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Abstract

In [Phys. Rev. Lett. 117, 213201 (2016)] we have determined the angular resolved and the

total energy spectrum of a positron produced via nonlinear Breit-Wheeler pair production by a

high-energy photon counterpropagating with respect to a tightly focused laser beam. Here, we first

generalize the results in [Phys. Rev. Lett. 117, 213201 (2016)] by including the possibility that

the incoming photon is not exactly counterpropagating with respect to the laser field. As main

focus of the present paper, we determine the photon angular resolved and total energy spectrum

for the related process of nonlinear Compton scattering by an electron impinging into a tightly-

focused laser beam. Analytical integral expressions are obtained under the realistic assumption

that the energy of the incoming electron is the largest dynamical energy of the problem and that

the electron is initially almost counterpropagating with respect to the laser field. The crossing

symmetry relation between the two processes in a tightly focused laser beam is also elucidated.
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I. INTRODUCTION

The emission of radiation by accelerated electric charges is one of the most fundamental

processes in physics. While classically the emission of radiation is a continuous process [1],

quantum mechanically it has a discrete nature meaning that the radiation is emitted as

quanta, called photons [2]. The process of photon emission by a massive charged particle,

an electron for definiteness, cannot occur in vacuum due to energy-momentum conservation.

However, if the electron interacts with a background electromagnetic field, the latter can

provide the missing energy and momentum and the emission of photons can occur. If the

background electromagnetic field is sufficiently strong that during the emission process: a)

it is not altered by the emission process itself and b) many of its photons interact with the

electron, then the so-called Furry picture can be efficiently employed to calculate the emission

process probability for a relatively large class of background fields by taking into account

exactly the background field itself in the calculations [2–5]. In the Furry picture the electron

states and propagator are determined exactly in the external electromagnetic field, meaning

that they are obtained by solving the Dirac equation and the corresponding equation for

the propagator including the background field. After that the obtained “dressed” states

and “dressed” propagator can be employed within the conventional Feynman approach to

determine the probabilities of QED processes by accounting perturbatively for the interaction

between the electron-positron field and the photon field (apart from this, depending on the

structure of the background field, the theory of QED in the presence of a strong background

field may have qualitatively additional different features like, for example, the instability of

the vacuum under electron-positron pair production [4]).

Below we are interested in the case where the background electromagnetic field is a

laser field, typically with an optical frequency, corresponding to a wavelength of the order

of one micrometer. In fact, present high-power optical laser facilities have reached very

high intensities of the order of I0 ∼ 1022 W/cm2 [6] and upcoming 10-PW facilities aim at

I0 ∼ 1023 W/cm2 [7]. The requirement of high intensity is related to the importance of

so-called nonlinear quantum effects like, for example, the recoil undergone by the electron in

the emission of photons. This is a pure quantum effect and, as other QED effects in a strong

laser field (approximated here as a plane wave), it is controlled by the so-called quantum

nonlinearity parameter χ0 = |e|
√

|(pµF µν
0 )2|/m3 [8–13]. Here, e < 0 and m are the electron
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charge and mass, respectively, pµ = (ε,p) is the initial four-momentum of the electron, and

F µν
0 = (E0,B0) is a measure of the amplitude of the laser field, with E0 = B0 = F0 (units

with 4πǫ0 = ~ = c = 1 are employed throughout). If one denotes with nµ = (1,n) (n2 = 0)

the four-momentum of a laser photon in units of its energy and with Aµ
0 = (0,A0) =

(0,−E0/ω0) the amplitude of the four-vector potential, where ω0 is the central angular

frequency of the laser, the parameter χ0 can be written as χ0 = ((np)/m)F0/Fcr, where

Fcr = m2/|e| = 1.3 × 1016 V/cm = 4.4 × 1013 G is the so-called critical field of QED [8–

13]. The above expression of the parameter χ0 sets the field scale Fcr as the typical scale

where non-linear QED effects, like the importance of the recoil undergone by the electron

when it emits a photon, are significant. The same expression, however, also indicates that

even for laser field amplitudes much below the critical value, nonlinear QED effects can be

important (χ0 & 1) if, for example, one employs ultrarelativistic electrons which initially

counterpropagate with respect to the laser field. In fact, from a physical point of view

the relevant quantity here is the external field amplitude in the initial rest frame of the

electron ((np)/m)F0 and for an ultrarelativistic electron initially counterpropagating with

the laser field it is (np)/m ≈ 2ε/m ≫ 1. Since the critical amplitude Fcr corresponds

to a laser intensity Icr = 4.6 × 1029 W/cm2, it is clear that the strong-field QED regime,

where nonlinear QED effects become essential, can be entered nowadays and in the near

future only by employing ultrarelativistic electron beams. It is worth pointing out that

conventional accelerators have provided electron beams with energies of the order of 50 GeV

[14, 15] whereas modern accelerators based on the laser-wakefield acceleration technique have

already reached energies of the order of 1-5 GeV [16]. Thus, having in mind the mentioned

experimentally achieved laser intensities we can conclude that present technology allows in

principle for entering the strong-field QED regime. For the sake of completeness, we have

to remind that another requirement for entering the strong-field regime is the importance

of nonlinear effects in the amplitude of the external field. In fact, if the field is so weak that

during the process under consideration an electron effectively interacts only with a single

external-field photon then even the use of the Furry picture is redundant and essentially

the amplitudes of vacuum QED can be employed to calculate transition probabilities and

rates. In the case of a laser field the importance of nonlinear effects with respect to the

laser amplitude is related to the energy that the laser field can transfer to an electron in the

typical QED length λC = 1/m = 3.9× 10−11 cm (Compton wavelength) and it is controlled

3



by the parameter ξ0 = |e|E0/mω0 [8–13]. If this parameter is larger than unity, in fact, the

laser field can transfer an energy corresponding to many laser photons to an electron on a

Compton wavelength. Since the threshold ξ0 = 1 corresponds to an optical (ω0 ∼ 1 eV)

laser intensity of the order of 1018 W/cm2, it is customary to consider the highly nonlinear

regime where ξ0 ≫ 1 (see [17] for a recent study where also interesting features in the regime

ξ0 ∼ 1 are investigated).

The process of the emission of a single photon by an electron in the field of a plane wave

(nonlinear single Compton scattering) has been studied since the sixties [18, 19] and, due

to the fast development of laser technology, has received again a large attention in the last

years [20–36], with emphasis on effects related to the laser duration, laser polarization, spin

of the participating electron and so on (see also the reviews [8–12]). Moreover, the process of

double photon emission in the field of a plane wave (nonlinear double Compton scattering)

has also been investigated recently [37–39].

