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Abstract

This work deals with a minimal realization of the type-I seesaw model with only
two right-handed Majorana neutrinos, which is investigated from two perspec-
tives; bottom-up and top-down. In a data-driven approach, the manifestation of
certain hierarchies in the neutrino Yukawa matrix is analyzed in the context of
realizable approximate two-zero textures. A general method for the investigation
of Yukawa structures is developed and applied to the minimal seesaw model. Be-
sides a robustness study of the obtained results, theoretical error bars are assigned
to this model’s predictions. In a top-down ansatz, a high-energy embedding of
the minimal seesaw model is built that exhibits minimal degrees of freedom. A
minimal SU(5) Froggatt-Nielsen flavor model is chosen and assuming approximate
exchange symmetries in the heavy neutrino sector helps to reduce the model’s free
parameter. Demanding consistency with electroweak naturalness and leptogenesis
leads to a most minimal type-I seesaw model, that emerges from a high-energy
theory and predicts at the same time all measured neutrino observables.

Zusammenfassung

Die vorliegende Arbeit beschäftigt sich mit einer minimalen Variante des Typ-I-
Seesaw-Mechanismus mit nur zwei rechtshändigen Majorana-Neutrinos, welche im
Folgenden aus zwei Perspektiven, bottom-up and top-down, untersucht wird. In
einem experimentell motivierten Ansatz wird zunächst die Ausprägung bestimm-
ter Hierarchien innerhalb der Neutrino-Yukawa-Matrix im Hinblick auf approxi-
mative Zwei-Nulltexturen analysiert. Dazu wurde eine allgemeine Methode zur
Untersuchung von Yukawastrukturen entwickelt und am Beispiel des minimalen
Seesaw-Modells getestet. Neben einer Stabilitätsanalyse der gewonnenen Ergebnis-
se konnten den Modellvorhersagen theoretische Fehlerbalken zugewiesen werden. In
einem top-down Ansatz wurde eine Einbettung des minimalen Seesaw-Modells in
eine Hochenergie-Theorie konstruiert, welche eine minimale Anzahl von Freiheits-
geraden besitzt. Durch Modifikation eines SU(5)-Froggatt-Nielsen-Flavor-Modells
und der Annahme approximativer Austauschsymmetrien des schweren Neutrino-
sektors konnte eine starke Reduktion der freien Modellparameter erreicht werden.
Zusätzliche Forderungen nach moderaten Higgsmassenkorrekturen und erfolgrei-
cher Leptogenese führen zur minimalsten Realisierung des Type-I-Seesaw-Modells,
welche auf einer Hochenergie-Theorie gründet und zugleich mit allen gemessenen
Neutrino-Observablen übereinstimmt.

This master thesis has been carried out at the
Max Planck Institute for Nuclear Physics Heidelberg

under the supervision of
Prof Dr Manfred Lindner and Dr Kai Schmitz.
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1. Introduction

Almost ninety years after their first postulation through Wolfgang Pauli in 1930 [1],
neutrinos are more topical than ever, as discoveries related to them led to four nobel
prices within the last thirty years [2]. Moreover, the nobel price in 2015 [3] for the
detection of neutrino oscillations [4–6] and the associated proof of their massiveness
clearly confirmed that they provide new phenomena that are not incorporated in
the current standard model of particle physics (SM).

Instead of joy about having some direction towards “new” physics beyond the
standard model (BSM), particle physics is immediately confronted with further
questions. There is no conceptual reason why neutrinos are so much lighter than
all other SM particles1 and, furthermore, it is still unclear if they are massive Dirac
or Majorana fermions. We still do not know enough about neutrino properties,
although they are with a number density of n = 336 cm−3 nine orders of magnitude
more abundant than usual atoms in our Universe [9]. For example, oscillation
experiments measured very precisely their mass-squared differences and mixing
angles [8], yet it is unknown which kind of mass-ordering neutrinos exhibit [10] as
the sign of the atmospheric mass-squared difference remains undetected. A lot of
effort is spend on experiments that try to measure still unknown quantities of this
very elusive particle species, e.g. experiments like GERDA [11] search for signatures
from neutrinoless double β decay (0νββ), which could reveal the neutrino to be of
Majorana type. Further, β decay experiments like KATRIN [12] aim to measure
the neutrino’s absolute mass and current oscillation experiments, e.g. Noνa [13]
and T2K [14], reach growing sensitivity, indicating a future detection of leptonic
CP violation (���CP ). One has to keep in mind, that a lot of work has already been
accomplished since their first detection in 1956 [15]. For instance, sun-monitoring
through solar neutrinos [16, 17] has become standard as well as neutrino beam
technology [18].

Also on theoretical side, neutrino physics provides huge opportunities as it
connects the largest scales of cosmology with the smallest ones associated with
particle physics. Over the decades, various models have been invented to ex-
plain the neutrinos’ mass as they are currently just implemented as massless left-
handed (LH) Weyl fermions in the SM. As already the simplest extension, i.e.
the introduction of right-handed (RH) neutrinos νR and application of the Higgs
mechanism, suffers from unnaturally small Yukawa coupling, different approaches
have emerged to tackle the problem of neutrino mass generation. All such attempts
can be mainly grouped into two classes, tree-level [19–30] and loop-level genera-

1Although the absolute neutrino mass scale is still unknown, we already know from current lim-
its, e.g. [7], and their measured mass-squared differences [8] that they are orders of magnitude
lighter than all other SM particles.
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tion [31–36]. Where the first class tries to explain the lightness of SM neutrinos by
the massiveness of some other new particle, the second group of models assumes
massless neutrinos, whose masses are generated through radiative corrections to
their propagators at higher order in perturbation theory. Both classes can be easily
embedded in broader theoretical frameworks like grand unified theories (GUTs)
or left-right-symmetric models, such that literature provides a great number of
neutrino mass models; see [37]. Not only their mass makes theory interesting,
but also other processes can be explained by neutrinos. The baryon asymmetry
of the Universe (BAU), i.e. the imbalance of matter and antimatter in the early
Universe, which explains the existence of matter today, can be understood through
CP violating decays of some heavy neutrinos, usually known as leptogenesis [38],
and has become a field of vast studies, see review [39]. Further, the role of heavy
neutrinos shortly after the big bang has also been discussed, e.g. to explain the
origin of inflation [40].

The problem, theoretical neutrino physics has to tackle, is the lack of predictions.
Although there exist many successful neutrino mass models, most of them rely
on some high-energy origin, which is not accessible through low-energy neutrino
experiments. Hence, there is no possibility to distinguish them and moreover, due
to embedding in some broader context, they are usually accompanied by various
degrees of freedom (DOFs), making predictions even harder. In the next years,
another low-energy neutrino observable, the Dirac CP phase δ, is expected to be
measured by experiments and theory is at draw to invent strategies or benchmarks
that help constraining the vast number of models. Common approaches to obtain
small parameter spaces are, e.g. the assumption and introduction of additional
symmetries or minimal number of necessary DOFs. Thereby, one hopes to arrive
at some minimal model that may be in agreement with current experimental data,
such that typical benchmark scenarios for future measurements are obtained.

This thesis deals with one particular example of such minimal models, i.e. the
minimal type-I seesaw model with only two RH neutrinos [41–46]. By assuming
further symmetries, leading to certain zeros within the model’s neutrino Yukawa
matrix, one is able to reduce its parameter space in a way that clear predictions
are obtained, e.g. for CP phases. In the following, this minimal realization of the
type-I seesaw scenario is approached from two different directions; bottom-up and
top-down. Motivated by future experimental measurements, we investigate what
can be inferred for the UV region if a certain CP phase is measured. Especially,
the model’s capability to agree with experiment is studied in cases, where the
general assumptions of zero-entries in the underlying Yukawa matrix are slightly
relaxed, allowing us to assign theoretical error bars to previous predictions.

In a second investigation, we embed the type-I seesaw with only two RH neutri-
nos in a special ultraviolet (UV) model [47], i.e. a Froggatt-Nielsen (FN) mecha-
nism [48] implemented in a minimal SU(5) GUT [49], and search for corresponding
minimal realizations, that can still accommodate for all measured observables. A
minimal benchmark scenario, testable with upcoming data sets, is formulated by
assuming (approximate) exchange symmetries within the heavy neutrino sector
and consistency with theoretical demands like electroweak naturalness and suc-
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cessful leptogenesis. Both approaches are mainly based on the references [50]
and [51].2 This thesis is structured in the following way:
Chapter 2 introduces the subject of massive neutrinos. Besides phenomenological
consequences like neutrino oscillations, the generic type-I seesaw mechanism is pre-
sented with a special parametrization of its parameter space. Chapter 3 deals with
a minimal realization and a newly developed method to gain more knowledge from
future progress in oscillation measurements. Taking this particular model, we show
how structures within the neutrino Yukawa matrix can be assessed by application
of a self-defined hierarchy parameter. In chapter 4, we construct a minimal UV
realization of the presented model that agrees with all currently measured neutrino
observables. By embedding into a minimal SU(5) FN model and assuming cer-
tain discrete symmetries in the heavy neutrino sector, we are able to successively
reduce our model’s parameter space. Finally, we conclude our investigations with
the summary of main results in chapter 5.

2While the first reference is already accepted for publication in JHEP, the second one is currently
under peer-review.





2. Theory and phenomenology of
massive neutrinos

The detection of neutrino oscillations and the associated explanation through their
mass1 is one of the strongest indicators that there exists some physics beyond the
current standard model. Hence, the origin of neutrino masses and related phe-
nomenology is one of the biggest questions in particle physics. The current chapter
deals with the simplest mechanism of neutrino mass generation, the type-I seesaw
mechanism [19–22], and gives an overview of phenomenological consequences as
well as current scientific knowledge. Further, variations of the seesaw framework
as well as other neutrino mass mechanisms are discussed and additionally the
high-energy scenario of leptogenesis [38,39,52] is covered, which is going to be im-
portant for later purposes. Before diving into the seesaw framework, the properties
of Majorana fermions [53] are derived from the Dirac perspective.

2.1. Dirac and Majorana fields

The type-I seesaw mechanism requires the existence of RH Majorana neutrinos to
explain the origin of small neutrino masses in a very natural way. In the following,
this special type of fermion field is constructed from scratch and differences between
Dirac and Majorana mass terms are pointed out.2 Before doing so, the basic
concepts of Dirac fields are repeated.

2.1.1. Dirac fields

Dirac fields are one important ingredient in the theoretical understanding of Na-
ture, since they describe the relativistic motion of spin-1

2
particles, which make

up almost all matter fields in our visible Universe.3 Although one can directly
derive the spin-1

2
representation of the Poincaré group from basic principles, we

refer to the standard literature [54, 56, 57] and take it for granted that we need
so-called spinors to construct solutions of the Dirac equation. With “spinor”, we
generally mean elements of the vector space, on which the spin-1

2
representation

acts and from which solutions of the Dirac equation can be constructed. We start

1The detection of oscillations alone does not proof the neutrino’s massiveness, as also other
processes could invoke flavor changes. Their mass is a sufficient but not necessary condition.

2A more formal introduction into this subject can be found in chapter 10 and 11 of [54] or, with
special focus on Majorana fields, in [55].

3As we will cover in the following, the neutrino occupies a special role within the SM, since it
could also be a Majorana fermion.
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by assuming that the Dirac Lagrangian, from which the Dirac equation can be
deduced via variation principle, has already been found,

LDirac = ψ̄D
(
i/∂ −mD

)
ψD , (2.1)

with the conventional Feynman slash notation /∂ ≡ γµ∂µ and the Dirac-conjugated
field ψ̄ ≡ ψ†γ0. We encounter a set of four (4× 4) matrices γµ, that span the so-
called spinor space. The γ-matrices obey special properties, among others the anti-
commutator relation {γµ, γν} = 2gµν , which is usually known as Clifford algebra.
Any set of matrices, that fulfills this property, can be used as basis for the spinor
space and is related to all other possible realizations by a unitary transformation,
γµ = Uγ̃µU †. For the Dirac field, a special representation of the Clifford algebra,
the Dirac representation, is chosen, which has the following structure,

γ0 =

(
12 0
0 −12

)
, γi =

(
0 σi

−σi 0

)
, (2.2)

with the Pauli-matrices σi and i = 1, 2, 3 that are given in the appendix A. Having
a closer look on the chosen basis, one recognizes that these are block-diagonal and
therefore reducible.

The vector space of four-dimensional Dirac spinors can be divided into two
separate spaces of left- and right-handed chiral components, ψL and ψR; or stated
differently, the Dirac spinor forms a “doublet” of two-dimensional left- and right-
handed Weyl spinors ΨL/R, which can be projected out with the corresponding
projection operators PL/R = 1

2
(1∓ γ5)4. This property is reflected in the following

representation:

ψ = ψL + ψR =

(
ΨL

ΨR

)
, ψL ≡ PLψ =

(
ΨL

0

)
, ψR = PRψ =

(
0

ΨR

)
, (2.3)

with the four-component and two-component Weyl fields, ψL/R and ΨL/R respec-
tively. Since we will not work in two-component notation, we will use the term
Weyl field for ψL/R and ΨL/R synonymously. Hence, the Dirac field as general
solution of the Dirac equation is composed of two independent Weyl fermions; the
LH component ψL and the RH one ψR. In this sense, Weyl fields can be considered
as fundamental building blocks of more complex fermionic fields.

Since the SM is by construction a chiral theory, it is formulated in terms of left-
and right-handed chiral fermion fields. Combining (2.1) with (2.3) leads to the
chiral Dirac Lagrangian,

LDirac = ψ̄Li/∂ψL + ψ̄Ri/∂ψR −mD

(
ψ̄RψL + h.c.

)
. (2.4)

Further, the Dirac mass term is invariant under global and local U(1) transfor-
mations and hence conserves all charges associated with it, e.g. electric charge,
lepton- and baryon number. A special thing to notice is that the mass term mixes

4Left- and right-handed chiral states are related to the two different eigenvalues of γ5 ≡
iγ0γ1γ2γ3. See appendix A for properties of projectors PL/R and γ5.
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the two different chiral states. Viewed from an interacting perspective, such terms
implicate a chirality flip, whereas the kinetic terms are blind to chirality. However,
within the SM framework, direct mass terms like the ones above, are forbidden by
the SU(2)L × U(1)Y gauge group as they are not invariant under the correspond-
ing transformation and would spoil gauge invariance. At this point, the the Higgs
mechanism becomes important as it breaks SU(2)L×U(1)Y down to U(1)Q, while
generating fermion mass terms at the same time through Yukawa interactions with
each SM fermion. The resulting fermionic mass terms are proportional to the Higgs
VEV vEW ≡ 〈φ0〉 and the corresponding Yukawa coupling yf , mf = vEWyf . As a
beautiful side-effect also the vector bosons, W±

µ and Zµ, obtain their masses while
the photon Aµ remains massless5.

2.1.2. Majorana fields

In the following, we try to shed some light on Majorana fermions and approach
them from the familiar Dirac perspective.

The Dirac field has been constructed as a general solution of the Dirac equation
and is assumed to be complex. Since any set of γ-matrices can be used to span the
spinor space, one can also look for simpler solutions, i.e. real fields [58]. These can
be obtained by choosing a set of completely imaginary matrices, which is referred
to their inventor as Majorana representation [53],

γ0 =

(
0 σ2

σ2 0

)
, γ1 =

(
iσ3 0
0 iσ3

)
,

γ2 =

(
0 −σ2

σ2 0

)
, γ3 =

(
−iσ1 0

0 −iσ1

)
.

(2.5)

The solutions of the Dirac equation are now real and fulfill the so-called Majorana
condition,

ψM
!

= ψCM , (2.6)

with the Lorentz-covariant conjugate (LCC), ψC ≡ γ0Cψ
∗. The charge-conjugation

operator in the familiar Dirac basis, C ≡ iγ2γ0, obeys the following properties:

C† = C−1 = CT = −C . (2.7)

As the Majorana condition (2.6) imposes further constraints on the spinor space,
the corresponding Majorana fermion is equivalent to only one Weyl field of definite
chirality. This seems unusual, as we are used to the notion of Dirac particles.
One always has to keep in mind that Dirac particles are constructed with two
independent Weyl spinors and as we need RH and LH components for a mass
term, the generic choice is to identify them with both spinors, ψL and ψR. The

5For more details about the Higgs mechanism, see the literature, e.g. [54, 56, 57]. Since the
Higgs mechanism is just of minor importance in this work, we will not go into mathematical
details. Only the phenomenological consequences are commented on when necessary.
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situation is different for Majorana fermions, where we only have one Weyl spinor.
Since we need both chirality components to construct a mass term, we can use the
knowledge that a Lorentz-covariant conjugated LH Weyl spinor transforms as a
RH component and vice versa. There exist some ambiguity in this construction as
both chirality Weyl-component prove equally well; thus, we list both possibilities,

1. LH Weyl spinor - ψR = (ψL)C :

ψM = ψL + η (ψL)C =

(
ΨL

iσ2Ψ∗L

)
(2.8)

2. RH Weyl spinor - ψL = (ψR)C :

ψM = ψR + η (ψR)C =

(
iσ2Ψ∗R

ΨR

)
. (2.9)

An additional factor η is introduced to accommodate for a potentially occurring
phase through charge conjugation; the Majorana particle’s CP -properties can be
adjusted by selecting η = ±1 for even and odd CP -parity respectively. One can
easily proof that both cases fulfill (2.6) by using the following spinor properties
under charge conjugation. For our concerns, the action of C on chiral components
is important,6

(ψL)C =
(
ψC
)
R
, (ψR)C =

(
ψC
)
L
, ψC = ψTC = −ψTC−1 . (2.10)

The corresponding Majorana Lagrangian has similar structure as the Dirac one
(2.1), but with an additional factor of 1

2
due to the reduced number of DOFs,

LMajorana =
1

2
ψ̄M

(
i/∂ −mM

)
ψM . (2.11)

Since we are interested in chiral fields, the Majorana mass term is expanded in
terms of the above field definition; again, it is arbitrary which chirality is chosen for
the underlying Weyl fermion. Conventionally, left-handed fields are used, yielding

LMajorana = ψ̄Li/∂ψL −
mM

2

(
ψ̄CLψL + h.c.

)
= ψ̄Li/∂ψL +

mM

2

(
ψTLC

−1ψL + h.c.
)
,

(2.12)

As already indicated by the Majorana condition (2.6), Majorana particles are their
own antiparticles and, thus, must not be charged. The Majorana mass term reflects
this statement as it cannot be invariant under any U(1) charge. More precisely,
massive Majorana fermions induce lepton number violation (LNV) by two units,
which yields important phenomenological consequences like 0νββ [59, 60] or the
possibility of baryogenesis through leptogenesis [38,39]. When speaking about RH
Majorana neutrinos, we mean Majorana fermion, that are constructed from RH
Weyl spinors and hence rely on the second definition of (2.9).

6Proof, see appendix A.
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2.2. Neutrino mixing and oscillations

Now the general statements about Dirac and Majorana fields are extended to the
case of three neutrino generations. As already mentioned in the introduction, it is
still unclear whether neutrinos are of Dirac or Majorana nature and observations
of neutrino oscillations points towards some mass generation mechanism beyond
the current knowledge. In this section some basic low-energy phenomenology of
massive neutrinos and the current experimental status are presented in order to
set the stage for our analysis in chapter 3.

2.2.1. Generation mixing

By extending the Dirac and Majorana mass terms in (2.1) and (2.11) to three
generations and diagonalizing the corresponding mass matrices, leptonic mixing
matrices are obtained, similar to the Cabibbo-Kobayashi-Maskawa (CKM) matrix
UCKM of the quark sector [61, 62]. Such mixing matrices reflect the mismatches
between mass and weak eigenstates and have important phenomenological con-
sequences. The small neutrino mass in combination with their weak interacting
nature makes the observations of flavor oscillations possible over large distances.
The difference between Dirac and Majorana neutrinos in their mixing properties
is topic of this subsection.

Dirac neutrino mixing

Although the SM does not contain RH neutrinos ναR, for the moment we just assume
their existence such that a fermionic mass term according to (2.1) is possible. At
first, we discuss the case of Dirac neutrinos to further contrast differences to the
following Majorana case. This will allow us to understand the origin of neutrino
oscillations and can also be seen to be fully analogous to the derivation of the CKM
matrix in the quark sector. First of all, the Dirac mass term of (2.4) has to be
generalized to all three neutrino flavors, α, β = (e, µ, τ), leading to the following
expression

LDmass = −ν̄αRmαβν
β
L + h.c. . (2.13)

In the following, we also keep track of the charged lepton masses and the charged
weak current since we expect the leptonic equivalent of the CKM matrix to appear
due to the simultaneous diagonalization of both matrices. The interacting of the
Lagrangian is usually given in weak eigenstates, hence, exhibits diagonal form,

LDmixing = −ν̄αRmαβν
β
L − l̄

α
Rm

l
αβl

β
L +

g√
2

(
W+
µ ν̄

α
Lγ

µlαL + h.c.
)

(2.14)

with the weak eigenstates ναL/R = (νe, νµ, ντ )L/R and lαL/R = (e, µ, τ)L/R. As a
next step, both mass matrices are diagonalized by unitary transformations, such
that all quantities are now expressed in terms of mass eigenstates; indicated by
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a primed. This is done with the following transformations, whereby each chiral
fermion is transformed individually:

ναL = Uν
αiν

′i
L ναR = V ν

αiν
′i
R

lαL = U l
αil
′i
L lαR = V l

αil
′i
R,

(2.15)

with the flavor index α = e, µ, τ and the mass basis index i = 1, 2, 3. Transition
to the mass eigenstate basis of charged and neutral leptons gives rise to a mixing
matrix in the Lagrangian’s charged current,

LDmixing = −l̄′iRV
l†
iαm

l
αβU

l
βjl
′j
L − ν̄

′i
RV

ν†
iα m

ν
αβU

ν
βjν

′j
L +

g√
2

(
W+
µ ν̄

′i
LU

ν†
iαU

e
αjγ

µl
′j
L + h.c.

)
= −l̄iRDl

il
i
L − ν̄iRDν

i ν
i
L +

g√
2

(
W+
µ ν̄

i
LU
†
PMNSγ

µljL + h.c.
)
,

(2.16)
where we omitted the dash for mass eigenstates in the last line to avoid clutter.
After diagonalization both mass matrices are in general complex, but due to the
freedom of choosing arbitrary field phases, the corresponding mass eigenstates can
be selected in such a way that the mass eigenvalues become real and non-negative.
This leaves us with a diagonal mass and a complex mixing matrix, incorporating
the mismatches between weak and mass eigenstates of both, charged and neutral,
lepton fields. The leptonic equivalent to the CKM matrix is commonly called
Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix UPMNS [59,63] and has a very
special meaning for low-energy neutrino phenomenology that we will comment on
in a second. The whole parameter space of the leptonic SM sector, augmented
with right-handed neutrinos, is summarized by the following matrices,

Dl ≡ V l†mlU l = diag(me,mµ,mτ )

Dν ≡ V ν†mνUν = diag(mνe ,mνµ ,mντ ) ,
(2.17)

assuming U †PMNS ≡ Uν†U l. In contrast to quarks, which are usually detected
as mass eigenstates or equivalently the mass eigenstate of the confined particle
containing it, neutrinos can only be measures through weak interactions. The
is based on the fact, that charge and mass eigenstates coincide. This implies,
that instead of the propagating mass eigenstate ν

′
, neutrinos manifest themselves

only through their weak eigenstate, e.g. νe, which is a superposition of all mass
eigenstates according to (2.15). These propagate with different group velocities
depending on their masses and thus lead to changing phases differences among
them. As a consequence the probability to find a certain flavor eigenstate changes
with time and distance. Since charged leptons are usually measured in the mass
basis, we can define the charged lepton fields as directly mass eigenstates and
immediately set ml to diagonal form. If we want to correct this in the performed
derivation, we only need to set U l = V l = 1. As a consequence, the neutrino
mixing matrix coincides with the PMNS matrix Uν = UPMNS and, thus, leptonic
mixing can be investigated through neutrino flavor conversion, commonly known
as neutrino oscillations.
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Majorana neutrino mixing

Now the generation mixing of Majorana neutrinos is presented and compared to the
procedure for Dirac neutrinos. Since the general idea is the same and is deviation
is almost identical, just formal differences to the former case are highlighted and in
addition a special parameter choice of Majorana neutrinos with degenerate masses
is discussed. The generalized Majorana mass term (2.12) has the form

LMmass = −1

2
νaTL C−1mαβν

β
L + h.c. (2.18)

again α and β are flavor indices. First of all, it has to be noticed that a general
Majorana matrix always has to be symmetric mαβ = mβα, for a proof see appendix
C. Now we perform the same steps as for Dirac neutrino. With the familiar
unitary transformations (2.15), we go into the mass basis such that the mass
matrices are again diagonal. The choice of left- or right-handed Weyl fermions
to build the Majorana fermion (2.9) only affects nomenclature of the neutrino’s
transformation matrix (U → V ). We obtain almost the same Lagrangian, but with
slightly different transformation matrices that will have important consequences
in the following,

LMmixing = −l̄′iRV
l†
iαm

l
αβU

l
βjl
′j
L − ν

′iT
L C−1UνT

αi m
ν
αβU

ν
βjν

′j
L

+
g√
2

(
W+
µ ν

′iT
L C−1Uν

iαU
e
αjγ

µl
′j
L + h.c.

)
= −l̄iRDl

il
i
L − νiTL C−1Dν

i ν
i
L +

g√
2

(
W+
µ ν

iT
L C

−1U †PMNSγ
µljL + h.c.

)
.

(2.19)
Equivalently, the SM lepton sector with Majorana neutrinos can be described by
the following quantities,

Dl ≡ V l†mlU l = diag(me,mµ,mτ ),

Dν ≡ UνTmνUν = diag(mνe ,mνµ ,mντ ) ,
(2.20)

with U †PMNS ≡ UνTU l. By taking the charged lepton basis to be diagonal from the
beginning, the PMNS matrix UPMNS is only determined by the neutrino transfor-
mation matrix UPMNS → (Uν)∗ which will influence the leptonic later on.

Pseudo-Dirac neutrinos A special set-up of Majorana neutrinos arrangement is
achieved, when the generalized mass matrix exhibits the following structure,

mαβ =

(
0 ×
× 0

)
. (2.21)

Such a mass terms is called to be of pseudo-Dirac nature and it arises if the two
chiral components of a Dirac spinor are assigned to different flavors. In this context,
it corresponds to two Majorana components having different CP properties and
being degenerate in mass. The name relates to the fact that one Dirac field is
equivalent to two Majorana field of same mass but different CP parity, which
makes experimental differentiation between both cases very difficult [64].
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2.2.2. CP phases within mixing matrices

This subsection deals with the phases contained in the neutrino mixing matrix,
which could potentially lead to �

��CP and how they emerge in the two different
neutrino mass cases. This procedure follows chapter 8.3 of [37] and gives some
intuition, where and how occurring complex phases are absorbed.

The (3 × 3) neutrino mixing matrix U is unitary and, therefore, has nine
real DOFs7 which can be described by three angles and six phases. It can be
parametrized in the following way:

U = eiαeiβ1λ3eiγ1λ8Ũeiβ2λ3eiγ2λ8 (2.22)

with the two Gell-Mann matrices λ3,8 and the (3 × 3)-matrix Ũ containing the
three mixing angles and one phase. The latter is usually expressed equivalently to
the CKM matrix of the quark sector

Ũ =

 c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (2.23)

with the usual conventions cij ≡ cos θij, sij ≡ sin θij and the phase δ ∈ [0, 2π).
As a next step, the emergence of potential CP violating phases in Dirac and
Majorana mixing matrices is discussed. The general assumption is that there
are still unphysical phases contained in U that can be eliminated by appropriate
field redefinition. The main focus lies on the weak interaction-part of the SM-
Lagrangian, as it contain the leptonic mixing matrices as well as fermionic field,

Lweak ⊃ W+
µ

(
ν̄
′1, ν̄

′2, ν̄
′3
)
L
e−iγ2λ8e−iβ2λ3Ũ †e−iγ1λ8e−iβ1λ3e−iαγµ

e′µ′
τ
′


L

. (2.24)

Dirac neutrinos

In the Dirac neutrino case the phase factors containing β2, λ3 can be eliminated by
an appropriate phase rotation of the individual neutrino fields να. An additional
rotation of the charged lepton fields leads to an absorption of the phases α, β1 and
γ1 that restores the Lagrangian in its conventional form; the only difference is the
exchange of U by Ũ . Now, all freedom in “field re-phasing” is used and we arrive
at the minimal number of DOFs; three mixing angles θ12, θ23, θ13 and one phase δ.
Since δ is the only remaining phase in the Dirac case, it is commonly called Dirac
phase and equivalent to the one appearing in the quark mixing matrix UCKM [61].

