analyst 2016, 141, 884-891. 

[55] A. V. Everest-Dass, J. L. Abrahams, D. Kolarich, N. H. Packer, M. P. Campbell, J. Am. 

Soc. Mass Spectrom. 2013, 24, 895-906. 

[56] M. Crispin, D. I. Stuart, E. Y. Jones, Nat. Struct. Mol. Biol. 2007, 14, 354-354. 

[57] M. P. Campbell, R. Peterson, J. Mariethoz, E. Gasteiger, Y. Akune, K. F. Aoki-
Kinoshita, F. Lisacek, N. H. Packer, Nucleic Acids Res. 2014, 42, D215-221. 

[58] R. Raman, M. Venkataraman, S. Ramakrishnan, W. Lang, S. Raguram, R. 
Sasisekharan, Glycobiology 2006, 16, 82R-90R. 

[59] C.-W. von der Lieth, A. A. Freire, D. Blank, M. P. Campbell, A. Ceroni, D. R. 
Damerell, A. Dell, R. A. Dwek, B. Ernst, R. Fogh, M. Frank, H. Geyer, R. Geyer, M. J. 
Harrison, K. Henrick, S. Herget, W. E. Hull, J. Ionides, H. J. Joshi, J. P. Kamerling, B. 
R. Leeflang, T. Lütteke, M. Lundborg, K. Maass, A. Merry, R. Ranzinger, J. Rosen, L. 
Royle, P. M. Rudd, S. Schloissnig, R. Stenutz, W. F. Vranken, G. Widmalm, S. M. 
Haslam, Glycobiology 2011, 21, 493-502. 

[60] M. F. Bush, Z. Hall, K. Giles, J. Hoyes, C. V. Robinson, B. T. Ruotolo, Anal. Chem. 2010, 
82, 9557-9565. 

[61] D. Xia, F. Ghali, S. J. Gaskell, R. O'Cualain, P. F. Sims, A. R. Jones, Proteomics 2012, 12, 
1912-1916. 

[62] M. T. Marty, A. J. Baldwin, E. G. Marklund, G. K. Hochberg, J. L. Benesch, C. V. 
Robinson, Anal. Chem. 2015, 87, 4370-4376. 

[63] T. M. Allison, E. Reading, I. Liko, A. J. Baldwin, A. Laganowsky, C. V. Robinson, Nat. 

Commun. 2015, 6, 8551. 

[64] J. S. Armstrong, F. Collopy, Int. J. Forecast. 1992, 8, 69-80. 

[65] R. J. Hyndman, A. B. Koehler, Int. J. Forecast. 2006, 22, 679-688. 



 

39 

 

Appendix 

The appendix contains all written code of this thesis. The first part describes the main 

algorithm code, which represents the user operation by controlling an interface, data 

accommodation of required input parameters and processing tools to create the desired 

output. The second algorithm describes the logging script, which is responsible for saving 

external measurement parameter such as temperature and pressure in a formatted way as 

text file. The third script is similar to the second in terms of reading external measurement 

data, but instead of saving it to a text file, it enables a visual interface to the user to control all 

parameter and change them manually if required. 

The code is highlighted in different colours to simplify the reading. Green sentences starting 

with the hashtag-sign (#) highlight personal comments for better understanding, while blue 

words describe Python key words and imports from external libraries. Besides Python 

library imports to allow mathematical operations, there are PyQtDesigner library imports to 

simplify user operation and allow parallel threads. Pink colour indicates self-written 

functions, which describe standard working steps to use in the whole script. Standard 

written code is simply black. 



 

40 

 

# import libraries 1 
import sys 2 
from scipy import optimize 3 
from PyQt4.QtCore import SIGNAL 4 
from PyQt4.QtGui import QFileDialog 5 
from PyQt4 import QtGui, QtCore, uic 6 
from scipy import asarray as ar,exp 7 
import matplotlib.pyplot as plt 8 
from scipy.optimize import curve_fit 9 
import numpy as np 10 
import os, fnmatch 11 
import subprocess 12 
import operator  13 
import scipy 14 
from scipy import stats 15 
import csv 16 
from numpy import * 17 
from pylab import * 18 
import math 19 
 20 
# seperate thread to open the calculated results after running the script 21 
class OpenSummary(QtCore.QThread):   22 
    def __init__(self): 23 
        QtCore.QThread.__init__(self) 24 
     25 
    def run(self): 26 
        subprocess.Popen(UpdateThread.OpenOutput, shell=True).wait() 27 
     28 
# seperate thread to calculate CCS from given input data. Calculation will 29 
not interfere with mainwindow 30 
class UpdateThread(QtCore.QThread):  31 
    def __init__(self): 32 
        QtCore.QThread.__init__(self) 33 
     34 
    def run(self): 35 
        # current path of the script 36 
        rootdir = os.path.dirname(os.path.realpath(__file__)) 37 
        # create all needed lists and dictionaries 38 
        results = {}             39 
        output = [] 40 
        T_list = [] 41 
        P_list = [] 42 
        datax = []   43 
        datay = [] 44 
         45 
        # call options stands for the string, which stands behind the      46 
CDCReader.exe and  47 
        # describes the resolving power of the translation of the measured 48 
data. 49 
        # 'add' is a variable, which corresponds to the field of 'peak 50 
sensitivity' in the main window 51 
        # Limit corresponds to the given limit in the main window 52 
        add = str(myGUI.peak_sens) 53 
        Limit = float(myGUI.peak_limit)      54 
        call_options = '--im_bin '+add       55 
        # iterate through "path" and find all files with the wanted ending, 56 
e.g. '*.txt.' 57 
        # return all files with path+filename 58 
        def findFiles (path, filter): 59 
            for root, dirs, files in os.walk(path): 60 



 