In all above mentioned studies in the full quantum regime the laser field has been ap-

proximated as a plane-wave, which allows one to solve analytically the Dirac equation and

obtain the exact electron states and propagators (Volkov states and propagator, respec-

tively) [2, 40] and to use them within the Furry picture. However, present and upcoming

laser facilities may realistically reach the high intensities required to enter the strong-field

QED regime only by tightly focusing the laser energy both in space and time. Although ar-

bitrary laser pulse shapes in time can be accounted for within the plane-wave approximation

of the laser field, space focusing goes beyond this approximation. Recently, effects of the

laser spatial focusing in Compton and Thomson scattering (the latter process corresponds

to the classical emission of radiation, where quantum effects like recoil can be neglected)

have been recently investigated numerically in [41] and in [42], respectively. Also, analyt-

ical expressions of scalar wave functions based on the Wentzel-Kramers-Brillouin (WKB)

approximation have been determined in [43] for a specific class of background fields depend-

ing on the space-time coordinates via the quantity (nx) like a plane wave but generalizing

from lightlike nµ to arbitrary nµ. Moreover, the dynamics of a scalar particle in a back-

ground formed by two counter-propagating plane waves both in the classical and in the

quantum regime has been recently studied in [44]. In [45, 46] we have started to investi-

gate a regime of laser-electron interaction which is relevant for presently and forthcoming

experiments in strong-field QED and where it was possible to determine analytically the
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wave-functions [45, 46] and the propagator [46] for an electron in the presence of a back-

ground electromagnetic field of virtually arbitrary space-time structure having in mind the

case of a tightly-focused laser beam. In this regime the involved charged particles (electrons

and positrons) are assumed to be (almost) counterpropagating with respect to the laser field

(the meaning of “almost” is clarified in the next section). Although other geometries can

be easily implemented (see [45]), the counterpropagating setup, as we have indicated above,

is the one featuring the largest value of the quantum nonlinearity parameter χ0 at a given

field amplitude and incoming electron energy. Moreover, the longitudinal momentum of the

involved charged particles is much larger than the typical transverse momentum scale mξ0

in the laser field such that the charged particles are barely deflected by the laser field and

their energy scale is determined by the longitudinal momentum. This has allowed us to

solve the Dirac equation within the WKB approximation but by keeping next-to-leading

order terms, which are essential already to reproduce the results in the plane wave limit. It

is important to stress that the approximation ε≫ mξ0 is automatically satisfied for present

and upcoming experimental conditions. In fact, let us assume for the sake of definiteness

that an ultrarelativistic electron initially counterpropagates with respect to the laser beam.

In order to enter the strong-field QED regime (say at χ0 > 1), by assuming the laser to be

a Ti:Sapphire laser (ω0 = 1.55 eV) and to have a soon feasible intensity of I0 ∼ 1023 W/cm2

[7] (corresponding to ξ0 = 150), it is necessary that ε & 500 MeV such that it is ε/m ≈ 103.

In [47] we have shown that the wave functions found in [45, 46] can indeed be employed to

obtain relatively compact integral analytical expressions for the angular resolved and the

total energy spectrum of positrons produced in the head-on collision of a high-energy photon

with a strong and tightly focused laser beam. The spectra in [47] are conveniently expressed

as functions of the external background field and have been shown to be in agreement with

the corresponding results obtained by means of the operator technique in the quasiclassical

approximation [48] (see also [49]), although, in general, in the latter approach the angular

resolved and the total energy spectra are expressed in terms of the electron trajectory, which

has to be determined separately. Here, we first generalize the findings in [47] to include the

possibility that the incoming photon is not exactly counterpropagating with respect to the

laser beam. Then, we focus on the analogous study of nonlinear single Compton scattering

in a tightly focused laser beam. In addition, we will elucidate how these two first-order

strong-field QED processes are related by the crossing symmetry [2].

5



II. NONLINEAR BREIT-WHEELER PAIR PRODUCTION

In this section we generalize the results obtained in [47] including the possibility that the

incoming photon is not exactly counterpropagating with respect to the laser beam. As in

[47], we assume that the laser field is described by the four-vector potential Aµ(x) in the

Lorentz gauge ∂µA
µ(x) = 0. For the sake of definiteness, we consider a laser beam whose

focal plane corresponds to the x-y plane and whose wave vector at the center of the focal

area points along the negative z direction (below we summarize these properties by saying

that the laser beam propagates along the negative z direction). A concrete realistic form

of the background electromagnetic field which can be studied with the present formalism

and its main features are presented in the Appendix A. The chosen setup described above

suggests to introduce the light-cone coordinates T = (t + z)/2, x⊥ = (x, y), and φ = t− z

for a generic four-position xµ = (t, x, y, z). Analogously, it is convenient to introduce the

light-cone components v± = (v0 ± vz)/2
(1±1)/2 and v⊥ = (vx, vy) for an arbitrary four-

vector vµ = (v0, vx, vy, vz). The four-momentum and the polarization four-vector of the

incoming photon are indicated as kµ = (ω,k) (k2 = 0) and eµk,l (l = 1, 2), respectively

(the four-vectors eµk,l are considered real implying that the incoming photon is assumed to

be linearly polarized). The incoming photon is “almost” propagating along the positive z

direction meaning that |k⊥| . mξ0 ≪ kz ≈ ω (see in particular [46]). Concerning the final

electron-positron pair, it is convenient here to indicate as pµ = (ε,p) (p2 = m2) and s = 1, 2

the four-momentum and the spin quantum number of the positron and as p′µ = (ε′,p′)

(p′2 = m2) and s′ = 1, 2 the corresponding quantities for the electron. Although this is the

opposite notation as that we have employed in [47], it will simplify the comparison with the

results in nonlinear single Compton scattering and the discussion on the crossing symmetry.

Thus, for the sake of clarity, we will report here also some formulas, which differ from the

corresponding ones in [47] by the exchange of pµ with p′µ and of s with s′. The amplitude of

the nonlinear Breit-Wheeler pair production at the leading order within the Furry picture

is given by

SBW,fi = −ie
√
4π

∫

d4x ψ̄
(out)
p′,s′ (x)

êk,l√
2ω
e−i(kx)ψ

(out)
−p,−s(x), (1)

where the hat indicates the contraction of a four-vector with the Dirac matrices γµ, and

where ψ̄ = ψ†γ0 for an arbitrary bispinor ψ (a unit quantization volume is assumed). The

out-states employed to evaluate the transition amplitude in Eq. (1) are those given in Eqs.
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(2)-(3) in [47], i.e.:

ψ
(out)
±p,±s(x) = eiS

(out)
±p (x)

[

1± e

4p+
n̂Â(out)(x)

]

u±p,±s√
2ε

, (2)

where

S
(out)
±p (x) =∓ (p+φ+ p−T − p⊥ · x⊥) + e

∫ ∞

T

dT̃A−(x̃)

+
1

p+

∫ ∞

T

dT̃

[

e(pA(out)(x̃))∓ 1

2
e2A(out) 2(x̃)

]

,

(3)

where A(out),µ(x) = (0,A
(out)
⊥ (x), 0), with

A
(out)
⊥ (x) = A⊥(x)−∇⊥

∫ ∞

T

dT̃A−(x̃) =

∫ ∞

T

dT̃ [E⊥(x̃) + z ×B⊥(x̃)], (4)

and where u±p,±s are the positive-/negative-energy constant free bispinors [2] (the symbol

x denotes the three coordinates (T,x⊥) and, correspondingly, x̃ = (T̃ ,x⊥)). We recall that

under our approximations one can neglect the dependence of the background field on the

variable φ and, for an appropriate choice of the initial conditions, evaluate the background

field itself at φ ≈ 0 [45]. The reason is that, as it can be also ascertained from the classical

motion of an ultrarelativistic charged particle along the positive z direction, the quantity

φ = t − z effectively scales as the square of the inverse of the energy of the particle in the

relevant integration region (see also [45]). Thus, having in mind, for example, the expression

of the background electromagnetic field discussed in the Appendix A, in order to perform

concrete calculations, one has to replace t ≈ z ≈ T in the expression of the background

field, whereas the transverse coordinates x and y correspond to the two-dimensional vector

x⊥.

