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Abstract

Interactions occur between two or more organisms affecting each other. Interactions are

decisive for the ecology of the organisms. Without direct experimental evidence the analysis

of interactions is difficult. Correlation analyses that are based on co-occurrences are often

used to approximate interaction. Here, we present a new mathematical model to estimate

the interaction strengths between taxa, based on changes in their relative abundances

across environmental gradients.

Introduction

The composition of microbial communities is a key driver of ecological processes [1–3].

Changes in the abundances of species can occur in response to abiotic selection pressures, neu-

tral assembly processes and be affected by organismal interactions. Biotic interactions are mul-

tifarious (competition, mutualism, commensalism, amensalism, and antagonism including

parasitism and predation) and may have positive, negative, or neutral consequences for either

one or both interacting partners. In most of the cases, outcomes of interactions between two

species may be asymmetric in terms of abundance, e.g. predators will negatively affect the

abundance of prey, but prey consumption will increase the abundance of the predator. As

another example, a strong competitor will decrease the abundance of a neighboring species,

but the latter may have no net effect on the former. Moreover, the strength of the influence can

also differ, e.g. a preferred prey receives stronger top-down control than a general prey. Con-

versely, the prey could exert only a weak positive influence on the predator if it is of minor

food quality.
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While biodiversity studies of higher organisms have yielded large sets of multitrophic data

and enabled a comprehensive analysis of interactions [4], the peculiarities of microbial com-

munities render the detection and study of interactions very challenging. Whereas potential

pairwise interactions among microorganisms can be studied directly in the laboratory, the

determination of interactions in large and complex biotic communities under natural condi-

tions is limited. Soil ecosystems in particular harbor extremely diverse microbial communities.

The diversity of bacteria may reach 104 species [5] and average cell numbers of 1010 per gram

of soil [6]. This results in highly complex networks of coexisting microbes [7]. Secondly, only a

minority (0.1%–0.001%) of the microbial diversity has been cultivated to date [8], which pre-

cludes experimental analysis of the majority of interactions in the laboratory. Thirdly, the het-

erogeneous structure of the soil habitat at the microscale represents an additional

methodological and conceptual challenge. Due to the complexity of soil structure, microbial

cells typically occur in a non-random fashion in clusters with cell-to-cell distances of only 1-10

μm, which is the distance at which interactions between microbes is assumed to take place by

either direct cell to cell contact or by diffusion limit of chemical substances. However, at this

spatial scale, it is impossible to study organismal interactions simply by passive observations as

in macroorganisms. In contrast, most studies of microbes in complex habitats typically are

conducted through destructive sampling methodology, precluding the consecutive analysis of

the same microbial community over time, which would be a prerequisite to applying the estab-

lished discrete-time Lotka-Volterra models [9]. As a result, the lack of knowledge on species

interactions has remained one of the major shortfalls in understanding the drivers of ecosys-

tem functions [10]

A major step forward in analyzing the composition of microbial communities in the envi-

ronment has been the advent of high-throughput next-generation sequencing technology for

microbial DNA or RNA extracted from the environment. This enables the determination of

the relative abundance of many taxa per sample and the analysis of co-occurrence and correla-

tion patterns, which have been suggested as proxies for species interactions [7, 11]. However,

the latter approach may only reflect similar responses of different species towards environ-

mental pressures rather than direct interaction and cannot resolve interactions that are asym-

metric. Also, several important properties of interactions can not be captured by correlations.

Firstly, interactions may be asymmetric such that taxon A may influence B negatively but B

influences A positively. In contrast, the correlation of A with B is the same as B with A, hence

symmetric. Secondly, the direction of interaction may be different, e.g., A influences B posi-

tively, but under some circumstances, A may influence B negatively. In contrast, the concept

of correlation analysis requires that the abundance relationship of two taxa remains consistent

throughout: if A increases, B always either increases too (positive correlation) or decreases

(negative correlation).

Fisher et al. [9] established the LIMITS algorithm to infer the interaction among microbial

species from the time series data based on the discrete time Lotka-Volterra Model. Bucci et al.

[12] also suggested utilizing the generalized Lotka-Volterra equation with time-dependent per-

turbation to analyse the interaction from the time series data. However, both of these

approaches can not be used for series of cross-sectional data which originate from samples

along gradients in environmental parameters but do not have a temporal dimension. There-

fore, here, we present a novel method which is based on generalized Lotka-Volterra models

and allows to quantify interactions from high-throughput microbial sequence data derived

from cross-sectional samples for which also larger datasets on environmental parameters are

available. This method does not rely on data obtained during different time points, since the

strength and direction of interactions between partners are also a function of gradients in abi-

otic environmental parameters, for example of temperature [13], nutrient conditions [14] or

Inferring interactions in complex microbial communities

PLOS ONE | https://doi.org/10.1371/journal.pone.0173765 March 13, 2017 2 / 24
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other factors such as soil moisture, mineral content, pH or osmolarity [15–17]. Biswas et al.

[18] developed a Poisson-multivariate normal hierarchical model to analyse interactions, tak-

ing into account also the environmental gradients. In this work, the environmental parameters

are included into the parameters of the Poisson function which is used to express the species

abundance distribution. But, this calculation still represents a type of correlation analysis.

Hence, the interaction matrix is symmetric and can not account for asymmetric interactions.

On the contrary, our method is fundamentally different from correlation analysis and can ana-

lyse asymmetric interactions. Sugihara et al. [19] developed a causality test (CCM) to infer the

causal link between the time-series variables which are not correlated. CCM analysed locally

the historical time trajectory of the different variables and measured the extent to which the

historical record of one variable can reliably estimate states of another variable. CCM can infer

whether these variables are strongly linked to each other without consideration of environ-

mental gradients. However, CCM can not account for the asymmetry property in the interac-

tion relationship. In contrast, our approach can address this issue in the sense of changing

environmental gradients but does not take into account the time series data. The basic assump-

tions of our model are that (i) interactions lead to changes of abundances within individual

species, and that (ii) the abundances of a species are a function of the species abundances of

the remaining community as well as of environmental parameters. We first describe the theo-

retical foundation of our framework and then suggest a numerical implementation calculating

the direction and strength of interactions between two pairs of taxa, which depend on the qual-

ity criteria assigned to the determination of environmental parameter values and relative

taxon abundances retrieved from high-throughput sequences. We further present methods to

calculate single representative interaction values and to determine their robustness by appro-

priate statistical tools such as random sampling. Finally, we discuss the potentials of our

approach.