41 

 

                for file in fnmatch.filter(files, filter): 61 
                    yield os.path.join(root, file) 62 
     63 
        # definition of the gaussian fits 64 
        # the multiple gaussian fit just describes the sum of many 65 
gaussians 66 
        #it returns the calculated y-values 67 
        def gaussian(x, height, centre, width): 68 
            return height * np.exp( - (x - centre)**2.0 / (2.0 * 69 
width**2.0) ) 70 
         71 
        def two_gaussian(x, h1, c1, w1, h2, c2, w2): 72 
            return gaussian(x, h1, c1, w1)+gaussian(x, h2, c2, w2) 73 
 74 
        def three_gaussian(x, h1, c1, w1, h2, c2, w2, h3, c3, w3): 75 
            return two_gaussian(x, h1, c1, w1, h2, c2, w2)+gaussian(x, h3, 76 
c3, w3) 77 
 78 
        # open file to read and split the lines to make it possible to 79 
iterate through lines 80 
        # returns readable lines 81 
        def GetLines(InputFileName): 82 
            InputFile = open(InputFileName,'r')  83 
            Lines = InputFile.read().splitlines()  84 
            InputFile.close() 85 
            return Lines 86 
 87 
        # searching for key words in textFile = _extern file and 88 
calculating the drift voltage 89 
        def GetVoltage(textFile): 90 
            for line in GetLines(textFile): 91 
                if line.find('ADC Pusher Frequency') >= 0: 92 
                    PusherInterval = float(line[25:])/1000 93 
                    #print "time:" + str(PusherInterval)                 94 
                if line.find('Helium Cell DC') >= 0: 95 
                    Helium_Cell_DC = float(line[15:]) 96 
                    #print "He Cell DC:" + str(Helium_Cell_DC)           97 
                if line.find('Helium Exit') >= 0: 98 
                    Helium_Exit = float(line[15:]) 99 
                    #print "Helium Exit:" + str(Helium_Exit)     100 
                if line.find('IMSBias') >= 0: 101 
                    IMS_Bias = float(line[10:]) 102 
                    #print "IMS Bias:" + str(IMS_Bias)   103 
                if line.find('Transfer DC Entrance') >= 0: 104 
                    Transfer_DC_Entrance = float(line[22:]) 105 
                    #print "Transfer DC Entrance:" + 106 
str(Transfer_DC_Entrance) 107 
            Voltage = float((Helium_Cell_DC + Helium_Exit + IMS_Bias - 108 
Transfer_DC_Entrance)*(1.0-2.0/170.0)) 109 
            return Voltage 110 
 111 
        # searching for measuring time and date in text file = _header.txt 112 
and returns a timestamp 113 
        def GetDate(textFile): 114 
            for line in GetLines(textFile): 115 
                if line.find('$$ Acquired Date:') >= 0: 116 
                    date = line[18:] 117 
                    #print date          118 
                if line.find('$$ Acquired Time:') >= 0: 119 
                    time = line[18:] 120 



 

42 

 

                    #print time 121 
            return str(date+' '+time) 122 
             123 
        # searching for matching times between measuring and Logfile 124 
        # returning the assigned Temperature and Pressure for each 125 
timestamp 126 
        def GetTemp(timesearch): 127 
            data = np.genfromtxt(str(myGUI.logfile), names=True, 128 
dtype=("|S11", "|S5", float, "|S2", float)) 129 
            search_date = timesearch[:-9] 130 
            search_time = timesearch[12:-3]          131 
            match = 132 
np.where((data['Date']==search_date)&(data['Time']==search_time)) 133 
            Temp = data[match][0][4] 134 
            Driftgas = data[match][0][3]     135 
            Pressure = data[match][0][2]             136 
            return Temp, Pressure, Driftgas 137 
 138 

# searching for key words in textFile = _extern file and returning 139 
the Pusher Interval 140 
# the factor of 0.00025 is empirical found and describes the 141 
mismatch between displayed pusher interval in the files and the 142 
real pusher interval 143 

        def GetPusherInterval(textFile): 144 
            for line in GetLines(textFile): 145 
                if line.find('ADC Pusher Frequency') >= 0: 146 
                    PusherInterval_old = float(line[25:])/1000                   147 
                    PusherInterval = PusherInterval_old + 0.00025                    148 
                    #print "time:" + str(PusherInterval) 149 
            return PusherInterval 150 
                 151 
        # the input x,y-values are to put in as arrays and corresponds to 152 
the drift times and intensities of the wanted peak 153 
        # script will try to first fit single gaussian and see the residual 154 
error in %  155 
        # if error is <25%, it will output the value for a single gaussian, 156 
otherwise it will continue will multiple gaussian fits       157 
        # the optimated mean value will be returned 158 
        def GetDriftTime(x, y):                                          159 
            try:     160 
                # this will find the biggest peak in data and use this as 161 
starting guess for the gauss fits 162 
                index_max_int = np.nonzero(y == max(y))[0][0] 163 
                total = y.sum() 164 
                # this describes the starting 100 percent to evaluate the 165 
residual error after each run 166 
                one_gauss = 100 167 
                two_gauss = 100 168 
                three_gauss = 100 169 
 170 
                # this loop will try out several starting points in order 171 
to find the optimal parameters 172 
                for i in range(int(x[index_max_int]-173 
20),int(x[index_max_int]+20),5): 174 
                    errfunc1 = lambda p, x, y: (gaussian(x, *p) - y)**2 175 
                    initial_guess1 = [max(y),i,1]    176 
                    opt_fit1, success1 = optimize.leastsq(errfunc1, 177 
initial_guess1[:], args =(x, y),maxfev=3000) 178 
                    err1 = np.sqrt(errfunc1(opt_fit1, x, 179 
y)).sum()/total*100 180 



 

43 

 