Since the only difference with respect to the results in [47], apart from the mentioned

notational one, is the four-momentum of the incoming photon, we can already write that

Eqs. (7)-(8) in [47] become

dNBW

dεdΩp
=iρΣ,γ

αε

16π3ω

∫

d3xd3x′

T−
ei∆ΦBW (x,x′)

〈

m2

(

ε′

ε
+
ε

ε′
+ 4

)

+
2iε

T−
+
ε′

ε

{

p⊥

− ε

T−
∆x⊥,p + e

ω

ε′
1

T−

[
∫ ∞

T

dT̃A⊥(x̃)−
∫ ∞

T ′

dT̃ ′
A⊥(x̃

′)

]

+ e
ω

ε′
A⊥,+(x,x

′)

}2

−e2 (ε− ε′)2

4εε′
A

2
⊥,−(x,x

′)

〉

(5)
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and

∆ΦBW (x,x′) =
ω

εε′
T−
2
m2 − T−

2ω

(

k⊥ − ω

T−
x⊥,−

)2

+
T−
2ε

(

p⊥ − ε

T−
∆x⊥,p

)2

− ω

εε′
e2

2

{

1

T−

[
∫ ∞

T

dT̃A⊥(x̃)−
∫ ∞

T ′

dT̃ ′
A⊥(x̃

′)

]2

+

∫ ∞

T

dT̃A2
⊥(x̃)−

∫ ∞

T ′

dT̃ ′
A

2
⊥(x̃

′)

}

.

(6)

In these equations we have introduced the differential positron solid angle dΩp ≈ d2p⊥/ε
2

(indicated as dΩ in [47]), the number of incoming photons per unit surface ρΣ,γ (defined as

ρΣ in [47]), the final electron energy ε′ = ω − ε, and the quantities T± = (T ± T ′)/2(1±1)/2,

x⊥,± = (x⊥ ± x′
⊥)/2

(1±1)/2, A⊥,±(x,x
′) = [A⊥(x) ± A⊥(x

′)]/2(1±1)/2, ∆x⊥,p = x⊥,− +

(e/ε)
[ ∫∞

T
dT̃A⊥(x̃)−

∫∞

T ′ dT̃
′A⊥(x̃

′)
]

, whereas the symbol x̃′ denotes the three coordinates

(T̃ ,x′
⊥).

The above Eq. (5) can be easily integrated with respect to the final transverse positron

momentum d2p⊥ ≈ ε2dΩp because the integral is Gaussian as the phase there contains at the

highest quadratic terms in p⊥. Since the pre-exponent also contains p⊥ (up to the second

power), we need the identities (see, e.g., [50])

I0(a) =

∫

d2z

(2π)2
eiaz

2

=

∫ ∞

0

ds

4π
eias =

i

4πa
, (7)

I2(a) =

∫

d2z

(2π)2
z2eiaz

2

= −idI0(a)

da
= − 1

4πa2
(8)

for any two-dimensional real vector z = (z1, z2) and for any constant a with Im(a) > 0. By

employing these identities in Eq. (5), the result for the total positron energy spectrum is

dNBW

dε
=− ρΣ,γ

α

8π2ω

∫

d3xd3x′

T 2
−

exp

〈

i

{

m2

2

ω

εε′
T− − T−

2ω

(

k⊥ − ω

T−
x⊥,−

)2

− ω

εε′
e2

2

1

T−

[
∫ ∞

T

dT̃A⊥(x̃)−
∫ ∞

T ′

dT̃ ′
A⊥(x̃

′)

]2

− ω

εε′
e2

2

[
∫ ∞

T

dT̃A2
⊥(x̃)−

∫ ∞

T ′

dT̃ ′
A

2
⊥(x̃

′)

]}〉〈

m2

(

ε′

ε
+
ε

ε′
+ 4

)

+
2iω

T−

+
ω2

εε′
e2

{

1

T−

[
∫ ∞

T

dT̃A⊥(x̃)−
∫ ∞

T ′

dT̃ ′
A⊥(x̃

′)

]

+A⊥,+(x,x
′)

}2

−e2 (ε− ε′)2

4εε′
A

2
⊥,−(x,x

′)

〉

.

(9)

As we have already pointed out in [47], it is convenient at this point to consider the integrals

in the transverse coordinates and to pass to the variables x⊥,± = (x⊥ ± x′
⊥)/2

(1±1)/2. In
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fact, one then realizes that the transverse formation length of the process is of the order

of the Compton wavelength (λC = 3.9 × 10−11 cm ∼ 10−7 µm ∼ 10−4 nm). Now, we

have in mind applications where the tightly focused laser field is either an optical field,

which varies in space on scales of the order of one micrometer or an x-ray field, which

vary on scales of the order of one nanometer. Thus, one can expand the external field

around x⊥,+ and neglect there the difference between x⊥ and x′
⊥, as the corrections will be

proportional to the small parameter λC/λ0 ∼ ω0/m, with λ0 = 2π/ω0 being the central laser

wavelength (needless to say the approximation works even better for lower-frequency lasers

like terahertz lasers). As we have noticed in [47], this is also justified at the leading order

in 1/ω as λC/λ0 ∼ (κ0/ξ0)(m/ω) . m/ω. It is worth adding here to the considerations

already discussed in [47] that the above conclusion about the transverse formation length

is already clear if ξ0 . 1. If ξ0 ≫ 1, however, one can also observe that: 1) according

to the findings in [51], the regions where the pair is most likely produced are those where

the transverse dynamical kinetic momenta of the electron and the positron vanish; 2) since

the longitudinal formation length is typically a small fraction 1/ξ0 of the laser period, the

transverse momentum transfer is again of the order of m. Following the above discussion,

we can approximately evaluate the external field in Eqs. (5) and (9) at x⊥,+ such that the

phase ∆ΦBW (x,x′) becomes

∆ΦBW (x,x′) ≈ ω

εε′
T−
2
m2 − T−

2ω

(

k⊥ − ω

T−
x⊥,−

)2

+
T−
2ε

[

p⊥ − ε

T−
x⊥,− − e

T−

∫ T ′

T

dT̃A⊥(x̃)

]2

− ω

εε′
e2

2







1

T−

[

∫ T ′

T

dT̃A⊥(x̃)

]2

+

∫ T ′

T

dT̃A2
⊥(x̃)