Majorana neutrinos

At a first look, one might think that the procedure of phase absorption for (2.24) is
the same besides a transposed instead of a “daggered” field. The problem arises not

7Simple proof: 3× 3 = 9 complex entries correspond to 18 real DOFs The condition UU† = 1
yields three real constraints for the diagonal entries and three complex constrains for the
off-diagonal ones → 18− 3− (2× 3) = 9 real parameters.
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number of ... Dirac Majorana

angles θij
1
2
n(n− 1) 1

2
n(n− 1)

phases 1
2
(n− 1)(n− 2) 1

2
n(n− 1)

↪→ Dirac-type all 1
2
(n− 1)(n− 2)

↪→ Majorana-type 0 n− 1

Table 2.1.: Number of angles and phases of the leptonic mixing matrix for Dirac and
Majorana neutrinos [66,67].

here, but in the Majorana mass term (2.18), containing two times the same mixing
matrix. Thus, the phases β2 and γ2 cannot be removed by any field redefinition
and still contribute to U as so-called Majorana phases. Similar to the Dirac case,
the remaining phase factors can be absorbed into the charged lepton fields and the
Dirac phase δ remains in Ũ . Hence, the Majorana mixing matrix contains three
instead of only one phase, which is often parametrized in the following way

U = Ũ × diag(1, eiσ, eiτ ). (2.25)

The special form of the Majorana mass term (2.11) leads to addition of the
individual Majorana phases, bisecting the domain of possible Majorana phases,
σ, τ ∈ [0, π). For some purposes it is useful to shift both Majorana phases into
the neutrino mass matrix. This can be done by appropriate redefinition of the
neutrino fields according to

ν
′′

L = eiγ2λ8eiβ2λ3ν
′

L . (2.26)

For an arbitrary number of neutrino flavors n, the number of necessary mixing
angles and phases in the leptonic mixing matrix is presented in table 2.1 for both
fermion types. A special feature of Majorana neutrinos is that a potential CP
violating phase already occurs for two neutrinos. Naively, one would expect that
the increased number of phases trigger more CP violating interactions that could
be observed in Nature, but unfortunately this effects due to Majorana phases

appear together with neutrino masses, hence,suppressed by
(
mν
E

)2
[65].

2.2.3. Neutrino oscillations & mass ordering

As generation mixing has been presented, we are now ready to discuss the phe-
nomenological consequence of neutrino flavor oscillations. Their implications for
neutrino mass ordering are covered and an overview of current experimental neu-
trino parameters is given. This subsection closes with a short description of direct
neutrino mass measurements and current experimental limits, which will help to
interpret the results and validity of the approaches in chapters 3 and 4 in context
of future measurements.
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Neutrino oscillations

The idea of neutrino oscillations is very old and was first mentioned by Pontecorvo
in 1957 [6], who transferred the concept of flavor-oscillations in neutral mesons,
discussed by Gell-Mann and Pais [68], to particle-antiparticle pairs and especially
to the case of neutrinos. The main assumption for this process to occur in the
neutrino sector is that there exists a mismatch between the mass basis, in which
the individual particles propagate, and the flavor basis, in which neutrinos are usu-
ally produced and detected via weak interactions. As we have already discussed,
this mismatch leads to the occurrence of a leptonic mixing matrix UPMMS in the
charged current Lagrangian for both Dirac and Majorana neutrinos, (2.16) and
(2.19) respectively. Hence, it connects mass with flavor eigenstates and will be of
importance for neutrino oscillations. Moreover, the conversion between different
particle flavors leads to violation of the individual lepton numbers (Le, Lµ, Lτ )
while the total L = Le + Lµ + Lτ remains conserved.

Already from a quantum mechanical point of view, this phenomenon can eas-
ily be understood by looking at two-level system8. If a state is prepared as an
eigenstate of the underlying Hamiltonian, the time-evolution operator will just
contribute a phase factor and it will remain an eigenstate of the Hamiltonian. The
situation is different, if a state appears as an admixture of several eigenstates.
Here, time-evolution leads to an oscillations between the two different eigenstates
such that the probability for measuring a certain eigenstate varies over time.

Neutrino states in the different bases are connected via the leptonic mixing
matrix UPMNS by the following transformation,

|να〉 = U∗αi |ν
′

i〉 , (2.27)

where the flavor states are indicated by Greek indices and the mass states with
Latin ones. Since the dynamics are described much easier in the mass basis, we
switch frames, although neutrinos are detected as flavor states. Thus, for a state
at a certain time t we have to include the time translation factor, yielding a state
|ν(t)〉 = U∗αje

−iEjt |νj〉. The transition amplitude for a oscillation from flavor α to
flavor β then follows as

A(να → νβ; t) = 〈νβ|ν(t)〉 = UβiU
∗
αje
−iEjt 〈νi|νj〉 = Uβje

−iEjtU∗αj (2.28)

and the corresponding transition probability is given by the amplitude’s absolute
square

P (να → νβ; t) = |A(να → νβ; t)|2 = |Uβje−iEjtU∗αj|2 . (2.29)

This probability does not change when one switches the neutrino’s fermionic na-
ture, since additional Majorana phases cancel in the final expression. A more
intuitive statement is that neutrino oscillations do not violate total lepton num-
ber L, which would be a smoking gun for Majorana masses, and hence cannot

8The situation is actually more complicated such that a treatment of neutrinos in wave-packages
is needed, but fortunately both approaches yield the same results in the coherent limit [64].
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distinguish between both Dirac and Majorana particles. The situation differs if
one includes both mass terms later done in the most general seesaw approach. In
this situation, total lepton number can be broken due to oscillations into sterile
states according to νa → νcb . An introduction into the formalism of this general
oscillation framework can be found in [69].

Example: Two-flavor oscillations To get more intuition of the phenomenon of
neutrino oscillations, the simplest realization of two flavors called νe and νµ, is
discussed in the following. In this case, the leptonic mixing matrix reduces to a
(2×2) matrix U2 incorporating only one mixing angle θ, such that the flavor states
are given by (

|νe〉
|νµ〉

)
=

(
c s
−s c

)(
|ν1〉
|ν2〉

)
(2.30)

Since neutrinos are very light, they can always be approximated as ultra-relativistic,
pν � mν , and their energy-momentum relation is commonly rephrased in terms

of energy Eν =
√
pν +m2

ν ' pν + m2
ν

2pν
' Eν + m2

ν

2Eν
. With this, expressions for the

transition and survival probabilities can be simplified as

P (νe → νµ; t) = P (νµ → νe; t) = sin2 2θ sin2

(
∆m2

4E
t

)
P (νe → νe; t) = P (νµ → νµ; t) = 1− P (νe → νe; t),

(2.31)

where the mass squared difference is defined as ∆m2 ≡ m2
2 − m2

1. A more
convenient way is to re-express it in terms of the traveled distance, t ' L for
relativistic particles, and the so-called oscillation length Losc = 2πE/∆m2 '
2.48 (E [MeV] /∆m2

[
eV2
]
)m, which describes the length between one probabil-

ity minimum and the next maximum or vice versa,

P (νe → νµ; t) = sin2 2θ sin2

(
π
L

Losc

)
= sin2 2θ sin2

(
1.27∆m2 L [m]

E [MeV]

)
. (2.32)

The first term including the mixing angle θ affects the oscillation probability ampli-
tude and is maximal for an angle θ ∼ 45◦, obviously referred to as maximal mixing,
and minimal for θ ∼ 0◦, 90◦ indicating the almost equivalence between mass and
flavor basis. The second term describes the spatial oscillation behavior. For suc-
cessful detection, the argument must not be too small or too large, as otherwise the
oscillation pattern would vary too slow or too much, respectively. Averaging over
small energy intervals regarding a detector’s finite resolution or small variation in
the traveled distance leads to cancellation of the oscillation pattern such that the
observed quantity just depends on the mixing angle,

P (νe → νµ; t) = P (νµ → νe; t) =
1

2
sin2 2θ . (2.33)

The case of three oscillating flavors is governed by the full PMNS matrix (2.23)
and leads to more complex expressions; for details see e.g. [62] or [64]. Hence, the
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Approx. phase eff. description survival probability

long baseline
∆m2

31

2E
L ' ∆m2

32

2E
L� 1 ∆m2 = ∆m2

21 Pe→e ' c2
13P + s2

13

θ = θ12 P = 1− s2
2θ sin2

(
∆m2

4E
L
)

short baseline
∆m2

21

2E
L� 1 ∆m2 = ∆m2

31 Pe→e = 1− s2
2θ sin2

(
∆m2

4E
L
)

θ = θ13

Table 2.2.: Overview of different effective two-flavor approximations. The long base-
line approximation can safely be used for solar neutrinos. Short baselines
refer to accelerator and reactor experiments, but also for atmospheric neu-
trinos. With the presented formulas one should be able to understand the
qualitative behavior of neutrino oscillations in the different regimes [67].
The common abbreviations for sine and cosine are used: cij ≡ cos θij ,
s2

2θ ≡ sin2 2θ.

three-flavor case follows

Pα→β =
∣∣〈νβ|να〉∣∣2 =

∑
i,j

UαiU
∗
βiU

∗
αjUβje

i
m2
i−m

2
j

2E
t

= δαβ +
∑
i,j

|UαiUβiUαjUβj| eiφαβij
(
ei∆ijt − 1

) (2.34)

with φαβij = arg
(
UαiU

∗
βiU

∗
αjUβj

)
and ∆ij

m2
i−m2

j

2E
[37]. Furthermore, φ is anti-

symmetric in the last two indices and, due to cancellations, free of any Majorana

phases φαβij ≡ arg
(
ŨαiŨ

∗
βiŨ

∗
αjŨβj

)
, which underlines again that oscillations do

not distinguish between Dirac and Majorana fermions.
Fortunately, there exist two common approximations related to certain values

of ∆m2

2E
L which help to reduce the general three flavor scenario to an effective two

flavor problem, that rely on the above expressions; see table 2.2.

Matter effects Finally, the topic of neutrino oscillations shall be closed with a
short comment on matter effects as they play an important role in investigations
of leptonic �

��CP . The oscillation of neutrino flavors during their propagation in
matter is generally modified since all flavors scatter of electrons as well as up- and
down-quarks of the underlying matter distribution via neutral-current interactions.
Under assumption of equal proton and electron number densities, their contribu-
tions cancel each other and just the component corresponding to neutron scattering
contributes. Further, electron neutrinos undergo charged current interactions with
electrons contained in the medium, giving rise to an additional effective potential
only for the electron flavor. Then, coherent, elastic forward scattering leads to an
amplification of the underlying transition probability. This could create a resonant
enhancement of the oscillation amplitude, if the Mikheyev–Smirnov–Wolfenstein
condition, that relates the electron number density with the neutrino mixing angle,
energy and mass squared difference, is fulfilled [70,71]. The important fact is, that
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Observable Units Hierarchy Best-fit value 3σ confidence interval

∆m2
21

[
10−5 eV2

]
both +7.50 [+7.03,+8.09]

∆m2
3`

[
10−3 eV2

] NH +2.52 [+2.41,+2.64]

IH −2.51 [−2.64,−2.40]

sin2 θ12 [10−1] both +3.06 [+2.71,+3.45]

sin2 θ13 [10−2]
NH +2.17 [+1.93,+2.39]

IH +2.18 [+1.95,+2.41]

sin2 θ23 [10−1]
NH +4.41 [+3.85,+6.35]

IH +5.87 [+3.93,+6.40]

δ [deg]
NH 261 [0, 360]

IH 277 [0, 31]⊕ [145, 360]

Table 2.3.: Best-fit values and 3σ confidence intervals for the five low-energy observ-
ables that are currently accessible in experiments and for the CP vio-
lating phase δ [8]. Further, we define ∆m2

ij ≡ m2
i − m2

j in general and

∆m2
3` ≡ ∆m2

31 > 0 for NH and ∆m2
3` ≡ ∆m2

32 < 0 for IH in particular.

this matter effects treat neutrinos and anti-neutrinos differently. Investigations of
leptonic ���CP have to take this into account, since it can easily be mimicked by CP
violating matter effects [72]. For detailed overview of high- and low-energy ���CP ,
see [73].

Neutrino mass measurements

To close the subject of neutrino oscillations, short overview of experimental at-
tempts measuring their low-energy parameters is given9. We have learned in the
last section, the amplitude of neutrino oscillations in the two-flavor approximation
depends on corresponding mixing angle and the oscillation phase is proportional
to the mass-squared difference. This allows us to determine all mixing angles and
mass-squared differences while the absolute neutrino mass scale remains unknown.
A common method is to combine all available datasets from solar, atmospheric and
reactor neutrino experiments to obtain values for all parameters in so-called global
fits [75,76]. The detailed method is explained in [8,77] and the corresponding val-
ues are displayed in table 2.3.

Although this sounds simple, the sign of the atmospheric mass-squared difference
∆m2 is not determined yet and gives rise to two possible mass orderings, referred

9We focus only on the neutrino parameters accessible in oscillation experiments and their abso-
lute mass scale, as they are relevant for our work. Other parameters measurable at low-energy,
e.g. electromagnetic properties [74], are also interesting, but will not affect our work
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to the cases m1 � m2 � m3 (normal mass hierarchy - NH) and m3 � m1 � m2

(inverted mass hierarchy - IH); see figure C.1 for an illustration. The mass-squared
differences defined in [77] are related to the actual neutrino masses via the following
relations,

δm2 = m2
2 −m2

1 , ∆m2 = m2
3 −

1

2

(
m2

2 +m2
1

)
. (2.35)

The precision of today’s neutrino experiments in measuring yet unknown quanti-
ties, like the phase in the leptonic mixing matrix, is limited by this uncertainty and
further progress is needed to solve this puzzle. In addition, other branches of neu-
trino physics rely on this knowledge too, especially experiments measuring 0νββ,
neutrino cosmology and theories trying to explain neutrino mass generation. A
good overview of current state-of-the-art attempts of measuring the neutrino mass
hierarchy are given in [10], from where we summarize the main points now.

The neutrino mass hierarchy can be further investigated by very precise measure-
ments of transition probabilities for different baseline configurations in a similar
way like it is done in former or currently running oscillation experiments. Different
detection techniques and neutrino sources are used to improve the experiment’s
sensitivity. Experiments aiming for the detection of 0νββ need the mass hierar-
chy as input to interpret the measured decay rate; an unexpected detection could
give hints as to which hierarchy to expect. Cosmology only gives information
about the total sum of all neutrino masses mainly from anisotropies and B-mode
polarization of the cosmic microwave background or large-scale structure forma-
tion. Here, the two different hierarchies change the the sum of neutrino masses
only marginally, but the neutrino mass spectrum has to be known to guarantee
determination power.

Conclusively, the final neutrino mass hierarchy is expected to be determined
within the next two decades with new upcoming experiments, as the prospects of
selected attempts already indicate, see table C.3.

So far, we know the values of all neutrino mixing angles and mass-squared differ-
ences quite precisely, but besides upper bounds on the sum of all neutrino masses
from cosmology,

∑
mi < 0.5 eV [7], the absolute mass scale remains unclear.

Measurements of 0νββ are capable of determining the so-called effective neutrino
mass 〈mee〉, but rely on the mass hierarchy and experience large uncertainties
from the corresponding nuclear matrix elements. In addition, the yet unknown
CP phases may contribute. The key ingredient to observe such processes is the
Majorana nature of neutrinos, hence being a smoking gun signature for LNV. Al-
ternative processes like double electron capture or double positron emission are
constrained due to a small number of suitable elements and phase-space argu-
ments, respectively [60]. The only real direct mass measurements are based on
kinematics and energy-momentum conservation, such as time-of-flight or precision
weak decay measurements. Time-of-flight measurements are less favored since
they require long baselines and strong sources like it is provided by a supernova.
However, these events are very rare and the processes in such harsh environments
are far from well-understood. Deduced mass limits are, therefore, strongly depen-
dent on the supernova modeling, e.g. m < 5.8 eV (95% CL) from the supernova
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SN1987a [78]. On the other hand, the precise measurements of weak decay prod-
ucts allow the extraction of the so-called averaged electron neutrino mass-squared
without any assumption on the underlying mass model The quantity of interest is
defined according to

m2
νe ≡

∑
i

|U2
ei|m2

i , (2.36)

where the incoherent sum guarantees the independence of any phase in the lep-
tonic mixing matrix. Different experimental attempts try to tackle the neutrino
mass scale with beta decays, e.g. the KATRIN experiment [12] uses tritium decay
in a source6=detector-setup. Additionally, experiments like MARE-1 (187Re-decay)
and ECHO (163Ho-electron capture) try to assess it with different detector config-
urations, see [9] and references therein.

With these experiments a sensitivity to the neutrino mass scale of O(100 meV)
will be obtained in the upcoming years [9].

2.2.4. Leptonic CP violation

To close the phenomenology of neutrino mixing and continue with mechanisms for
mass generation, we want to address a topic that is also very important in the
context of generating the BAU, leptonic �

��CP .

The CP transformation on a neutrino is defined in such way that charge-
conjugation converts a particle into its anti-particle and the corresponding parity-
transformation switches the particle’s chirality. To investigate leptonic �

��CP , we
first have to know, what the CP -conservation implies for the neutrino sector. The
neutrino’s transformation properties under CP directly affect the transition prob-
abilities in oscillations. If the neutrino interactions would conserve CP , which they
definitely do not, we would observe equal oscillation probabilities for neutrinos and
anti-neutrinos,

CP : νL
CP−→ ν̄R =⇒ P (να → νβ; t)

!
= P (ν̄α → ν̄β; t) , (2.37)

A deeper look on the charged current Lagrangians of Dirac and Majorana neu-
trinos, (2.16) and (2.19), reveals that the action of charge conjugation implies

a complex conjugation of the leptonic mixing matrix U
C−→ U∗. Hence, these

interactions are only CP -invariant, if U is real or its phases can be re-phased.
As we already discussed the re-phasing possibilities of U , the complex phases in
the leptonic mixing matrix can trigger ���CP . Moreover, CPT invariance demands

P (να → νβ; t)
!

= P (ν̄β → ν̄α; t), implying that the survival probabilities of neu-
trinos and anti-neutrinos have to be equal. T -transformation simply interchanges

initial and final states P (να → νβ; t)
T−→ P (νβ → να; t), ensuring that, under

assumptions of CPT invariance, CP and T transformations are equivalent. For a
more detailed discussion of ���CP within the leptonic sector, see [73].
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CP violation in neutrino oscillations

From the aforementioned transformations it should be obvious that leptonic �
��CP

exists if oscillation probabilities of a neutrino and its corresponding anti-particle
differ. Equivalently, one has a complex mixing matrix U with un-removable phases.
As we see ���CP in Nature [79], we expect the leptonic mixing matrix UPMNS to be
complex and incorporating a Dirac phase δ. Hence, the quantity describing ���CP in
oscillation experiments is the difference between a neutrino flavor transition and
its CP -conjugate, ∆Pαβ ≡ P (να → νβ; t) − P (ν̄α → ν̄β; t).10 In case of leptonic
CP invariance, it clearly will be zero. It can be re-phrased in a more familiar way,

∆Pαβ = −16 J sin
∆21L

2
sin

∆32L

2
sin

∆13L

2
, (2.38)

with the Jarlskog invariant J = −=Uβ1U
∗
β2U

∗
α1Uα2 as a measure for ���CP [80], the

re-scaled mass-squared differences ∆ij ≡
(m2

i−m2
j )

2E
and L the travel distance. Hence,

CP -conservation is achieved for

θi = 0 or θi =
π

2
and δ = 0 or δ = π. (2.39)

As already mentioned, one subtlety of ���CP investigations is that one always has
to take matter effects into account as they are capable of inducing additional ���CP .
To separate macroscopic from intrinsic �

��CP , one has to use large baselines, since
matter effects are proportional to the corresponding neutrino energy, making them
constant for fixed L/E. For larger baselines, the oscillation’s envelope increases
and the following relation can be used as a rule of thumb to measure strong intrinsic

�
��CP [37, 73],

L

E
> 1000

km

GeV
. (2.40)

CP violation from Majorana phases

Finally, we comment on the occurrence of Majorana phases in physical processes.
Since the phases β

′
and γ

′
are present, if we have Majorana neutrinos, we expect

them to be present in processes involving Majorana neutrinos. The most famous
example is 0νββ which allows the investigation of Majorana phases at low-energy.
Another example presented in [37] is a particular muon decay. Due to the neu-
trino’s Majorana nature, besides the usual SM decay, also the process µ → eνν
can occur via a neutrino mass insertion. The interference of both reaction channels
gives rise to ���CP by means of the Majorana phases, but unfortunately, such effects
are suppressed by the muon mass. Another possibility is the emergence of ���CP
at high energy scales in leptogenesis, where heavy RH neutrinos decay and leads
to �

��CP in the early universe. By non-perturbative processes, sphalerons, this gen-
erated CP asymmetry can be transferred to the baryon sector, hence, generating
the observed baryon asymmetry of our universe [38, 39].

10CPT invariance demands that ∆Pαβ = −∆Pβα.
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2.3. Type-I seesaw mechanism

This section deals with the simplest scenario of neutrino mass generation, the
type-I seesaw mechanism [19–22]. Before introducing this SM extension, some
issues with neutrino masses in the conventional framework are discussed. The
diagonalization procedure of the seesaw matrix and the model’s parameter space
with a commonly used parametrization is presented. This generic scenario is the
basis that allows deeper understanding of investigations within this work.

2.3.1. Neutrino masses in the standard model

In the SM framework, neutrinos are only implemented as LH Weyl fermions as a
result of the experiments performed by Wu [81] and Goldhaber [82]. They do not
participate in Yukawa interactions with the Higgs and receive no mass through the
Higgs vacuum expectation value (VEV) vEW since the necessary RH component
is missing. This is in clear contradiction to the observed neutrino oscillations and
the corresponding measured mass-squared differences, see figure C.2. This gives
rise to the yet unresolved puzzle of neutrino masses.

The naive approach of introducing a RH neutrino component, such that they are
usual Dirac fermions, similar to all other matter particles in SM, seems not con-
vincing and gives rise to further question, as we will see now. The implementation
of a RH component gives rise to usual Yukawa interactions with its LH counterpart
and the Higgs doublet. As the Higgs acquires its VEV vEW = 174 GeV, neutrino
masses are generated similar to any other fermion mass in the SM,

−LνY uk ⊂ yν ν̄LφνR + h.c.
〈φ0〉=vEW−−−−−−→ mν ν̄LνR + h.c. , (2.41)

with the neutrino mass mν ≡ vEWyν . In principle, this account for neutrino mass,
but if we compare the corresponding Yukawa couplings to the one of quarks and
leptons, we realize that the required coupling is orders of magnitude, ∼ 10−12,
smaller than the usual SM ones [54, 64]. Of course, this could be considered as a
problem of theoretical aesthetics, but a deeper understanding why neutrino masses
are much smaller than any other mass in the SM is not given. Within the SM,
there is no other possibility to generate naturally small neutrino masses from non-
renormalizable interactions. Already from this point of view, it should be clear
that neutrino mass generation is clearly a subject of BSM. In the end, a short
remark on RH neutrinos: As this particles are SM singlets, {1, 1, 0} under the
SM gauge group, and hence participate in no interaction, they are also known
under the term sterile neutrinos. The only way, in which they reveal themselves,
would be through missing or occurring neutrino due to oscillation into and from
the sterile state respectively.

The above statements only apply, if neutrinos are Dirac particles (ν 6= νC). They
are the only particles in the SM that could also be of Majorana nature, allowing for
an additional Majorana mass term according to (2.18). Since LH Majorana mass
terms are violating the SM gauge symmetry and can only arise, if SU(2)L×U(1)Y
is already broken. Hence, they can only originate from a mechanism beyond our
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current knowledge. In contrast, RH SM singlets, yield mass terms consistent with
the SM gauge group already above the electroweak scale. Although this seems to
be a nice feature, we are only shifting the problem to higher energies, since the
RH mass term would violate lepton number, or more precisely (B − L). As it is
a favored quantum number of GUTs, RH neutrino masses are usually generated
during (B−L)-breaking, for other symmetries related to Majorana mass generation
see appendix C. Already by allowing neutrinos to be of Majorana nature, we
transient to foundations of the type-I seesaw mechanism, which is subject of our
discussion now.

2.3.2. (Type-I) seesaw framework

By extending the SM with three additional RH heavy neutrinos, Ni i = 1, 2, 3,
and allowing neutrinos, in general, to be Majorana fermions, the basic principles
of this simple model are already settled. Before we discuss the actual meaning
of the word “seesaw”, the implication of the introduced neutrinos are clarified at
first.

As already explained in section 2.1, a Majorana particle’s LH and RH compo-
nents are linked, as we demand them to be real, see (2.6) and (2.10).

For SM neutrinos νL, the LH component is chosen, since it has to participate in
weak interaction as usual, ν = νL + (νL)C . The newly introduced neutrinos must
not interact, such that we chose the RH component to define them, N = νR+(νR)C .
As usual, we work with chiral components according to (2.12). The RH neutrinos
νR can have the usual Yukawa coupling to leptons and the Higgs doublets without
spoiling the SM’s anomaly cancellation,11 since SU(2)L singlets and neutral parti-
cles they do not contribute to any triangle diagrams. After spontaneous symmetry
breaking (SSB), this interaction leads to the usual Dirac mass terms as for any
other fermion in the SM. Their sterile character has, in addition, the consequence
that the number of RH fields is unbounded, although at least two heavy neutri-
nos are needed to for consistency with experiment. The choice of three neutrinos
simply corresponds to the number of SM generations and may be motivated by
gauge-unifying theories.

Due to the their Majorana nature, the RH neutrino contribute additional mass
terms, which already fixes the Lagrangian responsible for the type-I seesaw sce-
nario. It is also possible to generate mass terms for the LH fields from higher-
dimensional operators, which are non-renormalizable; this possibility is used in
type-II seesaw models. If viewed as an effective description of a high-energy the-
ory, such that non-propagating DOFs can be integrated out, they earn their justi-
fication.

One comment for completeness: Actually all seesaw variants are based on the
same effective dimension-5 operator, the Weinberg operator [83], which generates
tree-level mass for neutrinos,

L5 =
1

2

g

Λ

(
L̄Lφ̃

) (
φ∗LCL

)
. (2.42)

11For details see chapter 30 of [54].
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The type-I seesaw framework reduces to an effective theory described through
(2.42), if we assume the heavy neutrinos to be very heavy in contrast to typical
energy scales of the theory, hence non-propagating, and integrate them out. This
complementary approach, where no assumptions about the UV region is made is
usually referred to a bottom-up approach

Now, we come back to our top-down perspective, where we know details about
the valid DOFs. We will assume for now, that a LH Majorana mass term ex-
ists in addition, allowing us to treat the most general seesaw mass matrix. The
Lagrangian relevant to the seesaw mechanism is given by

Lseesaw = LD + LM = −νLmDνR −
1

2
νLmL (νL)C − 1

2
(νR)CmRνR + h.c. . (2.43)

The first term is the familiar Dirac mass coming SSB of SU(2)L × U(1)Y with
mass proportional to the individual Yukawa coupling yij and the Higgs VEV. The
last two terms are the Majorana mass terms of LH and RH neutrinos. One can
now split the Dirac mass term according to

ν̄LmDνR =
1

2

(
νLmDνR + (νLmDνR)T

)
=

1

2

(
νLmDνR + (νR)CmT

D (νL)C
)
,

(2.44)

which allows us to write the seesaw Lagrangian in a more elegant way

Lseesaw = −1

2

(
ν̄L, (νR)C

)(mL mD

mT
D mR

)(
(νL)C

νR

)
+ h.c.

= −1

2
nTRC

−1mD+MnR + h.c. ,

(2.45)

with the vector nR ≡
(

(νL)C , νR

)T
containing the three LH SM neutrinos, the

three RH ones and the (6 × 6) neutrino mass matrix, mD+M , incorporating the
three original mass matrices as blocks.12 The choice of nR is usually a matter
of convenience, since one can also interchange chiral components by taking ele-
ments of the Lagrangian’s h.c.-part; e.g. in [64], n is defined in terms of LH chiral
spinors, which just interchanges the position of mD and mT

D in the full seesaw
matrix. In either case, the combined mass term has the form of a Majorana mass,
compare with (2.11), given in terms of RH Dirac spinors. Therefore it is symmetric
and diagonalizable by an unitary transformation according to (2.20). Details of
this diagonalization process and the corresponding consequences are given in the
subsequent part.