                    # simply compare the results of each rounds and see 181 
whats the best fit 182 
                    # each new best fit will replace the old value 183 
                    if err1 < one_gauss: 184 
                        one_gauss = err1 185 
                        best_fit = opt_fit1 186 
                    else:        187 
                        continue 188 
                # if the best fit of single gaussian fit is good enough, it 189 
will stop here, else multiple gaussians are fitted 190 
                if one_gauss < 20.0: 191 
                    fit = 'single gaussian' 192 
                else: 193 
                    for i in range(int(x[index_max_int]-194 
20),int(x[index_max_int]+20),5): 195 
                        errfunc2 = lambda p, x, y: (two_gaussian(x, *p) - 196 
y)**2 197 
                        initial_guess2 = [max(y),i,1,max(y),i+10,1] 198 
                        opt_fit2, success2 = optimize.leastsq(errfunc2, 199 
initial_guess2[:], args =(x, y),maxfev=3000) 200 
                        err2 = np.sqrt(errfunc2(opt_fit2, x, 201 
y)).sum()/total*100 202 
                        if err2 < two_gauss: 203 
                            two_gauss = err2 204 
                            best_fit = opt_fit2 205 
                        else: 206 
                            continue     207 
                    if two_gauss < 20.0: 208 
                        fit = 'double gaussian' 209 
                    else: 210 
                        for i in range(int(x[index_max_int]-211 
20),int(x[index_max_int]+20),5): 212 
                            errfunc3 = lambda p, x, y: (three_gaussian(x, 213 
*p) - y)**2 214 
                            initial_guess3 = [max(y),i,1,max(y),i+10,1, 215 
max(y),i+20,1] 216 
                            opt_fit3, success3 = optimize.leastsq(errfunc3, 217 
initial_guess3[:], args =(x, y),maxfev=3000) 218 
                            err3 = np.sqrt(errfunc3(opt_fit3, x, 219 
y)).sum()/total*100 220 
                            if err3 < three_gauss: 221 
                                three_gauss = err3 222 
                                best_fit = opt_fit3 223 
                            else: 224 
                                continue 225 
                        fit = 'triple gaussian'  226 
 227 
                # this is for the output of three drift times, even if 228 
there is only one available drift time 229 
                if fit == 'single gaussian': 230 
                    time1 = best_fit[1]*PushInt 231 
                    time2 = False 232 
                    time3 = False                    233 
                elif fit == 'double gaussian': 234 
                    time1 = best_fit[1]*PushInt 235 
                    time2 = best_fit[4]*PushInt 236 
                    time3 = False 237 
                else:    238 
                    time1 = best_fit[1]*PushInt 239 
                    time2 = best_fit[4]*PushInt 240 



 

44 

 

                    time3 = best_fit[7]*PushInt 241 
                return time1, time2, time3 242 
            except ValueError: 243 
                return False, False, False 244 
 245 
        # voltage list x gets reversed for plotting, y-values are the drift 246 
times of the peaks 247 
        # linregress plots a linear fit 248 
        # Charge and Drift_Mass will be put in by the search list, T and P 249 
will be searched inside of the Logfile (GetTemp)  250 
        # sees if the results are not real numbers (nan) and then returns 251 
the calculated CCS and the error of this value 252 
        def GetCCS(x, y): 253 
            x2 = [1/value for value in x]    254 
            xaxis = ar(x2) 255 
            yaxis = ar(y)    256 
            slope, intercept, r_value, p_value, std_err = 257 
scipy.stats.linregress(xaxis, yaxis)       258 
            K = (25.05**2)/(slope/1000)          259 
            K0 = K*(273.15/T)*(P/760)            260 
            Mass = content * Charge          261 
            reducedMass = (Mass*Drift_Mass)/(Mass+Drift_Mass) 262 
            CCS = (Charge/K0)*((1/(reducedMass*T))**0.5)*18495.88486     263 
            error = (std_err/slope)*CCS 264 
            error_CCS = (error/CCS)*100  265 
            if math.isnan(CCS) == True or math.isnan(error_CCS) == True: 266 
                return str(False), str(False) 267 
            else: 268 
                return CCS, error_CCS 269 
 270 
        # Truncates a float f to n decimal places without rounding 271 
        def truncate(f, n):          272 
            s = '{}'.format(f) 273 
            if 'e' in s or 'E' in s: 274 
                return '{0:.{1}f}'.format(f, n) 275 
            i, p, d = s.partition('.') 276 
            return float('.'.join([i, (d+'0'*n)[:n]]))               277 
         278 
        # completed is the value for the progress bar in the mainwindow 279 
        # the '1' is just for the user to see, that the calculation has 280 
started 281 
        myGUI.completed = 1                      282 
        self.emit(QtCore.SIGNAL('calc_progress'), myGUI.completed)               283 
         284 
        # list_of_raw is the list of data, which is selected by the user to 285 
get calculated           286 
        for raw in myGUI.list_of_raw: 287 
            head, tail = os.path.split(raw)  288 
            # find CDCReader.exe and perform conversion of data into text 289 
files 290 
            for Exe in findFiles(rootdir, '*.exe'): 291 
                Exe_path = os.path.join(rootdir, Exe)                292 
                subprocess.Popen(Exe_path+' '+raw+' '+call_options, 293 
shell=True).wait() 294 
            # find _extern.inf file and get voltage and pusher interval out 295 
of it 296 
            for extern in findFiles(raw, '*_extern.inf'): 297 
                Voltage = GetVoltage(extern)     298 
                PushInt = GetPusherInterval(extern)              299 
            # find timestamp of the measured data in the _header.txt file 300 



 

45 

 