,

(10)

where x̃ = (T̃ ,x⊥,+). The phase in Eq. (9) is the same as this expression of ∆ΦBW (x,x′)

except for the term in the second line which has been integrated out with the transverse

momentum p⊥. Under these approximations, the phases in both Eq. (5) and Eq. (9) contain

at the highest quadratic terms in x⊥,− and the resulting integrals in x⊥,− are of Gaussian

form. With the help of the identities (7) and (8), these integrals can be taken analytically

9



and Eqs. (5) and (9) become

dNBW

dεdΩp
=
ρΣ,γ

8π2

αε

ωε′

∫

dTdT ′d2x⊥

× e
i ω

2εε′

〈

T−

{

m2+
[

p⊥− ε
ω
k⊥− e

T−

∫ T ′

T
dT̃A⊥(x̃)

]2
}

−e2
{

1
T−

[

∫ T ′

T
dT̃A⊥(x̃)

]2
+
∫ T ′

T
dT̃A2

⊥
(x̃)

}〉

×
{

m2

(

ε′

ε
+
ε

ε′
+ 4

)

+
ω2

εε′

[

p⊥ − ε

ω
k⊥ + eA⊥,+(x,x

′)
]2

−e2 (ε− ε′)2

4εε′
A

2
⊥,−(x,x

′)

}

,

(11)

and

dNBW

dε
=i
ρΣ,γ

4π

α

ω2

∫

dTdT ′d2x⊥

T−
e
i ω

2εε′

〈

m2T−−e2
{

1
T−

[

∫ T ′

T
dT̃A⊥(x̃)

]2
+
∫ T ′

T
dT̃A2

⊥
(x̃)

}〉

×
{

m2

(

ε′

ε
+
ε

ε′
+ 4

)

+
2iω

T−
+
ω2

εε′
e2

[

1

T−

∫ T ′

T

dT̃A⊥(x̃) +A⊥,+(x,x
′)

]2

− e2
(ε− ε′)2

4εε′
A

2
⊥,−(x,x

′)

}

,

(12)

respectively. Following the discussion below Eq. (9), we point out that the symbols x̃ and

x′ have to be intended here as x̃ = (T̃ ,x⊥) and x′ = (T ′,x⊥), respectively. It is worth

noticing that neglecting the difference between x⊥ and x′
⊥ in the external vector poten-

tial and evaluating it at the average transverse coordinate x⊥,+ implies that the resulting

expressions (11) and (12) have the same form as in a plane wave with four-vector poten-

tial Aµ
PW,⊥(T ) = (0,APW,⊥(T ), 0) with the substitution APW,⊥(T ) → A⊥(x). Thus, under

our approximations in which we keep leading-order terms in 1/ω, the transverse conjugated

momentum p⊥ − eA⊥(x) is approximately conserved, which is consistent with the analysis

on the classical dynamics presented in [45] (see also the discussion below at the end of the

Section).

Both Eq. (11) and Eq. (12) can be substantially simplified either by performing suitable

integrations by parts [21, 25] or equivalently by enforcing gauge invariance with respect to

the incoming photon [52]. In Eq. (11) one can then use the fact that

0 =

∫

dT−
∂

∂T−
e
i ω

2εε′

〈

T−

{

m2+
[

p⊥− ε
ω
k⊥− e

T−

∫ T ′

T
dT̃A⊥(x̃)

]2
}

−e2
{

1
T−

[

∫ T ′

T
dT̃A⊥(x̃)

]2
+
∫ T ′

T
dT̃A2

⊥
(x̃)

}〉

,

(13)

10



where T = T+ + T−/2 and T ′ = T+ − T−/2 and obtain

dNBW

dεdΩp
=
ρΣ,γ

4π2

αm2ε

ωε′

∫

dTdT ′d2x⊥e
−i ω

2εε′

∫ T ′

T
dT̃

{

m2+[p⊥− ε
ω
k⊥+eA⊥(x̃)]

2
}

×
[

1− e2

4

ε2 + ε′2

εε′
A

2
⊥,−(x,x

′)

m2

]

.

(14)

From the computational point of view, this expression can be rewritten in a more suitable

form by noticing that

e2A2
⊥,−(x,x

′) = [π⊥,p(x)− π⊥,p(x
′)]2, (15)

where π⊥,p(x) = p⊥− (ε/ω)k⊥+ eA⊥(x). Now, by integrating by parts the resulting terms

proportional to π2
⊥,p(x) and π2

⊥,p(x
′), one can easily show that

dNBW

dεdΩp
=
ρΣ,γ

8π2

αm2ε

ωε′

∫

d2x⊥

[

ω2

εε′
|f0,p(x⊥)|2 +

ε2 + ε′ 2

εε′

∣

∣

∣

∣

f0,p(x⊥)

m

(

p⊥ − ε

ω
k⊥

)

+ f1,p(x⊥)

∣

∣

∣

∣

2
]

,

(16)

where

f0,p(x⊥) =

∫

dTei
ω

2εε′

∫ T

0
dT̃ [m2+π2

⊥,p
(x̃)], (17)

f1,p(x⊥) =
e

m

∫

dTA⊥(x)e
i ω

2εε′

∫ T

0 dT̃ [m2+π2
⊥,p

(x̃)]. (18)

Finally, the integral f0,p(x⊥) can be regularized as indicated above and one obtains the

relation
[

m2 +
(

p⊥ − ε

ω
k⊥

)2
]

f0,p(x⊥) + 2m
(

p⊥ − ε

ω
k⊥

)

· f1,p(x⊥) +m2f2,p(x⊥) = 0, (19)

where

f2,p(x⊥) =
e2

m2

∫

dTA2
⊥(x)e

i ω

2εε′

∫ T

0 dT̃ [m2+π2
⊥,p

(x̃)]. (20)

In this respect, we notice that the choice of the lower integration limit in the phases in the

functions f0,p(x⊥), f1,p(x⊥), and f2,p(x⊥) is arbitrary and the value T̃ = 0 has been chosen

for convenience.

Now, by analogously integrating by parts the term 2iω/T 2
− in Eq. (12) one easily obtains

the total energy spectrum in the form

dNBW

dε
=i
ρΣ,γ

2π

αm2

ω2

∫

dTdT ′d2x⊥

T−
e
i ω

2εε′

〈

m2T−−e2
{

1
T−

[

∫ T ′

T
dT̃A⊥(x̃)

]2
+
∫ T ′

T
dT̃A2

⊥
(x̃)

}〉

×
[

1− e2

4

ε2 + ε′2

εε′
A

2
⊥,−(x,x

′)

m2

]

,

(21)
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where we recall that the factor T− in the denominator has to be intended as T− → T− + i0

as it results from the condition on the imaginary part of the constant a once one applies

the results in the integrals in Eqs. (7) and (8). Note that the prescription T− → T− + i0

ensures that dNBW/dε vanishes for vanishing background field. By comparing Eqs. (11)

and (12) with Eq. (9) and Eq. (10), respectively, in [47], we see that the expressions of the

angular resolved energy spectra only differ because the transverse momentum of the positron

is shifted here by the quantity −(ε/ω)k⊥, whereas the total positron energy spectra coincide.

