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Abstract—Most existing methods used for gene regulatory network modeling are dedicated to inference of steady state networks,

which are prevalent over all time instants. However, gene interactions evolve over time. Information about the gene interactions in

different stages of the life cycle of a cell or an organism is of high importance for biology. In the statistical graphical models literature,

one can find a number of methods for studying steady-state network structures while the study of time varying networks is rather

recent. A sequential Monte Carlo method, namely particle filtering (PF), provides a powerful tool for dynamic time series analysis. In

this work, the PF technique is proposed for dynamic network inference and its potentials in time varying gene expression data tracking

are demonstrated. The data used for validation are synthetic time series data available from the DREAM4 challenge, generated from

known network topologies and obtained from transcriptional regulatory networks of S. cerevisiae. We model the gene interactions over

the course of time with multivariate linear regressions where the parameters of the regressive process are changing over time.

Index Terms—Bayesian network, gene expression data, gene network, particle filter, sequential Monte Carlo, time series

Ç

1 INTRODUCTION

CHANGES in the gene expression in time and under dif-
ferent external/internal stimulus play an important

role in protein production. It is well known that expression
level of one gene can influence that of another gene. Usu-
ally, genes with similar expression profiles are more likely
to encode interacting proteins [1], [2]. It was also shown that
the genes of experimentally derived protein complexes are
often co-expressed [3]. Such variations in expression levels
can have significant effect on the functions of the genes in a
single cell or in a complex organism.

Thus, genes should be studied in a group, as a number of
objects, which form a network, interacting with each other,
and not as isolated entities. Interactions between genes have
long been studied in model organisms in order to identify
functional relationships among genes or their correspond-
ing gene products [4], [5], [6]. Examples of model organisms
studied in the literature include yeast [6], [7] and Drosophila
Melanogaster [8].

The interactions among genes in a network are not sta-
tionary during the life cycle of an organism. These relations
evolve over time as shown experimentally in [7], [9]. Such
relations/interactions can change over time depending on
life period and/or various external factors [7], [8], [9], [10],
[11]. Information about dynamically changing gene network
in different stages of a life cycle is of high importance for
biology. It plays an important role in the understanding of

human disease [12], [13], [14] and in designing personalized
treatment plans.

Usually to model relations between genes in a network
gene expression data are used. A large amount of gene
expression data measured at a single time instant can be
found in the literature [15], [16], [17], [18], [19], [20]. These
data are obtained via microarray experiments which can
measure thousands of genes of an organism, providing a
“genomic” viewpoint on gene expression. To understand
the temporal variations in relations among genes, we are
interested in time series data, i.e., gene expression levels
measured with time during the life cycle of an organism.
Some sources present experimental data on the evolution of
temporal sequence datasets for gene expression during the
yeast cell cycle and the life cycle of Drosophila Melanogaster
[7], [8], [21], [22], [23] and also studies on circadian rhythms
in mammals [10], [11]. However, for most of them only one
temporal sequence dataset is available for each gene. More-
over, all experimental data are measured for a quite short
time length. This lack of experimental information signifi-
cantly limits the success of inference on network topology.

To simplify the analysis, many authors discretize mea-
sured gene expression values into two (expressed (1), not
expressed (�1)) or three levels (under-expressed (�1), nor-
mal (0), and over-expressed (1), depending on whether the
gene expression value is significantly lower than, similar to,
or greater than certain threshold value, respectively) [24]. It
is obvious that by discretizing the measured expression
data important information can be lost. On the other hand,
it allows us to specify a probability with which a discrete
expression level is assumed by a gene. Then the relations
between genes in a network can be represented by a condi-
tional probability table. This is one of the most commonly
used representations which can describe any discrete condi-
tional distribution.

Another popular representation is to use continuous var-
iables of gene expression data. Unlike the case of discrete

� S. Ancherbak and E.E. Kuruo�glu are with the Istituto di Scienza e Tecnolo-
gie dell’Informazione, “A. Faedo”, CNR (Institute of the National
Research Council of Italy), via G. Moruzzi 156124, Pisa, Italy.
E-mail: ancherbaks@gmail.com, ercan.kuruoglu@isti.cnr.it.

� M. Vingron is with the Max Planck Institute for Molecular Genetics,
Ihnestraße 63-73, 14195, Berlin, Germany.
E-mail: vingron@molgen.mpg.de.

Manuscript received 12 Mar. 2015; revised 17 Aug. 2015; accepted 28 Sept.
2015. Date of publication 30 Oct. 2015; date of current version 5 Dec. 2016.
For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.
Digital Object Identifier no. 10.1109/TCBB.2015.2496301

IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 13, NO. 6, NOVEMBER/DECEMBER 2016 1183

1545-5963� 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



variables there is no way to represent all possible values. An
obvious choice for multivariate continuous variables is to
use certain distributions, e.g., Gaussian one [25].

Due to lack of experimental data, most existing methods
used for gene regulatory network reconstruction are con-
centrated on the inference of steady state networks [24],
[26], [27], [28]. Others divide whole time-series sequences
into a number of homogeneous subsequences where one
averaged network is estimated for each of subintervals [29],
[30]. In such cases, the dynamics in the gene network during
the life cycle is represented by a number of frames averaged
over the subintervals. This procedure again does not take
into account information between adjacent time intervals.