            for synaptLog in findFiles(raw, '*_HEADER.TXT'): 301 
                timestamp = GetDate(synaptLog)       302 
                 303 
            # remove useless ms.txt files which automatically get created 304 
while converting with CDCReader 305 
            for too_much_files in findFiles(head, '*_1_ms.txt'):             306 
                os.remove(too_much_files) 307 
                 308 
            # calc will update the 'completed' value for the progress bar 309 
to inform the user, that one file is finished processing 310 
            calc = 100/len(myGUI.list_of_raw)        311 
            myGUI.completed += calc                      312 
            self.emit(QtCore.SIGNAL('calc_progress'), myGUI.completed)   313 
             314 
            # this will search for the temperature and pressure inside the 315 
logfile and append it to a temporary list 316 
            if myGUI.parameter_checkbox.isChecked(): 317 
                temperature, pressure, Drift_Mass_new  = GetTemp(timestamp) 318 
                T_list.append(temperature) 319 
                P_list.append(pressure) 320 
 321 
            # get data from current file 322 
            data = np.genfromtxt(raw+"_1_imms.txt")  323 
 324 
            # this gets the input searchlist as variable reader      325 
            reader = np.genfromtxt(str(myGUI.checkPeaklist)) 326 
            # see if the searchlist only has one peak (m/z and charge) in 327 
it or more 328 
            if reader.size == 2: 329 
                wanted_peak = reader[0] 330 
                charge = reader[1] 331 
                # then search for this peak in the measured data 332 
                low_limit = wanted_peak-Limit 333 
                high_limit = wanted_peak+Limit 334 
                rows= 335 
np.where((data[:,0]>low_limit)&(data[:,0]<high_limit))     336 
                # found peak is for the file output later 337 
                found_peak = data[rows][0][0] 338 
                # this is the found data to calculate CCS 339 
                x = data[rows][:,1] 340 
                y = data[rows][:,2]          341 
                Drift_Time1, Drift_Time2, Drift_Time3= GetDriftTime(x, y)  342 
           343 
                # this multiple if statements look for single or multiple 344 
CCS (depend on the best fit of gaussian) 345 
                if Drift_Time1 != False: 346 
                    if found_peak not in results: 347 
                        results[found_peak] = [] 348 
                    results[found_peak].append([Voltage, Drift_Time1, 349 
charge]) 350 
                    if Drift_Time2 != False: 351 
                        double_peak = found_peak+0.001 352 
                        if double_peak not in results: 353 
                            results[double_peak] = [] 354 
                        results[double_peak].append([Voltage, Drift_Time2, 355 
charge])                  356 
                        if Drift_Time3 != False: 357 
                            triple_peak = found_peak+0.002 358 
                            if triple_peak not in results: 359 
                                results[triple_peak] = [] 360 



 

46 

 

                            # create the results dictionary to save the 361 
found data for later 362 
                            results[triple_peak].append([Voltage, 363 
Drift_Time3, charge])  364 
            else: 365 
                # this is doing the same like before, only this has more 366 
than one peak in the searchlist 367 
                # it is not pretty, but it works :-) 368 
                for wanted_peak, charge in reader:                   369 
                    low_limit = wanted_peak-Limit 370 
                    high_limit = wanted_peak+Limit 371 
                    rows= 372 
np.where((data[:,0]>low_limit)&(data[:,0]<high_limit))     373 
                    found_peak = data[rows][0][0] 374 
                    x = data[rows][:,1] 375 
                    y = data[rows][:,2]          376 
                    Drift_Time1, Drift_Time2, Drift_Time3= GetDriftTime(x, 377 
y)            378 
                    if Drift_Time1 != False: 379 
                        if found_peak not in results: 380 
                            results[found_peak] = [] 381 
                        results[found_peak].append([Voltage, Drift_Time1, 382 
charge]) 383 
                        if Drift_Time2 != False: 384 
                            double_peak = found_peak+0.0001 385 
                            if double_peak not in results: 386 
                                results[double_peak] = [] 387 
                            results[double_peak].append([Voltage, 388 
Drift_Time2, charge])                  389 
                            if Drift_Time3 != False: 390 
                                triple_peak = found_peak+0.0002 391 
                                if triple_peak not in results: 392 
                                    results[triple_peak] = [] 393 
                                results[triple_peak].append([Voltage, 394 
Drift_Time3, charge])      395 
                                         396 
        head, tail = os.path.split(raw)          397 
                             398 
         399 
        # if progress bar has not reached 100 percent (strange update 400 
system), this will get it to 100 percent 401 
        myGUI.completed = 100                        402 
        self.emit(QtCore.SIGNAL('calc_progress'), myGUI.completed) 403 
        if myGUI.parameter_checkbox.isChecked():             404 
            if Drift_Mass_new == 'N2': 405 
                Drift_Mass = 28 406 
            elif Drift_Mass_new == 'He': 407 
                Drift_Mass = 4 408 
            # get an average temperature and pressure out of the temporary 409 
lists 410 
            T_arr = np.array(T_list) 411 
            P_arr = np.array(P_list) 412 
            T_new = np.mean(T_arr) 413 
            if np.std(T_arr) > 1: 414 
                for item in T_list: 415 
                    if abs(item-T_new)>3:                            416 
                        self.emit(QtCore.SIGNAL('warning')) 417 
            P = np.mean(P_arr) 418 
            T = 273.15 + T_new                       419 
        else:            420 



 

47 

 

            # check for the drift gas in the mainwindow 421 
            if myGUI.nitrogen_button.isChecked():            422 
                Drift_Mass_new = 'N2' 423 
                Drift_Mass = 28 424 
            elif myGUI.helium_button.isChecked():            425 
                Drift_Mass_new = 'He' 426 
                Drift_Mass = 4           427 
            T_new = float(myGUI.lineEdit.text()) 428 
            T = 273.15 + T_new   429 
            P = float(myGUI.lineEdit_2.text())       430 
         431 
        # iterate through results and append the x,y-values for single 432 
peaks in temporary list 433 
        # calculate CCS out of temporary x,y-list and append to output list  434 
        # empty datax and datay list for next peak 435 
        for content in results:      436 
            for vol, drift, Charge in results[content]:                  437 
                datax.append(vol) 438 
                datay.append(drift)                                      439 
            CCS, error_CCS = GetCCS(datax, datay) 440 
            if CCS != 'False' and error_CCS != 'False': 441 
                output.append([content, CCS, error_CCS]) 442 
            datax = []   443 
            datay = []   444 
             445 
        # Sort list of results for m/z 446 
        output_sorted = sorted(output, key=lambda x: (x[0]))     447 
     448 
        # sort searchlist for m/z 449 
        if reader.size == 2:             450 
            mass_search = reader[0] 451 
            charge_search = reader[1] 452 
        else: 453 
            search_output_sorted = sorted(reader, key=lambda x: (x[0])) 454 
         455 
        # Write results and parameters to file. 456 
        OutPutFileName = raw[:-6]+".summary.csv" 457 
        # create name for open summary thread to call 458 
        UpdateThread.OpenOutput = OutPutFileName 459 
        # open new file to write (will always overwrite old files with same 460 
name) 461 
        OutPutFile = open(OutPutFileName, 'w') 462 
        # create csv format output (again two times, one for single peak 463 
search and one for multiple peak search) 464 
        OutPutFile.write('Searched:,') 465 
        OutPutFile.write(',') 466 
        OutPutFile.write('m/z, Charge') 467 
        OutPutFile.write('\n') 468 
        if reader.size == 2: 469 
            OutPutFile.write(',') 470 
            OutPutFile.write(',') 471 
            OutPutFile.write(str(mass_search,)+',') 472 
            OutPutFile.write(str(charge_search,)+',') 473 
            OutPutFile.write('\n')                       474 
        else: 475 
            for mass_search, charge_search in search_output_sorted:              476 
                OutPutFile.write(',') 477 
                OutPutFile.write(',') 478 
                OutPutFile.write(str(mass_search,)+',') 479 
                OutPutFile.write(str(charge_search,)+',') 480 