2.3.3. Seesaw diagonalization procedure

In the following, the diagonalization process of the seesaw mass matrix (2.45) is
shown in detail, following the conventions of [84]. One might think that this is

12If more than three sterile neutrinos are introduced, ns > 3, mD+M is given by a (3 + ns) ×
(3 + ns) matrix. This would have also important consequences on the previously defined
leptonic mixing matrix UPMNS , i.e. deviation from unitarity as it is now just a block matrix,
contained in a bigger mixing matrix. For this see [37,64].
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just some mathematical technicality, but the generation of small neutrino masses
originates exactly from this steps. By assuming certain hierarchies between the
different neutrino masses, the whole seesaw mass matrix can be brought into a
form, where it is evident that an increase of the heavy state’s mass naturally
decreases the light-state’s mass. Since the seesaw matrix is symmetric, it can
be diagonalized unitary transformation as usual. The diagonalization procedure
is performed in two steps: first a block-diagonalization in which the off-diagonal
block are removed, and second an individual diagonalization of the diagonal blocks.
Hence, a transformation matrix composed of two individual parts is obtained,

Dν = UT
seesawmD+MUseesaw =

(
Dlight 0

0 Dheavy

)
with Useesaw = UB UI . (2.46)

UB describes the transformation matrix needed for block-diagonalization and UI
the transformation necessary to diagonalize the individual block-diagonal entries.
For the seesaw mechanism to work out, we assume the following existing hierarchy
among the different block mass matrices: mL � mD � mR. The contribution
of the LH mass matrix should be the smallest as this term is forbidden in the
SM and can only occur through an effective interaction, being suppressed by its
characteristic energy scale Λ. The usual Dirac mass matrices, being induced by
the Higgs VEV vEW , should be of the order of common SM lepton masses. As
mentioned, the masses of RH neutrinos usually emerge from high-energy (B − L)
breaking, thus, must be the heaviest for this mechanism to work out.

Block-diagonalization of the seesaw matrix mD+M

The first diagonalization step assumes that the seesaw mass matrix can be brought
into block diagonal form up to corrections of a small parameter c, which is deter-
mined by demanding exact block-diagonal form. Due to certain hierarchies among
the block diagonal matrices, we can approximate c ∼ O(mDm

−1
R ). The nearly-

diagonalization of the mass matrix is obtained by taking a nearly-unitary matrix
according to

UB =

(
1− 1

2
cc† c

−c† 1− 1
2
c†c

)
. (2.47)

A check of its nearly-unitarity, confirms our ansatz,

UU † =

(
1− 1

2
cc† c

−c† 1− 1
2
c†c

)(
1− 1

2
cc† −c

b† 1− 1
2
c†c

)
=

(
1 + 1

4
cc†cc† 0
0 1 + 1

4
c†cc†c

)
= 1 +O(c4) ' 1 .

(2.48)

Next, we obtain block-diagonal structure through DB
!

= UT
BmD+MUB and con-

struct UB in a way, where we keep terms of mL with coefficients up to O(1),
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mD-terms up to O(c) and mR-ones up to O(c2),

DB = UT
BmD+MUB

=

(
1− 1

2
cc† −c

b† 1− 1
2
c†c

)(
mL mD

mT
D mR

)(
1− 1

2
cc† c

−c† 1− 1
2
c†c

)
'
(
mL − c∗mT

D −mDc
† + c∗mRc

† mD − c∗mR

mT
D −mRc

† mT
Dc+ cTmD +mR − 1

2
cT c∗mR − 1

2
mRc

†c

)
!

=

(
mν 0
0 mR

)
.

(2.49)
By this requirement, we obtain an expression for the small parameter c that elim-
inates the off-diagonal terms:

mD − c∗mR
!

= 0 −→ c =
(
mDm

−1
R

)∗
. (2.50)

In the end, the block diagonal form of the seesaw matrix is given by

DB = UT
BmD+MUB =

(
mlight 0

0 mheavy

)
'
(
mL −mDm

−1
R mT

D 0
0 mR

)
. (2.51)

It already allows us to infer how light-neutrino masses can be achieved. The light
matrix mlight can be viewed as the squared Dirac mass, suppressed by the inverse
of the heavy RH mass matrix. Hence, the name seesaw mechanism deserves its
justification through the fact, that we can tune the usual SM neutrino masses
arbitrary small by increasing the RH neutrino mass appropriately. Hence, the
lightness of LH neutrinos is now linked to the heaviness of their RH partners. In
the type-I seesaw scenario, mL is not present, such that the light neutrino masses
are given by the simple relation,

mlight = −mDm
−1
R mT

D, (2.52)

which is commonly known as the type-I seesaw formula.
Moreover, a closer look to the eigenstates reveals that the heavy RH neutrino

mass not only affects the mass eigenvalues, but also eigenstates. Thus, we obtain
the following eigenstates due to RH neutrino suppression,

νlight ≈ νL νheavy ≈ νR , (2.53)

which confirms that the usual SM neutrino are equivalent to the light neutrino
states.

Diagonalization of block matrices mlight and mheavy

For the next step, we can already rely on knowledge gained in the previous section.
If we view the light-neutrino mass matrix mlight as the one present in the context
of generation mixing, see section 2.2, we can perform the usual steps, which result
in appearance of the familiar leptonic mixing matrix UPMNS ≡ U e†

L U
ν
L. Work-

ing in the charged lepton basis, i.e. Ue = 1, sets the transformation between
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mass and weak eigenstates to be directly to the PMNS matrix, Uν = UPMNS.
Hence, the light-neutrino mass matrix is diagonalized by the PMNS matrixDlight =
UT
PMNS mlight UPMNS.
Equivalently, the heavy neutrino matrix is diagonalized by an unitary trans-

formation, Dheavy = V T
R mheavy VR. As VR is related to the high-energy region,

unfortunately we cannot infer heavy neutrino mixing at low energy. But they might
be of importance for processes occurring at high-energy or in the early Universe.
The remaining block matrices are diagonalized by a combined transformation UI
that incorporates the mentioned transformations, UI = diag (UPMNS, VR).

To summarize this section, the full transformation, capable of diagonalizing the
seesaw matrix mD+M , is presented and a numerical example is given to illustrate
the generation of light-neutrino masses. The full diagonal mass matrix (2.46) is
obtained by application of the combined transformation

Useesaw =

(
1−m∗Dm−1∗

R m−1
R mT

D m∗Dm
−1∗
R

−m−1
R mT

D 1− 1
2
m−1
R mT

Dm
∗
Dm

−1∗
R

)(
UPMNS 0

0 VR

)
.

(2.54)

To illustrate the type-I seesaw mechanism, we simplify the whole set-up to the
case of one light and one heavy neutrino. By doing so, we avoid matrices in (2.45)
and can directly infer the corresponding mass eigenvalues. The type-I seesaw mass
matrix shrinks to a (2× 2) matrix of the form

mD+M =

(
0 mD

mD mR

)
, (2.55)

with the mass eigenvalues mheavy/light = mR
2
±
√

m4
R

4
+m2

D. Assuming the RH
neutrino mass to be much heavier than the LH mass, mR � mD, yields the
following mass eigenvalues,

mlight ≈
m2
D

mR

=
y2v2

EW

mR

, mheavy ≈ mR . (2.56)

From this expressions, it is evident how the light-neutrino masses are suppressed
by heavy RH ones. Assuming a natural Dirac mass of the order of the electroweak
scale mD ≈ 100 GeV and large Majorana mass associated with the GUT scale
mR ≈ 1016 GeV gives rise to light-neutrino masses mlight ∼ O(10−6) eV. This
explain the generation of very small neutrino masses in a very natural way. Of
course, a huge parameter space is spanned by appropriately chosen Dirac and
Majorana masses, but the origin of light-neutrino masses for generic assumptions
is the strength of this model.

2.3.4. Parameter space and parametrization

Now that the basic principle of the seesaw mechanism has been shown, the model’s
parameter space is presented and a very useful parametrization is discussed.
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The generic seesaw-Lagrangian (2.45) has in total 18 free real parameters orig-
inating from the following quantities: The diagonal heavy neutrino mass matrix
contributes three real and positive masses, Mi i = 1, 2, 3. The remaining DOFs are
given in terms of nine moduli and six phases incorporated in the neutrino Yukawa
matrix y.13

These can be further classified according to the energy regions, where they be-
come important. The low-energy parameters are mainly those of the SM extended
with massive neutrinos: three neutrino masses (m1, m2, m3) and the three mixing
angles and phases from the leptonic mixing matrix UPMNS (2.23) (θ12, θ13, θ23,
Dirac phase δ, Majorana phases σ and τ). Five parameters have already been
measured in terms of three mixing angles (sin2 θ12, sin2 θ13, sin2 θ23) and two mass-
squared differences (∆m2, δm2). In addition, there exist bounds on the absolute
neutrino mass scale (e.g. m1) as well as on the Dirac phase δ, see e.g. table C.2
for current bounds. The two Majorana phases, σ and τ , are difficult to measure
and can only be inferred indirectly through processes like 0νββ. The remaining
six parameters are related to high-energy scales and could be relevant for pro-
cesses like leptogenesis [38]. The three heavy neutrino masses (M1, M2, M3) and
their corresponding mixing parameters in VR (three additional angles and phases),
constitute to the high-scale part of the type-I seesaw mechanism.

The 18 parameters listed with their separation into low- and high-energy regimes
is just a generic choice of parametrization. The entire lepton sector of the “seesaw-
augmented” SM can generally be described by the diagonalized charged lepton
Yukawa matrix yl, two diagonal matrices or equivalently their real eigenvalues, and
the corresponding transformations yielding their diagonal form. In the literature,
three typical parametrization are used in dependence of the particular framework,
see [39] for a detailed overview.

Casas-Ibarra parametrization

The Casas-Ibarra parametrization (CIP) [85] is a very useful tool for calculations
in type-I seesaw models since it uses the diagonal light and heavy neutrino mass
matrices, Dm and DM , together with the transformation that diagonalizes the
light-neutrino mass matrix, U , and an additional rotation matrix R. By its appli-
cation, the maximal number of, in principle, observable parameters is used, while
the inaccessible ones are casted into the complex and orthogonal transformation
matrix R. In the following, we will construct it from scratch, while we refer to [84]
for details.

Our starting point is the type-I seesaw formula (2.52) with diagonal heavy
neutrino and charged lepton mass matrices, DN and Dl respectively. In the
charged lepton basis, the diagonal light-neutrino mass matrix is then given by
Dν = UTmνU with U ≡ UPMNS, hence making this transformation parameter
accessible at low-energy. Further, we define the RH neutrino mass matrix to be

13The neutrino Yukawa matrix y is in general complex, yielding 18 independent DOFs. By
re-phasing of the lepton fields lα, α = e, µ, τ , three phases can be absorbed such that only
15 physical DOFs remain.
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diagonal, such that can safely set mR → DN . By defining the following quantities,

D√ν ≡ diag(
√
m1,
√
m2,
√
m3) D√N ≡ diag(

√
N1,

√
N2,

√
N3), (2.57)

and using (2.52), the diagonal light-neutrino mass matrix can be re-expressed as

Dν = UTmνU = −UTmDM
−1
R mT

DU

D√νD√ν = UT imDD
−1√
N
D−1√

N
imT

DU .
(2.58)

By multiplication of both sides with D−1√
ν

from left and right, a complex orthogonal
matrix R is obtained:

1 = D−1√
ν
UT imDD

−1√
N
D−1√

N
imT

DUD
−1√
ν

=
[
D−1√

N
imT

DUD
−1√
ν

]T [
D−1√

N
imT

DUD
−1√
ν

]
= RTR .

(2.59)

Thus, the orthogonal transformation R is given by

R = iD−1√
N
mT
DUD

−1√
ν
. (2.60)

On the other hand, R can generally be parametrized by three rotation matrices
R = R12R13R23 with Rij describing the rotation in the (i, j)-plane by an complex
angle zij = zR,ij + i zI,ij. This will proof a very useful tool in later investigation, as
it allows a nice separation of high- and low-energy parameters. By this procedure
the type-I seesaw parameter space is now characterized as follows; three heavy and
light neutrino masses, Dm and DN , six parameters related to the light neutrino
transformation UPMNS, and three complex rotation angles zij.

It should be noted that this parametrization can be extended to other seesaw
mechanism at the cost of loosing the direct relation between R and UPMNS given
by (2.60) If the number of heavy neutrinos deviate from the generic three flavor
case, the structure of this parametrization has to be modified appropriately. We
encounter such a situation in the investigations of chapter 3, where we state the
necessary changes.

2.4. Alternative neutrino mass generation

Of course, the type-I seesaw mechanism is not the only way of generating neu-
trino masses. Such mechanisms can mainly be divided into two classes: tree-level
mass generation, which also includes the seesaw mechanisms, and loop-level mass
generation. As both are realizable in bigger frameworks, like GUTs or left-right
symmetric models, their variations are extensive. This chapter gives an overview
of the different attempts to generate light neutrino masses.
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Figure 2.1.: Tree-level realizations of the Weinberg operator [83].

Type-II/-III seesaw mechanism

All seesaw models have in common that the light-neutrino mass emerges from an
effective dimension-5 operator, usually called Weinberg operator (2.42) and differ
only in its realization through different intermediate states. These particles have
to be generally very heavy such that they will only be relevant in the high-energy
regime. At low-energy they are considered as non-propagating DOFs and can be
integrated out, hence giving rise to a dimension-5 operator. Besides the “vanilla”
type-I scenario, where fermionic RH SM singlets, are introduced, two more seesaw-
like models can be found.

Type-II seesaw model Type-II seesaw mechanisms do not introduce any further
fermions but instead modify the SM’s scalar sector by adding a complex scalar
∆L, transforming as a SU(2)L-triplet [23–27]. Furthermore, this scalar has to be a
color-singlet, carry hypercharge Y = 1 and is usually written as a complex (2× 2)
matrix of the form

∆L =

(
δ+√

2
δ++

δ0 δ+√
2

)
. (2.61)

It gives rise to the following Lagrangian,

LII = Tr
[
(Dµ∆L)† (Dµ∆L)

]
−m2

∆Tr
[
∆†L∆L

]
+

1

2

(
−λ∆

αβL
T
αCiσ2∆LLβ + λφφT iσ2∆Lφ+ h.c.

)
,

(2.62)

with λ∆ the (3 × 3) complex matrix of dimensionless Yukawa couplings between
the triplet and fermionic doublets and λφ as dimensionless coupling between the
two scalars. As the scalar triplet is assumed to be very heavy, integrating it out
gives rise to the Weinberg operator, thus, after SSB a neutrino mass term of the
form

mII
ν =

λ∆λφv2
EW

m2
∆

. (2.63)

Increasing the triplet mass generically reduces the light-neutrino mass and hence
leads to a seesaw mechanism. This model has in general eleven real DOFs; nine
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coming from the new complex, symmetric Yukawa matrix, that are accessible at
low-energy, as well as the heavy triplet mass m∆ and the coupling the SM Higgs φ,
which are relevant at high-energy. In addition, no appropriate assignment of lepton
number to ∆L is possible, indicating the appearance of lepton number violating
processes. CP-violation might originate from phases of the new Yukawa coupling
λ∆ and λφ. The new scalar also interact with the SM SU(2)L gauge bosons and

could spoils the well-tested ρ-parameter, ρ ≡ m2
W

m2
Z cos2 θW

= (1 in the SM), if the

neutral component δ0 acquires a VEV. Special care has to be taken in suppressing
such contributions. Electroweak precision measurements constrains the neutral
component’s VEV to be of O(1 GeV) [86].

Type-III seesaw - Triplet fermions The type-III model enhances the fermion
sector, but instead of fermionic singlets, SU(2)L-triplets are introduced [28–30].
In this framework, they carry hypercharge Y = 0, are color singlets and again
arranged in a (2× 2) matrix,

Σ =

(
Σ0
√

2
Σ+

Σ− Σ0
√

2

)
. (2.64)

The Lagrangian of this SM extension is written as

LIII = tr
[
Σ̄ /DΣ

]
− 1

2
tr
[
Σ̄mΣΣc + Σ̄cm∗ΣΣ

]
−
√

2L̄λ†ΣΣiσ2φ+ h.c. , (2.65)

with λΣ as (3×3) complex dimensionless Yukawa matrix and mΣ being the triplet
mass matrix. Integrating out the heavy DOFs, leads again to a dimension-5 oper-
ator and, thus, neutrino mass generation according to

mIII
ν = v2

EWλ
T
Σm
−1
σ λσ . (2.66)

This implements a “seesaw” between the neutrino masses and the heavy triplet
mass. This type-III ansatz has 15 free parameters, similar to the type-I case,
and an effective description is also obtained by the general seesaw mass matrix of
(2.45), setting mL = 0. Equivalent to the previous case, consistent lepton number
assignment is impossible for the lepton triplet Σ, hence implementing LNV. CP
violating processes are introduced by the complex phases of the Yukawa coupling
matrix λΣ.

The three types of seesaw model are merely indistinguishable at low-energy
since elimination of heavier states yields the same operator. Only be taking into
account further model-specific processes, like occurring double-charged particles
in the type-II context, one might be able to separate their phenomenology. But
all in all, only at high-energy all three models show their distinct properties when
the heavy states become dynamical DOFs again.

Radiative neutrino mass generation

In contrast to seesaw mechanisms, where effective tree-level mass generation is the
driving principle, the class of radiative neutrino mass generation aim for loop-level
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Figure 2.2.: One-loop realizations of the Weinberg operator as given in [29].

realizations of the Weinberg operator (2.42). The fundamental principle behind
this ansatz is that, in quantum field theory, mass shifts can be introduced through
radiative corrections. The occurring loop suppression factor (4π)−2 allows the
intermediate particles, propagating in the loop, to have lower masses down to TeV
scales, that can in principle be probed at the LHC or future colliders. Three
different loop-level realizations are shown in figure 2.2. The first diagrams is, i.e.
used in the scotogenic model [35], where an additional scalar in the loop leads to
the neutrino mass generation. Of course, more scalars or fermions can be used.
Zee-Wolfenstein models [32,33] are based on the realization of the second diagram
and the third one is used in the model of Babu and Ma [34]. A more general
classification is done by grouping the models, in how the full mass spectra are
obtained: either going to higher loop orders [31] or using effective operators of
higher dimensions [36]. An overview of the mentioned mechanisms is given in [87].

Dirac seesaw and more exotic models

Of course, there exist also models that assume the neutrino’s particle nature to be
of Dirac type and just add yet undiscovered RH neutrino components. A specific
example of the Dirac seesaw has been found by Mohapatra and Valle [88] in the
context of a SUSY model,i.e. two Higgs doublets. The quintessence is the existence
of a chiral U(1) symmetry, which forbids the RH neutrino component to have a
Dirac mass. On the contrary, heavy singlet fermions, N̄R and NL with opposite
U(1)-charges receive a usual Dirac mass and couple to usual SM leptons. Another
Higgs χ is introduced for U(1)-breaking and contributes further Yukawa coupling.
The corresponding Lagrangian is given by

LDSeesaw = gN̄RlLφ1 + hν̄RNLχ+MN̄RNL

=
(
ν̄R, N̄R

)( 0 g 〈χ〉
g 〈φ1〉 M

)(
νL
NL

)
=⇒ mD

ν ' hg
〈χ〉 〈φ1〉
M

,
(2.67)

where 〈χ〉 and 〈φ1〉 reflect the Higgs VEVs and h, g the corresponding Yukawa
couplings. As ν̄R and NL do not couple to χ, lepton number remains conserved.

Dirac neutrino masses can also emerge from more exotic theories, e.g. higher-
dimensional models discussed as a solution to the hierarchy problem [89]. The
underlying assumption is that Nature may be realized in a (4 + 1)-dimensional
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space, whereas our would with the SM is located on a (3+1)-dimensional boundary.
By integrating out the extra-dimension, which is assumed to be finite, from the
five-dimensional Einstein-Hilbert action, leads to a reduced Planck mass, such that
the weakness of gravity is understood as a result from compactification of the fifth
dimension. As the RH neutrino component does not couple to the SM (boundary),
it can be located into the fifth dimension with a possible Yukawa interaction at the
SM boundary [90,91]. Integrating over the extra-dimension generates a suppressed
Yukawa interaction,

S4 =

∫ √
−g4ν̄R/∂νR d

4x+

∫ √
−g4

M∗
mPl

yν ν̄RLLφ d
4x+ h.c. , (2.68)

where
√
−g4 is the determinant of the four-dimensional metric and M∗ the reduced

Planck mass. Assuming yν ∼ 1 and M∗ ∼ 1 TeV, yields a small Dirac neutrino
mass mD

ν ' 10−5 eV.

2.5. Leptogenesis

To close the chapter about massive neutrinos, we want to briefly discuss an im-
portant scenario called leptogenesis that may contribute to the generation of the
Universe’s baryon asymmetry [38]. According to the Sakharov conditions [92],
three ingredients are needed in the early Universe to account for the observed
BAU: baryon number-violation, C and CP violation as well as some interaction
dropping out of thermal equilibrium. Key ingredient of the leptogenesis framework
is that a CP -asymmetry is created the lepton sector through the decay of heavy
singlet neutrinos, which are naturally present in the type-I seesaw framework.
The created asymmetry is then transfered into the baryon sector through so-called
sphaleron processes [93–95]. These are non-perturbative effects that arise from
the SM’s chiral anomaly [54] and violate B+L quantum number, while preserving
B −L.14 At temperatures above the electroweak phase transition (EWPT), these
effects occur frequently and lead to rapid B+L violating particle reactions, which
are used to transfer the created lepton asymmetry into the baryon sector.

The leptonic CP -asymmetry, ε, originates from heavy Majorana neutrino de-
cays, that violate lepton number; more precisely from the interference between
tree- and loop-level decays, see figure 2.3.

The net lepton asymmetry εαα in a certain flavor α from the decay of a heavy
Majorana neutrino N1 is given by

εαα ≡
Γ (NI → H Lα)− Γ

(
NI → H̄ L̄α

)
Γ (NI → H Lα) + Γ

(
NI → H̄ L̄α

) . (2.69)

The departure from thermal equilibrium is guaranteed by the Universe’s expansion.
Any interaction rate that is at the order, or slower, than the Hubble rate H is not
fast enough to reach equilibrium anymore. Simultaneous to heavy neutrino decays,

14B and L refer to baryon and lepton number respectively.
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Figure 2.3.: Possible heavy neutrino decays in the leptogenesis scenario. Interference
between the tree-level diagram, right diagrame and the loop-level dia-
grams, middle and left diagrame, gives rise to ��CP .

inverse-decay processes are taking place that redistribute any previously produced
net asymmetry ε. Hence, a remaining lepton asymmetry is only created if the
decay process exceeds its inverse reaction. These dynamics are usually described
in terms of Boltzmann equations, although analytic approximations for certain
regions of “time” evolution are possible [52]

One can imagine that the entire scenario can be arbitrarily complex, depending
on how many heavy neutrinos contribute, or whether flavor and thermal effects are
taken into account. A review, where all these aspects can be find in [39]. There, a
simple toy model is presented, assuming only contributions of one heavy neutrino
N1 to the lepton asymmetry of a single flavor α. A hierarchical structure among the
heavy neutrinos is assumed, whereas only the lightest, N1, is considered as prop-
agating and contributing to leptogenesis. The (thermal) leptogenesis mass scale
is approximated by the mass of the decaying particle, Λ ∼ M1 ∼ 109 GeV. The
approximated BAU, in terms of the number-to-entropy density ratio, is described
through the following expression, where each Sakharov condition contributes one
suppression factor [39],

YBAU '
135 ζ(3)

4π4g∗
εαα × ηα × C , (2.70)

where ζ(x) is the Riemann zeta function, ηα an efficiency factor due to inverse
decays or other “washout” effects and C represents a reduction factor due to oc-
curring Yukawa interaction and sphaleron processes. g∗ ' 106 corresponds to the
available SM DOFs. In the leptogenesis scenario, the baryon number violation is
provides by the sphaleron processes. The heavy neutrino decays are responsible for

�
��CP , which also implies C violation, and the Universe’s accelerated expansion leads

to out-of-equilibrium dynamics if the interaction rate drops below the Hubbe rate
H. In the end, we want to mention that the generic case of thermal leptogenesis
suffers from problems due to the contributing heavy particles. Induced radiative
corrections to the Higgs mass parameters µ2, arising from a heavy neutrino mass
of O(109) GeV, contradict with arguments of electroweak naturalness [96]. Fur-
thermore their decay would lead to gravitino overproduction in the universe, which
would have been already measured, see [97] and references therein. One can lower
the relevant heavy neutrino mass by using nearly-degenerate neutrinos, such that
their decay is enhanced due to resonance effects. Such scenarios are referred to as
the term “resonant leptogenesis” [98–100] and will be of importance in chapter 4.





3. From CP phases to Yukawa
textures

In the following a minimal realization of the type-I seesaw model with so-called
two-zero texture in the neutrino Yukawa matrix is studied under the assumption of
small perturbations instead of exact zeros. In a data-driven, bottom-up approach
possible Yukawa structures for normal and inverted mass ordering are investigated
concerning their consistency with recent low-energy neutrino observables. This
chapter deals with the procedures and results of [50] and complements the gained
knowledge, where it is necessary.

3.1. Motivation and general approach

After the first detection of neutrino oscillations, a lot of effort has been spent to
measure underlying neutrino parameters, i.e. three mixing angles and two mass-
squared differences, see section 2.2 and for details [101]. Up to now, all mentioned
parameters have been measured with satisfying accuracy [77] and only the abso-
lute neutrino mass scale [9] as well as leptonic CP violating effects [102] remain
undetected. The later is strongly expected from theory-site since it is associ-
ated with a non-vanishing Dirac phase δ in present the leptonic mixing matrix
UPMNS [59, 63, 73]. Experiments attempting to measure both outstanding ques-
tions are going to be build, or already under commissioning, e.g. KATRIN [12]
for the absolute neutrino mass scale and DUNE [103] to measure occurring phases
in neutrino mixing. Current oscillation experiments like NOνa [13] and T2K [14]
prove that experimental methods have reached a level of sensitivity that makes
deeper investigations of ���CP in the neutrino sector possible. While the experi-
mental site is taking steps towards measuring the last missing quantities in the
low-energy neutrino sector, the question arises, whether one is able to infer any
properties related to the UV regime. For example, is it possible to make a state-
ment about ���CP at high-energy, which could have important consequences for the
generation BAU in the early universe [38] or can we learn more about mechanisms
generating neutrino masses at high scales?

In the following, the influence of experimental progress, i.e. a measured CP
phase δ, is approached in the context of a minimal type-I seesaw scenario, picked
because of its simplicity in generating neutrino masses, see section 2.3. Due to a
large parameter space, prediction of distinct signatures or properties at low-energy
is very difficult in the generic seesaw framework and a lot of work has been done to
circumvent this issue. For example, the assumption of a certain flavor symmetry
at high-energy could restrict interactions in the leptonic sector, hence reducing
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the number of free parameters relevant for the seesaw mechanism [104,105]. This
comes with the cost of introducing additional scalars, which would increase the
model’s particle content and shift the problem just to higher energies. A more
pragmatic way is to work only with two heavy neutrinos, reducing three complex
Yukawa couplings [41–43,45]. This could, for instance, be an effective description
of a situation, in which two heavy neutrinos have masses of the same order of
magnitude and a third one being much heavier. As a barely propagating DOF it
is then said to decouples from the theory and, as a result, the main low-energy
neutrino phenomenology would be dictated by the two lighter ones. This minimal
type-I model with two RH neutrinos has only four parameters left; among them
two CP phases. Being more predictive comes with the cost of one light neutrino
being exactly massless. In the spirit of Ockham’s razor this framework is enough
to reproduce the current observed phenomena and yields an sufficient effective
description for an appropriately low neutrino mass scale [106]. Further, the CP
phase δ in the resulting leptonic mixing matrix enters the effective neutrino mass
〈mee〉, accessible in 0νββ experiments like GERDA [11], and direct mass measure-
ments performed in KATRIN. Additionally, these models provide enough ���CP for
successful baryogenesis via leptogenesis [92,107]. Together, this yields constraints,
or at least some benchmarks, a successful high-energy theory for neutrino masses
has to fulfill. Recently such kind of models have been studied in the context of
resonant leptogenesis [99, 108] and further theoretical arguments like naturalness,
vacuum (meta-)stability and detectable 0νββ [109]. Constraints in terms of so-
called zero-texture, entries in the neutrino Yukawa matrix equaling exactly zero,
originate from a flavor symmetry at much higher energies and reduce the number
of free parameters even further [45, 110–112]. This ansatz has proven successful
in the past for prediction of the Cabibbo angle [113], but all such approaches
share common reliance on some kind of high-energy origin; justifying their name
as so-called top-down approaches.