Methods

The aim of our approach is to determine the interaction coefficient βij, which quantifies the

interaction strength of species j on species i. We firstly present the theoretical basis for our

approach. Secondly, depending on the precision quality of the input data, we suggest numeri-

cal calculation approaches estimating b
k
ija for a given environmental parameter α and a given

sample k. The result is a two-dimensional matrix of numerical b
k
ija values with m (m is the

number of environmental parameters) rows and N (N is the number of samples) columns for

each pair of species j having interaction influence on species i. Thirdly, we addressed the issue

about data structure and the precision of the calculation. We fourthly present several strategies

to summarize the b
k
ija values into a global βij value. Finally, we present an estimate for the

robustness of βij based on random sampling and the addition of numerical noise to the input

data.

Theoretical deductions

Species abundances change as a response to changing environmental conditions and abun-

dances of interacting organisms. Therefore the information on the direction and strength of

biotic interactions must be stored in the change of species abundances and hence can be

extracted from that.

The basic idea of this methods is to analyze the influence from other interacting species

abundance on the rate of change of specific species abundance in the sense of environmental

gradients.
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The Fig 1 shows the detailed conceptual idea of this approach and the sketch on the analysis

workflow of obtaining βij interaction values from values of relative abundances of taxa and

environmental parameters obtained from a set of sampling sites. The change of species abun-

dance Ai and Aj with respect to one environmental parameter θ are presented as a curve in sub-

plots (a) and (e), respectively. In subplot(a), the rate of change pi of Ai with respect to Θ was

determined by calculating the slope of the tangent vector on each curve point. It reflects the

influence of environmental parameter Θ on the change of abundance Ai across the environ-

mental gradients. On the red triangular point, the slope is positive, means the rate change at

this point (corresponding to one θ value) is positive, the abundance Ai has the increasing ten-

dency at that gradient value of Θ. Similarly, the orange triangular point has a negative rate of

change reflecting the decreasing tendency of Ai under these (larger) values of the gradient of

Θ. Based on the calculated pi for each values of θ and the abundance curve of Aj, the relation-

ship between pi and Aj is shown in subplot (b) (the red triangular has higher abundance values

of Aj than the orange triangular). Then, the influence of Aj on the change of pi can be denoted

by the tangent vector (light green triangular and dark green triangular are the two example

points). The slope of this new tangent vector stand for the rate of change of pi with respect to

Aj, and it is denoted as βij. βij is the interaction influence from species j on species i in the sense

of θ. The relationship of βij and Aj is presented in subplot (c). Due to the relationship of Aj and

θ in subplot(b), the relationship between βij and θ is shown in subplot (d). The subplot (d)

inform us the change of interaction influence βij in different environmental conditions which

are corresponding to the different value of θ. Similarly, we can do the same rate change analysis

for Aj the corresponding results are shown in subplots (f), (g) and (h).

Fig 1. The sketch on the analysis workflow.

https://doi.org/10.1371/journal.pone.0173765.g001
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By analyzing the rate of change of species abundance, pi, and the change of pi with respect

to other species, we can deduce the interaction influence between them. From this figure, βij is

positive, suggesting that the species j has a positive interaction influence on species i. Con-

versely, βji is negative, suggesting that the species i has a negative interaction influence on spe-

cies j. Although one pair of species shares the same interaction relationship, the effect of the

interaction on both of them could be different, not only in the direction but also on the

strength. Moreover, based on the subplot (a) and (e), there is no clear correlation between Ai

and Aj. This indicates that the correlation is not equal to interaction, hence, the analysis of cor-

relation between the species abundances is not suitable to infer the interaction relationship

between them. The parameter βij is chosen in analogy to the Lotka-Volterra equation. The

details are explained as follows.

Assume that the abundance Ai of species i is the smooth function of interacting species Aj(j
6¼ i) and the environmental parameters Θα, α = 1, 2, � � �, m (in case of soil, for example, soil

moisture, pH, nutrient contents; where changes in time are available, even time t can be used).

In a two species interaction system, the change in abundance of both species in response to the

change of environmental parameters and biotic interactions are

dAi

dY
¼ SiðAiÞ þ IijðAiAjÞ

dAj

dY
¼ SjðAjÞ þ IjiðAjAiÞ

ð1Þ

where Si can be treated as the solitary part of species i, i.e. change of Ai independent of any

influence from other species, it is also influenced by the environmental parameter. The deriva-

tive
dAi
dY

is the rate of change of Ai with respect to the change of values of Θ. Iij is the influence

from species j on species i, which is a function of Ai, Aj, and also Θ. In different environmental

conditions, Iij will be different. Accordingly, the interaction can be analysed based on the gra-

dient of Θ and will demonstrate how the interaction levels change across the different environ-

mental conditions. Note that this can be asymmetric, i.e., Iij 6¼ Iji. Thus, the effects of the

interaction between species i and j could be different with respect to the rate of change of Ai

and of Aj. Note also that the exact mathematical form of Si, Sj is often unknown due to lack of

suitable experimental data, but can be approximated to follow the Monod equation or logistic

equation [20–22]. To analyze the interaction, Iij and Iji need to be resolved. In order to calcu-

late the change of
dAi
dY

with respect to Aj we remove the unknown part Si, as follows

d
Ai

dY

� �

dAj
¼

dIijðAi;AjÞ

dAj

ð2Þ

The interaction information is contained on the right-hand side of the equation. For calculat-

ing the interaction numerically, we need the concrete mathematical expression of Iij. For sim-

plification, we assume:

Iij ¼ bijAiAj ð3Þ

Because Ai is a multivariate function of Θα, the rate of change of Ai with respect to Θα
which is also a multivariate function of Θα can be expressed by using the partial derivative:

pia ¼
@Ai

@Ya

ð4Þ
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As the change of piα is affected by βij, the information of βij is stored in the change of piα.
With the approximation of Eq (3), βij can then be estimated as:

bija ¼
@pia
@Aj

1

Ai
ð5Þ

We define the interaction level βij as the rate of change of piα with respect to the abundance

Aj of species j. Thus, the interaction level βij will be the smooth functions of species abundances

Ai, Aj and the environmental gradients stored in Θα.

The above concept of using changes in species abundance for the calculation of interaction

values is analogous to time-dependent generalized Lotka-Volterra equations (predator-prey

equations):

dA1

dt
¼ r1A1 1 �

A1

K1

þ b12

A2

K1

� �

dA2

dt
¼ r2A2 1 �

A2

K2

þ b21

A1

K2

� � ð6Þ

Here, the parameters r1, r2 are the growth rate, K1, K2 are the carrying capacity of the system

[22]. Comparison of Eq (6) to Eq (1) demonstrates that: Θ is equivalent to the time parameter

t, and I12 ¼
r1
K1

b12A1A2. Incorporation of
r1
K1

into β12 yields the:

I12 ¼ b
�

12
A1A2 ð7Þ

By using Eq (5), we can estimate b
�

12
¼

d A1
dtð Þ

dA2

1

A1
, which represents the estimation of the inter-

action level from the species abundance change in the Lotka-Valterra equation.