In this respect, we can already conclude that the results in the quasistatic limit (ξ0 ≫ 1 in

the parameter regions where most of the pairs are produced and for typical quantum photon

nonlinearity parameter κ0 = 2(ω/m)F0/Fcr of the order of unity) are (see Eqs. (11) and

(12) in [47])

dNBW

dεdΩp

= ρΣ,γ
α

π2
√
3

ε2

ω2

∫

d3x gp(x)b(x)

[

1 +
ε2 + ε′ 2

εε′
g2p(x)

]

K1/3

(

2

3
b(x)g3p(x)

)

(22)

and

dNBW

dε
= ρΣ,γ

α

π
√
3

m2

ω2

∫

d3x

[

ε2 + ε′ 2

εε′
K2/3

(

2

3
b(x)

)

+

∫ ∞

2
3
b(x)

dzK1/3(z)

]

, (23)

where we have introduced the functions gp(x) =
√

1 + π2
⊥,p(x)/m

2 and b(x) = (ω2/εε′)κ−1(x),

with κ(x) = (ω/m)|∂A⊥(x)/∂T |/Fcr being the local value of the quantum photon nonlin-

earity parameter. Concerning the comparison with the results in [48], since now k⊥ 6= 0

it is more transparent to first observe that there the differential spectra with respect to

the electron momenta (energy) are reported (see Eqs. (3.28) and (3.30) in [48]). If we

had integrated over the positron degrees of freedom, we would have obtained the same

expression with all primed and unprimed energies and momenta (and consequently solid

angle) exchanged and with A⊥(x) → −A⊥(x). Then, one can easily see that the results

are in agreement by correctly identifying the electron transverse velocity there with the

quantity [p′
⊥ − eA⊥(x)]/ε

′ here. Analogously to what we have mentioned in [47], the

corresponding results for a single incoming photon in a plane wave are formally obtained

by removing the dependence on the transverse coordinates from the external field and by

setting ρΣ,γ

∫

d2x⊥ = 1. On the other hand, it should be noticed that by starting, for

example, from the positron angular distribution in a plane wave expressed in terms of the

transverse potential APW,⊥(T ), the corresponding result in a focused field is not simply ob-

tained via the substitution APW,⊥(T ) → A⊥(x) and then by averaging over the transverse

12



coordinates but the gauge invariant quantity A⊥(x) has to be constructed first in terms of

the electromagnetic field in the non-plane-wave case (see Eq. (4)).

III. NONLINEAR SINGLE COMPTON SCATTERING

In order to simplify the comparison with the formulas obtained in the previous section,

we assume here that the incoming (outgoing) electron has four-momentum and the spin

quantum number pµ = (ε,p) and s (p′µ = (ε′,p′) and s′), respectively. Analogously the

emitted photon has four-momentum kµ = (ω,k) and (linear) polarization l (polarization

four-vector eµk,l). The leading-order S-matrix element of nonlinear single Compton scattering

in the Furry picture reads [2, 3]

SC,fi = −ie
√
4π

∫

d4x ψ̄
(out)
p′,s′ (x)

êk,l√
2ω
ei(kx)ψ(in)

p,s (x). (24)

Under the present conditions the in-state ψ
(in)
p,s (x) can be written in the form [45, 46]

ψ(in)
p,s (x) = eiS

(in)
p (x)

[

1 +
e

4p+
n̂Â(in)(x)

]

up,s√
2ε
, (25)

where

S(in)
p (x) =− (p+φ+ p−T − p⊥ · x⊥)− e

∫ T

−∞

dT̃A−(x̃)

− 1

p+

∫ T

−∞

dT̃

[

e(pA(in)(x̃))− 1

2
e2A(in) 2(x̃)

]

,

(26)

where A(in),µ(x) = (0,A
(in)
⊥ (x), 0), with

A
(in)
⊥ (x) = A⊥(x) +∇⊥

∫ T

−∞

dT̃A−(x̃) = −
∫ T

−∞

dT̃ [E⊥(x̃) + z ×B⊥(x̃)]. (27)

As a first important result, we would like to show that within the matrix element we can

consistently approximateA
(out)
⊥ (x) ≈ A

(in)
⊥ (x) ≡ A⊥(x), such that we can remove the upper

index in this quantity for notational simplicity. However, it is more transparent from a phys-

ical point of view to use the “(in)” expression of A⊥(x) here because the final results will be

expressed in terms of the momentum of the incoming electron. In order to prove the above as-

sertion, we observe that ∆A⊥(x) = A
(in)
⊥ (x)−A

(out)
⊥ (x) = ∇⊥

∫∞

−∞
dT̃A−(x̃) ≡ ∆A⊥(x⊥),

with the last equality being justified as under our approximations ∆A⊥(x) depends only

on the two transverse coordinates. Since the difference ∆A⊥(x⊥) is the gradient of a scalar
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function, it is clear that ∇⊥×∆A⊥(x⊥) = 0. Now, in general, each component Aµ(x) of the

four-vector potential field fulfills the wave equation 2∂2Aµ/∂T∂φ −∇2
⊥A

µ = 0 (recall that

we work in the Lorentz gauge). Thus, by integrating the corresponding equation for A−(x)

and realistically assuming that limT→±∞A−(x) = 0, we obtain that ∇⊥ · ∆A⊥(x⊥) = 0.

By exploiting the Helmholtz theorem (see, e.g., [53]), we can conclude that ∆A⊥(x⊥) = 0

as the fields have to vanish at infinity. Consequently, the quantity
∫∞

−∞
dT̃A−(x̃) can also

be ignored in the phase of the amplitude in Eq. (24). This conclusion can also be justified

physically in the case of a tightly focused laser beam as being related to the fact that realistic

propagating beams do not have dc components.

Now, the number dNC of photons emitted with momenta between k and k+ dk is given

by

dNC = NeV
d3k

(2π)3
V
d3p′

(2π)3
1

2

∑

l,s,s′

|SC,fi|2, (28)

where Ne is the number of incoming electrons and where for the sake of clarity the quanti-

zation volume V = LxLyLz has been explicitly indicated (recall that the S-matrix element

SC,fi contains a factor 1/V 3/2). Now, since the dependence of the background field on the

coordinate φ can be ignored, the corresponding component of the conjugated momentum is

conserved and the resulting δ-function reads δ(p′++ k+− p+) ≈ δ(p′z + kz − pz). By squaring

this δ-function we obtain δ(p′+ + k+ − p+)
2 ≈ δ(p′z + kz − pz)

2 ≈ (2π)−1Lzδ(p
′
z + kz − pz).

Moreover, the sum over the spin variables and over the photon polarization leads to the

evaluation of the trace:

TC =− 1

4
Tr

{

(p̂′ +m)

[

1− e

4p′+
n̂Â(x)

]

γµ
[

1 +
e

4p+
n̂Â(x)

]

(p̂+m)

×
[

1− e

4p+
n̂Â(x′)

]

γµ

[

1 +
e

4p′+
n̂Â(x′)

]}

.