This chapter heads directly into the opposite direction and choses a bottom-
up approach by only referring to experimental data and remaining as model-
independent as possible within the given framework of a minimal type-I seesaw
model. From theory-site it is expected that exact zeros within the Yukawa matrix
experience some perturbation by radiative or gravitational corrections [114], such
that we relax this assumption and allow instead for some small parameter. Of
course, this enlarges the valid parameter space, but in principle a precise study
of Yukawa structures and corresponding hierarchies among couplings, consistent
with experimental data, should be possible without relying on some specific UV
flavor model. In this way, our approach concerns all possible flavor models, which
can be implemented in the seesaw framework, and further qualifies how large per-
turbations for certain Yukawa structures are allowed to be for consistency with
experiments. The precise UV model, creating an exact zero-texture within the
neutrino Yukawa matrix, will still give some prediction for the yet unmeasured
CP phases at low-energy. By allowing for small perturbations at the position of
the exact zero entry, we can assign a theoretical error bar to the definite predic-
tion. From the top-down point of view, the following investigation can be seen
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as a generalization of the usually performed texture ansatz. One could criticize
this approach since the direct connection to a certain symmetry is lost, but as
we expect the assumed flavor symmetry to be broken at some high-energy, we are
not able to directly infer it from the low-energy anyway. From the bottom-up
perspective, this approach is most agnostic about UV physics and effectively helps
to distill even more knowledge out of experimental data.

3.2. Minimal type-I seesaw model with two heavy
neutrinos

As already mentioned, the framework of this investigation is a minimization of
the generic seesaw type-I mechanism, in the sense of only having two instead of
three RH neutrinos. All steps presented in chapter 2 are equivalent, up to some
small modifications in the corresponding states and matrices respectively. In this
section, we will give a short overview of the modified formalism and comment on
the zero-texture ansatz, commonly applied at high-energy.

Starting point is the seesaw Lagrangian with all possible mass terms (2.43), but
with the difference of νR just being a two-component vector in flavor-space. This
directly reduces the Majorana mass term to a (2×2) matrix. Now, the Dirac mass
matrix, or the neutrino Yukawa matrix respectively, has to be of (3× 2) structure.
The procedures presented in section 2.3 can be adjusted in terms of νL being a
usual three-component vector in flavor space, whereas νR has two components now.
After diagonalization, one arrives at the expected light neutrino Lagrangian and
the familiar type-I seesaw formula (2.52),

Lmin = −ν̄Lmlight νL , mlight = −mDm
−1
R mT

D , (3.1)

with the Dirac mass matrix being of (3× 2) type and the Majorana mass matrix
being (2× 2) as assumed above. Hence, the light neutrino mass matrix mlight has
rank two, which is the reason why one neutrino has to remain exactly massless.
A simple illustration of this minimal seesaw framework is given by figure 3.1.
As mentioned in section 2.3, the sign of the atmospheric neutrino mass squared-
difference it yet unknown, thus allowing for different mass arrangements in the light
neutrino sector. In our context, only the normal mass hierarchy m1 � m2 � m3

and the inverted mass hierarchy m3 � m1 � m2 are relevant and the definition
of mass-squared difference (2.35) yields the following mass spectra,

NH: m1 = 0 , IH: m1 =

√
−∆m2 − 1

2
δm2 , (3.2)

m2 =
√
δm2 , m2 =

√
−∆m2 +

1

2
δm2 ,

m3 =

√
∆m2 +

1

2
δm2 , m3 = 0 .
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Figure 3.1.: Illustration of the minimal type-I seesaw model. Due to the reduced rank
of the neutrino mass matrix, one particle remains massless, while the oth-
ers obtain light masses through suppression by the two heavy neutrino
masses. The corresponding values can be obtained through (3.2) accord-
ing to the underlying mass ordering.

The diagonalization is performed, as usual, by going into the charged lepton basis
and using an unitary transformation according to (2.20), leading to the identifi-
cation of U with the leptonic mixing matrix UPMNS. We have already discussed
the feature of additional phases in the leptonic mixing matrix for the generic case
of three Majorana neutrinos, see section 2.2. Since we are dealing with a reduced
number of heavy Majorana neutrinos only one additional phase σ arises, besides
the conventional Dirac phase δ in the PMNS matrix, which is given by (2.25),

U =

 c12 c13 s12 c13 s13 e
−iδ

−s12 c23 − c12 s13 s23 e
iδ c12 c23 − s12 s13 s23 e

iδ s23 c13

s12 s23 − c12 s13 c23 e
iδ −c12 s23 − s12 s13 c23 e

iδ c23 c13

1 0 0
0 eiσ 0
0 0 1

 . (3.3)

As we know from section 2.2, the phases in the leptonic mixing matrix lie in
different domains, δ ∈ [0, 2π) and σ ∈ [0, π), due to their different origins.

We chose this minimal approach of only two RH neutrinos due to its reduced
of parameter space, which we will now justify by comparing its DOFs with the
generic three-neutrino case. The neutrino Yukawa couplings are incorporated in
a complex (3 × 2) matrix, having in total twelve real DOFs. Three of those
can be absorbed into the charged lepton fields, which gives nine real parameters
in contrast to the generic case exhibiting fifteen reals DOFs. Although the RH
neutrino mass could also be counted, it can be absorbed into the Yukawa couplings
without loss of generality since the following transformation allows to compensate
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for any rescaling in the seesaw formula (2.52),

mi → m
′

i yαi →

√
m
′
i

mi

yαi . (3.4)

The nine DOFs at high-energy have to match all low-energy observables, which
are given by three mixing angles θ12, θ13 and θ23, two CP phases δ and σ and
two mass-squared differences, δm2 and ∆m2. 1 A common way to relate these
parameters of different energy regions is the CIP, see section (2.3), which will prove
very convenient below. In the case of the seesaw formula (2.52), the individual
CIP quantities have to be adjusted to the reduced number of heavy neutrinos. We
have already discussed this parametrization in detail, such that we can rely on
the formulas given in section 2.3. Taking the orthogonal transformation matrix R
(2.60) and rearranging it, yields an expression for the neutrino Yukawa matrix,

y =
i

vEW
U∗D√ν RD√N , (3.5)

where we have the matrices with square-root mass eigenvalues on the diagonal
of light D√ν and heavy neutrinos being D√N being a (3× 3) and (2× 2) matrix,
respectively. Further, the complex conjugated leptonic mixing matrix U∗ is present
as well as a (3× 2) “rotation” matrix R with complex angle z, where the latter is
related to two remaining DOFs in the high-energy regime. It is to mention that
R is not exactly an orthogonal matrix in case of only two heavy neutrinos, as it
only satisfies RTR = 12, but not RRT = 13. In addition, R differs for normal and
inverted mass ordering,

NH: m1 = 0 , R =

 0 0
cos z − sin z
η sin z η cos z

 ,

IH: m3 = 0 , R =

 cos z − sin z
η sin z η cos z

0 0

 .

(3.6)

The parameter η = ±1 is used to distinguish between two different branches of
possible rotation matrices R, named according to the sign of η. It is possible
to map both branches onto each other, but before doing this, we will define two
dimensionless quantities to simplify notation. From now, we will switch to index-
notation since it allows to write expressions in a more compact form. The two
quantities of our interest are the rescaled version of the Yukawa coupling matrix
κ and the dimensionless version of the leptonic mixing matrux V ,

καI = −i yαI
√
vew

MI

, Vαi = U∗αi

√
mi

vew

, (3.7)

1In our context, the absolute neutrino mass scale is assumed to be vanishingly small as one
neutrino must be massless. The other masses are then just simply constructed according to
(3.2).
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which allow us to remove any dimension from the CIP and rewrite our parameter
set even more compactly,(

κα1

κα1

)
=

(
cos z η sin z
− sin z η cos z

)(
Vαk
Vαl

)
, (3.8)

with (k, l) = (2, 3) for normal hierarchy (NH) and (k, l) = (1, 2) for inverted hierar-
chy (IH). The couplings of both branches are related via the following relation [40],

κ−α1(z) = −κ+
α2(

π

2
− z) , κ−α2(z) = −κ+

α1(
π

2
− z) . (3.9)

Hence, couplings from the negative branch follow from their positive counter-part
by application of the following steps:

1. Sign-flip of all coupling constants: καi → −καi

2. Exchange of both matrix columns: κα1 ↔ κα2

3. Shift of the complex rotation angle z: <(z)→ π
2
−<(z)

Due to this properties, it suffices to select just one branch since a mapping to the
other one is always possible by the above instructions. Without loss of generality,
we set η = 1 for the rest of our investigation, thus remaining in the CIP’s positive
branch.

By absorption of neutrino masses in the Yukawa couplings and the mixing ma-
trix respectively, the right-hand sides of (3.8) do no longer depend on the heavy
neutrino masses and we achieve a nice separation according to the parameter’s
energy scale. Now, only high-energy parameter appear on the right-hand site,
while low-energy observables remain on the left-hand site with the complex rota-
tion angle z linking them to the UV domain. In our pursuit of finding maximal
realizable hierarchies between different Yukawa entries, this rotation angle can be
viewed from the low-energy regime as an auxiliary parameter, that tunes a certain
hierarchy according to the high-energy assumption. Hence, scanning it helps us
to find the strongest realizable Yukawa structures. During our analysis a more
general procedure was developed, which uses exactly one of these steps.

3.2.1. The zero-texture ansatz

Before diving into the details of our study, common approaches of zero-texture
in the minimal type-I seesaw model are discussed. A usual procedure to reduce
a model’s DOFs or to explain the dominance of some interaction is to assume
a certain symmetry at a higher energy scale that causes small or vanishing en-
tries in the corresponding coupling matrix. Especially in flavor-related topics,
such assumptions are of common use [115]. An exact zero-texture in the neutrino
Yukawa matrix could, for example, rely on some high-energy flavor symmetry that
is broken at lower scales. Naively, one would expect that such zero entries receive
perturbations due to radiative corrections or gravitational effects [114]. Before we
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cover a more general case with our analysis, we repeat the consequences of such
leading order zero-texture approaches.

Regarding the minimal type-I seesaw scenario, a lot of work has been done
[112, 116] in the last years that shall be summarized now. Note, that we already
deal with a reduced parameter space as only two RH neutrinos are introduced. It is
expected that further assumptions result in new connections among the remaining
DOFs and as a consequence the model’s consistency with experimental data is
to be checked for each individual case. At this point, the issue with top-down
approaches becomes evident, as one has to apply a symmetry, that may result in
some specific Yukawa pattern in our minimal seesaw model. Then, the resulting
phenomenology must be consistent with low-energy observables. While the Dirac
CP phase is to be measured in the upcoming years, it is even unclear if a related
exact high-energy model exists or can be identified. Moreover, multiple models
could predict the same Dirac phase, making the situation even more complicated.

One-zero textures

In our minimal seesaw model, it is always possible to set one entry of the neutrino
Yukawa matrix to an exact zero. Such one-zero texture approaches have been
studied in the context of normal mass ordering [111] and successful leptogenesis
[116]. Therein, the demand of having one exact zero leads to connections among
two matrix entries such that a matching between experimental observables and
theoretical DOFs can be achieved. Six Yukawa textures can be obtained that result
in different phenomenological consequences that have to agree with experimental
data, subsequently. The application of our dimensionless CIP (3.8) helps to find
the complex rotation angle z that sets the desired entry to an exact zero,

NH: κα1 = 0 ⇒ tan z = −Vα2

Vα3

, IH: κα1 = 0 ⇒ tan z = −Vα1

Vα2

,

κα2 = 0 ⇒ tan z = +
Vα3

Vα2

, κα2 = 0 ⇒ tan z = +
Vα2

Vα1

.

(3.10)

The above conditions determine the complex rotation angle z as the ratio of two
Yukawa elements, which can easily be calculated by inserting the experimental
observables of table C.2.

Two-zero textures

Two zeros within the neutrino Yukawa matrix are the most minimal assumption
that is allowed by current data sets [45, 106]. The implementation of further zero
entries would lead to vanishing mixing angles at low-energy, clearly in disagreement
with the measured observables. In this sense the type-I seesaw model with two
RH neutrino and a two exact-texture is the minimal realization possible at the
moment. Setting two entries of the (3× 2) neutrino Yukawa matrix to zero, yields
in total fifteen possible patterns that can be grouped in different texture classes.
In the notion of [112], the following two-zero textures for the Yukawa matrix κ are
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realizable,

A1 :

0 0
× ×
× ×

 , A2 :

× ×
0 0
× ×

 , A3 :

× ×
× ×
0 0

 , (3.11)

B1 :

0 ×
× 0
× ×

 , B2 :

0 ×
× ×
× 0

 , B3 :

× ×
0 ×
× 0

 ,

B4 :

× 0
0 ×
× ×

 , B5 :

× 0
× ×
0 ×

 , B6 :

× ×
× 0
0 ×

 ,

C1 :

0 ×
0 ×
× ×

 , C2 :

0 ×
× ×
0 ×

 , C3 :

× ×
0 ×
0 ×

 ,

C4 :

× 0
× 0
× ×

 , C5 :

× 0
× ×
× 0

 , C6 :

× ×
× 0
× 0

 .

Moreover, the constraints of having two Yukawa entries being exactly zero, leads
to new connections between the other matrix elements. Instead of two entries,
now four Yukawa coupling are intertwined according to

(καI , κβJ) = (0, 0) , (α, I) 6= (β, J) ⇒ V1

V2

= ±V3

V4

. (3.12)

These connections give the two-zero texture ansatz a very strong prediction power
and extensive studies showed that only four of the presented patterns are compat-
ible with observations in the case of IH [112]. NH in context of the minimal type-I
seesaw exhibiting exact two-zero textures is always inconsistent with experimental
data! The still valid textures for IH, are B1, B4, B2 and B5, while the first and last
two only differ by an exchange of matrix columns. The case of two-zero textures
but three heavy neutrinos is covered in [106]. The model’s strong predictive power
manifests itself in precise forecasts for the Dirac and Majorana CP phases, δ and
σ. To leading-order (LO) in the reactor mixing angle s13 [112], they are given by

cos δ '

+
sin 2θ12(1−m2

1/m
2
2)

4 tan θ23 sin θ13
− tan θ23 sin θ13

tan 2θ12

− sin 2θ12(1−m2
1/m

2
2)

4 cot θ23 sin θ13
+ cot θ23 sin θ13

tan 2θ12

, cos 2σ '

{
1− tan2 θ23 sin2 θ13

2 sin2 θ12 cos2 θ12
(B1,4)

1− cot2 θ23 sin2 θ13
2 sin2 θ12 cos2 θ12

(B2,5)
.

(3.13)

With the measured mass-squared differences and mixing angles of table C.2 one
can determine the points of exact two-zero textures as

(δ, σ)

π
'

{
(0.51, 0.94) or (1.49, 0.06) (B1,4)

(0.50, 0.04) or (1.50, 0.96) (B2,5)
. (3.14)

Therefore, by a future measuring of the Dirac phase δ one can roughly discriminate
between the valid textures and give some expectation for the Majorana phase σ.
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Or rephrased, by measuring both CP phases, δ and σ, one is capable of pinning
down the structure of the neutrino Yukawa matrix. These kind of statements are
just true, if our framework is a valid, at least effective, description of nature. One
interesting fact about the valid Yukawa structures is to be mentioned:
All patterns with two-zero texture, that are in agreement with current observa-
tions, exhibit a Dirac phase δ that is close-to-maximal CP violating with a value
of δ ' ±π

2
mod 2π, according to (2.38).

3.3. Agnostic approach and identification of Yukawa
hierarchies

Our framework’s clear prediction (3.14) results in a maximal reduction of valid
parameter space and represents the minimal possible realization that is consistent
with current experimental data. If the CP phases are measured as predicted, it
confirms the assumed model at least as an effective description of nature. As former
experiments taught us, nature does not always reveals itself the way we want it
to be. So what about a situation where experiments measure slight deviations
from the model’s prediction? Immediate abandoning the whole framework, which
is based on some good theoretical arguments, would be a bit to premature. One
argument that justifies slight deviations is that we just used best-fit values of the
entering neutrino observables, see table C.2, while experimental uncertainties have
to be considered as well. We are going to analyze the influence of experimental
uncertainties in section 3.5, allowing us to judge the stability of the obtained
results. Furthermore, one could analyze the theory to find its uncertainties on the
predicted values. Earlier, we mentioned that exact-zero textures could just be a
leading order approximation and, in reality, simply some hierarchy between certain
Yukawa coupling could be introduced by some flavor symmetry breaking, i.e. two
entries in the neutrino Yukawa matrix are much smaller than the remaining ones.
Alternatively, the theory could exhibit exact zero Yukawa couplings at tree-level
but receive radiative corrections at higher order which would induce some small
perturbations. All these things would contribute to an systematic uncertainty that
should be considered as a theoretical error bar complementing the experimental
uncertainty. Such an approach would need to know about all possible UV seesaw
models capable of achieving such effects in the context of the minimal seesaw
model, which is obviously far from possible. For this reason, we re-phrase our
previous question in a more agnostic way: What are the maximal hierarchies
achievable for a measured set of CP phases (δ, σ)? In this way, we can check what
perturbations are still allowed to contribute to an exact-zero texture and, even
better, are capable of also tracking some approximate zero-textures. As a results,
we are now taking a more data-driven path and look how large the former texture
zeros have to be, to allow for certain approximate Yukawa structures (3.11), which
are still consistent with experiments. We are staying as model-independent as
possible since no assumption on the UV flavor theory, which might be relevant in
our context, is needed. Hence, the strongest hierarchies consistent with neutrino
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data are subject of our investigation.
In doing so, the CIP proves very useful for given set of (δ, σ), as variation of

the complex rotation angle z yields a whole set of Yukawa matrices that can be
associated with a particular known or unknown UV completion of the seesaw
mechanism, reconciling the experimental data. The two DOFs of z can then be
interpreted as some index or label of such a UV seesaw flavor model. By scanning
the complex z plane, we can check all possible UV flavor models compatible with
the seesaw framework and investigate which one produces the strongest hierarchy
among all Yukawa coupling. Of course, we are not able to give stronger insights
about the high-energy theory that is exactly responsible for a certain Yukawa
structure. From our data-driven point of view, we are just interested which z
values exhibits the strongest hierarchy. In principle, this z can be related to one
or several UV flavor model in our minimal seesaw framework, if known. In this
sense, we address all high-energy models, again in the context of our minimal
seesaw model, and guarantee independence of any particular assumption. The
obtained results can then be interpreted as upper bounds on the corresponding
Yukawa structure for a given set of (δ, σ).

3.3.1. Investigation of Yukawa hierarchies

Before the actual results are presented, the systematics of the applied method
are discussed. The hierarchy of a Yukawa matrix is assessed via a self-defined
parameter R23 which has very useful properties for our discussions. From the
previous section we know that the minimal type-I seesaw model with exact two-
zero texture is capable of giving precise predictions on the CP phases δ and σ2.
As we now allow these zeros to be small parameters, our model should exhibit
two additional DOFs as the strong linkage between elements according to (3.12) is
lost. Hence, one particular Yukawa matrix, whose hierarchy is to be determined, is
characterized by a given set of (δ, σ, z). In the following section, a method capable
of assessing the hierarchies among certain matrix indices is presented.

As a first step, all individual Yukawa couplings are sorted according to their
absolute value, such that we have

κ̂ = (κ̂1, κ̂2, κ̂3, κ̂4, κ̂5, κ̂6, ), |κ̂i| ≤ |κ̂i+1|, i = 1, 2, ..., 5 . (3.15)

Now, the manifestation of an exact zero textures can easily be checked by counting
the number of zeros in this sorted list as we have

One texture zero: κ̂1 = 0, κ̂2 > 0 ,

Two texture zeros: κ̂1 = 0, κ̂2 = 0, κ̂3 > 0 ,

etc.

(3.16)

The information about their exact positions is lost, but will not be of importance at
the moment. Since we are also interested in scenarios of approximate zero texture,

2The number of DOFs is now precisely matching the number of experimental observables. Eight
real DOFs are provided by the two-zero Yukawa texture, from which three can be absorbed
in the charged lepton fields, giving in total five DOFs.
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the two smallest entries κ̂1,2 and their corresponding difference to the remaining
one κ̂3,4,5,6 are subject of our concerns. A good quantifier of this hierarchy is the
simple ratio of absolute values between the second and third list element, which
we will call hierarchy parameter from now on,

R23(δ, σ; z) ≡ |κ̂2|
|κ̂3|

. (3.17)

Taking (3.7) and assuming that both heavy neutrinos are almost degenerate in
mass, or at least have masses in the same order of magnitude M1/M2 ∼ O(1), we
can simplify it even further,

R23 =
|κ̂2|
|κ̂3|

=

√
M̂3

M̂2

|ŷ2|
|ŷ3|
' |ŷ2|
|ŷ3|

. (3.18)

Thus, our hierarchy parameter is able to reflect the ratio of the actual second and
third smallest Yukawa couplings in the case of both heavy neutrinos sharing almost
the same mass scale. R23 varies in the range from zero to one and quantifies the
hierarchy among the corresponding Yukawa couplings. A vanishing R23 indicates
a real zero-texture and a maximal value of unity no hierarchy at all. By this
definition, our analysis is independent of any heavy neutrino mass if those are of
the same order of magnitude. If this is not the case and both neutrino masses are
separated over large ranges, our results have to be multiplied by the ratio of both
masses, according to (3.18). Moreover, the general conclusions, we draw below,
are not affected by this rescaling. Exact zero-textures with a vanishing hierarchy
parameter still exhibit a zero value, whereas maximal hierarchy parameter will
remain maximal. Hence, we collect all the model’s important features by assuming
degenerate heavy neutrino masses.

Now, the properties of R23 and some special regions of the parameter space are
commented on.

Properties of the hierarchy parameter R23

In figure 3.2, we plotted the introduced hierarchy parameter R23 in the complex
z-plane. As already explained, varying heavy neutrino masses only affect the ab-
solute value of R23, whereby characteristic points remain unchanged. Accordingly,
zeros of our hierarchy parameter stay still zero and indicate exact zero Yukawa
textures.

As we can infer from figure 3.2, R23 is periodic in the real z-component with a
period of π

2
,

R23(δ, σ; z) = R23(δ, σ; z + n
π

2
), with n ∈ Z . (3.19)

This periodicity originates from general properties of the applied CIP (3.9), see
appendix B of [40] for details, and is in our context nothing but an interchange of
Yukawa columns according to

z → z +
π

2
=⇒ κα1 → κα2, κα2 → −κα1 . (3.20)
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Figure 3.2.: The defined hierarchy parameter R23, see (3.17), as a function of the com-
plex rotation angle z for particular choices of the phases δ and σ. The
left panel shows R23 for the Yukawa texture B1,4 and the right panel
corresponds to the case of a B2,5 Yukawa pattern. These are the only
two-zero texture exhibiting a vanishing hierarchy parameter.

The sign change in the second Yukawa coupling does not affect our procedure
since we sort them according to their absolute values and also R23, defined as a
ratio of two absolute values, is invariant under this transformation. Additionally, it
remains unchanged under complex conjugation of z and simultaneous sign changes
of the CP phases,

z → z∗, δ → −δ , σ → −σ , (3.21)

having the same effect as complex conjugation of each Yukawa entry. As a result,
this property gives rise to some “reflection symmetry” which simplifies our further
investigation by halving the domain of potential δ phases,

R23 (2π − δ, σ; z) = R23 (δ, π − σ, z∗) . (3.22)

This proves to be very useful in numerical scans that have to be performed over
the whole parameter space. Each solution we find in the restricted range δ ∈ [0, π),
yields another solution according to (3.22), hence, giving two phase sets (δ, σ) for
each upper hierarchy bound.

Flavor-aligned parameter space

In contrast to the real axis zR, its imaginary one zI is not restricted and the
parameter space of our model is unbounded. By using large test values, one rec-
ognized a special feature of the corresponding Yukawa entries: The larger zI gets,
the more both Yukawa columns approach each other, up to some relative phase.
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Such behavior indicates some kind of alignment in flavor space, which couples the
two heavy neutrino equally to the same lepton flavor. In our approach, no further
assumption on flavor symmetries is made, such that this configuration seems to
be unnatural or fine-tuned. For nearly-aligned Yukawa coupling, large cancella-
tions among certain entries have to appear to still accommodate for the measured
low-energy neutrino observables. Again, this requirement can be considered as
fine-tuning of the underlying theory and is, hence, disfavored. Beyond that, exact
flavor alignment would drastically reduce the number of DOFs, in such a way that
consistence with neutrino observables is impossible.

To understand this region of our model’s parameter space better, we dive more
into details. If we decompose the complex rotation angle z into its parameter form,
z = zR + zI , the CIP (3.8) takes the form

κα1 =
1

2

[
(Vαk + i Vαl) e

zI−i zR + (Vαk − i Vαl) e−zI+i zR
]
, (3.23)

κα2 =
1

2

[
(Vαl − i Vαk) ezI−i zR + (Vαl + i Vαk) e

−zI+i zR
]
,

with the usual convention (k, l) = (2, 3) in the case of NH and (k, l) = (1, 2) for
the IH case. By going into the large-|zI | limit, the exponentials containing ±zI
yield strong suppressions, such that the above terms can be simplified,

zI � 1 =⇒ κα1 ' i κα2 '
1

2
(Vαk + i Vαl) e

zI−i zR , (3.24)

zI � −1 =⇒ κα2 ' i κα1 '
1

2
(Vαl + i Vαk) e

−zI+i zR .

Here, we directly see the relative phase between both columns emerging due to the
simplification made. Because of flavor alignment, the sorted list of Yukawa cou-
plings, κ̂, now only contains three different entries with a certain ordering among
themselves, κα1I ≤ κα2I ≤ κα3I , irrespectively of I = 1 and I = 2. Exact flavor
alignment obviously corresponds to the case κα1 ≡ κα2 . An interesting feature of
the performed simplifications (3.24) is that in the limit of flavor alignment, zI±∞,
our hierarchy parameter (3.17) becomes independent of the complex angle z and
asymptotically approaches a constant value, following

zI → ±∞ =⇒ R23 → R±23 =

∣∣∣∣Vα1k ± i Vα1l

Vα2k ± i Vα2l

∣∣∣∣ . (3.25)

For the exact-zero texture case we presented in figure 3.2, the asymptotic hierar-
chies for flavor-aligned textures are given by

(
R+

23, R
−
23

)
=

{
(0.81, 0.68) ; (δ, σ) = (0.51, 0.94)π

(0.61, 0.89) ; (δ, σ) = (0.50, 0.04)π
, (3.26)

showing that we could potentially track the maximal asymptotic hierarchies by
plotting a region with |zI | � 103.

3This is consistent with a more advanced study of the transition towards flavor-aligned param-
eter space regions of chapter 4, see figure 4.2. Although viewed in a slightly different context,
we found that the condition |zI | ' 2 is sufficient.
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We noted that flavor aligned regions reflect a special case of the model’s param-
eter space that could be considered as “tuned”, therefore, regions with |zI | ∼ O(1)
are theoretically more favored. However, nature could reveal itself in such man-
ner, so exclusion would reduce the generality of our ansatz. In the upcoming
part, we will study flavor-aligned regions to draw the most general picture, which
experimental data and our framework allow.

3.4. Maximal Yukawa hierarchies

Now, that the main principles of the method are clarified, we can continue with
details of the performed analysis and its corresponding results.

3.4.1. Detailed methodology

As already mentioned above, the framework of a minimal type-I seesaw model in
combination with the CIP [85], equips us with special possibilities for our general
approach. We only have one complex parameter, z, that connects the low-energy
observables in V with the Yukawa coupling relevant for the high-energy region.
Hence, by scanning the complex z-plane, one can address all possible UV flavor
theories within the framework of our minimal seesaw model, which prove very
effective in our investigation of maximal hierarchies. Our self-defined hierarchy
parameter R23 exhibits some elegant features, which have been explained in the
previous section, and allows the evaluation of the model’s parameter space, not
only in context of exact zero-textures, but also for approximate realizations that
seem mandatory from a theoretical point of view. Approximate zero-textures
reveal themselves by a particular small value of R23, hence we “only” have to
minimize it over the inaccessible parameter z to find maximal hierarchies that
are close to zero-textures. Therefore, we define a minimized hierarchy parameter
H23(δ, σ) that depends only on the model’s two CP phases, δ and σ,

H23(δ, σ) ≡ min
zR,zI

R23(δ, σ; z) . (3.27)

It exhibits all features of the former hierarchy parameter without depending on
the complex rotation angle z. At this point, it shall again be noted that we just
obtain maximal hierarchies for a given set of (δ, σ) and that there is no guarantee
for nature following exactly this behavior. Our results have to be interpreted as
upper bounds being consistent with current experimental measurements. They rely
on no further assumption about the seesaw’s UV sector, which is a clear advantage
in contrast to common top-down approaches. With our method we are able to give
generic statements about hierarchies among entries in the neutrino Yukawa matrix
that coincide with experiments and have to be fulfilled by any UV flavor theory
in the context of minimal seesaw models. Hence, we are capable of distilling more
information from experimental measurements than is usually done, which results
in further meaningful constraints. The minimization over the complex z-plane
ensures that any UV flavor seesaw model is covered since z can be considered as
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Figure 3.3.: Minimized hierarchy parameter H23 as a function of the CP phases δ and
σ without any assumption on zI . The case of normal, upper panel, and
inverted neutrino mass ordering, lower panel, are investigated separately.
Contours represent the found H23-values and colors correspond to the
underlying Yukawa texture class, listed in (3.11). Local texture minima
are denoted by the colored points.
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a corresponding label. This approach can easily be generalized for more involved
models and arbitrary Yukawa patterns, by doing the following three steps:

1. Parametrize the model’s Yukawa couplings in terms of two parameter sets:
low-energy observables and unphysical quantities irrelevant at low-energy,
e.g. CIP (3.8).