 

48 

 

                OutPutFile.write('\n') 481 
 482 
        OutPutFile.write('\n') 483 
        OutPutFile.write('Found:,') 484 
        OutPutFile.write(',') 485 
        OutPutFile.write('m/z, CCS, Error in %,') 486 
        OutPutFile.write('\n') 487 
        for mass, CCS, error_CCS in output_sorted: 488 
            mass_new = truncate(mass,2) 489 
            CCS_new = format(CCS, '.2f') 490 
            error_CCS_new = format(error_CCS, '.2f') 491 
            OutPutFile.write(',') 492 
            OutPutFile.write(',') 493 
            OutPutFile.write(str(mass_new,)+',') 494 
            OutPutFile.write(str(CCS_new,)+',') 495 
            OutPutFile.write(str(error_CCS_new,)+',') 496 
            OutPutFile.write('\n') 497 
         498 
        T_new2 = format(T_new, '.2f') 499 
        P_new = format(P, '.2f') 500 
        OutPutFile.write('\n') 501 
        OutPutFile.write('\n') 502 
        OutPutFile.write('Parameter:,')  503 
        OutPutFile.write(',') 504 
        OutPutFile.write('Drift Gas, P (Torr), T (C),')  505 
        OutPutFile.write('\n') 506 
        OutPutFile.write(',') 507 
        OutPutFile.write(',') 508 
        OutPutFile.write(str(Drift_Mass_new,)+',') 509 
        OutPutFile.write(str(P_new,)+',') 510 
        OutPutFile.write(str(T_new,)+',') 511 
 512 
        # Close the output file. 513 
        OutPutFile.flush() 514 
        OutPutFile.close()               515 
         516 
# this is the maindow and the graphical user interface 517 
class myGUI(QtGui.QMainWindow): 518 
    def __init__(self, parent=None): 519 
        # start GUI 520 
        super(myGUI, self).__init__() 521 
        # load design 522 
        uic.loadUi('myUI_new.ui', self)      523 
        # connect buttons to a function call 524 
        self.logfile_check.setDisabled(True) 525 
        self.select_logfile.setDisabled(True) 526 
        self.connect(self.data_button,SIGNAL("clicked()"), 527 
self.select_data) 528 
        self.connect(self.peaklist_button,SIGNAL("clicked()"), 529 
self.select_peaklist)         530 
        self.connect(self.commandLinkButton,SIGNAL("clicked()"), 531 
self.Check_before_run) 532 
        self.connect(self.lineEdit, SIGNAL("editingFinished()"), 533 
self.Temperature) 534 
        self.connect(self.lineEdit_2, SIGNAL("editingFinished()"), 535 
self.Pressure) 536 
        self.connect(self.clear_input,SIGNAL("clicked()"), self.Clear_All) 537 
        self.connect(self.open_summary,SIGNAL("clicked()"), self.Summary) 538 
        self.connect(self.exitbtn,SIGNAL("clicked()"), 539 
self.Closing_Command)             540 



 

49 

 

        self.connect(self.default_btn,SIGNAL("clicked()"), self.setBack) 541 
        self.connect(self.change_btn,SIGNAL("clicked()"), self.setNew) 542 
        self.connect(self.select_logfile,SIGNAL("clicked()"), self.Logfile)  543 
        self.connect(self.parameter_checkbox,SIGNAL("clicked()"), 544 
self.Change_look)  545 
        self.x = 0 546 
        myGUI.peak_sens = self.peak_sens.text()  547 
        myGUI.peak_limit = self.peak_limit.text() 548 
        myGUI.parameter_checkbox = self.parameter_checkbox 549 
         550 
    # function calls, which the buttons are connected to 551 
    # select to input temperature and pressure by hand or automatically 552 
    def Change_look(self):   553 
            self.x += 1          554 
            if self.x%2==0: 555 
                self.logfile_check.setAutoExclusive(False) 556 
                self.logfile_check.setChecked(False) 557 
                self.select_logfile.setDisabled(True) 558 
            else: 559 
                self.logfile_check.setAutoExclusive(False) 560 
                self.logfile_check.setChecked(False) 561 
                self.select_logfile.setDisabled(False) 562 
             563 
    # open file dialog to select logfile.txt 564 
    def Logfile(self): 565 
        myGUI.logfile = QtGui.QFileDialog.getOpenFileName(self,"Select 566 
Logfile", filter="*.txt") 567 
        if myGUI.logfile != '': 568 
            self.logfile_check.setEnabled(True) 569 
            self.logfile_check.setChecked(True)      570 
 571 
    # this is for new entered peak sensitivity and peaks search limit 572 
    def setNew(self): 573 
        myGUI.peak_sens = self.peak_sens.text()  574 
        myGUI.peak_limit = self.peak_limit.text()    575 
 576 
    # put search sensitivity and limit back to default 577 
    def setBack(self): 578 
        self.peak_sens.setText('0.3') 579 
        self.peak_limit.setText('0.15')  580 
        myGUI.peak_sens = self.peak_sens.text()  581 
        myGUI.peak_limit = self.peak_limit.text() 582 
    # this updates the progress bar 583 
    def progress(self, int): 584 
        self.progressBar.setValue(int) 585 
     586 
    # this shows a warning of too big temperature differences 587 
    def update_warning(self): 588 
        self.errorlabel.setText('Warning!') 589 
        self.errorlabel_2.setText('One temperature variates more than') 590 
        self.errorlabel_3.setText('three degrees celsius from average 591 
value!') 592 
         593 
    # close mainwindow 594 
    def Closing_Command(self): 595 
        self.close() 596 
     597 
    # open the summary of the last calculated results (available after 598 
first run) 599 
    def Summary(self): 600 