(29)

The evaluation of TC can be carried out with the standard technique as explained, e.g., in

[2] and the result is

TC =m2

(

ε′

ε
+
ε

ε′
− 4

)

+
ε′

ε
p2
⊥ − 2p⊥ · p′

⊥ +
ε

ε′
p′ 2
⊥ + e

ε− ε′

εε′
(ε′p⊥ − εp′

⊥) · [A⊥(x) +A⊥(x
′)]

− e2
[

A
2
⊥(x) +A

2
⊥(x

′)−
(

ε′

ε
+
ε

ε′

)

A⊥(x) ·A⊥(x
′)

]

.

(30)

As expected, one can see that this trace can be obtained from the analogous one in nonlinear
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Breit-Wheeler pair production with the replacement pµ → −pµ and by changing the overall

sign.

By using the above expression of TC , the quantity dNC (after performing the integral

over the longitudinal momentum of the final electron by exploiting the discussed δ-function)

can be written as

dNC =ρΣ,e
πα

ωεε′
d2p′

⊥

(2π)2
dω

2π

d2k⊥

(2π)2

∫

d3xd3x′ei[ΦC(x)−ΦC (x′)]

{

m2

(

ε′

ε
+
ε

ε′
− 4

)

+
ε′

ε
p2
⊥

− 2p⊥ · p′
⊥ +

ε

ε′
p′ 2
⊥ + e

ω

εε′
(ε′p⊥ − εp′

⊥) · [A⊥(x) +A⊥(x
′)]

−e2
[

A
2
⊥(x) +A

2
⊥(x

′)−
(

ε′

ε
+
ε

ε′

)

A⊥(x) ·A⊥(x
′)

]}

,

(31)

where ρΣ,e = Ne/LxLy is the number of incoming electrons per unit surface, where

ΦC(x) =

(

m2 + p′2
⊥

2ε′
+

k2
⊥

2ω
− m2 + p2

⊥

2ε

)

T − (p′
⊥ + k⊥ − p⊥) · x⊥ + e

p′
⊥

ε′
·
∫ ∞

T

dT̃A⊥(x̃)

+ e
p⊥

ε
·
∫ T

−∞

dT̃A⊥(x̃)−
1

ε′
e2

2

∫ ∞

T

dT̃A2
⊥(x̃)−

1

ε

e2

2

∫ T

−∞

dT̃A2
⊥(x̃),

(32)

and where we have exploited the conservation law ε = ε′ + ω. Notice that, unlike in the

pre-exponent, the phase ΦC(x)−ΦC(x
′) cannot be simply obtained from the corresponding

one in nonlinear Breit-Wheeler pair production with the substitution rules on the photon

and the positron four-momentum, but that one also has to take into account the fact that

the in- and the out-states become free states at −∞ and +∞, respectively. From the (at

the highest) quadratic dependence of ΦC(x) on p′
⊥, it is clear that the resulting integral is

Gaussian and it can easily be taken analytically (see Eqs. (7) and (8)). In this way, the

angular resolved photon energy spectrum dNC/dωdΩγ, where dΩγ ≈ d2k⊥/ω
2, reads:

dNC

dωdΩγ

=iρΣ,γ
αω

16π3ε

∫

d3xd3x′

T−
ei∆ΦC(x,x′)

〈

m2

(

ε′

ε
+
ε

ε′
− 4

)

+
2iε

T−
+
ε′

ε

{

p⊥

− ε

T−
∆x⊥,e + e

1

T−

[
∫ T

−∞

dT̃A⊥(x̃)−
∫ T ′

−∞

dT̃ ′
A⊥(x̃

′)

]

+ e
ε

ε′
1

T−

[
∫ ∞

T

dT̃A⊥(x̃)−
∫ ∞

T ′

dT̃ ′
A⊥(x̃

′)

]

+
ω

ε′
eA⊥,+(x,x

′)

}2

− e2
(ε+ ε′)2

4εε′
A

2
⊥,−(x,x

′)

〉

,

(33)
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where

∆ΦC(x,x
′) =

ω

εε′
T−
2
m2 +

T−
2ω

(

k⊥ − ω

T−
x⊥,−

)2

− T−
2ε

(

p⊥ − ε

T−
∆x⊥,e

)2

+
e2

2ε







1

T−

[

∫ T

−∞

dT̃A⊥(x̃)−
∫ T ′

−∞

dT̃ ′
A⊥(x̃

′)

]2

−
∫ T

−∞

dT̃A2
⊥(x̃) +

∫ T ′

−∞

dT̃ ′
A

2
⊥(x̃

′)

}

− e2

2ε′

{

1

T−

[
∫ ∞

T

dT̃A⊥(x̃)−
∫ ∞

T ′

dT̃ ′
A⊥(x̃

′)

]2

+

∫ ∞

T

dT̃A2
⊥(x̃)−

∫ ∞

T ′

dT̃ ′
A

2
⊥(x̃

′)

}

,

(34)

and where ∆x⊥,e = x⊥,− + (e/ε)
[ ∫ T

−∞
dT̃A⊥(x̃) −

∫ T ′

−∞
dT̃ ′A⊥(x̃

′)
]

. Now, Eq. (33) can

be easily integrated with respect to the final transverse photon momentum d2k⊥ ≈ ω2dΩγ

because the integral is Gaussian and the result for the total photon energy spectrum is

dNC

dω
=− ρΣ,e

α

8π2ε

∫

d3xd3x′

T 2
−

exp

〈

i

{

m2

2

ω

εε′
T− − T−

2ε

(

p⊥ − ε

T−
∆x⊥,e

)2

+
e2

2ε







1

T−

[

∫ T

−∞

dT̃A⊥(x̃)−
∫ T ′

−∞

dT̃ ′
A⊥(x̃

′)

]2

−
∫ T

−∞

dT̃A2
⊥(x̃) +

∫ T ′

−∞

dT̃ ′
A

2
⊥(x̃

′)

}

− e2

2ε′

{

1

T−

[
∫ ∞

T

dT̃A⊥(x̃)−
∫ ∞

T ′

dT̃ ′
A⊥(x̃

′)

]2

+

∫ ∞

T

dT̃A2
⊥(x̃)−

∫ ∞

T ′

dT̃ ′
A

2
⊥(x̃

′)

}〉

〈

m2

(

ε′

ε
+
ε

ε′
− 4

)

+
2iω

T−
+
ε′

ε

{

p⊥

− ε

T−
∆x⊥,e + e

1

T−

[
∫ T

−∞

dT̃A⊥(x̃)−
∫ T ′

−∞

dT̃ ′
A⊥(x̃

′)

]

+ e
ε

ε′
1

T−

[
∫ ∞

T

dT̃A⊥(x̃)−
∫ ∞

T ′

dT̃ ′
A⊥(x̃

′)

]

+
ω

ε′
eA⊥,+(x,x

′)

}2

− e2
(ε+ ε′)2

4εε′
A

2
⊥,−(x,x

′)

〉

,

(35)

The above expressions significantly simplify once one exploits that the transverse formation

length also in the case of nonlinear single Compton scattering is of the order of the Compton

wavelength such that, having in mind realistic applications employing strong either optical
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or x-ray lasers, we can neglect the difference between x⊥ and x′
⊥ in the external field.