2. Construct parameter sensitive to the matrix pattern of interest, e.g. a ratio
of (sorted) Yukawa couplings.

3. Marginalize this parameter over all inaccessible parameters.

By this, one always obtains general phenomenological constraints on the Yukawa
structure of interest, which is consistent with available low-energy observables.
Due to obvious reasons, the complexity of our approach grows with the number of
unobservable DOFs.

For our framework, H23 is well-applicable as we are only dealing with two auxil-
iary parameters, zR and zI . Moreover, the model allows a direct connection of both
CP phases by the assumption of maximal hierarchies. Hence, our analysis can be
understood as a first proof of principle of our more general method. An issue of
application in our context is that R23 is not a smooth function of the auxiliary
parameters because the sorted list of Yukawa couplings changes whenever another
Yukawa pattern (3.11) exhibits a stronger hierarchy, i.e. a more minimal R23. The
occurring “kinks” of R23 are not differentiable any more, such that we cannot rely
on further analytic evaluation. As a consequence, a fully numerical analysis has
been chosen. The mentioned properties of R23 are helpful to shrink the parameter
space of δ further, see (3.22). We already know that large values of |zI | lead to
flavor-aligned Yukawa structures, where the matrix columns tend to equalize each
other, which is used to separate flavor-unaligned from flavor-aligned parts of the
valid parameter space. Although assumed to be unnaturally fine-tuned, we cannot
exclude the flavor-aligned regions from our investigation. But explicit separation,
|zI | � 1 from |zI | ∼ O(1), helps to track which kind of Yukawa patterns rely
on the assumption of an aligned flavor space. In the end, both parts have to be
combined to represent the full parameter space without any further assumptions.

3.4.2. Advanced parameter space scan

In the following, we present the results of our numerical analysis of our model’s
full parameter space and comment on special findings.

The reduced parameter space of our framework consists only of both CP phases,
δ and σ, which are directly connected by the assumption of maximal realizable
hierarchies in the Yukawa matrix. This allows a straight forward prediction of the
Majorana phase σ for a measured value of the Dirac phase δ, which is expected
within the upcoming years. By simultaneously tracking, where the smallest entries
in the Yukawa matrix appear, we can link the obtained hierarchies values to the
underlying textures classes (3.11) as well, which helps to gain further knowledge
about parameter space. We just classify them according to the location of their
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smallest entries, irrespectively of the corresponding R23 value. Actual hierarchies
that can be identified with, at least approximate, zero-textures have to exhibit
appropriately small hierarchy values; for our analysis, we defined R23 ≤ O(0.1) as
a necessary condition to be referred as an actual Yukawa texture. The analysis
consists of different parts that are summarized in the figures 3.3, 3.4, 3.5 and 3.6.
Figure 3.3 shows the full parameter space H23 as a function of the CP phases
δ and σ, minimized of the total complex z-plane for inverted and normal mass
ordering, thus also including flavor-aligned textures. The separated scans of flavor-
unaligned, |zI | ∼ 1, and flavor-aligned textures, |zI | � 1, are presented in figures
3.4 and 3.5 for inverted and normal mass hierarchy respectively. A detailed scan of
the minimized hierarchy parameter H23 in the vicinity around exact zero-textures,
which is only possible in case of IH, is displayed in figure 3.6. In table 3.1, the
whole investigation is summarized with an overview of all found local minima
of H23 with corresponding Yukawa matrices. Now, the obtained results shall be
commented individually for each mass ordering.

Inverted mass hierarchy

First of all, we recover the exact-zero texture points for the patterns B1,4 and B2,5,
that were found by earlier studies in the case of inverted neutrino mass order-
ing [106, 112], which confirms the validity of our calculations. These originate as
expected in the scan of flavor-unaligned regions, see upper panel of figure 3.4. By
allowing for small perturbations, four additional textures can be found; A1, A2,
A3 and C3,6. The textures B1,4 and B2,5 are capable of realizing minimal H23, cor-
responding to exact-zero textures with non-aligned flavor space. Yukawa matrices
of texture C3,6 can be obtained down to flat hierarchies and cover huge parts of
the scanned (δ, σ)-plain. Further, they originate mostly from non-aligned flavor
regions, see figure 3.3. A1 structures are realized for σ ∼ π

2
and small δ, but show

almost no hierarchy since H23 exhibits a global maximum. The parameter scan of
aligned Yukawa matrices, lower panel of figure 3.4, shows that all classes of texture
A are realizable, whereas A2 textures are minimal for small δ and A3 structures for
large δ respectively. Both regions span hierarchy values from their local minimum
up to one, which corresponds to almost no hierarchy structure. Regions of A1

Yukawa structure have no local minima and H23 indicates flat hierarchies among
all entries. If we accept for flavor-aligned Yukawa matrices and combine both data
sets, figure 3.3, we restore the characteristic points of both scans. The whole pa-
rameter scan exhibits a band of A textures at σ ∼ π

2
and, within it, A2 and A3

structures show local minima, which clearly emerge from flavor-aligned regions.

Normal mass hierarchy

For exact-zero textures, no Yukawa matrix could be found that agrees with ex-
perimental measurements. This confirms the general wisdom that normal mass
ordering is not consistent with two-zero texture in minimal seesaw models [106].
Scanning the available parameter space under relaxation of exact-zero textures and
exclusion of flavor-aligned regions yields the possibility of three Yukawa textures;
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(δ, σ) /π Texture H23 zI Rescaled Yukawa matrix κ× 107

NH-1
(0.55, 0.96)
(1.45, 0.04)

A1 0.11 � −1

0.41 e1.02 iπ 0.41 e1.52 iπ

3.85 e1.38 iπ 3.85 e1.88 iπ

3.90 e1.60 iπ 3.90 e0.10 iπ

 f (z)

NH-2 (1.00, 0.00) B1/B4 0.13 O(1)

−0.18 1.42
3.83 −0.18
3.11 −2.73



NH-3
(0.01, 0.00)
(1.99, 0.00)

B2/B5 0.19 O(1)

0.27 e0.01 iπ 1.41 e0.01 iπ

2.76 2.53
4.21 0.27



IH-1 (0.00, 0.50) A2 0.12 � +1

 7.30 −7.30 i
0.22 −0.22 i
−1.92 1.92 i

 f (z)

IH-2 (1.00, 0.50) A3 0.26 � +1

 7.30 −7.30 i
1.87 −1.87 i
−0.49 0.49 i

 f (z)

IH-3
(0.51, 0.94)
(1.49, 0.06)

B1/B4 0.00 O(1)

 0 5.24 e1.02 iπ

3.54 e1.04 iπ 0
4.06 e0.04 iπ 1.19 e0.53 iπ



IH-4
(0.50, 0.04)
(1.50, 0.96)

B2/B5 0.00 O(1)

 0 5.25 e1.99 iπ

3.52 e0.97 iπ 1.04 e1.49 iπ

4.05 e1.97 iπ 0



IH-5
(0.89, 0.78)
(1.11, 0.22)

C3/C6 0.18 O(1)

5.83 e1.06 iπ 3.42 e0.55 iπ

0.62 e0.95 iπ 3.42 e0.19 iπ

0.62 e0.94 iπ 3.42 e1.14 iπ


Table 3.1.: Local minima of our minimized hierarchy parameter H23 in the (δ, σ) plane

for IH and NH, see (3.2). The Assignment to the (approximate) textures
follows (3.11). Large values of |zI | correspond to flavor-aligned neutrino
Yukawa matrixes κ, while O(1) values |zI | do not exhibit any correlation
among both Yukawa columns. At large |zI |-values, all couplings scale with
f (z) = 1/2 exp [sgn {zI} (zI − i zR)].
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Figure 3.4.: Minimized hierarchy parameter H23 for IH. Flavor-unaligned parameter
space, |zI | < 1, upper panel, and flavor-aligned regions, |zI | >> 1, lower
panel, are depicted separately. Contours represent H23-values and colors
the underlying Yukawa texture class, listed in (3.11). Local H23-minima
are denoted by colored points.
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A1, B1,4 and B2,5, see upper panel of figure 3.5. In contrast to the inverted case,
local minima for the textures B1,4 and B2,5 are obtained for σ ∼ π and δ ∼ 0
respectively, δ ∼ π with hierarchy parameters allowing for moderate structure.
Texture A1 can only be realized with rather flat hierarchies. A special feature
in contrast to the inverted mass ordering is, that this scan shows no direct con-
tact between the two possible texture B regions. Considering the case of aligned
flavor structure, see lower panel of figure 3.5, just one possible texture, A1, can
be realized. Its global minimum indicates a rather strong Yukawa hierarchy of
R23 ∼ 0.1 that is related to the CP phases (δ, σ) ' (0.55, 0.96)π or equivalently
(δ, σ) ' (1.45, 0.04)π, hence, being an approximate two-zero Yukawa texture ac-
cording to our previous definition. Combining the separate scans of figure 3.5,
we see that features of the un-aligned situation sustain, compare with lower panel
of figure 3.3). The only difference is that B texture regions shrink and most of
the (δ − σ)-plain is now occupied by A1 textures. The local minimum of the
flavor-aligned case transmits allowing for stronger hierarchies.

Vicinity of exact-zero texture points and CP violation

In the end, we want to give a more qualitative statement about the performed
parameter space scans. The whole investigations was motivated by the aim of
finding points in our model’s parameter space that yield strong hierarchies in the
corresponding Yukawa matrix. Thus, the list of found minima, see table 3.1, sum-
marizes our approach. On the other hand, we were also interested in quantifying
the corrections an exact-zero texture is allowed to obtain, if some deviation from
the predicted CP phases is measured.

Stated differently, we want to know how strong the underlying two-zero textures
have to be relaxed for CP phases slightly differing from the generic predictions
(3.14). For this, the vicinity of exact two-zero textures B1,4 and B2,5, which are
only allowed for IH, is studied in more detail, see figure 3.6. For instance, if we
allow a deviation of about 0.1π for the CP phases, δ and σ, a O(10%) correction
to the exact-zero texture is required. Hence, figure 3.6 is one of our main results
since it corresponds to the theoretical error bars, we were searching for. It reflects
a generalization ot the predictions in case of exact-zero textures (3.14) that can,
in this context, be interpreted as “central values”.

Conclusively, we want to comment on a special behavior of H23. Our minimized
hierarchy parameter seems to prefer small values close to CP -conserving phases,

(δ, σ)

π
=
(
m,

n

2

)
with m,n ∈ Z. (3.28)

We already encountered a similar situation for exact-zero textures in section 3.2.
Regarding the found minima of table 3.1, we can confirm that the maximal hier-
archies of texture B1,4 for NH and textures A2 and A3 associated with no �

��CP .
Texture B2,5 in the case of NH is barely CP violating due to its small offset from
integers in δ. Sizable effects of ���CP can originate from the textures A1 for NH and
C3,6 for IH. Remarkably, the local minimum of (approximate) A1 texture for NH
agrees with most recent data sets [8], compare tables 2.3 and 3.1.
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Figure 3.5.: Minimized hierarchy parameter H23 for NH. Flavor-unaligned parameter
space, |zI | < 1, upper panel, and flavor-aligned regions, |zI | >> 1, lower
panel, are depicted separately. Contours represent H23-values and colors
the underlying Yukawa texture class, listed in (3.11). Local H23-minima
are denoted by colored points.
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Figure 3.6.: Minimized hierarchy parameter H23 for IH as a function of the CP phases
δ and σ in the vicinity of its exact zeros, see (3.14). We present both zero
points of H23 for the two possible two-zero textures, B1,4 and B2,5, in the
(δ, σ) plane, that are related by the reflection symmetry (3.22).
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3.5. Experimental uncertainties and stability of zero
textures

In the former numerical scan, experimental best fit values for mass differences
and angles of the leptonic mixing matrix of an older data set were used, see table
C.2. As experiments keep data-taking, we expect them to reach more statics
and global fit results to change. Further, one naively expects some change of the
obtained upper bounds on the Yukawa hierarchies, if the actual values differ from
the obtained best-fit values. Both situations would result in some shift of the
predictions for (δ, σ). Now, we want to check the stability of our results under
variation of the five underlying input parameter; δm2, ∆m2, sin2 θ12, sin2 θ13 and
sin2 θ23. To get a qualitative understanding of this issue, we investigate the stability
of characteristic points, here, the predictions of exact-zero texture points possible
for the textures B1,4 and B2,4 in case of IH. This is done by performing a simple χ2

analysis. We vary these parameters within their experimental uncertainty regions
and evaluate the change of exact zero-texture points in the (δ, σ)-plane by means
of the corresponding χ2-value defined as

χ2 ({Oi}) =
5∑
i=1

(Oi −Oexp
i )2

(∆Oexp
i )2 , {Oi} =

{
δm2,∆m2, sin2 θ12, sin

2 θ13, sin
2 θ23

}
.

(3.29)

Oexp
i represents the best-fit value and ∆Oexp

i the corresponding error of the listed
quantities, which is obtained by tacking the full width of the ±3σ ranges and
dividing by six. Note that such kind of analysis assumes that fluctuations to
follow a Gaussian distribution around their mean! However, this is not the case
for given parameters and their experimental uncertainties; the detailed Likelihood
function is given in [77]. Since we just want to promote some intuition, how the
obtained texture plots might change under variation of their input parameters, our
approach seems justified. For each variation of the five observables we obtain one
χ2 value that reflects the deviation from the best-fit set, which we use to group
the corresponding parameter set into significance intervals. For five DOFs, the χ2

values (5.89, 11.31, 18.21) give upper limits on the (1σ, 2σ, 3σ) confidence intervals.
In the following, we vary the experimental input parameter within their ±3σ

uncertainties, calculate the related CP phases according to (3.12) for either B1,4 or
B2,5 texture and weight the resulting prediction for (δ, σ) with the corresponding
χ2 value obtained via (3.29). By grouping them into the mentioned χ2 intervals, we
are able to assign certain confidence regions the (δ, σ)-plane that are represented
in figure 3.7 for both textures of interest.

This procedure proves that the phase shifts due to variations of experimental
input are just at the order of O(0.1%)π and can be considered as almost negligible,
compare figure 3.7. Further, we see that the requirement of havening an exact two-
zero texture within the neutrino Yukawa matrix is pretty strong, hence fixing the
CP phases to very high precision.

All in all, the change of both texture zero points in the (δ, σ)-plane under vari-
ation of the underlying experimental parameters could be shown and leads to the
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conclusion that characteristic points can safely be considered as stable. It is ex-
pected that the same behavior transmits to the numerical results of section 3.4.
Again, we emphasize that this analysis just has qualitative character and a more
sophisticated approach is needed, if one is interested in details, e.g. which kind of
phase shift each individual parameter induces.

3.6. Summary and generalization

To conclude this chapter, the main aspects and results are now summarized and an
outlook is given, how the developed method can be generalized. We have worked in
a minimal type-I seesaw model with only two heavy RH neutrinos, which is capable
of explaining all yet observed, low-energy neutrino quantities; namely two mass-
squared differences and three mixing angles. One important feature of this model
is that one light neutrino has to remain exactly massless. In contrast to the generic
type-I seesaw framework of section 2.3, this model exhibits a smaller parameter
space that can be parametrized by the CIP (3.8), which proved very convenient in
our analysis. We investigated the minimal type-I seesaw model in light of future
measurements of the Dirac phase δ through neutrino oscillations. We wanted to
know what is inferable about the UV regions, if a certain degree of ���CP is measured
and to what extend the realization of (approximate) zero-texture structures can be
achieved for given sets of (δ, σ). To answer this question, a data-driven approach
was chosen and the scenarios of NH and IH have been checked individually. A
new method has been developed to access maximal realizable hierarchies among
Yukawa couplings for a given set of CP phases (δ, σ) by using our self-defined
hierarchy parameter R23, which is to be minimized over all inaccessible DOFs at
low-energies.

By applying it to our minimal seesaw model, we find interesting results that
generalizes knowledge gained by previous studies of exact-zero textures. After
validating our approach by recovering the exact two-zero textures B1,4 and B2,5

for IH, we have studied the consequences of relaxing this assumption and instead
allow for a small perturbation. As a result, maximal possible hierarchies in the
neutrino Yukawa matrix have been found in dependence of the model’s CP phases
(δ, σ), see figures 3.3 and 3.4. Further, the vicinity of the above exact-zero textures
has been investigated closer to give a qualitative statement for the cases, in which
experimental measurements slightly deviate from predictions. Hence, figure 3.6
can be interpreted as theoretical error bars for the predictions of (3.14).

Another result is the resurrection of NH if we allow the correction to exact-
zero textures to be of O(10%). In addition, figures 3.3 and 3.5 clearly indi-
cate the existence of a further approximate two-zero textures, i.e. texture A1 at
(δ, σ) = (0.55, 0.96)π or (δ, σ) = (1.45, 0.04)π. Generally, we noticed that maximal
hierarchies obtained by H23 tend to favor phase values that conserve CP . Table 3.1
divides the found local minima according to their CP property. Furthermore, the
influence of flavor-aligned Yukawa texture on possible hierarchies has been studied
as well, see figures 3.5 and 3.4. Although considered as theoretically unnatural,
the general conclusion is that such regions cannot be excluded in the search of
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Figure 3.7.: Stability of exact two-zero prediction of textures B1,4 (1.601, 2.958), up-
per panel, and B2,5 (1.568, 2.958), right panel, under variation of
the five experimental input parameters: δm2, ∆m2, sin2 θ12, sin2 θ13 and
sin2 θ23. Confidence regions correspond to certain χ2-values that are cal-
culated with (3.29).
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Figure 3.8.: Complementarity between conventional model building and the approach
of this work. Top-down theory approaches make non-injective predictions
on the set of all experimental outcomes, right to left. It is not clear,
if there exists an appropriate UV flavor model, here in the context of
our minimal type-I seesaw model, that can account for every possible
measurement. Our bottom-up approach remains agnostic about the high-
energy sector responsible for the resulting neutrino Yukawa matrix. A
scan of the entire complex z plane, covers all possible Yukawa matrices
within our framework and we can search for the strongest hierarchy that
is consistent with experimental measurement.

maximal hierarchies since they give rise to further minimal realizations of R23, e.g.
A1 textures in the case of NH. Interestingly enough, this coincides with recent
neutrino-data, see table C.2. In the end, our results have been checked of their
robustness against experimental uncertainties, see figure 3.7. These induce shift
on the prediction for δ and σ (3.14) of order O(1%) that can be considered as
negligible.

In this context we want to comment on renormalization group equation (RGE)
effects on neutrino parameters, which is expected due to radiative corrections
[117–119]. Hence, our low-energy bounds obtained through H23 should be evolved
to the high-energy region to give certain statements about UV flavor theories. Since
the induced RGE changes are negligibly small within our framework [109,117], we
can safely neglect them and directly claim our results to be valid for UV regions.

Finally, the performed analysis shall be embedded into a broader context. The
defined hierarchy R23 (3.17) and the corresponding minimization procedure (3.27)
can easily be generalized for more complex studies and other Yukawa textures.
For instance, in the generic type-I framework of section 2.3, we can investigate the
mth and nth smallest Yukawa coupling by defining the corresponding ratio Rmn

and subsequent minimization of inaccessible parameters. Here, they correspond
to three complex rotation angles z12, z13 and z23 in terms of the Casas-Ibarra
notation. This yields a generalized form of the previously applied quantities

Hmn (δ, σ) = min
ω12

min
ω13

min
ω23

Rmn (δ, σ;ω12, ω13, ω23) , (3.30)

which comes with growing complexity for more inaccessible parameters. Never-
theless, in principle the developed methods should be applicable for any model
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and for any Yukawa structure, where the manifestation of certain internal hierar-
chies, consistent with experimental data, is subject of investigation. This again
underlines the motivation of our entire work, see figure 3.8. Top-down approaches
rely on some assumed model that leads to certain prediction at low-energy. Such
predictions are typically non-injective, as for any possible realization of (δ, σ) an
appropriate UV flavor seesaw model has to be built. It is unclear if there exists
an appropriate UV flavor seesaw model for every possible experimental outcome.
We tackle the problem from the opposite direction, bottom-up, and stay agnostic
about potential UV completions of our minimal seesaw model. By scanning the
whole z-plane, we take into account all possible high-energy flavor minimal seesaw
models, as z represents some kind of labeling. As we do not know which z-value is
realized, we tried to find the strongest Yukawa hierarchies, that are consistent with
experimental data. This hierarchy can be interpreted as upper bound and especially
in the vicinity of some prediction as theoretical error bar. In this sense, we have
tried to “squeeze” out as much information as possible from recent experimental
data; here in the sense of maximal realizable hierarchies in the neutrino Yukawa
matrix. In this spirit, our approach complements typical theoretical approaches
and is based on what experiments are expected to see in the near future.





4. Minimal UV seesaw model with a
discrete exchange symmetry

In chapter 3 we used a bottom-up approach to investigate consequences of certain
CP phase measurements for the type-I seesaw mechanism. Now, a top-down ap-
proach is chosen to embed this seesaw mechanism into a broader UV framework
while simultaneously reducing its parameter space through certain exchange sym-
metries. In particular, we are interested in the emergence of an approximate A1

Yukawa texture for NH, since the corresponding Dirac phase δ follows experimen-
tal trends, i.e. indicate close-to-maximal ���CP through δ ' 3π

2
[8]. A model, capable

of approximately reproducing this property, is developed and the consequences of
other high-energy assumptions, e.g. electroweak naturalness and successful lepto-
genesis are presented. The building blocks underlying our model, the minimal
SU(5) GUT [49] and the FN mechanism [48], as well as a model which combines
both [47], are introduced in the following sections. Appropriate modification leads
to an embedding of the minimal type-I seesaw framework into a broader theoret-
ical context. This chapter deals with the minimal seesaw model published in [51]
and provides a broader introduction into the theoretical framework.

4.1. Motivation for a UV completion of the minimal
type-I seesaw

Up to now, our work was motivated by the fact that upcoming experiments are on
the edge of detecting leptonic ���CP in neutrino oscillations. We have investigated
the theoretical consequences of measured CP phases for a minimal type-I seesaw
model with (approximate) two-zero texture. Due to its reduced parameter space,
we have found realizations of certain exact and approximate Yukawa textures
which coincide with experimental measurements. We could prove that the usually
inconsistent NH is re-established, if small perturbations of exact-zeros are allowed.1

Certain interesting points have been found that follow experimental trends, i.e.
δ ' 3π

2
in a A1 texture. Hence, to some degree, the following work is driven by the

search of a possible UV flavor origin.

From a more general perspective, we are interested in finding a UV completion
ot the minimal type-I seesaw mechanism, that is consistent with experiment and
exhibits a minimal number of free parameters. Moreover, in the spirit of Ockham’s
razor we want to find a minimal UV realization of the type-I seesaw mechanism,

1See chapter 3 for a detailed motivation of this approach.
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which is consistent with experimental data. Such models are always of great use
as they represent valid benchmark scenarios.

Now, the most recent global fit results of table 2.3 are used, which exhibit more
restricted regions for the Dirac phase δ than the ones table C.2. The starting
point of our investigation is the already introduced minimal type-I seesaw model
[41, 44–46, 120] presented is section 3.2. It demands one neutrino to be exactly
massless, but is still consistent with all experimental observables. More recently,
its conformity with several theoretical constraints, e.g. electroweak naturalness,
lepton flavor violation, and leptogenesis, has been tested successfully [107,109].

The embedding of the minimal type-I seesaw model in a FN GUT framework
introduced by [47] connects the free seesaw parameters to other quantities and
thus implies a reduction of the seesaw parameter space. By assuming additional
(approximate) flavor exchange symmetries, we arrive at a minimal UV realization
of the type-I seesaw model.2 In this way, we perform a complementary approach
to our previous track and address the minimal seesaw model from a top-down
perspective.

4.2. SU(5) GUT and Froggatt-Nielsen mechanism

Before diving into details, the most important facts about SU(5) as a GUT exam-
ple and the FN mechanism are presented. This allows to understand the neutrino
mass generation from a high-energy perspective since RH neutrinos are needed for
successful anomaly cancellation. The FN mechanism provides a useful tool in the
suppression of certain flavor-sensitive interactions and will be of importance in the
construction of our model.

4.2.1. Minimal SU(5) as a GUT example

The SU(5) gauge theory is the classic example of a GUT and the reference frame
for the following UV embedding of our minimal type-I seesaw model. Before this
is done, we want to introduce basic facts about GUT construction by following
mainly [37,57,121].

GUT gauge group - SU(5)

The spirit behind GUTs is that at a certain energy scale all fundamental interac-
tions unify to just one force, which accounts for all observed particle interactions in
our Universe. Using the existing quantized theories of the electroweak and strong
force, the usual GUT approach is to find a unifying theory for both. The corre-
sponding unified force is expected to arise at energies of the order ΛGUT ∼ 1015

GeV. If gravity is taken into account, one expects unification of all fundamental
forces at least higher than the Planck scale ΛPlanck & 1019 GeV. To embed the SM
gauge group SU(3)C × SU(2)L × U(1)Y into a larger group, one needs at least a

2“Minimal” is to be understood in terms of the valid neutrino sector. Of course, the embedding
into a GUT framework comes with several additional DOFs.
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group of rank3 four since the SM group has this rank. Hence, the four diagonal
generators are given by the diagonal Gell-Mann matrices λ3 and λ8, one gener-
ator of the weak isospin as well as one generator for the weak hypercharge, see
appendices A and B. Among all possible groups of rank four, SU(5) is the small-
est groupcapable of accommodating for the SM’s complex group representations
(SU(3) color triplets and SU(2) isospin doublets), while at the same time pro-
viding a phenomenology in agreement with observations. We will see that SU(5)
clearly disagrees with current measurements of proton decay, but as it is the clas-
sic GUT example, we choose it to be our underlying framework. Of course, one
could choose an even larger GUT group, which would exhibit more DOFs, and
thus being in conflict with our spirit of finding the most minimal realization for
the type-I seesaw model.

Now, that we motivated choosing SU(5) as an appropriate gauge group, we
repeat the basics of its construction. SU(5) is the group of unitary (5×5) matrices
with unit determinant and is spanned by 24 hermitian, traceless generators T a,
with a = 1, ..., 24, which are defined according to

[
T a, T b

]
= ifabcT

c and specified
by the structure constants fabc. The usual normalization tr(T aT b) = 2δαβ is
chosen. As usual, each generator is linked with a gauge field Aaµ(x) transforming
under the adjoint representation, such that the full gauge transformation and
covariant derivative of SU(5) are given by

U = exp

(
−i

24∑
a=1

αaµ(x)T a

)
,

Dµ = ∂µ + i
g5

2

24∑
a=1

Aaµ(x)T a = ∂µ + i
g5√

2
Aµ ,

(4.1)

with gauge parameter αaµ and the “summed” gauge fieldAµ(x) ≡ 1√
2

∑24
a=1 A

a
µ(x)T a.

The covariant derivative invokes all particle interactions of the theory and its gen-
erators T a have to be adjusted according to the (field-)representation, on which
it acts. For reasons of convenience, the generators are chosen such that the SM’s
SU(3) color group is located in the upper left corner and the SU(2) isospin group in
the lower right corner of the full SU(5) transformation matrix. The corresponding
generators of the fundamental SU(5) representation can be found in appendix B.
By doing so, the first eight vector fields A1,...,8

µ (x) can be identified with the usual
gluons of SU(3)C . The charged weak gauge bosons are related to superpositions
of A9

µ, and A10
µ . As the generators T 11 and T 12 are diagonal, we chose them to be

proportional to the third component of the weak isospin and hypercharge, hence,
relating them to W 3

µ and Bµ, respectively. The twelve additional generators T 13...24

are identified with twelve new gauge bosons, X i
µ, i = 1, ..., 3 with SU(5)-charge of

4
3

and Y i
µ, i = 1, ..., 3 with charge 1

3
and the corresponding charge-conjugated field.

These are purely of SU(5) type and reflect additional DOFs due to a larger gauge

3A group’s rank is given by the number of simultaneously diagonalizable generators.
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group. All vector fields can be represented by Aµ(x) defined according fo 4.1,

Aµ(x) =


G1

1 − 2√
30
B G1

2 G1
3 X̄1 Ȳ 1

G2
1 G2

2 − 2√
30
B G2

3 X̄2 Ȳ 2

G3
1 G3

2 G3
3 − 2√

30
B X̄3 Ȳ 3

X1 X2 X3
1√
2
W 3 + 3√

30
B W+

Y1 Y2 Y3 W− − 1√
2
W 3 + 3√

30
B

 . (4.2)

The corresponding gauge field Lagrangian has the typical form for a non-abelian
gauge theory,

Lkin = −1

4
F a
µνF

µν,a = −1

2
tr(FµνF

µν), (4.3)

with F a
µν = ∂µA

a
ν(x)− ∂νAaµ(x)− g√

2
fabc

[
Abµ(x), Acν(x)

]
. At this point we want to

emphasize that the non-abelian nature of SU(5) leads to self-interactions among
the gauge bosons, not only for the gluons and weak gauge bosons, but also for the
new ones, Xµ and Yµ.