Numerical determination of b
k
ija values

In microbial ecology, absolute abundances of individual cells can usually not be determined

for all taxa at all taxonomic hierarchy levels. With high-throughput sequence data, the abun-

dance of a given taxon in sample k is actually given as a relative abundance value, which is the

number of sequences reads assigned to that taxon among all sequence reads in the respective

sample k. The determination of the relative abundance value of a specific taxon by high-

throughput sequencing is not error-free. Small but uncontrollable variations in nucleic acid

extractions, cDNA synthesis (in case RNA is extracted), amplicon primer ligation, and

sequencing runs on high-throughput sequencers add uncertainty to the estimated relative

abundance value. In the case of abundant taxa, typically at class or phylum level, the uncer-

tainty may encompass just a 1% to 10% error level [23]. However, for less abundant taxa at the

level of genera or species (defined by 97% similarity of the 16S rRNA gene [24]), the error

could be much larger (two–fold, own unpublished data).

Similarly, the determination of physicochemical environmental parameters from soil such

as pH, soil moisture, carbon and nitrogen content, is accompanied by uncertainty errors

mostly due to soil heterogeneity which may also be in the range of 1% to 15% (own unpub-

lished data).

We refer to data with assumed low (1-10%) experimental error in the estimation of numeri-

cal input data, and describe how to numerically calculate
@Ai
@Ya

and
@pia
@Aj

from a data set derived

from different samples using the Taylor expansion [25].

If the samples are denoted by using the index k = 1, 2, � � � N, we denote Ak
i , Y

k
a

as the abun-

dance of species Ai and environmental parameter Θα in sample k, respectively. The rate of
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change of Ai with respect to Θα in sample k is defined as the partial derivative:

pkia ¼
@Ak

i

@Y
k
a

ð8Þ

and the interaction level βij as the rate of change of pkia with respect to species j abundance Ak
j

according to

b
k
ija ¼

@pkia
@Ak

j

1

Ak
i

ð9Þ

b
k
ija represents the interaction value characterizing the interaction influence of species j on

species i accompanying the change in environmental parameter Θα in sample k. This allows

analyzing the interaction of species j on species i for different environmental parameters, and

its change across different environmental conditions.

Note that for this part of the analysis, the numerical calculation of the partial derivative
@Ak

i
@Yk

a

and
@pkia
@Ak

j
normally requires to fix the values of the environmental parameters Θα to be the same

in the other samples as in sample k. This mathematical requirement can not be fulfilled as real

world samples differ typically at the same time in both species abundances and values of envi-

ronmental parameters. We, therefore, make use of the Taylor expansion of multivariate func-

tions to obtain the accurate numerical calculation when both environmental parameter values

α and species abundances A change across samples k simultaneously. As addressed above, Ak
i

is a multivariate function of environmental parameters {Θα} and other interacting species Ak
j .

Between two different samples, the abundance of species i can be expressed as Ak
i ðY

k
Þ and

Al
iðY

l
Þ. Here, Θk and Θl are the corresponding environmental parameters in sample k and

sample l. Using the Taylor expansion, the difference between Ak
i ðY

k
Þ and Al

iðY
l
Þ can be

expressed as

Al
i ¼

X1

r1¼0

� � �
X1

rd¼0

X1

s1¼0

� � �
X1

sm¼0

ðAl
1
� Ak

1
Þ
r1 � � � ðAl

d � Ak
dÞ

rdðY
l
1
� Y

k
1
Þ
s1 � � � ðY

l
m � Y

k
mÞ

sm

r1! � � � rd!s1! � � � sm!

�
@
r1þ���þrdþs1þ���þsmAl

i

@Ar1
1 � � � @A

rd
d @Y

s1
1
� � � @Y

sm
m

� �

ðAk
1
; � � � ;Ak

d;Y
k
1
; � � � ;Y

k
mÞ

ð10Þ

Using only the linear part of the approximation simplifies the formula as follows:

Al
iðY

l
Þ � Ak

i ðY
k
Þ ¼

X

a

ðY
l
a
� Y

k
a
Þ
@Ak

i ðYÞ

@Y
k
a

þ
X

j6¼i

ðAl
j � Ak

j Þ
@Ak

i ðYÞ

@Ak
j

¼
X

a

ðY
l
a
� Y

k
a
Þpkia þ

X

j6¼i

ðAl
j � Ak

j Þp
k
ij

ð11Þ

The first part addresses the influence from the change of environmental parameters whereas

the second part addresses the influence from the change of other species abundances. We fix

the sample k, and let the sample l run across all remaining samples, in order to then estimate

pkia from linear regression. Actually, the term pkij, which addresses the rate of change of Ai with

respect to Aj in sample k, can also be estimated as the by-product.
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Because pkij is not necessary in the following b
k
ija calculation, we reduce the model in Eq (11)

to

Al
i ¼

X1

s1¼0

� � �
X1

sm¼0

ðY
l
1
� Y

k
1
Þ
s1 � � � ðY

l
m � Y

k
mÞ

sm

s1! � � � sm!

�
@
s1þ���þsmAl

i

@Y
s1
1
� � � @Y

sm
m

� �

ðY
k
1
; � � � ;Y

k
mÞ

ð12Þ

and then address the linear part of the approximation by

Al
iðY

l
Þ � Ak

i ðY
k
Þ ¼

X

a

ðY
l
a
� Y

k
a
Þ
@Ak

i ðYÞ

@Y
k
a

¼
X

a

ðY
l
a
� Y

k
a
Þpkia

ð13Þ

in order to estimate pkia from the linear regression using Eq (13).

After fixing the value of pkia, b
k
ija is calculated using the same strategy. Because pkia is the mul-

tivariate function of Ak
j ; j ¼ 1; 2; � � � ; n and the environmental parameters Θα, the difference

between pki ðY
k
Þ and pliðY

l
Þ can be also expressed using the full version of Taylor expansion.

plia ¼
X1

r1¼0

� � �
X1

rd¼0

X1

s1¼0

� � �
X1

sm¼0

ðAl
1
� Ak

1
Þ
r1 � � � ðAl

d � Ak
dÞ

rdðY
l
1
� Y

k
1
Þ
s1 � � � ðY

l
m � Y

k
mÞ

sm

r1! � � � rd!s1! � � � sm!