 

50 

 

        self.OpenSummary = OpenSummary()         601 
        self.OpenSummary.start()         602 
         603 
    # clear all fields (like new run) 604 
    def Clear_All(self): 605 
        self.lineEdit.setText('') 606 
        self.lineEdit_2.setText('') 607 
        self.lineEdit_3.setText('') 608 
        self.lineEdit_4.setText('') 609 
        self.progressBar.setValue(0) 610 
        self.logfile_check.setAutoExclusive(False) 611 
        self.logfile_check.setChecked(False) 612 
        self.logfile_check.setDisabled(True) 613 
        self.errorlabel.setText('') 614 
        self.errorlabel_2.setText('') 615 
        self.errorlabel_3.setText('') 616 
         617 
    # open file dialog to select multiple directories (the data set) 618 
    def select_data(self): 619 
        dialog = FileDialog(self) 620 
        try: 621 
            self.lineEdit_4.setText(str(len(dialog.raw_data))) 622 
            myGUI.list_of_raw = dialog.raw_data          623 
        except AttributeError: 624 
            self.lineEdit_4.setText('False') 625 
         626 
    # open file dialog to select the search list with the wanted peaks in 627 
it (m/z and charge) 628 
    def select_peaklist(self): 629 
        adress = QtGui.QFileDialog.getOpenFileName(self,"Select 630 
Peaklist",filter="*.txt")        631 
        head, tail = os.path.split(str(adress)) 632 
        if adress == '': 633 
            self.lineEdit_3.setText('Please enter valid peaklist')   634 
        else: 635 
            self.lineEdit_3.setText(tail)        636 
        myGUI.checkPeaklist = adress     637 
     638 
    # field for temperature 639 
    def Temperature(self): 640 
        text = self.lineEdit.text()      641 
     642 
    # field for pressure 643 
    def Pressure(self): 644 
        text2 = self.lineEdit_2.text() 645 
 646 
    # if 'run' is pressed, the script will first check the entered values 647 
    def Check_before_run(self):  648 
        check_data = self.lineEdit_4.text() 649 
        if check_data == '': 650 
            self.lineEdit_4.setText('False') 651 
            d = False 652 
        elif check_data == 'False': 653 
            d = False 654 
        else: 655 
            d = True 656 
        check_peak = self.lineEdit_3.text()  657 
        if check_peak == '': 658 
            self.lineEdit_3.setText('Please enter valid peaklist') 659 
            e = False 660 



 

51 

 

        elif check_peak == 'Please enter valid peaklist': 661 
            e = False 662 
        else: 663 
            e = True 664 
        if myGUI.parameter_checkbox.isChecked() == False:            665 
            try: 666 
                temp = float(self.lineEdit.text()) 667 
                self.errorlabel.setText('') 668 
                a = True 669 
            except ValueError: 670 
                self.errorlabel.setText('Check the temperature!') 671 
                a = False            672 
            try: 673 
                press = float(self.lineEdit_2.text())    674 
                self.errorlabel_2.setText('') 675 
                b = True 676 
            except ValueError: 677 
                self.errorlabel_2.setText('Check the pressure!') 678 
                b = False        679 
            if self.nitrogen_button.isChecked() == True or 680 
self.helium_button.isChecked() == True:       681 
                c = True 682 
                self.errorlabel_3.setText('') 683 
            else: 684 
                self.errorlabel_3.setText('Check the drift gas!') 685 
                c = False                            686 
                 687 
            # if all entered values seem to be ok, the script will continue 688 
running the main calculation 689 
            if a == True and b == True and c == True and d == True and e == 690 
True:                691 
                self.completed = 0 692 
                myGUI.completed = self.completed 693 
                myGUI.lineEdit_3 =self.lineEdit_3 694 
                myGUI.nitrogen_button = self.nitrogen_button 695 
                myGUI.helium_button = self.helium_button 696 
                myGUI.lineEdit = self.lineEdit 697 
                myGUI.lineEdit_2 = self.lineEdit_2 698 
                self.CCS_Calculation()   699 
        else:            700 
            if self.x%2!=0:  701 
                if self.logfile_check.isChecked() == False:                      702 
                    f = False 703 
                    self.errorlabel.setText('Please enter valid Logfile!') 704 
                else: 705 
                    f = True 706 
                    self.errorlabel.setText('') 707 
            if d == True and e == True and f == True: 708 
                self.errorlabel.setText('') 709 
                self.errorlabel_2.setText('') 710 
                self.errorlabel_3.setText('') 711 
                self.CCS_Calculation()   712 
    # this is the main calculation and will be run by a seperate thread to 713 
prevent freezing and stuff 714 
    def CCS_Calculation(self): 715 
        self.UpdateThread = UpdateThread()       716 
        self.connect(self.UpdateThread,SIGNAL("calc_progress"), 717 
self.progress)   718 
        self.connect(self.UpdateThread,SIGNAL("warning"), 719 
self.update_warning)   720 



 