Fermion representation

Although SM is conventionally defined in LH and RH chiral states, many BSM
theories are equivalently formulated in one chiral state and the corresponding
Lorentz-covariant charge-conjugate. We chose for LH fermions fL and their LCC
fCL as DOFs. In the GUT context, all fermions of same chirality transform in the
same representation of the underlying gauge group. Equivalently to QCD [57], we
start with the fundamental representation and construct further representations
by products of the fundamental. For SU(5), the fundamental representation is a
five-dimensional vector ψ5. Since the upper left corner of the gauge field (4.2) is
occupied by the SU(3) vector bosons, we directly see that the first three entries
of ψ5 have to carry color, thus forming a color triplet. As the lower right corner is
identified with weak gauge bosons, we conclude that the last two entries of ψ5 have
to form a doublet under SU(2). If we define an appropriate charge operator and

demand it to be traceless,4 we obtain the condition tr(Q) = 3Qq +Qec +Qνc
!

= 0,
which directly identifies the quarks in the first three rows of ψ5 to be of down-type.
This fixes the particle content of ψ5 as

ψ5 =


d1

d2

d3

ec

νc


R

= (3, 1) + (1, 2) under SU(3)× SU(2) . (4.4)

4The used charge operator is defined according to Q = 1
2

(
T 11 +

√
5
3T

12
)

. The photon is a

gauge boson of SU(5) and must be related to one diagonal generator. Hence, Q has to be
traceless.
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With the help of the covariant derivative we directly write down the fermionic
Lagrangian

L5
kin = ψ̄5i /Dψ5 = iψ̄5,i

(
∂µδ

i
j − i

g5√
2

(Vµ)ij

)
ψj5 . (4.5)

At this point, we already see one of the nice features the SU(5) gauge group has
t offer. Charges are naturally quantized and quarks carry a third of the electron’s
charge, Qq = e

3
. To built up ψ5, we had to group RH quarks with RH leptons,

which forbids RH quarks to participate in weak interactions since they transform
as SU(2) singlets.

Up to now, we just incorporated RH down-quarks and RH leptons in the SU(5)
framework. If we also want to include the remaining SM particles, we have to
find higher-dimensional representation. These can be obtained by products of the
fundamental representation, such as 5×5 = 10+15. The decouplet 10 is identified
with the antisymmetric product X ij = 1√

2

[
aia

′j − aja′i
]

with i, j = 1, ..., 5. It

further contains the product of two (3, 1)-representations, 3 × 3 = 6 + 3̄, from
which we have to take the antisymmetric part 3̄. This is identified with the LH
quark ucL. Hence, X ij = εijk(ucL)k for i, j, k = 1, 2, 3. X i4 and X i5 correspond to
a color triplet carrying weak isospin, hence being the product (3, 1) × (1, 2). For
i = 1, 2, 3, one identifies them with LH up- and down- quarks, X i4 = (ui)L and
X i5 = (di)L respectively. X45 must be a singlet under SU(3)× SU(2) as it is the
antisymmetric product of two (1, 2)-representations, thus it is identified with ecL.
Bringing all this together, we arrive at a ten-dimensional representation of SU(5),

X =


0 uC3 −uC2 −u1 −d1

−uC3 0 uC1 −u2 −d2

uC2 −uC1 0 −u3 −d3

u1 u2 u3 0 −e+

d1 d2 d3 e+ 0


L

= (3, 2) + (3̄, 1) + (1, 1) , (4.6)

with the transformation properties under SU(3) × SU(2) on the right-hand side.
To write down the corresponding Lagrangian, we have to find a ten-dimensional
representation of SU(5)-generators, T10. As we do not have to work with them,
we just assume them as given, such that we can write down the corresponding
Lagrangian,

L10
kin =

i

2

(
X̄
)
ac

(
∂µδ

a
b −

2ig√
2

(Vµ)ab

)
γµXbc

=
(
X̄10

)
ac
i

(
∂µδ

a
b −

2ig√
2

(Vµ)ab

)
γµXbc

10 ,

(4.7)

where we used X10 ≡ 1√
2
X to obtain canonical normalization.

The traceless charge-condition forX10 again yields quantized charges with quarks
carrying third integral electron charge, tr(Q) = 3Qd + Qec = 0. An important
result is that one whole SM generation can be incorporated within one pair of ψ5

and X10 and, even further, anomalies arising from both representations, cancel
each other.
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With this definition, we are able to take a closer look at the underlying inter-
actions of the minimal SU(5) GUT, e.g. the couplings to neutral currents, which
allow for important predictions. These are determined only by the generator T 11

and T 12, associated with W 3
µ and Bµ respectively, such that we can neglect all

other contributions at LO,

Dµ = ∂µ −
ig

2
(W 3

µT
11 +BµT

12)

= ∂µ −
ig

2

[(
sin θT 11 + cos θT 12

)
Aµ +

(
cos θT 11 − sin θT 12

)
Zµ
]

≡ ∂µ − i [QeAµ +QZg2Zµ] ,

(4.8)

where we used the common SM relation to re-express it in terms of Aµ- and Zµ-
couplings. From this, we obtain a concrete value for the weak mixing angle and a
relation between the SU(5) and the electric charge to be valid at the GUT scale
Λ ∼ mX ,

sin2 θW =
3

8
,

g5

2
=

√
2

3
e. (4.9)

After allowing for renormalization group evolution [122], the prediction of the weak
mixing angle sin2 θW agrees remarkably well with experimental measurements.

Another feature is the existence of new gauge bosons, Xµ and Yµ, which can
couple to quarks and leptons. They give rise to processes involving baryon and
lepton number violation, but indicate the existence of a new quantum number
(B − L), under which they carry charge 2

3
. The baryon number violating part is

described through the following effective Lagrangian,

L∆B=1 =
g2

2m2
X

(
εijk(ū

c
L)kγµu

j
L

) (
2ē+

Lγ
µdiL + ē+

Rγ
µdiR
)

+
g2

2m2
Y

(
εijk(ū

c
L)kγµd

j
L

) (
ν̄ceRγµd

i
R

)
+ h.c. ,

(4.10)

which introduces proton, p→ e+π0, and neutron, n→ e+π− decay via dimension-
6 operators, which, unfortunately, leads to the model’s inconsistency with ex-
perimental data. Especially, measurements of the proton’s lifetime are in clear
disagreement with the model’s predictions [37],

τ(p→ π0e+) ' 1.5 · 1031
( mX

1015 GeV

)4
(

0.15 GeV

|W |

)2

yrs , (4.11)

with the form factor of the p→ π0 matrix element W = W (k − q′). The limits of
the Super-Kamiokande experiment are with a value ofτ(p→ π0e+) = 8.2×1033 yrs
at 90% [123] more than two order of magnitude stronger and exclude the generic
prediction of the minimal SU(5) GUT. On the other hand, proton decay provides
the opportunity to infer the typical GUT energy scale. For our minimal SU(5)
model, the scale of unification must be ΛGUT & 1015 GeV.
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Symmetry breaking of SU(5)

As we measure a different phenomenology at lowest energies, the SU(5) GUT must
be broken to the SM gauge group somewhere above the electroweak scale vEW and
further undergo usual symmetry breaking through the Higgs mechanism to agree
with current experimental data. At each phase transition, the corresponding gauge
bosons, X and Y as well as W and Z, receive their mass,

SU(5)
mX−−→ SU(3)C × SU(2)L × U(1)Y

mW−−→ SU(3)C × U(1)EM . (4.12)

The SU(5) breaking is arbitrary and can be realized discretely or even dynam-
ically. However, as the existence of SSB through the Higgs is already confirmed,
it is not to far-fetched to assume the same mechanism occurring at higher scales
through another Higgs multiplet. Also breaking into intermediate groups, which
finally results in the SM gauge group, is possible, but we restrict ourselves to the
most minimal model. Breaking of SU(5) gives mass to the X and Y bosons, while
keeping the other twelve massless until the SM gauge group is broken by the usual
Higgs. To obtain this, an additional scalar Σa is introduced, which transforms
under the adjoint representation of SU(5) and, hence, its properties are dictated
by the Lagrangian,

LΣ
kin =

1

2

24∑
a=1

[
(DµΣ)†a (DµΣ)a

]
, (4.13)

with covariant derivative (DµΣ)a =
(
∂µδ

a
a′
− ig

2
V k
µ

(
F k
)
aa′

)
Σa′ for k, a, a

′
= 1, ..., 24,.

F k are 24 (24 × 24) matrices corresponding the to 24-dimensional representation
of the SU(5) gauge group, which is obtained by the product 5× 5̄ = 24 + 1. The
Σa can be represented by the components of a (5× 5) matrix Σ, which transforms
in the same way as the adjoint T ab , yielding a simplified Lagrangian,

LΣ
kin = tr

[
(DµΣ)† (DµΣ)

]
, (4.14)

with the covariant derivative acting as DµΣ = ∂µΣ− ig
[
V a
µ
La

2
,Σ
]
. If Σ obtains a

non-zero VEV,

〈Σ〉 = v5 diag

(
1, 1, 1,−3

2
,−3

2

)
= −
√

15

2
v5T

12 , (4.15)

we generate gauge boson masses through the covariant derivative and since the
commutator is exclusively non-zero for T 13,...24, only X and Y bosons receive mass,

g2
5

2
tr [Vµ, 〈Σ〉]2 ≡ m2

abV
a
µ V

µ,b =⇒ m2
X = m2

Y =
25

8
g2

5v
2
5 . (4.16)

With the VEV (4.15), SU(5) is broken to the SM gauge group as desired. The
potential which upon minimization yields such a VEV for Σ is given by

−Lint = +V (Σ) = −µ2tr
(
Σ2
)

+
a

4

[
tr
(
Σ2
)]2

+
b

2
tr
(
Σ4
)
, (4.17)
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where the cubic term is omitted by imposing a Z2-symmetry, Σ → −Σ, by hand,
which has no effects on the minimization procedure. For b > 0, µ2 > 0 and a > 7

5
b,

the potential exhibits a minimum according to

µ2 =
15

2
av2

5 +
7

2
bv2

5 . (4.18)

As a next step we have to ensure that the SM gauge group is broken in a way
consistent with observations. In the SU(5) GUT framework, this is easily done
by using a scalar fiveplet, H5, that contains the usual SM Higgs boson as well
as a colored scalar triplet. It transforms in the fundamental representation and
exhibits the usual scalar potential

H5 =


h1

h2

h3

h+

−h0

 = (3, 1)× (1, 2) =⇒ V (H) = −1

2
µ2|H|2 +

1

4
λ(|H|2)2 . (4.19)

For ν2 > 0, λ > 0, H5 obtains a non-zero VEV, which induces the breaking of
the SM gauge group. Without loss of generality, we can assume that the neutral
component acquires the VEV 〈H5〉 = 〈−h0〉 = vEW with v2 = 1

2
v2
EWλ. Hence,

we end up with the usual ρ-parameter [54], with the weak boson masses obtained
through EWSB SU(2)× U(1)→ U(1)EM ,

ρ =
m2
W

m2
Z cos2 θ

=
g2

2v
2
EW

4m2
Z cos2 θ

!
= 1 in the SM. (4.20)

Unfortunately, there are two problems with this simple Higgs potential: The
first problem is related to the masslessness of the Higgs color triplet hi i = 1, 2, 3.
It is achieved to radiative corrections of O(vEW

v5
). Through SSB of the SM gauge

group, they receive a mass of O(mW ) and there is no way to absorb them by any
gauge transformation. As a consequence, proton decay proceeds way to fast than
it is observed. The second problem concerns possible cross terms between H5 and
Σ24. Although both scalars have been treated independently,5 interactions among
them arise via radiative corrections and yield divergent diagrams that can only
be regulated, if the full Lagrangian will contain all possible terms. As a partial
solution, working with the full Lagrangian leads to Higgs triplet masses of O(v5),
which simultaneously solves the first problem. But unfortunately, also the Higgs
doublet gets a mass contribution of O(v5). In order to get a Higgs doublet mass
of O(vEW ), being twelve orders of magnitude smaller,6 one has to assume very
delicate cancellations in the potential.

5In the minimal SU(5) approach, only as much terms as necessary are introduced. Hence, we
rely in the minimal representations and interaction to obtain SU(5)→ U(1)EM .

6The difference between the GUT scale and the electroweak scale is approximated by vEW

v5
'

mW

mX
' 10−12.
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Yukawa sector

As already discussed in chapter 2, fermion masses have to be generated via Yukawa
interaction of LH and RH fields since they violate the SM gauge symmetry. Equiv-
alently, a LH/RH field and its corresponding LCC field can be used. As the LH
fermions are now contained in a (5+10) representation, the corresponding Yukawa
terms include the product (5+10)×(5+10). This leads to the following fermionic
products

5× 10 = 5 + 45

10× 10 = 5 + 45 + 50

5× 5 = 10 + 15.

(4.21)

Also in SU(5), mass terms originate from couplings between the above terms and
the Higgs scalar. The explicit form depends on the chosen representation for the
Higgs scalar and, hence, produces different mass patterns at low-energy. In the
minimal SU(5) framework, one only uses the minimal scalar representation, that
is needed to arive at SU(3)C×U(1)Y , the 5 and 24. As the latter is not appearing
in the fermionic products (4.21), it does not couple to any fermions. This sets the
fermionic mass scale to O(vEW ) through interactions with H5. Then, the possible
Yukawa Lagrangian is given by

LY uk = (ψR)†iαm
D
ij (XL)αβj H†β −

1

4
εαβγδε

(
XT
L

)αβ
i
σ2mU

ij(XL)γδj H
ε + h.c. , (4.22)

where i, j correspond to generation and α, ..., ε to SU(5) indices. The representa-
tion labels are omitted to avoid clutter. If the neutral Higgs component develops
a VEV, quark and lepton masses are generated and, after diagonalization of the
corresponding mass matrices, the following LO mass relations are obtained

md = me = MD
11 vEW , ms = mµ = MD

22 vEW , mb = mτ = MD
33 vEW . (4.23)

For the minimal SU(5) GUT with only H5 and Σ24, we generally arrive at md = me

and a symmetric up quark mass matrix, mu = mT
u . Radiative corrections lead to

good agreement with experimental data for the bottom-quark, but unfortunately,
with lowering generation index the conformity with experimental data gets worse.
The up-quark masses do not exhibit any further mass relations since RH neutrinos
are implemented in the generic model. As (4.21) indicates, the Higgs can also
be chosen as a 10-, 45- or 50-plet and would give different mass patterns or at
least some modifications. By diagonalization of the mass matrices, one obtains a
generalized form of the CKM matrix, see section 2.2. This procedure involves new
rotation matrices for the new gauge bosons, Xµ and Yµ, which could give rise to
new CP violating processes.

Summary and final remark on neutrino masses

The minimal SU(5) GUT is capable of providing a reasonable symmetry break-
ing pattern such that we arrive at the correct low-energy theory. The (5̄ + 10)-
representations simplifies the SM family structure by grouping quarks and leptons
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of the same generation, which results in certain mass relation. From a UV com-
pletion of the SM, we expect some answers to open questions, e.g. why there exist
three particle generation, etc. Since the SU(5) GUT seems to be a step in the
right direction, we now discuss its strengths and weaknesses. Unfortunately, in
the SU(5) framework the number of generations or the connection between differ-
ent representations of the Poincaré group remains unanswered. Its great success
reveals itself in the prediction of third integral quark charges as well as the right
prediction of the Weinberg angle θW . On the other hand, proton decay, a generic
feature, is clearly in disagreement with observations. No progress is made in the
scalar and Yukawa sector in comparison with the SM. Additional DOFs are needed
to arrive at the SM gauge group, yielding more free parameters in the theory. The
Yukawa interactions give some vague predictions on possible mass relations that
are in clear tension with experiments.

The minimal SU(5) GUT might not be the correct description of Nature, but
it yields remarkable properties and already shows which kind of obstacles a real
GUT has to overcome. However, in the pursuit of finding a UV completion of
the minimal type-I seesaw model, it provides an elegant framework, because RH
neutrino and, hence, a type-I seesaw mechanism can easily be implemented. A
full embedding of RH neutrinos, νR, requires a group of rank 5, which SU(5) is
definitely not. The simplest way to accommodate their existence is to introduce an
additional quantum number Y5, called fiveness, which corresponds to an additional
U(1)5 symmetry. To guarantee cancellations of anomalies within SU(5) × U(1)5,
an additional fermionic singlets 1 are needed to represent the RH neutrinos. An
alternative is to chose another favored GUT group, e.g. SO(10), that contains
SU(5) × U(1)5 as a subgroup. There, the representations 10, 5̄ and 1 are com-
bined in the same multiplet. As the breaking-scheme of SO(10) is tightly con-
strained, the minimal ansatz is just to start with SU(5)× U(1). Usually, the RH
mass assignment is associated with breaking of fiveness, which is independent of
SU(5)-breaking and hence not constrained by from low-energy phenomenology. If
SU(5) is broken before fiveness, one can combine U(1)5 with the occurring U(1)
from SU(5)-breaking to U(1)Y ×U(1)B−L, hence obtaining finally the gauge group
SU(3)C × SU(2)L × U(1)Y × U(1)B−L. This not only establishes (B − L) as an-
other quantum number of the SM, but also links the RH Majorana mass term to
the breaking of U(1)B−L. Since the Majorana mass terms violate (B − L), the
corresponding U(1)B−L has to be broken before they are generated. Hence, the
easiest way to obtain heavy Majorana masses, is to generate them directly through
(B − L)-breaking, e.g. by some heavy scalar. In what follows, we simply assume
the minimal realization of an SU(5)×U(1)5 symmetry and corresponding breaking
in such a way that as to associate the occurring Majorana mass scale with (B−L)
breaking.

4.2.2. Froggatt-Nielsen flavor models

Since the FN mechanism [48] is an important ingredient of a broader framework
[47], where we are working in, its basic principle and subsequent embedding in
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the minimal SU(5) GUT is explained in the following. Originally, Froggatt and
Nielsen tried to tackle the SM’s flavor problem by investigating how the large mass
ratios between quarks and leptons can be achieved. Their main assumption was
that effective particle masses are all of the same order of magnitude at some higher
fundamental scale and large masses in the SM are generated by RGE from this
fundamental scale down to observable scales. Although, both could proof RGE
to induce large overall effects by many orders of magnitude for particular masses,
e.g. top- and bottom-quark, the corresponding effect on mass ratios remained
within the same order of magnitude. Hence, their main conclusion was that large
renormalization of mass ratios is only possible if there exists a quantum number
ensuring different treatment of up- and down-type quarks or some underlying
physics that would allow for specific selection rules. In addition, they presented
a mechanism capable of providing the desired mass ratios at least as an order of
magnitude estimate, which is the subject of this section.

In the FN mechanism, the existence of a certain symmetry is assumed that forces
particles to have zero mass. Finite particle masses are then generated at some
order in interactions, where at some point symmetry breaking occurs. By choosing
an almost conserved, global continuous symmetry and assuming the existence of
heavy fermions Fi, with masses mF � vEW , charged under this new FN symmetry,
one is able to generate arbitrary small masses for the known SM fermions. The
simplest choice is an abelian U(1)FN symmetry with integrally quantized charges
QFN . Furthermore, LH and RH components of SM fermion are allowed to couple
differently to the new gauge bosons, which results in massless fermions for an exact
U(1)FN conservation. Light fermion mass generation is basically obtained by SSB
of a new scalar field Φ, that is commonly called flavon and charged under the new
symmetry, U(1)FN . The mechanism proceeds as follows:

At first, super-heavy fermion masses are generated through SSB by a non-zero
VEV of a neutral scalar, 〈Φ̃〉 6= 0 and QFN(Φ̃) = 0, hence, giving mF ∝ 〈φ̃〉. In
common approaches, this step is skipped and only the existence of heavy fermionic
particles is taken for granted.

In a second step, the masses of light fermions are generated by a non-zero VEV
of the flavon field Φ, that carries QFN(Φ) = −1. As this is usually assumed to
happen at much lower scales, the heavy fermions can safely be integrated out,
which leads to light fermion masses according to

mf ∝ ε ≡ gΦ(Λ ∼ GeV)

gΦ̃(ΛFN)

〈Φ〉
mF

' 〈Φ〉
〈Φ̃〉

, (4.24)

with gi representing the couplings to the corresponding scalars, i = Φ̃,Φ being
ΛFN the fundamental scale of heavy fermion mass generation. Because of small
changes in gi, the resulting mass only depends on the ratio between both VEVs,
which can be tuned arbitrarily.

In the last step, the usual Higgs boson φ is needed to break the electroweak
symmetry group. It cannot generate light fermion masses alone since it is neutral
under the FN symmetry. All Yukawa couplings are naturally assumed to be of
O(1) at the fundamental scale ΛFN . Hence, the light fermion masses are tuned by
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fi fj

〈φ0〉 〈Φ〉 〈Φ〉 〈Φ〉 〈Φ〉

. . . . .F1 F̄1 F2 F̄2 F3 F̄3 F4 F̄4

Figure 4.1.: Generation of mass hierarchies through the FN mechanism. The number
of tadpoles corresponds to the difference in the FN quantum number be-
tween of RH and LH fermions, i.e. #(Φ tadpoles) = |QFN (Lj)−QFN (li)|.
The more interactions, the stronger suppression of the resulting Yukawa
coupling due to different powers of ε.

appropriate choice of ε, which is given as the ratio of both VEVs, such that,

mf = O(1)ε 〈φ〉 . (4.25)

A certain hierarchy between different fermions can easily established via so-called
“spaghetti” interactions, see figure 4.1.

In such interactions, light fermions acquire their mass through couplings to heavy
fermions Fi and multiple tadpole interactions with 〈Φ〉. The number of heavy
fermion propagators or equivalently tadpoles depends on the QFN -assignment to
the light fermions, #(φ1 tadpoles) = |QFN(Lj)−QFN(li)|. Each heavy fermion

mediator contributes a factor of 〈Φ̃〉−1
, while each tadpole-coupling yields a factor

of 〈Φ〉. The light fermion receives a total mass

(mf )ij ' hijε
ai+bjvEW ≡ yijvEW , (4.26)

with the exponent originating from the difference in FN charges, QFN(Lj) = c+bj
and QFN(lj) = c− aj, and hij being a matrix collecting all relevant couplings for
each individual fermion. Usually each entry is assumed to be of O(1). To account
for light fermions, an appropriately large FN charge difference has to be obtained,
hence, assuming ai > 0 and bj ≥ 0 with ordering ai+1 ≥ ai and bj+1 ≥ bj. The
explicit charge assignment depends on the specific value of ε, chosen to characterize
the corresponding quark or lepton mass matrix, as we will see in the following.
In this way, we are capable of generating the hierarchically structured Yukawa
couplings of the SM.7

Finally, the whole mechanism yields a Yukawa term according to

L = hij

(
〈Φ〉
Λ

)Qi+Qj
ψiψjφ , (4.27)

with coupling constants hij ∼ O(1) and ΛFN the scale of the introduced heavy
fermions. Qi correspond to the FN charges of fermion fields, whereas the usual
SM Higgs φ remains neutral. For ε � 1, assignment of FN charges is possible

7For the general proof that this mechanism is capable of reproducing appropriately large mass
ratios, we refer to the original paper of Froggatt and Nielsen [48].
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in a way that quark and lepton masses are recovered correctly, as shown in [47].
For details on the individual steps, see appendix B. Detection possibilities for the
flavon field are investigated, e.g. in [124] in the context of the LHC and a future
100 TeV collider. Caution has to be taken in comparing different FN models as
they are very sensitive to the chosen parametrization of quark and lepton mass
matrices as well as the explicit value of ε.

SU(5) Froggatt-Nielsen model

In the following, we present an embedding of the FN mechanism into the SU(5)×
U(1)5 GUT, which is capable of reproducing the correct quark and lepton mass
pattern, while further accommodating for RH neutrinos in SU(5) singlet repre-
sentations, ψ1 [37, 47]. This model will be our starting point in the next section,
as we modify it appropriately for the minimal type-I seesaw model. The Yukawa
sector of the usual SU(5) GUT is modified, such that the corresponding Yukawa
couplings are obtained through the FN mechanism. To avoid clutter, the SU(5)
Yukawa sector of equation (4.22) is stated in a more compact notion and RH
neutrino terms are added, hence, yielding

L5
Y uk = huijε

Q10
i +Q10

j (X10)i(X10)jH5 + hdijε
Q5
i +Q10

j (ψ5)∗i (X10)jH
∗
5

+ hνijε
Q5
i +Q1

j (ψ5)∗i (ψ1)jH5 + hsijε
Q1
i +Q1

j (ψ1)i(ψ1)jS1 ,
(4.28)

with generation indices i, j = 1, 2, 3, the FN parameter ε =
(
〈Φ〉
Λ

)
and the matrix

hαij, α = u, d, ν, s that contains couplings of O(1). A non-zero VEV of the scalar
singlet S1 is used to obtain RH Majorana masses. The GUT-scale masses of quarks
and leptons are associated to the FN parameter ε according to,

mt : mc : mu ' 1 : ε2 : ε4

mb : ms : md ' mτ : mµ : me ' 1 : ε : ε3 ,
(4.29)

for an ε ∼ 1
20
− 1

10
. As the exponents of the small ε’s reflect the difference in

U(1)FN charges, we can directly infer the corresponding quantum numbers. Up-
quark masses arise from the first term of (4.28) and the charges 2, 1, 0 for rising
generation index of the decouplets X10,i have to be assigned to recover the mass
relations of (4.29).8 Equivalently, one can find the appropriate charges for the
fiveplets ψ5,i. As nothing can be said about the heavy neutrino masses, it is
impossible to assign any concrete FN charge to them. By assuming a hierarchical
generation structure, we are at least able to order these charges according to their
magnitudes, b ≥ c ≥ d. An overview of the charge assignment is given in table
4.1.

Although the theoretical framework is already set, we want to address some
phenomenological consequences of this model for the SM [37]. To account for the
correct mass ratios between up- and down-type quarks, one has to set a = 1. In

8One obtains three conditions for the three individual charges. By setting QFN (X10,3) = 0
minimal FN charges are guaranteed.
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SU(5) multiplet 101 102 103 5∗1 5∗2 5∗3 11 12 13 Φ

SU(5) FN flavor model 2 1 0 1 + a a a b c d −1

Minimal seesaw embedding 2 1 0 2 1 1 q q � −1

Table 4.1.: FN charge assignment of SM fermions, RH neutrinos and the flavon field Φ
of [47] and the constructed minimal type-I seesaw model. The multiplets
are defined in (4.4) and (4.6) and carry a generation index. The singlets
are needed to account for RH neutrinos and have undetermined charges
in [47]. For the minimal seesaw embedding, just two RH neutrinos singlets
are needed, whose charges are determined later through other theoretical
constraints.

the basis where the up-quark mass matrix is diagonal, one obtains the following
mass matrices,

mu =

ε4 ε2

1

 〈φ〉 yt , md =

ε3 ε2 ε
ε2 ε1 1
ε2 ε 1

 〈φ〉 yb . (4.30)

By further diagonalization, one achieves important predictions for the quark and
lepton mixing. The quark mixing matrix exhibits small mixing angles, i.e. for the
case of diagonal up-type matrix we get,

U12 =' O(ε), U23 =' O(ε), U13 = V l
13 ' O(ε2) , (4.31)

being in agreement with observations, if O(1) uncertainties of the matrix elements
are taken into account. The leptonic mass matrix is given by ml = (md)

T , leading
to large mixing between the second and third element,

V l
23 ' O(1), V l

12 ' O(ε), V l
13 ' O(ε), (4.32)

which reflects the equal FN charge assignment of the corresponding fiveplets, see
table 4.1. In contrast, the quark doublets contained in decouplets have different
FN charges for each family, resulting in almost equally mixing.

If RH neutrinos are introduced, the corresponding mass matrix can be chosen
to be diagonal,

MνR = diag(ε2b, ε2c, ε2d)mR . (4.33)

The existence of RH neutrinos directly allows for neutrino Yukawa interactions
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that result in Dirac masses through the usual Higgs mechanism,

mν,D =

ε1+b εb εb

ε1+c εc εc

ε1+d εb εb

 ε2
〈φ〉
mR

. (4.34)

Hence, the invoked seesaw mechanism will generate light neutrino masses according
to (2.52), given by

mν =

ε2 ε ε
ε 1 1
ε 1 1

 ε2
〈φ〉2

mR

. (4.35)

Remarkably, this does not depend on any RH neutrino FN charges, but only on
the FN charges carried by lepton doublets.