�
@
r1þ���þrdþs1þ���þsmplia

@Ar1
1 � � � @A

rd
d @Y

s1
1
� � � @Y

sm
m

� �

ðAk
1
; � � � ;Ak

d;Y
k
1
; � � � ;Y

k
mÞ

ð14Þ

Hence, analogous to Eq (11), the linear part to describe b
k
ija based on two samples k and l is

given by:

plia � pkia ¼
X

j

ðAl
j � Ak

j Þ
@pkia
@Ak

j

þ
X

a

ðY
l
a
� Y

k
a
Þ
@pkia
@Y

k
a

ð15Þ

here, the first part in Eq (14) addresses the change of other species abundances, whereas the

second part addresses the change of environmental parameters. Analogous to Eq (13), the lin-

ear regression can be used to estimate
@pkia
@Ak

j
. Based on the Eq (9), the values of b

k
ija are calculated

as

b
k
ija ¼

@pkia
@Ak

j

1

Ak
i

ð16Þ

The terms
@pkia
@Yk

a
can be estimated also from Eq (15). These by-products address the influence

from the environmental parameter change on the change of pkia. Although they do not provide

information on the interaction between species i and j, they may provide valuable information

of the interaction value b
k
ija.

In case that
@pkia
@Yk

a
is of no interest, the model Eq (14) can be reduced to a simplified version by

making use of only the first part in each Eqs (14) and (15) to then calculate b
k
ija using Eq (16).

This simplified version represents a different model of interaction calculation.
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All the numerical calculations above are based on the linear part of the Taylor expansion. In

order to cope with potential nonlinear properties of the data, it is also possible to include the

higher order terms in the linear regression model. For example, when the second order terms

are added into the Eq (13)

Al
iðY

l
Þ � Ak

i ðY
k
Þ ¼

X

a

ðY
l
a
� Y

k
a
Þ
@Ak

i ðYÞ

@Y
k
a

þ
1

2

X

ab

ðY
l
a
� Y

k
a
ÞðY

l
b
� Y

k
b
Þ
@

2Ak
i ðYÞ

@Y
k
a
@Y

k
b

ð17Þ

the resulting Eq (17) will allow performing numerical calculations by additionally including

the nonlinear part. However, the numerical calculations will substantially increase in

complexity.

The models introduced allow different levels of precisions (Eqs (10)–(17)). The user can

choose any of these based on the defined preferences, e.g., numerical precision of the input

data or also the availability of computational power.

Data structure and precision of calculation

Data sparsity is the first issue which needs to be taken into account. In Eq (16), term Ak
i is in

the denominator. If the species has not been observed and hence has the abundance value 0 in

one sample, this species cannot be included in the mathematical treatment. Therefore, abun-

dance values of 0 have to be removed before interaction analysis.

The second important issue is the data type of abundance Ai. For several organismic groups

such as most plants and animals absolute abundance values Ai can be determined for each

taxon. In contrast, a taxon-wise determination of absolute abundances is technically hardly

feasible for bacterial microbes. Microbial communities are typically assessed by metagenomic

high-throughput sequence data which yield relative abundances of taxa. However, since the

overall cell numbers of microorganism in many cases do not change to a large extent, changes

in absolute abundances are expected to be less pronounced than those in relative composition.

The structure of relative abundance data is characterized by an intrinsic compositional

effect. This could produce misleading results in correlation analysis and would not reflect the

true correlation as would have been the case for absolute abundance values [26–31]. As the

sum of relative species abundance values by definition is constrained to 1, these values are not

independent of each other. Fluctuations in the relative abundance of one species have an effect

on the relative abundance of the rest of the community without that the rest of the community

may actually have changed in absolute abundance. For example, if the abundance of a domi-

nant species (e.g. 95% of all species) changes, relative abundances of all other species vary in

the opposite direction. This creates artificial negative correlations with the dominant species

which would not be the case with absolute abundances. Compositional effects may be severe in

some data sets but mild in others. For example, compositional effects are most pronounced in

communities with low species richness and/or pronounced dominance structure. The α diver-

sity (of the samples in question is, therefore, a good predictor of the strength of compositional

effects [28]. To decrease the influence of compositional effects, a series of methods based on

the log-transformed techniques was developed [26–29].

Our interaction approach is not only conceptually but also mathematically fundamentally

different from a correlation analysis. For example, whereas correlation aims to maximize the

recovery of covariance cov(Ai, Aj), our interaction approach aims to derive the correct partial

derivative of abundance Aj with respect to the environmental parameters Θ and other species

Aj. Thus, compositional effects have to be treated differently, as we show in detail below.
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First, we discuss the relationship between the absolute abundance and the relative abun-

dance, and the difference in results when we did the interaction analysis on both types of abun-

dance data.

In the formalism of the interaction analysis, the terms
@Ak

i ðYÞ

@Yk
a

,
@Ak

i ðYÞ

@Ak
j

play the very important

parts in the whole calculation. For generality, we suppose yi as the absolute abundance of spe-

cies i, xi as the relative abundance. We need to deduce the relationship between
@yi
@Ya

@yi
@yj

and
@xi
@Ya

@xi
@xj

.

The relationship between xi and yi is

xi ¼
yiP
a
ya

ð18Þ

calculate the derivative on both sides of Eq (18), we have

@xi ¼
@yi
P

a
ya � yi

P
a
@ya

ð
P

a
yaÞ

2 ð19Þ

Therefore, we have

@xi
@Y

¼

@yi
@Y

X

a
ya � yi

X

a

@ya

@Y

ð
P

a
yaÞ

2

¼

@yi
@YP

a
ya

�
yi
P

a

@ya

@Y

ð
P

a
yaÞ

2

ð20Þ

@xi
@xj

¼
@yi
P

a
ya � yi

P
a
@ya

@yj
P

a
ya � yj

P
a
@ya

¼

ð
P

a
ya � yiÞ

@yi
@yj
� yj

X

a6¼i

@ya

@yj
P

a
ya � yj

@yi
@yj
� yj

X

a6¼i

@ya

@yj

ð21Þ

When ∑α yα>> yα, diversity of the species is high. The term
yi
P

a

@ya
@YP

a
ya

approaches zero.