52 

 

        self.UpdateThread.start()    721 
 722 
# this is the file dialog to select multiple directories 723 
# it looks complicated because QWidget FileDialog is used to choose 724 
multiple files, not multiple directories like we need 725 
class FileDialog(QtGui.QFileDialog): 726 
    def __init__(dialog, parent=myGUI): 727 
        QtGui.QFileDialog.__init__(dialog) 728 
        dialog.setFileMode(dialog.Directory) 729 
        dialog.setOption(dialog.ShowDirsOnly, True)      730 
        dialog.setFilter("Raw Data (*.raw)")         731 
        for view in dialog.findChildren((QtGui.QListView, 732 
QtGui.QTreeView)): 733 
            if isinstance(view.model(), QtGui.QFileSystemModel): 734 
                735 
view.setSelectionMode(QtGui.QAbstractItemView.MultiSelection)        736 
        #this will create the list of data files we will process later 737 
        if dialog.exec_():           738 
            dialog.filenames = dialog.selectedFiles()            739 
            dialog.raw_data = map(str, dialog.filenames) 740 
            # this solves a problem of other path entries in the list than 741 
the data directories .raw we need 742 
            for fnames in dialog.raw_data: 743 
                if fnames[-4:] != '.raw': 744 
                    dialog.raw_data.remove(fnames)                   745 
        dialog.show()    746 
         747 
def main(): 748 
    app = QtGui.QApplication(sys.argv) 749 
    myapp = myGUI() 750 
    myapp.show() 751 
    app.exec_() 752 
     753 
if __name__ == "__main__": 754 
    main() 755 
Algorithm 3: Main code to communicate with the user, accommodate the data and process it.  756 

 757 

 758 



 

53 

 

import serial 1 
import time 2 
import datetime 3 
import binascii 4 
 5 
def Temp(): 6 
    device2 = serial.Serial( 7 
            port = "COM4", 8 
            baudrate = 9600, 9 
            parity = serial.PARITY_NONE, 10 
            stopbits = serial.STOPBITS_ONE, 11 
            bytesize = serial.EIGHTBITS, timeout = 0) 12 
    device2.write('\x55\x09\x11\x15\x58\x12\x34\x14\x09\x40') 13 
    temperature = '' 14 
    time.sleep(0.2) 15 
    while device2.inWaiting() > 0: 16 
        temperature += device2.readline()            17 
    device2.close() 18 
    output = binascii.b2a_hex(temperature)                                         19 
        byte10 = output[-4:-2] 20 
        byte11 = output[-6:-4] 21 
        if byte10 == '01': 22 
                temp_first = 255 23 
        else: 24 
                temp_first = int(byte10,16) 25 
        temp_second = int(byte11,16) 26 
        temp_ready = "%.1f" % float((temp_first+temp_second-2)/10.0) 27 
        if temp_ready == "-0.2": 28 
                temp_ready = "0" 29 
    return temp_ready 30 
 31 
with serial.Serial( 32 
        port = "COM3", 33 
        baudrate = 9600, 34 
        parity = serial.PARITY_ODD, 35 
        stopbits = serial.STOPBITS_ONE, 36 
        bytesize = serial.EIGHTBITS, timeout = 0) as device: 37 
     38 
    while True: 39 
        device.write("PR <cr> \r")       40 
                output = '' 41 
        time.sleep(0.2) 42 
        while device.inWaiting() > 0: 43 
            output += device.readline().strip('\n') 44 
        device.write("GC 1 R <cr> \r") 45 
        gas = '' 46 
        time.sleep(0.2) 47 
        while device.inWaiting() > 0: 48 
            gas += device.readline().strip('\n') 49 
        device.close() 50 
        try: 51 
            temperature = Temp()             52 
        except serial.serialutil.SerialException: 53 
            time.sleep(1) 54 
            temperature = Temp()                        55 
             56 
        pressure = "%.2f" % abs(float(output)/100)       57 
                if int(gas) == 100: 58 
                        driftgas = "N2" 59 
                elif int(gas) == 145: 60 



 

54 

 

                        driftgas = "He" 61 
                else: 62 
                        driftgas = "Error"       63 
        timestamp = datetime.datetime.now().strftime("%d-64 
")+datetime.datetime.now().strftime("%B")[:3]+datetime.datetime.now().strft65 
ime("-%Y %H:%M") 66 
        #print timestamp,' ',pressure,' ',temperature, driftgas 67 
        with open('C:\Users\Administrator\Desktop\Logfile.txt', 'a') as 68 
log: 69 
            log.write('\n') 70 
            log.write(timestamp) 71 
            log.write(' ') 72 
            log.write(pressure) 73 
            log.write(' ') 74 
            log.write(driftgas) 75 
            log.write(' ') 76 
            log.write(temperature) 77 
        with open('C:\Projects\Logfile.txt', 'a') as log: 78 
            log.write('\n') 79 
            log.write(timestamp) 80 
            log.write(' ') 81 
            log.write(pressure) 82 
            log.write(' ') 83 
            log.write(driftgas) 84 
            log.write(' ') 85 
            log.write(temperature) 86 
        time.sleep(59.5) 87 
        try: 88 
            device.open() 89 
        except serial.serialutil.SerialException: 90 
            time.sleep(1) 91 
            device.open() 92 
     93 
     94 
Algorithm 4: Side script to automatically read and store external parameters. 95 

 96 



 

55 

 

import sys 
from PyQt4 import QtCore, QtGui, uic 
import serial 
import time 
import datetime 
import binascii 
 
qtCreatorFile = "temp_press_display.ui"   
Ui_MainWindow, QtBaseClass = uic.loadUiType(qtCreatorFile)  
 
class SetPressure(QtGui.QMainWindow): 
    def __init__(self, parent=None): 
        super(SetPressure, self).__init__() 
        uic.loadUi('change_press.ui', self)  
        self.connect(self.start_change,QtCore.SIGNAL("clicked()"), 
self.accept_pressure) 
         
    def accept_pressure(self): 
        try: 
            value = float(self.write_pressure.text()) 
            self.error_label.setText('') 
            self.new_value = value 
            self.send_value() 
        except ValueError: 
            self.error_label.setText('Please insert a valid number')         
         
    def send_value(self): 
        self.emit(QtCore.SIGNAL('press'), self.new_value) 
        self.close() 
         
class UpdateThread(QtCore.QThread): 
    def __init__(self): 
        QtCore.QThread.__init__(self)    
     
    def run(self):       
        try: 
            device = serial.Serial( 
                port = "COM3", 
                baudrate = 9600, 
                parity = serial.PARITY_ODD, 
                stopbits = serial.STOPBITS_ONE, 
                bytesize = serial.EIGHTBITS, 
                                timeout = 0)                     
                     
            while True:                  
                device.write("PR <cr> \r") 
                output = '' 
                time.sleep(0.5) 
                while device.inWaiting() > 0:                                         
                    output += device.readline().strip('\n')                  
                device.close() 
                out = "%.2f" % abs(float(output)/100)                
                if len(str(out)) == 0: 
                    self.emit(QtCore.SIGNAL('Error1'))                                 
                else: 
                    self.emit(QtCore.SIGNAL('Press_changed'), out) 
                time.sleep(4.5)          
                try: 
                    device.open() 
                except serial.serialutil.SerialException: 