In the end, we give one remark: From the last formula, the form of the Weinberg
operator (2.42) in the context of our SU(5) approach can directly be inferred as

LW = fij(ψ5)∗i (ψ5)∗jH5H5 , (4.36)

where fij are the generic neutrino couplings that are suppressed by the heavy RH
neutrino mass scale.

4.3. High-energy embedding of the minimal type-I
seesaw model

After the introduction of our framework and the underlying methods, we will
present the actual flavor model that embeds the minimal type-I seesaw at high
energies. By further assuming (approximate) exchange symmetries in the heavy
neutrino sector, we are able to reduce this model’s parameter space further, such
that we arrive at a minimal UV completion of the type-I seesaw model.

4.3.1. Modified SU(5) Froggatt-Nielsen framework

Without loss of generality, we assume to work in a basis, where the charged lepton,
ml, and the RH neutrino mass matrix, mR, are diagonal and switch to index-
notation. We begin by shortly reviewing the minimal type-I seesaw model of
section 3.2 in a slightly different notation and link it to the presented SU(5) FN
flavor model of the last section. Hence, the Lagrangian of our minimal type-I
seesaw model is given by9

L = −yαilαNiφ−
1

2
mR,iNiNi + h.c. , (4.37)

9For the following investigation we switch from chiral to two-component notation since it sim-
plifies the formulation of the demanded exchange symmetries.
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with the Yukawa coupling yαi describing the interaction between RH neutrinos
Ni i = 1, 2, the LH SM lepton doublets lα = (να, eα)T and the Higgs doublet

φ = (φ+, φ0)
T

. As already explained in chapter 3, the minimal type-I seesaw
model has nine real DOFs, eleven if we do not absorb the heavy neutrino masses
in the Yukawa coupling.

To further reduce the number of DOFs of the minimal seesaw framework, we
chose to apply the FN mechanism to account for its Yukawa structure and embed
it into the minimal SU(5) GUT. Then the remaining free parameters can be
interpreted in a broader theoretical context. For this, we take advantage of the
previously introduced SU(5) FN flavor model of [47] and modify it according to our
purposes. Since we do not make any statement about the dynamics at scales much
higher than the GUT scale, we omit the first step of the FN mechanism. As the
heavy fermions are considered as non-propagating DOFs, they are integrated out10

and subsequently lead to a suppression of the corresponding couplings according
the FN energy scale ΛFN . We assume that SU(5) symmetry breaking proceeds
as usual in the minimal SU(5) GUT and does not affect the implemented FN
mechanism, such that we can directly focus on the SM DOFs. As the FN charge is
assigned to the GUT multiplets, all SM fermions within the same representation
share equal FN charges as a relic of their unification. Hence, the most relevant
part for the following procedure is

Leff ⊃ aij

(
Φ

ΛFN

)pij
fi fj φ , (4.38)

for each SM fermion fi ∈ {li , qi} with generation indices i, j = 1, 2, 3. aij represent
arbitrary, dimensionless couplings of O(1) that incorporate all high-energy interac-
tions, which are not subject of our interest. As usual, the flavon field Φ carries FN
charge QFN = −1. Moreover, the FN charge assignment of the SU(5) multiplets,
see e.g. table 4.1, fixes the exponent of the ratio Φ/ΛFN in (4.38), independently
whether a global or local realization of U(1)FN , is chosen pij = QFN(fi)+QFN(fj).

Next we take the simplest way of breaking U(1)FN which is spontaneous breaking
by a non-zero flavon VEV 〈Φ〉, slightly below the effective theory’s cut-off, ΛFN .
Having fixed the ratio Φ/ΛFN , which can occur in various powers depending on
the previously chosen FN charges QFN . By doing so, we convert the problem of
certain hierarchies among SM Yukawa couplings into an explicit charge assignment
within the context of a minimal SU(5) GUT, extended with a RH neutrino sector.
Hence, the SM Yukawa matrices can easily be parametrized by the parameter ε0
and the fermionic charge under the broken FN symmetry U(1)FN ,

Φ→ 〈Φ〉 =⇒ Leff → yijfi fj φ, yij = aijε
pij
0 , ε0 =

〈Φ〉
ΛFN

. (4.39)

This does not solve SM flavor puzzle at all! The resulting Yukawa hierarchies are
now originating from an explicit U(1)FN charge assignment, which has to be put

10We assume their masses to be of the same order as the FN scale, mF ∝ ΛFN . Integrating out
contributes a factor of Λ−1FN .
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in by hand. Moreover, we have to guarantee a very fine-tuned value of the ratio
〈Φ〉 /ΛFN to account for the observed quark and lepton mass patterns. However,
the flavor puzzle is exchanged with a mechanism that is already realized in Nature,
the Higgs mechanism, and the occurring Yukawa couplings arise from a theoretical
more favored origin; a symmetry with its corresponding charges. In our pursuit
of finding a minimal UV flavor embedding of the minimal seesaw, this mechanism
seems justified due to its simplicity and known behavior.

Now, we can rely on the findings of [47] and use the postulated charge assignment
according to table 4.1. By setting ε0 ' 0.17, the correct quark and lepton mass
matrices are recovered, up to O(1) coefficients. The only remaining task is to
modify the heavy neutrino sector. In contrast to [47], we only introduce two RH
neutrinos with FN charges qi. To account for light neutrino masses coming from
the seesaw mechanism, we introduce a (2 × 2) Majorana mass matrix. At this
stage, we assume that the hierarchy among the heavy neutrinos is also generated
through the FN mechanism, yielding

mR =

(
b1ε

q1
0 0

0 b2ε
q2
0

)
m0 with qi = 2QFN(Ni) , (4.40)

where bi is again a dimensionless coefficient of O(1) and m0 refers to the generic
mass scale of heavy neutrinos, which is usually generated by some U(1)B−L break-
ing. Driven by the aim of minimality, we charge both RH neutrinos equally,
QFN(N2) = QFN(N1) ≡ q ≥ 0. Another motivation is that approximate mass
degeneracy between both RH neutrinos, mR,1 ∼ mR,2 can yield successful leptoge-
nesis scenarios [40,109]. According to (4.39), equation (4.37) becomes

yαI = aαIε
pαI
0 with pαI = QFN(lα) +QFN(Ni) . (4.41)

The full charge assignment of our framework can be seen in table 4.1 and its
application leads to the following structure in the neutrino Yukawa coupling matrix
(4.41),

yαI ∼

ε0 ε0
1 1
1 1

 y0, y0 ≡ εq0 , (4.42)

where y0 corresponds to the universal suppression of all Yukawa couplings due
to the RH neutrino charge q. All entries exhibit O(1) uncertainties, as does the
hierarchy structure.

In this way, we have obtained a generic Yukawa structure produced by the simple
FN mechanism through explicit charge assignments to multiplets of the minimal
SU(5) GUT. Hence, we arrive at a high-energy embedding of the minimal type-I
seesaw model, now derived as a well-motivated top-down approach.

4.3.2. Exchange symmetries in the heavy neutrino sector

Now, that we have modified the SU(5) FN model according to the minimal seesaw
framework, we want to dive further into parameter space considerations in order to
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continue reducing the number of free parameters. We have already seen that the
FN mechanism can easily produce hierarchies within the neutrino Yukawa matrix
(4.42) up to coefficients of O(1). To get a handle on this, we apply a “self-made”
parametrization of the seesaw Yukawa matrix according to

yαI =

 ε cos θee
iφe ε sin θee

iφe+∆φe

cos θµe
iφµ sin θµe

iφµ+∆φµ

cµτ cos θτe
iφτ cµτ sin θτe

iφτ+∆φτ

 y0 , (4.43)

that will proof very useful in what follows. Since we assigned explicit variables to
each O(1)-uncertainty, we can study their behavior, e.g. in the transition to flavor-
aligned texture regions. The three mixing angles are defined in the interval θα ∈[
−π

2
, π

2

]
and the phases ϕα ∈ [0, 2π]. The phase shifts ∆ϕα ∈ [0, 2π] are introduced

to account for some relative phase between both matrix columns. Further, cµτ is
a dimensionless quantity of O(1) and ε ' ε0 ' 0.17 is defined in close connection
to [47], while we also allow for small deviations. The quantity y0 is the same as in
(4.42) and reflects the universal suppression through heavy neutrinos FN charges.
If we do not apply any further assumptions or constraints, (4.43) exhibits the same
number of parameters as a general complex (3× 2) matrix; six absolute values, y0,
ε, cµτ and θe,µ,τ , and three phases as well as three phase shifts, ϕα and ∆ϕα.

We can further reduce them by making the following observations:
The Yukawa pattern of (4.42) exhibits equal Yukawa couplings for both matrix
columns up to correction of O(1), suggesting an approximate exchange symme-
try between both columns. Motivated by the fact that nearly-degenerate heavy
neutrino masses are capable of yielding successful leptogenesis [109], we already
assigned equal FN charges according to table 4.1. This reflects a further (approx-
imate) exchange symmetry, now in terms of heavy neutrino masses. The applica-
tion of both approximate exchange symmetries, exchange of Yukawa columns and
heavy neurino masses,

|yα1| ∼ |yα2|, mR,1 ∼ mR,2 (4.44)

puts constraints on all mixing angles of (4.43), which have to satisfy sin θα ≈ cos θα
or equivalently tan θα ≈ 1. Therefore, the number of independent parameters is
reduced from twelve to nine, leaving us with all undetermined phases and shifts,
but just three absolute values, y0, ε and cµτ . As already discussed in chapter 3,
too strong reduction of free parameters, e.g. assuming exact-zero textures, would
lead to inconsistencies with experimental measurements. This also applies here,
where the assumption of an exact exchange symmetry reflects such a situation,
i.e. forcing some mixing angles to be exactly zero. We already encountered such a
kind of exact exchange symmetry in chapter 3 in the discussion of flavor-aligned
texture regions. There, both Yukawa columns are equalized, such that both heavy
neutrinos couple equally to one lepton flavor. This gives us a first indication
that we are on the right track of describing the origin of flavor-aligned texture
regions, which was one of our motivations to study a top-down realization of our
model. If we assume an approximate exchange symmetry, e.g. |yα1| = |yα2 + δyα|
for |δyα| � |yαI |, we can in principle realize both, consistency with experimental
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measurements and the order of magnitude estimates originating from our FN flavor
model (4.42).

To get a better understanding of the transition towards flavor-alignment in the
Yukawa matrix yαi, we apply the CIP [85] as it provides a successful separation
between low- and high-energy parameters. For this purpose, we use the equations
(3.8), (3.7) and (3.24), with καi and Vαi as rescaled and dimensionless versions
of the Yukawa and PMNS matrix respectively. Slight modifications lead to even
more compact expressions, e.g. with V ±α = 1√

2
(Vαk ± Vαl) and z = 1√

2
(zR + izI),

one arrives at

κα1 =
1√
2

(
V +
α e
−iz + V −α e

+iz
)
, κα2 =

i√
2

(
V −α e

+iz − V +
α e
−iz) , (4.45)

again with indices (k, l) = (2, 3) for NH and (k, l) = (1, 2) for IH. As we al-
ready know, the regions where an alignment of Yukawa columns is achieved, i.e.
|κα1| ' |κα2|, exhibit large imaginary parts of the complex rotation angle, |zI | � 1.
For completeness, the compact expressions for flavor-aligned Yukawa matrices are
given:

zI � 1 =⇒ κα1 ' iκα2 '
1√
2
V +
α e
−iz ,

zI � 1 =⇒ κα1 ' −iκα2 '
1√
2
V −α e

+iz .
(4.46)

So far, we just claimed that we transit into flavor-aligned texture regions, if
|zI | is large enough, see chapter 3. To quantify what zI value is actually enough,
we now study the general behavior of mixing angles θα, or more precisely tan θα,
in dependence of the imaginary part of z and investigate at which values flavor-
alignment occurs. After this analysis, we can specify this statement and give a
certain value for zI . We obtain the desired results by setting (4.46) equal to the
dimensionless version of the introduced Yukawa parametrization (4.43). For each
value of zI , we vary the remaining free parameter of our model, the real part of
the rotation angle zR and both CP phases δ and σ, over their entire domain,
while fixing the already measured neutrino observables to the values presented in
table 2.3. As we have no knowledge about the realized neutrino mass hierarchy,
the analysis is performed for both possible mass orderings, NH and IH. As we
tested the influence of slight variation within the experimental input parameters
in section 3.5, we know that our results of chapter 3 remain unaffected by this
more recent data set.

We obtain distributions of the mixing angles tan θα, where we group them ac-
cording to certain quantiles Qp analogous to a Gaussian distribution. The applied
quantiles Qp are shown in table 4.2 and the obtained mixing angle distributions
can be viewed in figure 4.2.

After this investigation, we come to the following results: While for |zI | ≤ 1,
the mixing angles can occupy various values, each leading to a slightly different
neutrino Yukawa matrix with no exchange symmetry at all. For |zI | & 2, all
mixing angles converge to unity, such that our assumption of approximate exchange
symmetry among the Yukawa columns is almost realized and we approach flavor-
alignment.
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Figure 4.2.: Expectation values of the three mixing angles tan θα as functions of the
imaginary component of the rotation angle z for both NH, right panel,
and IH, left panel. The mixing angles are defined via equation (4.43) and
z is defined according to (4.45). The distributions are generated by varying
the undetermined parameters zR, δ and σ, while applying the most recent
neutrino data, see table 2.3 The curves indicate quantiles Qp in analogy
to a Gaussian distribution. The assigned value can be seen in table 4.2.
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quantile Qp −2σ −1σ median +1σ +2σ

probability p [%] 2.28 15.87 50.00 84.13 97.72

Table 4.2.: Quantiles of a Gaussian distribution that are applied to the distributions
of mixing angles tan θα in figure 4.2.

Another result from (4.46) is that we are only able to achieve full flavor-alignment,
if we allow for a specific phase relation between both Yukawa columns,

yα1 ' i sign{zI} yα2 , (4.47)

that immediately determines the phase shifts in (4.43), up to a sign, as ∆ϕα '
±π

2
' sign{yi}π2 .

This means, the assumption of an (approximate) exchange symmetry between
the Yukawa columns eliminates six parameters: all three mixing angles θα as well
as the three phase shifts ∆ϕα. Moreover, the remaining tree phases ϕα can al-
ways be absorbed by an appropriate redefinition of the charged lepton fields. As
a result, the transition to an exact exchange symmetry yields a tremendous de-
crease of model parameters, such that we only have to deal with three remaining
parameters real values; y0, ε and cµτ . The first two can be derived in the context
of the previously constructed flavor model, only cµτ remains as the last undeter-
mined parameter of O(1). Without any further theoretical assumption, there is no
possibility of linking cµτ to other quantities. Conclusively, we arrive at a minimal
top-down realization of the type-I seesaw model with only two RH heavy neutrinos,
which is characterized by the following LO Lagrangian,

Lmin ∼− y0 (εle + lµ + cµτ lτ ) (N1 − i sign{zI}N2)φ

− 1

2
M(N1N1 +N2N2) + h.c. ,

(4.48)

with M = 1
2

(mR,1 +mR,2) ' mR,1 ' mR,2 due to the assumed exchange symmetry
in the RH neutrino mass term. Of course, one has to take care of perturbations
that arise from the approximate exchange symmetry. Viewed from a top-down
perspective, at first we are interested in exact realization of some symmetry at
some high scale. In this naive approach, we do not care about mechanisms that
could lead to such small perturbations.

After we arrived at the minimal Lagrangian (4.48), we want to justify why it
can safely be considered as a minimal realization of the seesaw mechanism with
only two RH neutrinos. First, our model exhibits only two instead of the three
heavy neutrinos. With this assumption, the parameter space can be reduced much
and further restrictions enable us to make predictions of neutrino observables. If,
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for instance, successful leptogenesis is assumed as another constraint [109], nearly-
degenerate neutrino masses are required, which further shrinks the applicable pa-
rameter space. Both neutrinos than form a pair of pseudo-Dirac neutrinos, that
share a common Dirac mass M , compare section 2.2.

Secondly, the underlying neutrino Yukawa matrix yαi exhibits flavor-alignment,
up to small deviations due to only approximate symmetry realization. If taken ex-
act, the corresponding Yukawa interactions only rely on three parameters, y0, ε and
cµτ and are further invariant under the exchange symmetry N1 → −i sign{zI}N2.
In contrast, the neutrino mass term is invariant under the exchange of both RH
neutrinos N1 → N2 as both are nearly-degenerate in mass. One has to keep in
mind, that the postulated symmetries only hold for their associated terms. As we
want to stay agnostic, we do not further investigate their origin.

Finally, the high-energy FN mechanism, leads to a natural suppression of the
coupling between heavy neutrinos and the electron, ε � 1. This results in an
approximate two-zero texture that has been the subject of chapter 3. As this
structure represents the strongest reduction of parameters that is consistent with
observations, we also arrive at a minimal theoretical realization of experimental
observables at high energies. As discussed in section 3.6, we can safely neglect RGE
effects within the context of the minimal type one seesaw model [109] and directly
infer properties of high-energy parameters from low-energy neutrino observables,
as done in figure 4.3.

In this sense, we actually arrive at a minimal realization of the type-I seesaw
mechanism. The only assumptions are the FN symmetry with a certain SU(5)-
multiplet assignment, see table 4.1, and the approximate exchange symmetries
in the heavy neutrino Yukawa interaction and mass matrix, see (4.44). As the
Lagrangian (4.48) also matches the large |zI |-limit of the applied CIP [85], we
have shown that it can accommodate for all currently observed low-energy neutrino
data, see table 2.3.

4.4. Phenomenological aspects

Since the minimal type-I seesaw model is embedded in a SU(5) FN flavor model
and restricted to a minimal number of free parameters, we are now interested in the
model’s phenomenological consequences. We investigate the available parameter
space in terms of its CP phases, δ and σ, as at least one of them, δ, is expected to
be determined in the near future. To be more specific, the consequences for the free
model parameters are considered. In this way, we tie in with the analysis performed
in chapter 3 and complement it from the high-energy point of view. Further,
we confront our model with additional theoretical constraints, e.g. electroweak
naturalness and leptogenesis, that have recently been investigated in the framework
of this model.



4.4. Phenomenological aspects 85

4.4.1. Normal ordering and maximal CP violation

One of the main features of our FN flavor model is that, due to explicit charge
assignment, some hierarchy between certain entries of the neutrino Yukawa matrix
yαi is invoked. Through the parametrization (4.43), this hierarchy can be described
by relations among the Yukawa coupling, e.g.

|ye1|2 + |ye2|2

|yµ1|2 + |yµ2|2
= ε2 ,

|yτ1|2 + |yτ2|2

|yµ1|2 + |yµ2|2
= c2

µτ . (4.49)

By postulating the approximate exchange symmetry (4.44), these terms simplify
to

|yei|
|yµj|

∼ ε,
|yτi|
|yµj|

' cµτ , with i, j = 1, 2 . (4.50)

This gives a prediction, at least in terms of magnitudes, on the ratios of Yukawa
couplings between two flavors that allows a consistency check with experimental
data. Or we reverse the approach and test which kind of hierarchies are allowed
by experimental data. For this approach, we apply the CIP (4.45), that has
already proven very useful. If we go to the limit of exact exchange symmetry,
i.e. |zI | � 1, we obtain exact flavor-alignment between both Yukawa columns
and can rely on the knowledge gained in section 3.3. From (4.46), one obtains
simplified expressions that directly relate the high-energy Yukawa couplings to the
observable low-energy neutrino parameters,

|zI | � 1 ⇒ |yei|
|yµj|

'
∣∣∣∣V ±eV ±µ

∣∣∣∣ , |zI | � 1 ⇒ |yτi|
|yµj|

'
∣∣∣∣V ±τV ±µ

∣∣∣∣ , (4.51)

with V ±α as the linear combination between different rescaled Yukawa couplings, see
(4.45). Equivalently to chapter 3, the flavor-aligned regions become independent
of any auxiliary rotation parameter z. Hence, the ratios in (4.51) depend only on
the low-energy observables, see table 2.3, and can be calculated in terms of the yet
undetermined CP phases δ and σ. In contrast, we check the consistency of the
high-energy parameters ε and cµτ with measured low-energy neutrino observables
as well, since they help us to infer any hierarchy within the neutrino Yukawa
matrix. To be precise, we calculate the ratios of (4.50) in terms of the CP phases,
δ and σ, while applying the measured neutrino data of table 2.3. In our model,
these ratios are related to the high-energy parameters ε and cµτ , such that we can
interpret the results as predictions for both parameters. These predictions can
be viewed in figure 4.3, where we calculated the ratios given by (4.50) for both
mass ordering, NH and NH, and both possible signs of zI . The actual ratios are
independent of zI , but the sign is important as it indicates which definition of
V ±α → V

sign{zI}
α is used. We have found a similar situation for the asymptotic

hierarchy parameter R23 in (3.25).
These numerical scans reveal several important results, which we will comment

on in the following:
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Figure 4.3.: Ratios of Yukawa couplings |yeI | / |yµJ | (black solid contours, blue labels)
and |yτI | / |yµJ | (gray dashed contours, orange labels) as functions of the
CP violating phases (δ, σ) in the flavor-aligned limit. Ratios are presented
for both mass orderings, NH in the left panels and IH in the right
panels, as well as for both possible signs of zI in the CIP, sign {zI} =
+1, upper panels and sign {zI} = −1, lower panels. All ratios are
calculated according to (4.50) with the recent low-energy neutrino data,
see table 2.3. The ratios |yeI | / |yµJ | and |yτI | / |yµJ | are controlled by
the parameters ε and cµτ , see (4.51), the above plots can be understood
as predictions for (δ, σ). The theoretical expected values for ε and cµτ
correspond to ε ' ε0 ' 0.17 (green solid line) and cµτ ' 1 (red dashed
line).
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Inverted mass hierarchy The ratio between electron and muon Yukawa cou-
pling, indicated by the black solid lines, is bounded from below, yielding values
according to |yei|/|yµj| & 0.30. This is inconsistent with our general assumption
of |yei|/|yµj| ' ε ' ε0 ' 0.17, which is needed to produce the right quark and
lepton mass patterns that originate from (4.28) with the explicit charge assign-
ment of table 4.1. Deviations would lead to different fermion mass patterns and
necessary corrections would make things even more complicated. This would be
in clear disagreement to Ockham’s razor, our guiding principle in the search for a
minimal seesaw realization. In this sense, we have to accept that the SU(5) FN
flavor model is not able to account for inverted neutrino mass ordering.

Normal mass hierarchy The corresponding plots for NH indicate that the theo-
retically favored ratio between electron and muon Yukawa coupling of |yei|/|yµj| '
0.17 can be achieved for both, positive and negative, signs of zI . The solid green
contour lines show, where the experimental data match the model’s expectations.
Hence, the flavor model uniquely predicts the existence of NH! Moreover, it leads
to an approximate two-zero texture in the Yukawa coupling matrix and provides
the missing high-energy link to the investigation performed in chapter 3. There,
we already proved that NH can be in agreement with experimental data, if one
allows an approximate two-zero texture and can now give an explicit high-energy
model predicting its origin.

Variation of cµτ As we also have plotted the ratio between tau and muon Yukawa
coupling, gray and red dashed lines within figure 4.3, we see the prediction of
certain cµτ -values. In general, various combinations of (δ, σ) are allowed by the
experimental input parameters. Taking cµτ ∈ [0.5, 2], for NH all possible values of
the Dirac phase δ can be occupied, while some small regions of the Majorana phase
σ are spared. For IH, we obtain values for every CP phase within its corresponding
domain, if we assume cµτ to be in the same regions. Assuming a certain value of
cµτ leads to strong correlation between both CP phases.

Generic prediction for CP phases Of course, we are interested in some precise
predictions of our SU(5) FN flavor model, to probe it with future experimental
measurements. Since cµτ is introduced as a parameter of O(1) in our Yukawa
parametrization (4.43), we expect some predictions by fixing it to its generic value.
As cµτ already implies a strong correlation between the CP phases δ and σ, we
obtain a strong reduction of possible values by assuming it close to its generic
unity, cµτ ' 1, as indicated by the red dashed line. Only four valid combinations
of δ and σ remain for NH (red dots) and a negative sign of zI , if we simultaneously
assume ε to take its generic value, ε ' 0.17,

(δ, σ)

deg
'


(234, 7) (I)

(291, 9) (II)

(69, 171) (III)

(126, 173) (IV)

. (4.52)
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All solution favor phase values δ that correspond to maximal �
��CP , e.g. δ = 90◦ or

δ = 270◦, and moreover, the first two solutions remarkably coincide with current
best-fit values of δ for NH, see table 2.3. For positive zI and both signs in the
case of IH, we do not find any predictions, consistent with the assumptions of our
model. Equivalent, to the investigations of chapter 3, we can safely neglect RGE
effects in the context of the minimal type-I seesaw model as their contribution are
much smaller than the O(1) uncertainties of the applied FN mechanism [109].

By assuming cµτ ' 1, we absorb the last free parameter of our SU(5) FN flavor
model, which is justified as a naive expectation from (4.43). By doing so, we are
not only able to obtain precise predictions for both CP phases at low-energies, but
can also rely on more theoretical reasons since a cµτ -value close to unity implies
an approximate µ− τ symmetry [125] of the Lagrangian (4.48).

We end up with the heavy neutrino’s FN charge q and their fundamental mass
scale m0 as only remaining free parameter. This is a remarkable result, as (4.48)
exhibits the potential of realizing all currently measured low-energy neutrino ob-
servable as a UV completion of the type-I seesaw mechanism with only two RH
neutrinos. Further, the SM’s quark and lepton mass patterns are recovered, at least
within their order of magnitude, originating from a well-motivated high-energy fla-
vor model [47]. The remaining two free parameters, q and m0, are connected to
the yet unknown heavy neutrino sector and are far from being directly detected.

4.4.2. Heavy neutrino mass scale and theoretical constraints

In the following, we try to constrain the model’s remaining parameter with two
theoretical assumptions, that are related to the high-energy region. Hence, we ex-
pect to get some intuition about their actual values as both are also connected to
high-energy regions. The authors of [109] have already checked the minimal type-I
seesaw model with respect to its agreement with several theoretical constraints.
This means, we can take advantage of their knowledge and simply have to apply
them to our model. We only apply the strongest bounds, which are electroweak
naturalness and the potential to realize successful leptogenesis. At first, we es-
timate the absolute RH neutrino mass scale within the context of our model by
combining equations (4.40), (4.46) and (4.50), such that we obtain, in the limit of
exact flavor-alignment, the following expression,

m0e
−2zI ' 2ε20|V −e |−2 ' 2|V −µ |−2vEW ' 4.6× 1015 GeV. (4.53)

Hence, the heavy neutrino (pseudo-) Dirac mass M is obtained as a function of q
and zI ,

M ' 4.6 ε−2q
0 e2zI1015 GeV . (4.54)

As the heavy neutrinos participate in Yukawa interactions with SM leptons and
the SM Higgs doublet, they can contribute radiative corrections to the SM Higgs
mass-squared parameter µ2, according to [109]

δµ2 ≈ M3

4π2v2
cosh(2zI)

∑
i

mi . (4.55)
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Figure 4.4.: Heavy neutrino (pseudo-) Dirac mass M as a function of the FN charge
q and the imaginary part of z, black lines, given by (4.54). The corre-
sponding masses are plotted within the range −4 . zI . −2. For larger
values of zI , i.e. smaller |zI |, the Yukawa matrix does no longer exhibit
flavor-alignment, compare with figure 4.2. Smaller values,i.e. larger |zI |,
on the other hand, do not allow successful leptogenesis, as discussed [109].
In addition, the upper bound on the heavy neutrino mass scale M is given
by the condition of electroweak naturalness (4.56), for three characteristic
values of δµ2

max, green lines.