Eq (19) reduce to
@xi
@Y
�

@yi
@YP

a
ya

. This approximation reveals that the effect of the environmental

parameter Θ on the rate of change of relative abundance is different from the corresponding

rate of change of absolute abundance by a factor 1P
a
ya

. This factor has a positive value, and will

keep the sign of
@xi
@xj

@yi
@yj

the same. Similarly, Eq (21) reduce to
@xi
@xj
�

@yi
@yj

. This approximation

means that the effect of the species j on the rate of change of relative abundance of species i is

roughly the same as the corresponding rate of change of species absolute abundance of the spe-

cies. Therefore, the interaction analysis based on the relative abundance can be roughly

approximate to the corresponding analysis based on the absolute abundance. However, in the

case of a lower species diversity, the upper approximation will not exist anymore, and the rela-

tion between the relative abundance and absolute abundance will become complex. Since in

most cases microbial communities are highly diverse, our interaction analysis is expected to
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yield reasonable results. Even for lower diversity, interaction analysis of relative abundance

data can yield useful data for understanding ecosystem properties.

Actually, the compositional effect has its basis in the non-independence of the relative

abundance. In order to decrease the effect of non-independence, a robust algorithm is needed

for the numerical calculations. The precision and robustness of our numerical calculation

depend on the linear regression estimates (Eqs (11)–(13), etc.). The least squares estimation

(function stats::lm() in the R language) is not a robust algorithm since it is very sensitive to the

initial input data. Therefore, we applied the more robust maximal likelihood estimation

instead (R function MASS::rlm()). However, this algorithm has some requirements: input data

should not have singularity, i.e. no linear relationship (collinearity) among the columns of the

input data matrix [32, 33]. Therefore, the test for singularity on both relative abundance data

and environmental parameters data needs to be performed before regression analysis. If the

input data have collinearity, the algorithm will remove one species or one environmental

parameter randomly, and repeat the test for singularity in the new data sets until all the collin-

earity relationships are removed. This pretreatment not only improves the robust numerical

calculation but also decreases the compositional effects.

Another issue related to the precision of calculation is the relationship between the samples

number and the number of variables. Sample number should be larger than the number of var-

iables to avoid indeterminate equations or overfitting. Other suggestions to avoid overfitting

which are not used in our methods are discussed in [34–36].

Summarizing b
k
ija into the global interaction level βij

The interaction level b
k
ija has four indexes i, j, α, k, which refer to a specific pair of taxa i, j, a

specific environmental parameter α and a specific sample k. For each pair of species j with

interaction influence on species i, there is a two-dimensional matrix of numerical b
k
ija values

with α rows and k columns. In either row or column, the values can be either positive, negative

or zero. Positive values indicate a positive influence, negative values indicate a negative influ-

ence. Values may be non-normal distributed including extreme outlier values. To summarize

these results into a more global interaction level value βij between species i and species j, we

suggest the following different methods which can be chosen based on user preference.

Prior to any summarizing approach, users may decide to give different weight to b
k
ija values

for different environmental parameters, based on some prior knowledge about Θα. We esti-

mate b
k
ij by performing a linear combination of b

k
ija across all the environmental parameters:

b
k
ij ¼

X

a

ðCa � b
k
ijaÞ ð22Þ

where Cα is the applied weight of a given environmental parameter α. Prior knowledge on Cα
can be obtained from, e.g. multivariate statistics. A Redundancy Analysis (RDA) allows deter-

mining those environmental parameters which significantly contribute to an observed com-

munity composition. The eigenvalue for each Θα in RDA analysis can be used as Cα weight.

The derived weighted b
k
ija values can be summarized in the same way as the original b

k
ija values

using the methods suggested below.

The most straightforward way is to summarize b
k
ija estimates by standard summarizing sta-

tistics (mean, median, maximum, minimum). This approach retains the strength and direction

of the interaction.
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It is not recommendable, to sum up to b
k
ija values, as positive and negative values could

equal out each other resulting in a rather low βij value. In case the user is interested in a sum

value, the standard norm definition could be applied. Note that this is possible only at the

expense of losing information about the direction of interaction, as only positive values will be

obtained. For example,

b
k
ij ¼k ðb

k
ijaÞ k¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

a

ðb
k
ijaÞ

2
r

ð23Þ

represents a summed b
k
ija interaction level between species i and species j across all environ-

mental parameters α at sample k. Using the same formula as in Eq (23), several other quantities

could be determined, e.g., βij would represent a summed b
k
ij across all samples k. Similarly, b

k
i

represents the summed b
k
ij across all cases where j 6¼ i. Finally, βi represents the summed b

k
i ,

which is the global influence of interaction from all the other species on species i across all the

samples k.

Neither of the summarizing statistics addressed above captures the center of b
k
ija values for a

given environmental parameter α across all samples k appropriately and might therefore not

yield the necessary insight into the interaction structure. A curve fitting approach including

bootstrapping on b
k
ija values with subsequent peak value extraction, as implemented in the

eHOF R package [37] would be appropriate but could be computationally demanding with

increasing taxa and environmental parameter numbers. As a compromise, we extract the

median of those values which are represented in the peak from a b
k
ija density distribution. The

peak values, one per environmental parameter α for each species pair ij or ji and denoted

therefore as Mα, could be summarized using the above standard summarizing statistics but

would also suffer from the same shortcomings.

We, therefore, propose a custom approach which focuses on the dominant patterns of

direction and strength of b
k
ija values. The result will be a conservative estimate of direction and

strength of βij values reflecting the dominant interactions between species i and species j. This

procedure is based on two steps and may involve several user-based definitions of applied

threshold values.

Firstly, the direction of interaction by categorizing b
k
ija values is determined for each α

across all samples k as being either positive or negative. In case the majority (we use 80%) of all

b
k
ija of a given α belongs to either category, the direction of interaction is classified either as

positive or negative, respectively. In case that no preponderance can be identified, the given α
does not contribute to a global βij determination and hence is ignored in the further analysis.

The above peak determination approach yields a set of Mα values along with robust assignment

of direction (either positive or negative).