By proceeding in a completely analogous way as in the case of nonlinear Breit-Wheeler pair

production, we can approximately evaluate the external field in Eqs. (33)-(35) at the average

transverse coordinate x⊥,+. Thus, the phase ∆ΦC(x,x
′) becomes

∆ΦC(x,x
′) ≈ ω

εε′
T−
2
m2 +

T−
2ω

(

k⊥ − ω

T−
x⊥,−

)2

− T−
2ε

[

p⊥ − ε

T−
x⊥,− +

e

T−

∫ T ′

T

dT̃A⊥(x̃)

]2

− ω

εε′
e2

2







1

T−

[

∫ T ′

T

dT̃A⊥(x̃)

]2

+

∫ T ′

T

dT̃A2
⊥(x̃)







,

(36)

where x̃ = (T̃ ,x⊥,+). The phase in Eq. (35) becomes the same as ∆ΦC(x,x
′) in Eq. (36)

except for the term proportional to [k⊥ − (ω/T−)x⊥,−]
2, which is integrated out in Eq.

(35). Thus, after passing from the variables x⊥ and x′
⊥ to the variables x⊥,− and x⊥,+,

the integrals in x⊥,− in Eqs. (33) and (35) are Gaussian, the identities (7) and (8) can be

exploited and we obtain

dNC

dωdΩγ
=
ρΣ,e

8π2

αω

εε′

∫

dTdT ′d2x⊥

× e
i ω

2εε′

〈

T−

{

m2+
[

p⊥− ε
ω
k⊥+ e

T−

∫ T ′

T
dT̃A⊥(x̃)

]2
}

−e2
{

1
T−

[

∫ T ′

T
dT̃A⊥(x̃)

]2
+
∫ T ′

T
dT̃A2

⊥
(x̃)

}〉

×
{

m2

(

ε′

ε
+
ε

ε′
− 4

)

+
ω2

εε′

[

p⊥ − ε

ω
k⊥ − eA⊥,+(x,x

′)
]2

−e2 (ε+ ε′)2

4εε′
A

2
⊥,−(x,x

′)

}

,

(37)

and

dNC

dω
=i
ρΣ,γ

4π

α

ε2

∫

dTdT ′d2x⊥

T−
e
i ω

2εε′

〈

m2T−−e2
{

1
T−

[

∫ T ′

T
dT̃A⊥(x̃)

]2
+
∫ T ′

T
dT̃A2

⊥
(x̃)

}〉

×
{

m2

(

ε′

ε
+
ε

ε′
− 4

)

+
2iω

T−
+
ω2

εε′
e2

[

1

T−

∫ T ′

T

dT̃A⊥(x̃) +A⊥,+(x,x
′)

]2

− e2
(ε+ ε′)2

4εε′
A

2
⊥,−(x,x

′)

}

.

(38)

Analogously as in Eqs. (11) and (12), the symbols x̃ and x′ have to be intended here as

x̃ = (T̃ ,x⊥) and x′ = (T ′,x⊥), respectively. In this form both the angular resolved energy

spectrum dNC/dωdΩγ and the total energy spectrum dNC/dω can be obtained from the

17



corresponding quantities in nonlinear Breit-Wheeler pair production with the usual substi-

tutions ε → −ε, p⊥ → −p⊥, ω → −ω, k⊥ → −k⊥, and then by multiplying the whole

expression by −ρΣ,eω
2/ρΣ,γε

2. Moreover, these results are in agreement with the corre-

sponding ones in [48] obtained within the quasiclassical operator approach and expressed

via the electron velocity, whose transverse component is given here by [p⊥ − eA⊥(x)]/ε.

The comparison is easier if one follows the same procedure leading to Eqs. (14) and (21).

The resulting equations for nonlinear single Compton scattering clearly read:

dNC

dωdΩγ

=− ρΣ,e

4π2

αm2ω

εε′

∫

dTdT ′d2x⊥e
−i ω

2εε′

∫ T ′

T
dT̃

{

m2+[p⊥− ε
ω
k⊥−eA⊥(x̃)]

2
}

×
[

1 +
e2

4

ε2 + ε′2

εε′
A

2
⊥,−(x,x

′)

m2

] (39)

and

dNC

dω
=− i

ρΣ,e

2π

αm2

ε2

∫

dTdT ′d2x⊥

T−
e
i ω

2εε′

〈

m2T−−e2
{

1
T−

[

∫ T ′

T
dT̃A⊥(x̃)

]2
+
∫ T ′

T
dT̃A2

⊥
(x̃)

}〉

×
[

1 +
e2

4

ε2 + ε′2

εε′
A

2
⊥,−(x,x

′)

m2

]

,

(40)

where the factor T− in the denominator has to be meant as T− → T−+ i0 (see the discussion

below Eq. (21)).

Also in the present case, of course, we can transform Eq. (39) in a more suitable form

for computation, which is analogous to Eq. (16):

dNC

dωdΩγ
=
ρΣ,e

8π2

αm2ω

εε′

∫

d2x⊥

[

ω2

εε′
|f0,e(x⊥)|2 +

ε2 + ε′ 2

εε′

∣

∣

∣

∣

f0,e(x⊥)

m

(

p⊥ − ε

ω
k⊥

)

− f1,e(x⊥)

∣

∣

∣

∣

2
]

,

(41)

where π⊥,e(x) = p⊥ − (ε/ω)k⊥ − eA⊥(x), where

f0,e(x⊥) =

∫

dTei
ω

2εε′

∫ T

0 dT̃ [m2+π2
⊥,e

(x̃)], (42)

f1,e(x⊥) =
e

m

∫

dTA⊥(x)e
i ω

2εε′

∫ T

0
dT̃ [m2+π2

⊥,e
(x̃)], (43)

and where the quantity f0,e(x⊥) has to be computed according to the relation
[

m2 +
(

p⊥ − ε

ω
k⊥

)2
]

f0,e(x⊥)− 2m
(

p⊥ − ε

ω
k⊥

)

· f1,e(x⊥) +m2f2,e(x⊥) = 0, (44)

with

f2,e(x⊥) =
e2

m2

∫

dTA2
⊥(x)e

i ω

2εε′

∫ T

0 dT̃ [m2+π2
⊥,e

(x̃)]. (45)
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Also here the choice of the lower integration limit in the phases in the functions f0,e(x⊥),

f1,e(x⊥), and f2,e(x⊥) is arbitrary and the value T̃ = 0 has been chosen for convenience.