 

56 

 

                    time.sleep(1) 
                    device.open() 
            self.emit(QtCore.SIGNAL('Error1')) 
        except serial.serialutil.SerialException: 
            self.emit(QtCore.SIGNAL('Error1')) 
 
class UpdateThread2(QtCore.QThread): 
    def __init__(self): 
        QtCore.QThread.__init__(self)    
     
    def run(self):       
        try:     
            device2 = serial.Serial( 
                port = "COM4", 
                baudrate = 9600, 
                parity = serial.PARITY_NONE, 
                stopbits = serial.STOPBITS_ONE, 
                bytesize = serial.EIGHTBITS,  
                timeout = 0)                     
                     
            while True:                  
                device2.write('\x55\x09\x11\x15\x58\x12\x34\x14\x09\x40')                
                temp = ''                
                time.sleep(0.5) 
                while device2.inWaiting() > 0: 
                    temp += device2.readline()                       
                device2.close()              
                if len(str(temp)) == 0: 
                    self.emit(QtCore.SIGNAL('Error2'))                   
                else:                
                                        output = binascii.b2a_hex(temp)                                         
                                        byte10 = output[-4:-2] 
                                        byte11 = output[-6:-4] 
                                        if byte10 == '01': 
                                                temp_first = 255 
                                        else: 
                                                temp_first = int(byte10,16) 
                                        temp_second = int(byte11,16) 
 
                                        temp_ready = "%.1f" % 
float((temp_first+temp_second-2)/10.0) 
                                        if temp_ready == "-0.2": 
                                                temp_ready = "0" 
                    self.emit(QtCore.SIGNAL('Temp_changed'), temp_ready)  
                time.sleep(4.5)          
                try: 
                    device2.open() 
                except serial.serialutil.SerialException: 
                    time.sleep(1) 
                    device2.open() 
            self.emit(QtCore.SIGNAL('Error2')) 
        except serial.serialutil.SerialException: 
            self.emit(QtCore.SIGNAL('Error2')) 
             
class MyApp(QtGui.QMainWindow, Ui_MainWindow): 
    def __init__(self): 
        QtGui.QMainWindow.__init__(self) 
        Ui_MainWindow.__init__(self) 
        self.setupUi(self)   
        # enable custom window hint 



 

57 

 

        self.setWindowFlags(self.windowFlags() | 
QtCore.Qt.CustomizeWindowHint) 
        # disable (but not hide) close button 
        # self.setWindowFlags(self.windowFlags() & 
~QtCore.Qt.WindowCloseButtonHint) 
        self.setWindowFlags(self.windowFlags() & 
~QtCore.Qt.WindowMaximizeButtonHint) 
        self.UpdateThread = UpdateThread() 
        self.UpdateThread2 = UpdateThread2() 
        self.connect(self.UpdateThread2, QtCore.SIGNAL('Temp_changed'), 
self.Update_Temp) 
        self.connect(self.UpdateThread, QtCore.SIGNAL('Press_changed'), 
self.Update_Press) 
        self.connect(self.UpdateThread, QtCore.SIGNAL('Error1'), 
self.Error_Press) 
        self.connect(self.UpdateThread2, QtCore.SIGNAL('Error2'), 
self.Error_Temp) 
        self.connect(self.pressure_button,QtCore.SIGNAL("clicked()"), 
self.set_pressure)         
        self.UpdateThread.start() 
        self.UpdateThread2.start() 
         
    def Update_Temp(self, str):      
        self.lcd_number.display(str) 
    def Update_Press(self, str): 
        self.lcdNumber.display(str) 
    def Error_Press(self): 
        self.lcdNumber.display('Error')      
    def Error_Temp(self): 
        self.lcd_number.display('Error')         
    def set_pressure(self): 
        self.Pressure = SetPressure(self) 
        self.connect(self.Pressure, QtCore.SIGNAL('press'), self.change) 
        self.Pressure.show() 
         
    def change(self, float): 
        try: 
            device = serial.Serial( 
                port = "COM3", 
                baudrate = 9600, 
                parity = serial.PARITY_ODD, 
                stopbits = serial.STOPBITS_ONE, 
                bytesize = serial.EIGHTBITS, timeout = 0) 
            pre_number = "0"+str(int(float*100)) 
                        if len(pre_number) == 3: 
                                number = "0"+pre_number 
                        elif pre_number == "00": 
                                number = "00"+pre_number 
                        else: 
                                number = pre_number 
            print("PS"+" "+number+" <cr> \r") 
            device.write("PS"+" "+number+" <cr> \r")             
        except serial.serialutil.SerialException: 
            time.sleep(1) 
            device = serial.Serial( 
                port = "COM3", 
                baudrate = 9600, 
                parity = serial.PARITY_ODD, 
                stopbits = serial.STOPBITS_ONE, 
                bytesize = serial.EIGHTBITS, timeout = 0) 



 

58 

 

            pre_number = "0"+str(int(float*100)) 
                        if len(pre_number) == 3: 
                                number = "0"+pre_number 
                        elif pre_number == "00": 
                                number = "00"+pre_number 
                        else: 
                                number = pre_number 
            print("PS"+" "+number+" <cr> \r") 
            device.write("PS"+" "+number+" <cr> \r")                     
  
if __name__ == "__main__": 
    app = QtGui.QApplication(sys.argv) 
    window = MyApp() 
    window.show() 
    sys.exit(app.exec_()) 
 
Algorithm 5: Visual interface script to allow parameter control and changes in value. 

 

 