Secondly, the set of Mα values per each taxon pair ij or ji is used to yield a global interaction

value βij or βji, respectively. Note that Mα values are characterized by a direction (positive or

negative) and by a certain strength (magnitude of the numerical value). Depending on the type

of distribution of both direction and strength of value, two different ways for further evalua-

tion can be taken into account. In case that the majority (we use 80%) of Mα values can be

assigned to either direction, the respective Mα values are summarized by determining the

median value, which represents then the global βij across all α parameter and k samples and is

additionally characterized by a specific direction (positive or negative). Note that based on

users interest, any other majority threshold value and summarizing statistic such as mean,

minimum, or maximum can also be taken into account. However, in case that no
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preponderance can be identified, a decision based on the above majority rule on direction can

not be taken and will be replaced by a decision based on the magnitude of Mα values. We

determine for each group of positive or negative Mα values the respective median values Mα+

and Mα− values. In case the ratio of absolute values of Mα+ or Mα− value is larger than two, the

direction of the interaction is assumed to be represented by the larger M value (either Mα+ or

Mα−), with the respective M value being the global βij across all α parameter and k samples. If

Mα+ and Mα− have comparable absolute values and also have equal proportions of either posi-

tive or negative direction, it is concluded that it is not possible to determine a global βij across

all α parameter and k samples for the specific species pair of i and j.
In sum, we have suggested several workflows summarizing b

k
ija values into a global interac-

tion value βij that also contains the information on the direction (positive or negative interac-

tion). Note that the choice of methods and choice of settings of several threshold values for a

decision on intermediate steps is dependent on user preferences.

Robustness estimation of βij values

The magnitude and sign of the βij value depend on variables of the experimental data, such as

variability of sampling site choice and the reliability (degree of precision) with which numeri-

cal values such as relative abundances of taxa or environmental parameter were determined

[38]. We, therefore, implemented several methods to explore the robustness of the βij value

(strength and direction) with respect to sampling site choice and numerical precision uncer-

tainties in determining relative abundances and values of environmental parameter. Firstly,

the effect of samples, which include values for both the environmental parameter and the rela-

tive abundances of taxa, is accessed by random sampling on soil samples. Secondly, we add

numerical noise to either the original data of relative abundances or the environmental param-

eter values by randomly adding or subtracting error terms using formula

~
Y

k
a
¼ Y

k
a
ð1þ �Þ ð24Þ

where Y
k
a

is the original environmental parameters matrix,
~

Y
k
a

is the perturbed data matrix,

and � is the error term. Values for � are generated as follows:

� ¼ Uð� 1; 1Þe ð25Þ

where U(−1, 1) is the uniform distribution in the range [−1, 1] and e is the error level. The

height of the error level, given as the proportion of the original value, e.g. 0.01% to 50%, can be

defined by the user.

Similarly, random perturbations can be added to the numerical values of the species abun-

dances. Values of βij obtained in repeated runs of data perturbation are then summarized

using monovariate statistics (mean, 95% confidence interval, null hypothesis testing).

Application and results

We tested our method on datasets obtained from grassland soils of the German Biodiversity

Exploratories (http://www.biodiversity-exploratories.de; [39]). The sampling plots were

located in three regions in Germany: Schorfheide-Chorin (Schorfheide Exploratory; SE) in

Brandenburg, national park Hainich-Dün (HE) in Thuringia, and biosphere reserve Schwä-

bische Alb (AE) in Baden-Württemberg. In every region, 50 grassland sites with different

land-use intensities were investigated in the year 2011, resulting in a total of 150 plots analyzed

in this study. At each plot aboveground plant parts in grasslands were removed before fourteen

soil cores (diameter, 5 cm) were taken from the upper 15 cm of the A horizon from a 20 × 20 m
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subarea. The 14 samples were combined, homogenized and 10g of the homogenized soil were

frozen immediately in liquid nitrogen and stored until nucleic acid extraction for the determi-

nation of relative abundances of prokaryotic (RNA extraction) and fungal and protist (DNA

extraction) communities by high-throughput sequencing.

The original test data encompasses 14 environmental parameters which were determined

for each sieved (2 mm) soil sample. These are pH, soil moisture (%), nitrate (NO�
3

), ammo-

nium (NHþ
4

), mineral nitrogen (N), microbial C [all values as μ � g soil−1], organic and inor-

ganic carbon (C) [all values as mg � g soil−1], fine root biomass [g � cm−3], total N and C in roots

(%), C/N ratio in soil, microbial C/N ratio, and C/N ratio in roots. The test for singularity (QR

decomposition [40]) finds a rank of the environmental parameters matrix of 13 due to the col-

linearity between NO�
3

and NHþ
4

. This means that either NO�
3

or NHþ
4

should be removed.

Therefore, the interaction analysis is done with only a set of 13 environmental parameters after

removing NHþ
4

. Details on nucleic acid extractions, high-throughput sequencing, taxonomic

classification, and determination of physicochemical soil parameters have been published else-

where [41–45].

Calculations were performed for 17 taxonomic groups at the level of phylum or classes

which represent abundant groups. The estimation of their relative abundances is generally of

high precision (typically less than 5% deviation [23]). b
k
ija and b

k
jia of each pair of species i and j

were determined for each soil sample k and for each environmental parameter α.

Overall, 150 samples, 17 taxonomic groups, and 13 environmental parameters were

included in the data analysis. This data structure satisfies the requirement of sample size which

is discussed in section. We scaled the species abundance and environmental parameters data

(variance equals 1, uncentralized) to avoid the problem of large difference scale in different

variables.

The degree of interaction changes with the gradient of the environmental

conditions

The Fig 2 exemplifies the change of b
k
ija estimates across the environmental gradient of three

soil parameters for the interaction influence of acidobacterial subgroup Gp3 on acidobacterial

subgroup Gp1. Y-axis range is the same for all three subfigures.

Whereas for pH and organic carbon a strong positive interaction is predicted, soil moisture

suggests a weak negative impact. Notably, the strength of interaction varies along the gradient

of the environmental parameter and increases substantially above a pH value of 6.5. In con-

trast, the interaction strength along gradients of organic carbon and soil moisture appears to

be larger at rather low values of organic carbon and soil moisture respectively. In sum, b
k
ija val-

ues may vary substantially across the gradient of environmental parameters.

Comparison between the global interaction matrix and the correlation

matrix

The b
k
ija and b

k
jia values were then summarized by global βij and βji values, respectively, to esti-

mate (a) the direction of interaction, which can be either positive or negative, and (b) the

strength of interaction. In addition, the global interaction values were compared to results of

standard co-occurrence analyses calculated by means of a Spearman rank correlation matrix

Cij based on relative abundances of the taxa. Both sets of results were also visualized as net-

works which displayed the dominant patterns (for values -0.1> βij> 0.1; -0.4> ρSpearman >

0.4) (Fig 3).