90 4.4. Phenomenological aspects

If such corrections exceed the Higgs VEV vEW , they drive corresponding particle
mass away from its measured value of mφ ≈ 125 GeV. Additional terms, intro-
duced to compensate for such contributions, are usually considered as fine-tuning.
Therefore, a general assumption is that radiative contributions to the Higgs mass
mφ must not exceed O(TeV2) to avoid such cancellations. This general statement
is referred to as electroweak naturalness. In our case, this requirement gives strong
bounds on the heavy neutrino mass M , given by

M .Mmax '

(cosh(2zI)
∑
i

mi

)−1

4π2v2δµ2
max

 1
3

. (4.56)

The possibility of accounting for the observed BAU has been checked in the frame-
work of this minimal model. As the standard thermal leptogenesis scenario requires
heavy neutrino masses that are in clear disagreement with bounds from natural-
ness, see e.g. for the three flavor case [126, 127], we have to rely on a different
mechanism. Fortunately, resonant leptogenesis [98, 99, 108] provides a circumven-
tion by allowing for lighter RH neutrino masses, if they are assumed to be almost
degenerate. The authors of [109] found that the minimal type-I seesaw is indeed
capable of realizing this scenario, assuming that |zI | does not take too large val-
ues, e.g. |zI | . 4 for M & 1 TeV. As other bounds from vacuum metastability,
perturbativity and LNV are less constraining [109], we do not apply them in the
following. Taking into account electroweak naturalness and successful leptogene-
sis, we plot the possible heavy neutrino masses given by (4.54) in figure 4.4. We
immediately see that the imaginary z-part is restricted by requirements of hav-
ing flavor-alignment on the one hand, |zI | . 2, and successful leptogenesis on the
other hand, |zI | & 4. The requirement of electroweak naturalness excludes all FN
charges QFN(Ni) < 4, as the corresponding RH neutrino masses lead to strong
radiative corrections contributing to µ2. Neutrinos with FN charges QFN(Ni) = 4
are allowed depending on the corresponding zI-value, whereas all heavy neutrino
masses corresponding to FN charges larger than four are in perfect agreement with
electroweak naturalness. Hence, we have proven that the constructed model ex-
hibits parameter regions that are in agreement with constraints from electroweak
naturalness and can lead to baryogenesis via leptogenesis. For this, FN charges
larger than three have to be assigned while the fundamental RH neutrino mass
scale m0 has to be fixed to O(1012...14) GeV.

4.4.3. Deeper connections to other theories

Before closing this investigation with a conclusion, we want to comment on some
interesting parallels to another model, that exhibits similar properties. Some ma-
nipulations have to be performed to emphasize this point. We perform a basis
transformation of the heavy neutrino sector,

Ñ1 =
1√
2

(N1 + iN2) , Ñ2 =
1√
2

(N1 − iN2) , (4.57)
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to obtain a Lagrangian, in which the pseudo-Dirac nature of the heavy neutrino
fields is evident,

Lseesaw ∼ −
√

2 εq0 (ε0 `e + `µ + `τ ) Ñ1H − ε2q0 M0 Ñ1Ñ2 + h.c. . (4.58)

The important exchange symmetries applied in this chapter are then given by

N1 ↔ iN2 ⇔ Ñ1,2 ↔ ± Ñ1,2 , (4.59)

N1 ↔ N2 ⇔ Ñ1,2 ↔ ±i Ñ2,1 ,

while the first one corresponds to the approximate symmetry assumed to be present
in the Yukawa interactions and the second one to the symmetry of the heavy neu-
trino mass term. Remarkably, the Lagrangian (4.58) receives special attention in
the models of [40,128,129], where its supersymmetric version is responsible for the
exponential expansion during the inflationary epoch of the Universe. For this type
of models the super-partners of Ñ2 and Ñ1 act as inflation and a corresponding
stabilizer field, such that a successful inflation epoch is established by a sufficient
suppression of couplings within the corresponding Yukawa matrix. While in [128]
an approximate shift symmetry in a certain field direction is used, our model relies
on an approximate discrete symmetry. As both models exhibit some parallels, a
deeper investigation of the supersymmetric version of our model could be useful,
although it is way beyond the scope of this thesis. More importantly, a deeper in-
vestigation of the small corrections to the model’s Lagrangian and (4.58) is needed,
as there arise some inconsistencies between the exact LO Lagrangian and non-zero
neutrino masses. The reason is expression (4.58), which clearly exhibits some
lepton number symmetry under which Ñ1 and Ñ2 carry opposite charges. Light-
neutrino masses are forbidden in the case of an exact symmetry, such that some
symmetry-breaking terms have to be introduced. These are expected to occur in
the missing corrections.

4.5. Summary and remarks

Finally, we summarize this chapter and comment on open issues. After a detailed
introduction into the simplest SU(5) GUT [49, 121] and the FN mechanism [48],
a model combining both has been presented [47]. It was the starting point in
the construction of a high-energy theory that embeds the minimal type-I seesaw
framework with only two RH neutrinos [41, 44–46, 120]. By the assumption of
approximate exchange symmetries, N1 ↔ iN2 for the Yukawa coupling matrix and
N1 ↔ N2 for the heavy neutrino mass term respectively, the model’s parameter
space is strongly reduced and leaves us with only three parameters, y0, ε and cµτ ,
if the symmetry is exact at LO. A cross check of the obtained Yukawa structures
(4.50) with low-energy neutrino observables revealed that the generic assumption
cµτ ' 1 is justified, see figure 4.3. The resulting µ− τ symmetry [125] leads to the
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elimination of cµτ and gives a Lagrangian with minimal number of free parameters,

Lmin ∼− εq0 (ε0 `e + `µ + `τ ) (N1 + iN2)φ (4.60)

− ε2q0
2
M0 (N1N1 +N2N2) + h.c. , (4.61)

with the FN hierarchy parameter ε0 ' 0.17, that is required for consistency with
observed quark and lepton mass patterns [47]. This represents a minimal realiza-
tion of the type-I seesaw mechanism with a well-motivated UV origin. We only as-
sumed an approximate exchange symmetry such that the Lagrangian of (4.60) has
to be considered as LO expression with small corrections coming from non-exact
realization. The heavy neutrinos’ FN charge q and their fundamental mass scale
m0 ∼ O(1012...14) GeV are then the only free parameters of our minimal model.
Although q remains generally unconstrained, further theoretical requirements like
electroweak naturalness and leptogenesis restrict its value to be q ≥ 4, indicated
by figure 4.4. As desired, we arrive at an important benchmark scenario that relies
on a UV framework and provides agreement with experimental observations. Its
strongly reduced parameter space is caused by three ingredients:

At first, it contains only a pair of pseudo-Dirac neutrinos, which span a smaller
parameter space than the generic three flavor case. Furthermore, the neutrino
Yukawa matrix exhibits an approximate flavor-alignment such that the SM charged
lepton flavors can be viewed as coupling only to one linear combination of neutrino
fields, i.e.N1+iN2. And finally, an approximate two-zero texture is obtained within
the Yukawa matrix, which is the most minimal structure for the case of NH to be
consistent with experimental data.

In the end, the eleven parameters of the generic two heavy neutrino seesaw are
reduced to only five. The following properties invoke this reduction: Two DOFs are
absorbed due to the constraints from (4.50), only one DOF is needed to describe
the heavy neutrinos’ degenerate mass spectrum, equation (4.54) connects M and
q and exact flavor-alignment leads to independence of the auxiliary parameter zR
and zI .

We obtain precise predictions for the Dirac phase δ for NH (4.52), δ± π
2
, which

remarkable agree with experimental trends, see table 2.3.
As we only focused on LO terms in this first approach, of course further work is

needed to understand deviations from the exact symmetry case, which is necessary
to ensure the model’s conformity with experiments.

In addition, the origin of structures, emerging in figure 4.3, should also be ex-
amined analytically, since this would allow a study of stability under variation of
experimental input parameters, equivalently to the one performed in section 3.5.

Although we motivated the formulation of our high-energy approach by a GUT,
there still exist unanswered questions. The connection between the heavy neutrino
mass scale m0 and the GUT scale ΛGUT should be clarified, at least in the context
of some U(1)B−L breaking, which is a common realization to explain the Majorana
mass term. An important fact is that the minimal SU(5) GUT itself suffers from
problems like too fast proton decay and mismatches between mass predictions for
heavier quarks and leptons [37,121]. Regarding the postulated symmetries, (4.44)
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as well as (4.59), their origin is far from clear and has to be explained in a broader
context. One possibility is that they are related to certain boundary conditions in
extra-dimensional orbifolds [130–133].

All in all, we have formulated a minimal UV realization of the type-I seesaw
which is consistent with important theoretical constraints, electroweak naturalness
and leptogenesis. It predicts NH in the light neutrino sector with certain values
for the Dirac phase δ, see (4.52). Hence, it is a justified benchmark scenario as
it is capable of reproducing the current experimental data sets. We motivated
our approach by a minimal GUT framework, but to stay agnostic, one can always
assume some framework-independent realization of the FN mechanism according
to (4.39) with an equivalent SM fermion charge assignment as in table 4.1.

We remark that our results, i.e. the prediction of δ ' π
2
, are consistent with a FN

model that assumes a flavor-independent condition on the neutrino mass matrix,
det(mν) = 0 [134]. Moreover, the authors find that their prediction on the Dirac
phase δ does not necessarily rely on the assumption of two heavy RH neutrinos as
long as the lightest neutrino mass does not exceed a value of 10−4.





5. Conclusion and Outlook

Finally, the main results of the previous chapters are shortly summarized with
concluding remarks. Subject of the present thesis is the minimal type-I seesaw
mechanism with only two RH neutrinos [41–46], which has been studied from two
different directions; a bottom-up approach, that tried to investigate consequences
of certain CP phase measurements, and top-down model building, which was
motivated by a high-energy embedding of the seesaw mechanism and minimality
arguments.

In chapter 2, we introduced the theory and phenomenology of massive neutri-
nos. It was tried to develop an intuition of the seesaw mechanism from basic
principles, e.g. the difference between Dirac and Majorana fermions. A short ex-
cursion to neutrino oscillations and absolute mass measurements has been given to
provide some understanding of future experiments, which try to uncover missing
low-energy parameters like the Dirac CP phase δ. This should enable the reader
to interpret the following investigations in an experimental context. The type-I
seesaw mechanism has been introduced in detail, as it is the starting point for
the performed bottom-up approach. In the end, an overview of different neutrino
mass models has been given and the scenario of leptogenesis has slightly been
introduced.

Chapter 3 dealt with the data-driven investigation of the minimal seesaw mecha-
nism. After an introduction of the two heavy neutrino realization, which demands
one neutrino to be exactly massless, a short summary of the so-called zero-texture
ansatz [45, 106, 112, 116] with its phenomenological consequences has been given,
see section 3.2. As our approach was motivated by relaxation of the conventional
exact zero-texture ansatz, we developed a method to investigate certain hierar-
chies within the neutrino Yukawa matrix, which is mainly based on the self-defined
hierarchy parameter R23, see equation (3.17). Detailed investigation of its prop-
erties led to useful simplification for later purposes, see section 3.3. Furthermore,
the developed method has been applied to the parameter space of the minimal
type-I seesaw model and confirmed useful for investigation of approximate zero-
texture Yukawa matrices, see section 3.4. This can be understood as a first proof
of principle. The whole bottom-up approach has been completed with studying
the robustness of obtained results, i.e. under variation of the experimental input
parameters, see section 3.5.

The main result of this investigation is that application of R23 under the as-
sumption of approximate zero-textures revealed the NH to be still consistent with
experimental parameters if one allows for small perturbations of exact zero Yukawa
entries. Further, an approximate Yukawa texture, A1, has been found that is in line
with recent experimental trends, see figure 3.5. The vicinity around the model’s
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prediction in case of exact two-zero texture, see (3.14), has been studied in detail
and can be interpreted as theoretical error bars, assignable to the predictions of
B1,4 and B2,5 texture, see figure 3.6. The detailed summary of the whole approach
is given in section 3.6.

We also approached the minimal seesaw model in context of a possible high-
energy origin in chapter 4. After an introduction into the topics of the mini-
mal SU(5) GUT [49] as well as the Froggatt-Nielsen mechanism [48], a combined
model [47] has been presented that served as building block for our constructed
model, see section 4.2. Its appropriate modification has led to a well-motivated
UV embedding of the minimal seesaw model, where some of its free parameter can
be understood in a broader context, i.e. Yukawa couplings generated by the FN
mechanism. By assuming certain (approximate) exchange symmetries, see equa-
tion (4.44), further DOFs could be eliminated. The transition to flavor-aligned
parameter space region, that we already encountered in chapter 3, has been stud-
ied in detail as it directly results from the assumed symmetries at LO, see figure
4.2. Checking the model’s consistency with current experimental data, led to clear
predictions, i.e. NH and an approximate A1 Yukawa texture, see figure 4.3. The
procedure has been presented step by step in section 4.3. Finally, by demanding
theoretical constraints like electroweak naturalness and successful leptogenesis,
the last free parameters could be constrained and a minimal UV embedding of the
minimal type-I seesaw could be obtained, see section 4.4. Hence, the Lagrangian
(4.60) describes a valid benchmark scenario, consistent with current experimental
data and only depending on parameters associated to the unknown heavy neutrino
sector, see section 4.5. Moreover, the prediction of our model are confirmed by an
independent FN flavor model [134]. In the end, some remarks beyond the scope
of this thesis shall be given:
The procedure to investigate the manifestation of certain hierarchies in the neu-
trino Yukawa matrix, can be generalized to study the characteristic of arbitrary
couplings. This can be done by appropriate redefinition of our hierarchy parame-
ter, see equation (3.30), according to the individual purposes. Unfortunately, we
have to scan over all unaccessible parameters, such that the complexity of our pro-
cedure can grow rapidly. Regarding the most minimal Lagrangian (4.60), we have
to point out that our naive approach just covered UV terms, which come from
exact exchange symmetry. The origin of such symmetries remains unknown and
has to be clarified. Furthermore, as the symmetries must not be realized exactly,
a deeper investigation of perturbative terms seems necessary, i.e. their detailed
structure as well as generation mechanisms.

Conclusively there remains only one thing to say: In times, where neutrino
experiments are reaching better sensitivities and will penetrating yet unknown
parameter space regions, as much information as possible has to be extracted
from current data sets; may it be in terms of new “observables”, i.e. hierarchy
structures within a coupling matrix, or benchmark scenarios that cover all current
knowledge. For theorists, it is easy to hide from experimental constraints, but
after all, it remains as Richard Feynman once said [135], ‘Experiment is the sole
judge of scientific “truth”.‘
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A. Clifford algebra and chiral
projections

Particles generally transform under irreducible representations of the Poincaré
group and are characterized by two quantum numbers m and j as indicated by
Wigner’s theorem [136]. The spin representation, j = 1

2
, can be deduced from the

Clifford algebra Cl1,3(R).

General properties of the Clifford algebra

We motivated the spinor space as vector room, from whose solutions the Dirac
equation, (

i/∂ −m
)
ψ = 0 , (A.1)

can be constructed as superposition of so-called spinors. This spinor space can
have arbitrary dimension d and is spanned by any set of (γ−)matrices that fulfills
the Clifford algebra Cl1,3(R),

{γµ, γν} = 2gµν , (A.2)

with the metric tensor gµνg
µν = d. Usually, we want to describe motion in a flat

four-dimensional space, such that d→ 4 and gµν → ηµν = diag (1,−1,−1,−1).
We know that the proper Lorentz algebra so(1, 3) is isomorphic to SU(2) ×

SU(2), such that the Pauli-matrices, which are associated with the generators
of SU(2), can construct representations of the Clifford algebra. With this rep-
resentation the proper action of the Lorentz transformation on the spinor space
can be formulated. That means, under an infinitesimal Lorentz transformation
xµ −→ x

′µ = xµ + ωµν a fermionic field transforms as

ψ −→ ψ
′
= e−

i
4
ωµνσµνψ , (A.3)

with σµν = i
2

[γmu, γν ].

Pauli matrices

The Pauli-Matrices are a set of three complex 2×2 matrices exhibiting the following
structure:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (A.4)
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Since they are hermitian and unitary, (σi)
† = (σi) and fulfill σ2

i = 12, they have
eigenvalues ±1. Further, they have a negative determinant, det(σi) = −1, and
are traceless, tr(σi) = 0, For practical purpose, their commutation and anti-
commutation relation is useful,

[σi, σj] = 2iεijkσk {σi, σj} = 2δij12 , (A.5)

such that their combination yields

σiσj = δij12 + iεijkσk (A.6)

Chirality and chiral projections

For an even number of dimensions, it is always possible to construct another γ-
matrix,

γ5 ≡ i

4!
εαβγδγ

αγβγγγδ
d→4
= iγ0γ1γ2γ3 =



(
02 12

12 02

)
Dirac

(
σ2 0

0 −σ2

)
Majorana

. (A.7)

It is hermitian, (γ5)
†

= γ5, has eigenvalues ±1, originating from (γ5)
2

= 14, and
commutes with all other γ-matrices,{γ5, γµ} = 0. In the SM it receives special
attention as is defines chirality, which refers to its two eigenvalues ±1. A fermion
field’s chirality is then defined under application of the appropriate projection
operators,

PL =
1

2
(1− γ5) =

(
12 0
0 0

)
, PR =

1

2
(1 + γ5) =

(
0 0
0 12

)
, (A.8)

which exhibit the properties

P2
L/R = PL/R PLPR = PRPL = 0 . (A.9)

When dealing with Majorana fermions, we have to know, how charge conju-
gation C affects the chiral components of fermion field. For this, we need to
know the properties of the charge conjugation operator C (in the Dirac repre-
sentation): C† = C−1 = CT = −C. It allowed us to construct the so-called
Lorentz-covariant conjugate by ψC ≡ γ0Cψ

∗. A further ingredient is that fermion
fields anti-commute. Now, we calculate how the LCC of a chiral field looks like.

(ψL)C = γ0C (ψL)∗ = γ0CP∗Lψ∗ = γ0CPLψ∗ = PRγ0Cψ
∗ = PRψC

=
(
ψC
)
R

(A.10)

Hence, the LCC of a left-chiral field corresponds to the right-chiral component of
the field’s LCC and vice versa.



B. SU(5) GUT and Froggatt-Nielsen
mechanism

In chapter 4 we skipped all mathematical details in the presented steps. Now, the
underlying generators of SU(5) are presented to allow the reader to reconstruct the
performed steps. For this, we introduce the Gell-Mann matrices λi with i = 1, ..., 8.

Gell-Mann matrices

As generators of the SU(3) group the Gell-Mann matrices receive special attention
in QCD. They are traceless and unitary matrices, which fulfill the Lie algebra
[T i, T j] = i fijk T

ijk, with T i ≡ 1
2
λi, i = 1, ..., 8 and the structure constants fijk.

The corresponding matrices are given by

λ1 =

 0
σ1 0

0 0 0

 , λ2 =

 0
σ2 0

0 0 0

 , λ3 =

 0
σ3 0

0 0 0

 ,

λ4 =

 0 0 1
0 0 0
1 0 0

 , λ5 =

 0 0 −i
0 0 0
i 0 0

 ,

λ6 =

 0 0 0
0
0

σ1

 , λ7 =

 0 0 0
0
0

σ2

 , λ8 =
1√
3

 1 0 0
0 1 0
0 0 −2

 .

(B.1)

The structure constants of su(3) are totally anti-symmetric and exhibit the fol-
lowing values

f 123 = 1 ,

f 458 = f 678 =

√
3

2
,

f 147 = f 165 = f 246 = f 257 = f 345 = f 376 =
1

2
.

(B.2)
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SU(5) generators and gauge bosons

With the Pauli- and Gell-Mann matrices at hand, we are now ready to construct
the generators of SU(5)

T i =


0 0

λi 0 0
0 0

0 0 0 0 0
0 0 0 0 0

 , T 9,10 =


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0
0 0 0

σ1,2

 ,

T 11 = diag(0, 0, 0, 1,−1) , T 12 =
1√
15

diag(−2,−2,−2, 3, 3) ,

T 13 =


1 0

0 0 0
0 0

1 0 0
0 0 0

0

 , T 14 =


i 0

0 0 0
0 0

−i 0 0
0 0 0

0

 ,

T 19 =


1 0

0 0 0
0 0

1 0 0
0 0 0

0

 , T 20 =


i 0

0 0 0
0 0

−i 0 0
0 0 0

0

 ,

(B.3)

with i = 1, ..., 8. The left generators are T 13...18 and T 19...24 and are obtained by
putting 1 and ±i in the same position. Hence, all SU(5) generators are obtained
and the existing gauge bosons are linked to them in the following way:

gauge boson Aaµ generator T a

gluons G1...8
µ A1...8

µ T 1...8

charged weak bosons W±
µ

1√
2

(
A9
µ ± iA10

µ

)
T 9 ± iT 10

neutral weak boson W 3
µ A11

µ T 11

hypercharge boson Bµ A12
µ T 12

SU(5) bosons X1..3
µ + LCC A13...18

µ T 13...18

SU(5) bosons Y 1..3
µ + LCC A19...24

µ T 19...24

Table B.1.: SU(5) gauge bosons and their identification with the corresponding SU(5)
generators.
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Froggatt-Nielsen procedure in details

In chapter 4, the Froggatt-Nielsen mechanism was used as possibility to dynam-
ically generate small Yukawa couplings. Although we mentioned the mains step,
we will present them now in detail with corresponding diagrams and Lagrangians
illustrating the procedure. The existence of some globally or locally conserved
charge QFN is required, to restrict certain Yukawa interactions among light and
heavy fermions. The corresponding charge assignment has to be individually done
for each “spaghetti”, but in the end only the difference in FN quantum number are
relevant for low-energy phenomenology, i.e. the generation of SM Yukawa coupling.

0. Heavy fermion mass generation at ΛFN

The first ingredient of the mechanism is the assumption of some heavy
fermions. Usually one takes their existence as massive particle for granted,
but without difficulty we can generate their masses through Yukawa inter-
actions with a scalar φ̃ that obtains a non-zero VEV 〈Φ̃〉 6= 0; equivalent to
the Higgs mechanism. This comes with the advantage of relating all masses
to a common scale Mij = aij 〈Φ̃〉. In our approach, we defined ΛFN = 〈Φ̃〉

1. “Spaghetti”-interaction at a high scale
The important point of the entire mechanism is the existence of another
scalar field Φ, commonly called flavon, which has Yukawa interaction with the
SM fermion and the heavy ones, such that the relevant part of the Lagrangian
is given by,

L ⊃ bijΦfiFj + cijΦFiFj + dijφfiFj +MijFiFj + h.c. , (B.4)

wheres the corresponding interactions are depicted in figure B.1.

fi

Φ

Fj

bij

Fi

Φ

Fj

cij

fi

φ

Fj

dij

Figure B.1.: Tree-level interactions (B.4) that needed for the construction of
“spaghetti”-interactions.

By using tree-level interaction, a chain of reactions can be constructed, that
is referred to as “spaghetti”-interaction. The FN charge assignment to light
and heavy fermions depends on the suppression factor one needs to achieve.
The number of flavon interactions as well as the number of heavy fermion
mediators is given by the difference in FN quantum numbers of the external
fermions; this also corresponds to the exponent of the small FN parameter
ε.
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fi fj

φ0 Φ Φ Φ Φ

. . . . .F1 F̄1 F2 F̄2 F3 F̄3 F4 F̄4

Figure B.2.: Interaction chain of the FN mechanism. To each fermion, an appropriate
FN charge hast to be assigned, giving rise to a certain interaction “length”.

2. Integrating out heavy fermions Fi
Since the introduced heavy fermions are assumed to be non-propagating, we
can easily integrate them out. To safely guarantee this, we have to be at an
energy scale much lower than their mass scale Λ ≤ ΛFN . This gives rise to
an effective dimension-4 operator that corresponds to the usual SM Yukawa
interaction,

Leff ⊂ eij

(
Φ

ΛFN

)p
fifjφ , (B.5)

where eij are new coefficient incorporating all former pre-factors and are
usually assumed to be of O(1). Again, exponent p just on the light fermions’
difference in FN charge p ≡ QFN(fi)−QFN(fj). The corresponding effective
interaction is given in figure B.3. As non-propagating DOFs, the heavy
fermion are not relevant anymore, but lead to a suppression according to
their mass scale ΛFN .

fL fR

φ0 Φ Φ Φ Φ

Figure B.3.: Effective scalar interaction in the FN mechanism. As the heavy fermion
mass scale ΛFN is much higher than the energy region of interest, they
can safely be integrated out.

3. SSB of the FN symmetry: Φ −→ 〈Φ〉
In the last step, the flavon field Φ acquires a non-zero VEV 〈Φ〉 6= 0, which
leads to the generation of usual SM Yukawa couplings suppressed by a small
parameter, ε.

Leff ⊃ eij

(
Φ

ΛFN

)p
fifjφ ≡ eij ε

p fifjφ (B.6)
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fL fR

yij ≡ eij ε
p

φ0

Figure B.4.: SM Yukawa interaction viewed from the FN perspective.

By appropriate choice of ε and FN charge assignment, a huge parameter space
of possible Yukawa interactions can be spanned. Hence, couplings that are
of O(1) at some fundamental scale, can now be suppressed by FN charge
assignment to certain flavors, while the familiar SM Yukawa interaction is
retained, see figure B.4.





C. Massive neutrino phenomenology

In this chapter, we summarize some outstanding points that we have met in the
context of mass.

Symmetry of Majorana mass matrix

In the context of Majorana neutrino mixing, see section 2.2, we stated without
proof that the Majorana mass matrix in (2.18) has to be symmetric. This shall
now be proven by using fermionic anti-commutation and properties of the charge
conjugation and switching to index notation. The prove is a simple one-line cal-
culation:∑

α,β

ναTL C−1mαβν
β
L = −

∑
α,β

νβTL mβα(C−1)TναL =
∑
α,β

ναTL C−1mβαν
β
L

=
∑
α,β

ναTL C−1mT
αβν

β
L .

(C.1)

In the first step, we transposed the expression and had to applied fermionic anti-
commutation, which gives an additional minus sign. As the charge conjugation
operator exhibits (C−1)

T
= −C−1, this minus sign is again eliminated in the second

step. The charge conjugation operator can be shifted to the left since the mass is
just a usual number and we obtained the same structure as in the beginning. This
becomes obvious by renaming the used indices α� β. Thus, we end up with

mαβ = mβα ⇐⇒ m = mT (C.2)

which proves the symmetry of the Majorana mass matrix.

BSM models incorporating massive neutrinos

In the section 2.3 and 4.2, we mentioned that the RH neutrino mass, which is
needed for an successful type-I scenario, has to originate from some higher scale.
In this context, we referred to the case of local (B−L) breaking as option. The fol-
lowing table gives an overview of different possibilities to generate heavy Majorana
masses, with their corresponding energy scale Λ.
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Symmetry Energy scale Λ
(1) U(1)B−L Local > 1000 GeV
(2) Left-right symmetry Local > 1000 GeV
(3) SO(10) Local 104 − 1014 GeV
(4) Horizontal symmetry Local > 106 GeV
(5) Horizontal symmetry Global > 1010 GeV
(6) Peccei-Quinn symmetry Global 1010 − 1012 GeV
(7) Lepton number Global no bound

Table C.1.: Classification of neutrino mass models according to the underlying sym-
metry and corresponding energy scale Λ [37].

Former oscillation data

The whole investigation of chapter 3, has been performed with an older data
set [77]. To guarantee reproducibility, we list the applied best-fit values and corre-
sponding uncertainty regions below. From the robustness study of section 3.5, we
know that all result of chapter 3 are stable under small variations, i.e. more recent
data sets like [8] or experimental fluctuations.

Observable Units Hierarchy Best-fit value 3σ confidence interval

δm2
[
10−5 eV2

]
both +7.37 [+6.93,+7.97]

∆m2
[
10−3 eV2

] NH +2.50 [+2.37,+2.63]
IH −2.46 [−2.33,−2.60]

sin2 θ12 [10−1] both +2.97 [+2.50,+3.54]

sin2 θ13 [10−2]
NH +2.14 [+1.85,+2.46]
IH +2.18 [+1.86,+2.48]

sin2 θ23 [10−1]
NH +4.37 [+3.79,+6.16]
IH +5.69 [+3.83,+6.37]

δ [π]
NH +1.35 [+0.00,+2.00]
IH +1.32 [+0.00,+2.00]

Table C.2.: Best-fit values and 3σ confidence intervals for the five low-energy observ-
ables that are currently accessible in experiments and for the CP violating
phase δ [77]. Due to the large uncertainty, δ can vary over its full range
[0, 2π).
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Investigation of the neutrino mass hierarchy

In chapter 2, we mentioned that the current investigation of new neutrino pa-
rameters, i.e. the measurement of CP phases is limited due to the ambiguity in
neutrino mass ordering. As the sign of the atmospheric mass-squared difference is
unknown, we can construct two different mass orderings, which are illustrated in
the following figure.

Figure C.1.: Possible neutrino mass hierarchies with their corresponding composition
in flavor eigenstates. NH corresponds to the right-hand side, wheres IH
refers to the left-hand side. The corresponding mass values are given
via (2.35). Picture is taken from [137]
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In addition, we discussed certain possibilities to resolve this problem and referred
to future experiments. The table below shall give an overview of current and
planned experiments listed according to their targeted timescale and sensitivity in
measuring the neutrino mass hierarchy.

Experiment Sensitivity Approx. timescale

Noνa 1-3 σ 2020
T2K 1-3 σ 2020

PINGU 3-6 σ 2025
DUNE 3-6 σ 2030

Hyper-K 3-6 σ 2030
ORCA 3-6 σ -

JUNO ∼4σ 2027
Cosmology 0-4σ 2027

ICAL 2-4σ 2030
RENO-50 ∼3σ -

Table C.3.: List of planned neutrino experiments with their prospects of investigating
the neutrino mass hierarchy. The list is taken from [10].
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