Thanks to the above mentioned substitution rules on the positron and the photon four-

momentum, we finally report, for the sake of completeness, the corresponding expressions

of dNC/dωdΩγ and of dNC/dω in the quasistatic limit (see Eqs. (22) and (23)):

dNC

dωdΩγ
= −ρΣ,e

α

π2
√
3

∫

d3x ge(x)b(x)

[

1− ε2 + ε′ 2

εε′
g2e(x)

]

K1/3

(

2

3
b(x)g3e(x)

)

(46)

and

dNC

dω
= ρΣ,e

α

π
√
3

m2

ε2

∫

d3x

[

ε2 + ε′ 2

εε′
K2/3

(

2

3
b(x)

)

−
∫ ∞

2
3
b(x)

dzK1/3(z)

]

, (47)

where we recall that ε′ = ε − ω, where ge(x) =
√

1 + π2
⊥,e(x)/m

2, and where b(x) =

(ω/ε′)χ−1(x), with χ(x) = (ε/m)|∂A⊥(x)/∂T |/Fcr being the local value of the quantum

electron nonlinearity parameter (note that the expression of b(x) is the same as for nonlinear

Breit-Wheeler pair production and this is why we have used the same symbol).

IV. CONCLUSIONS

In conclusion, we have completed the investigation of the experimentally most relevant

single-vertex strong field QED processes in a tightly focused laser beam: nonlinear Breit-

Wheeler pair production and nonlinear single Compton scattering. The study of the former

process was already started in [47] and we have extended here the results obtained there

by including the possibility that the incoming photon is not exactly counterpropagating

with respect to the laser beam. Moreover, we have determined compact analytical integral

expressions of the angular resolved and the total photon energy spectrum in nonlinear single

Compton scattering in a tightly focused laser field. Analogously as in [47], we have exploited

the useful approximation that the energy of the incoming electron is the largest dynamical

energy of the problem such that the electron is only barely deflected by the laser field,

under the assumption that the incoming electron is almost counterpropagating with respect

to the laser field. Finally, we have also elucidated the crossing relation between nonlinear

Breit-Wheeler pair production and nonlinear single Compton scattering in the presence of

a tightly focused laser field.
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Appendix A: A possible choice for the background electromagnetic laser field

Here, we report here the concrete expression of a possible form of the electromagnetic

field of the laser, which can be studied with the present formalism. We recall that we

consider a laser beam whose focal plane corresponds to the x-y plane and whose wave vector

at the center of the focal area points along the negative z direction. Also, we refer to the

Gaussian beam model of a traveling wave as described in [54] and whose four-vector potential

Aµ(x) is a solution of Maxwell’s equation in vacuum ∂µ∂
µAν(x) = 0 in the Lorentz gauge

∂µA
µ(x) = 0. By indicating as ω0 the central angular frequency of the laser and by assuming

that the laser is linearly polarized along the x direction, the four-vector potential Aµ(x) can

be written as the real part of the complex four-vector potential Aµ
c (x) = (Φc(x),Ac(x)),

written in the form

Φc(x) = ϕc(r)g(t+ z)eiω0(t+z), (A1)

Ac(x) = x̂A0ψc(r)g(t+ z)eiω0(t+z), (A2)

where r indicates the space coordinates and A0 = −E0/ω0. The scalar potential Φc(x) can

be written as Φc(x) = −(i/ω0)∇ ·Ac(x) by exploiting the Lorentz gauge condition, whereas

the function ψc(r) is found to fulfill the equation ∇2ψc(r)+2iω0∂ψc(r)/∂z = 0 by imposing

that Aµ(x) fulfills the Maxwell’s equations in vacuum (in the Lorentz gauge) ∂µ∂
µAν(x) = 0,

and the pulse shape function g(t + z) is assumed to be an arbitrary function but slowly-

varying on a laser central period 2π/ω0 (see also [55]). A possible convenient choice of the

function g(t + z) is given by g(t + z) = cos2(ω0(t + z)/2NL) for ω0(t + z) ∈ [−NLπ,NLπ]

and g(t + z) = 0 elsewhere, where NL corresponds to the number of laser cycles, which is

assumed to be much larger than unity. As it is explained in [54], having in mind the case

of a focused laser beam with Gaussian transverse spatial profile it is convenient to express

the function ψc(r) as a series ψc(r) =
∑∞

n=0 ψc,2n(r)ǫ
2n
d in the diffraction angle ǫd = w0/zR,

where w0 is the laser waist size and zR = ω0w
2
0/2 is the Rayleigh length. In fact, even for a

tightly focused laser beam w0 ≈ λ0, it is ǫd ≈ 1/π ≈ 0.3. In [54] one can find the expression

of ψc(r) up to terms of the order ǫ10d and the corresponding electromagnetic fields. Here, it

20



is sufficient to report the terms up to ǫ4d [54]:

ψc,0(r) = fe−f̺2 , (A3)

ψc,2(r) =
1

2

(

1− f 2̺4

2

)

f 2e−f̺2 , (A4)

ψc,4(r) =
1

8

(

3− 3f 2̺4

2
− f 3̺6 +

f 4̺8

4

)

f 3e−f̺2 , (A5)

where f = i/(i − ζ) and where the dimensionless variables η = x/w0, θ = y/w0, and

ζ = z/zR (̺ =
√

η2 + θ2) are employed. Analogously, the electric and magnetic field of

the laser can be written as the real parts of the complex fields Ec(r)g(t+ z) exp[iω0(t+ z)]

and Bc(r)g(t+ z) exp[iω0(t + z)]. The components of the latter fields are obtained via the

equations Ec(r) = −iω0Ac(r) + (i/ω0)∇(∇ · Ac(r)) and Bc(r) = ∇ × Ac(r) [54]. Their

precise expressions are quite cumbersome and we refer to the original reference for them

[54]. Here, we summarize the main features of the electric and magnetic field and notice

that at the lowest order in ǫd the electric field is directed along the x direction and the

magnetic field along the y direction, corresponding to the local plane-wave approximation.

Linear corrections in ǫd induce the appearance of longitudinal components of the electric

and the magnetic field, whereas the y component of the electric field scales as ǫ2d. Finally,

the x component of the magnetic field vanishes identically. These considerations together

with the expressions above of the functions ψc,2j(r), with j = 0, 1, 2, and g(t+ z) show that

the spacetime extension of the laser field is determined by w0 on the transverse x-y plane,

and by τ = NLτ0 in time, with τ0 = 2π/ω0 being the central laser period. In order to have

an intuition of the extension of the field along the z direction, we notice that the function

ψc(r) decreases only linearly along the z direction (for large values of |ζ |) and one cannot

rigorously characterize the longitudinal extension of the laser field via the Rayleigh length

zR (or twice its value considering the symmetry of the space structure of the field when

changing z to −z). Intuitively, one can imagine the laser field as a pulse of length τ which

goes from z = ∞ (at t = −∞) to z = −∞ (at t = +∞) and whose peak increases, reaches

its maximum when the pulse reaches the plane z = 0 (at t = 0), and then again decreases.

In order to have a more specific idea of the spacetime extension of the laser beam, we refer

to the experimental relevant case of a tightly focused (w0 ≈ λ0) Ti:Sapphire (λ0 ≈ 0.8 µm)

laser beam, which is customarily employed in high-field applications. The focal area on the

transverse plane of such a laser beam is of the order of a few square micrometers whereas
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pulses of about ten cycles, corresponding to ≈ 30 fs are usually available experimentally

(see, e.g., [12]).
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