Inferring interactions in complex microbial communities

PLOS ONE | https://doi.org/10.1371/journal.pone.0173765 March 13, 2017 14 / 24

https://doi.org/10.1371/journal.pone.0173765


Fig 2. The distribution of b
k
ija along the environmental gradient.

https://doi.org/10.1371/journal.pone.0173765.g002
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Fig 3. The comparison between the correlation and interaction analysis.

https://doi.org/10.1371/journal.pone.0173765.g003
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Fig 3 provides the heatmaps (a,b) and network figures (c,d) of Spearman rank correlation

matrix (a,c) and interaction matrix (b,d). Taxa depicted on the x-axis (columns) have interac-

tion influence on taxa on the y-axis (rows). The red and blue colors indicate the negative and

positive effects, respectively. For example, acidobacterial subgroup Gp3 has a high positive

interaction influence on acidobacterial subgroup Gp1, whereas the bacterial Planctomycetacia
have a strong negative interaction influence on protist group of Myxomycetes. Note that the

heatmap color code is the same for both βij and Spearman ρ values. In the network figures, low

Spearman ρ and low βij are not shown (but displayed in the heatmap), whereas the remaining

values were artificially grouped into different categories (see color legend networks). Note that

the interaction network displays also the direction of interaction by arrows, whereas correla-

tion analysis does not enable any statement of directionality.

Important characteristics of interaction estimates and their difference to co-occurrence

estimates are highlighted in Fig 3.

Firstly, taxa involved in multiple co-occurrences are not necessarily involved in corre-

sponding interactions and vice versa. For example, acidobacterial subgroups Gp3, Gp5, Gp3

and also Actinobacteria share numerous co-occurrences with other taxa but are far less

involved in interactions. Similarly, Myxomycetes and acidobacterial subgroup Gp1 both show

numerous interactions to other taxa, but are less, if at all, involved in correlations.

Secondly, in case that two taxa are characterized by both strong correlation and interaction,

it is not possible to predict from the type of correlation on the direction of interaction and vice

versa. For example, both acidobacterial subgroup Gp3 and the Chlamydiae show strong posi-

tive correlations with each other and with acidobacterial subgroup Gp1. A strong positive

interaction is observed only from Gp3 to Gp1, whereas the interactions of Chlamydiae on Gp1

are weakly negative and on Gp3 only very weak (βij = 0.04).

Thirdly, whereas co-occurrences within the same taxon are always positive at ρ = 1 (see

heatmap, but not depicted in the network), overall interactions of taxa with itself can be both

negative and positive. For example, Myxomycetes and Chlamydiae appear to have a negative

interaction on themselves, whereas acidobacterial subgroup Gp6 and Plancomycetacia appear

to have a positive influence on its own. Mathematically, this can be explained by analogy to the

species self-effect in logistic equations, in which the rate of change of species abundance has

also an influence in itself. In other words, this interaction value can be treated as the leading

order of the solitary part in Eq (1). When the rate of change pi decreases with the increase of its

abundance Ai, the interaction influence from itself will be negative. In the converse situation,

the influence will be positive. As a biological interpretation, taxa negatively interacting with

each other (as implied here by negative βij values) have reached the carrying capacity within

their ecological niche. Alternatively, these results could be a consequence of hierarchically

nested taxa that are strongly interacting with each other, resulting in a cumulative positive or

negative interaction of the higher level taxon on its self (e.g. Chlamydia).

Finally, it appears as if taxa are preferentially either exerting or experiencing interaction

influence. For example, Myxomycetes share a lot of mostly negative interactions with other

taxa, however, in all cases Myxomycetes are being influenced by others but are not exerting

influence on others. Antibiotics production of bacteria could be a likely explanation [46]. The

same is true for acidobacterial subgroup Gp1, which is, mostly positively, under interaction

influence by other taxa. Only few taxa appear to both, experience as well as exert effects

through influence (Verrumicrobia, Acidobacteria subgroup Gp5).
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Estimation of robustness on the interaction influence calculation

In order to estimate the robustness of βij with respect to the numerical imprecision of the

input data, we performed several perturbation assays. For this, we chose six examples of global

βij interaction values from the Fig 3 which are representative of different strengths of interac-

tion values with both a positive or a negative direction. Following the distribution of βij shown

in the interaction heatmap of Fig 3, we tested larger, median, and low βij values for their

robustness on data perturbations. The effect of variation in sample composition on βij is evalu-

ated by 1000 iterations of randomly sampling 90% of the samples without replacement. We

refrain from using the classical bootstrapping (sampling with replacement), as the deviation

term (Eq (11)) will turn zero for twice or more of subsampled data and hence will be of no

informative value in the downstream regression analysis (Eq (11)).

The effect of either numerical precision of environmental parameter values or relative

abundances of taxa was evaluated by randomly adding or subtracting error terms (0.01%,

0.1%, 5%, 10%, 20% and 50%) to the original values. The effect of both numerical precision of

environmental parameter values and relative abundances of taxa was evaluated by randomly

adding or subtracting error terms (5%, 20%) to the original values.

Each 1000 iterations were performed for each error term and data type. We analyzed the

data by means of comparison of 95% confidence interval, which provide information on effect

sizes additionally to null hypothesis significance testing [47]. The robustness of βij estimations

at different levels of data perturbation. are presented in Fig 4.

The plot (a) presents the distribution of βij as shown in the interaction heatmap in Fig 3.

The plot (b) shows the robustness estimations on exemplary positive (upper row) and negative

(lower row) βij values of decreasing strength (from left to right) taken from the interaction

heatmap in Fig 3. The respective interactions from taxon j on i are listed as abbreviations in

the panel header (Gp1 and Gp3: acidobacterial subgroups Gp1 and Gp3; Basid: Basidiomycetes;
Myxomy: Myxomycetes; Planct: Planctomycetacia; gProt: γ-Proteobacteria; Sphing: Sphingobac-
teria). Only the strong interactions (left panels in (b) are depicted in the interaction network in

Fig 3). The black horizontal line indicates the original βij values. Dots and vertical lines repre-

sent mean and 95% confidence interval bars from 1000 iterations of each type of data perturba-

tion (see color legend). Horizontal dashed lines separate perturbations on environmental

parameter values, relative taxon abundances, and sampling sites. Very small 95% CI values are

are not visible as they are covered by the size of the point estimate dot (mean value of 1000

iterations).

Note, however, that in all cases where the 95% CI bar did not cross the zero line, p

was< 0.01 in a two-sided one-sample t-test.

Typically, the 95% CIs are very small, suggesting the algorithm for numerical calculations

to be robust. However, with increasing error level (from 0.01% to 10%) the 95% CIs become

larger. This can be explained by the accumulated error in the numerical calculation and the

nonlinear structure of the data. In our model, we use the linear part of the Taylor expansion as

the approximation, and the numerical calculation is based on the linear regression. At small

error level, the Taylor expansion can be reliably estimated by its linear part. At increasing

error level, the potentially nonlinear structure of the data will become more relevant and there-

fore may generate increasing uncertainty in the estimation. Principally, this issue could be

solved by extending the Taylor expansion to higher orders to take into account the nonlinear

structure of the data.

The majority of βij values was very small for both positive and negative directions (plot a in

Fig 4). This is the result of our conservative custom approach for βij summarizing, which is
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based on the peak values of b
k
ija density distributions and which is typically close to zero. How-

ever, Fig 2 indicates that individual b
k
ija values can be considerably larger than 1.

There is a substantial effect of increasing error term size on the reduction of the original βij,
which appears to be much larger than the effect on the increase of 95% CI intervals with

increasing error term (figure b in Fig 3). This finding is independent of direction and strength

of the original βij value and suggests that conclusions on direction and strength of interactions,

especially in comparison of different pairs of taxa to each other, appear to be stable in the light

of moderate error rates (up to 10%). The overall effect of error term size on data perturbations

is larger for environmental parameter values than for values for the relative abundances of

taxa. As a result, at larger error rates of environmental parameter values, the direction of inter-

action may change, suggesting that biological interpretation of very low βij should be treated

with caution.

βij resulting from random sampling on soil samples are at comparable levels to βij resulting

from 5% to 10% error term data perturbations on relative abundance values. Obviously, varia-

tion in the composition of samples does not change the estimates and the algorithm remains

robust.

Discussion

Our first application of the methods developed in the present study to real-world data allowed

us to identify several biotic interactions that are likely to shape soil microbial communities but

were previously not recognized. Notably, the novel approach can be used to resolve the full

Fig 4. The test of robustness.

https://doi.org/10.1371/journal.pone.0173765.g004
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spectrum from intra-specific, over intra-phylum, to inter-domain interactions in complex

microbial communities.

In our approach, environmental parameters which are not quantified in a study but which

are nevertheless relevant for the interaction of species i on j will affect the results and hence the

inference of biotic interactions. By comparison, lack of quantitative information on environ-

mental parameters does not affect the results of co-occurrence patterns, where the correlation

value of species i and j will stay the same irrespectively of any environmental parameter that

has been determined or not. Yet, the relevance of unknown parameters that might control the

correlation instead of direct biotic interactions will not be revealed by co-occurrence analysis.

Increasing the number of organismic groups and environmental parameters in our type of

analysis ultimately will require some data reduction approaches. The choice of which taxa and

which environmental parameter should be included requires independent knowledge about

their potential relevance. Such knowledge could be retrieved from, e.g., multivariate statistics.

The novel approach to estimate the strength and direction of biological interactions among

taxa provides several advantages.

Firstly, our approach does not require repeated measurements at different time points. This

is in contrast to approaches based on the discrete-time Lotka–Volterra model which requires

concrete differential equation models [9, 48–50]. Often, these interactions are analysed within

a predator-prey framework. However, the sampling of microbial communities is typically con-

ducted in a destructive manner, which renders reproducible sampling of heterogeneous soil

environment rather difficult or even impossible [43]. Instead, many soil microbial studies use

cross-sectional format by taking multiple samples from different sites in parallel at the same

time [51–53]. Our approach is far more general than the discrete-time Lotka–Volterra models

employs derivations from the multivariate Taylor expansion function, and therefore allows to

assess interactions using comparative cross-sectional datasets.

Secondly, our approach allows analysing interactions between two species i and j in the

presence of other taxa x, y, z which may affect the interaction of species i on j [54, 55]. Analys-

ing interactions between species i and j within a more complex community has already been

addressed in discrete-time Lotka-Volterra models [9]. In our model, the user can deliberately

remove species x, y, z to analyse the effect of their presence or absence on the interaction of

species i on j or identify whether interactions appear stable despite varying community com-

positions. As an example, we observed that Acidobacteria subgroup Gp1 is apparently influ-

enced by several other taxa (Fig 3). Using slightly different community compositions and

slightly different sets of the environmental parameter, we observed that (i) Acidobacteria sub-

group Gp1 remains being influenced by numerous other groups and that (ii) the observation

of a strong positive interaction of Acidobacteria subgroup Gp3 on Gp1 remains (data not

shown). The ecological function of Acidobacteria subgroup Gp1 is still largely unknown, but

its involvement in several rather strong interactions suggests that they represent a keystone

group of bacteria.

Thirdly, we can address interaction in the light of qualitatively and quantitatively different

environmental parameters. Analogous to studying the effect of species composition, the user

will be able to study the effect of a specific environmental parameter by removing it from the

data set or by testing different combinations. More detailed analyses could be undertaken by

determining βij separately for different ranges of environmental parameter values, e.g. at low

versus high values of either pH, soil moisture, or land use intensities.

Fourthly, the results from our interaction calculations serve not only for biological interpre-

tations but can be further used in statistical or modeling approaches. Quantities such as ðpkiaÞ,
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ðb
k
ijaÞ, ðb

k
ijÞ, (βij), ðb

k
i Þ and (βi) could be used in multivariate statistics or to construct dynamical

equations within the framework of system stability analysis [56–58].

Finally, whereas in co-occurrence analysis it is not possible to distinguish between effects of

true interaction and effects of similar response to environmental parameters without actually

interacting, our approach enables to address separately the effects of biotic interactions and

the abiotic response to the environmental parameter by using Eq (14).

At present, our model does not incorporate specific assumption about the mathematical

expression of Si, Iij in Eq (1). In the future work, the Monod equation or logistic functions

could be included to update our model to a concrete form. The numerical calculation strate-

gies to do the interaction estimation would not necessarily be affected by this.

Based on the quantification of the strength of interaction and the prediction of its direction

that is provided by our new approach, the underlying mechanisms of interaction will have to

be determined by complementary experimental approaches. For example, a strong negative

interaction could be exerted via direct predation [55], antibiotics [59], or other types of chemi-

cal warfare such as volatiles [60]. Here, strong βij that link taxa which previously were not

under suspect to interact under natural conditions could serve as models for future investiga-

tions of the interaction mechanisms. This will require the availability of cultured isolates,

however.

Supporting information

S1 File. R code and data sets. “Abundscale.Rdata” is the original species relative abundance

data. “Parascale.Rdata” is the original environmental parameters data. Due to the long compu-

tation time on the original data, two shorten data sets “Abundscale_short.RData” and “Para-

scale_short.RData” are also provided for the fast test. “test_git.R” is the code for the analysis

workflow on both of original data and the shorten data. “InteractionAnalysis_git.R” contains

all the developed functions which are used in “test_git.R”.
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