In the statistical graphical models literature, one can find
a number of methods for studying the network structure
[31], [32], [33], [34], [35] while the study of time-varying net-
works is rather recent. In this work, we propose a linear vec-
tor regression model for time changes in a gene interaction
network which we learn via a state of the art sequential
Monte Carlo method, namely Particle Filtering. Such net-
works describe the conditional dependence structure
between multiple interacting quantities, in our case expres-
sion values of different genes, which are changing in time.
Moreover, our approach is capable of handling noise which
is always present in experimental data. Therefore, the inter-
actions, the signal of which in the data is strong, can be
detected and represented in the network with certain proba-
bility. The Particle Filtering method was proposed recently
for time-varying network modelling in [36] and its success
was demonstrated on computer vision data. Differing from
[36], which tracks the topology of the network directly as a
discrete sequence of graphs, we track the changes in the
dependence of gene expression values of various genes
over time, from which we infer also the network topology.

Thus, the motivation of this work is to model varying
gene interactions over the life time of an organism or a bio-
logical process such as circadian cycles.

2 METHODS

2.1 Time Series Data Modelling

A great interest in various areas involving multivariate data
such as signal processing, computational biology, finance,
automation, etc. is to model and analyze the evolution of
temporal sequences. Bayesian Networks are established
tools for efficiently modelling multivariate data. A DBN
(Dynamic Bayesian Network) is an extension of Bayesian
network to temporal domain. In time domain conditional
dependencies can be modelled between random variables
within as well as across time epochs. The conditional distri-
butions in DBN are assumed to be homogeneous, i.e., the
structure and parameters of a network are maintained con-
stant throughout the time. Taking this into account, a DBN
is simply constructed by unwrapping a Bayesian network
in time domain that causes significant simplification to the
model learning procedure. At the same time, this assump-
tion constrains the strength of DBN in modelling non-sta-
tionary sequences, where intrinsic relationships between
different variables change in time [37]. These non-stationary
sequences are present everywhere in common life, for
example the gene interactions in different stages of a life

cycle. Obviously, usage of a stationary statistical model is
insufficient for modeling gene expression data sequences at
all time instances.

Learning a time varying network is not a trivial problem.
One may try naively to learn a dynamically changing net-
work independently for each time epoch. However, this is a
complex task as there are very little available observations
at one time epoch for most applications in real life. One way
to overcome the problem of data scarcity is to divide tempo-
ral sequences into segments—stationary epochs, with an
assumption that in each epoch data are generated from the
same probability distribution. However, the lack of knowl-
edge about models in each segment makes the problem
more complex. Moreover, the solution space grows expo-
nentially with the length of time sequence [36]. From
another point of view, since observations are most often dis-
torted by noise, statistics can be recovered from these modi-
fications of signal.

To overcome all the difficulties mentioned above, one of
the propositions is to expand DBN to nonstationary scenar-
ios by introducing various additional conditions on the type
of a network and how the network can change in time. The
works done before have been mainly concentrated on non-
stationary models with static structure. One of the most
popular is the time-varying autoregression model (TVAR)
[38]. TVAR is able to describe nonstationary linear dynamic
systems, coefficients and noise variances which continu-
ously change with time. In order to estimate recursively the
regression parameters, normalized least squares algorithm
can be used. And an error of estimation is shown to be
bounded when the model parameters change smoothly
[39]. TVAR modelling is widely used in the works related to
gene expression data [40]. Extended TVAR models have
also been developed for other time-varying processes, e.g.,
Poisson counting process [41] and non-Gaussian autore-
gression [42].

One of the tutorials on Bayesian network application to
inference the interactions between genes is Friedman et al.
paper [24]. The authors proposed a framework built on the
use of Bayesian networks for describing statistical depend-
ences between variables. The method was applied to the
time series gene expression data of the S. cerevisiae cell-cycle
measurements of Spellman et al. [7]. The proposed
approach is quite different from the clustering approach
used by [7], [43], [44], [45], in that it attempted to learn a
richer structure from the data, even without use of any prior
biological knowledge. However, in learning from time
series data [7], the authors treated each measurement as an
independent sample from a distribution, and did not
assume the temporal aspect of the measurement. Thus, the
complex network structure inferred from the experimental
data and causal relationships, interactions between genes
were “frozen”, not varying in time.

2.2 Observation of Time Varying Networks

J. Khan et al. [30] derived the LASSO-Kalman smoother for
the inference of time-varying genetic networks from a lim-
ited number of noisy observations. Their approach recur-
sively computes the minimum mean-square sparse estimate
of the network connectivity at each time point. To overcome
the limited number of observations with respect to the size
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of domain (small n large p problem) authors performed tar-
get tracking in a compressed domain. Chopping the time-
series sequence with gene expression values (experimental
data were taken from [8]) into homogeneous subsequences
they estimated 21 dynamic gene networks, one per three
time points, during the life cycle of Drosophila Melanogaster.

Another application of LASSO-based least squares
regression operation for description of the regulatory net-
work together with a particle filter-based state estimation
algorithm, which was used to capture the nonlinearity of
the system, was proposed in an article of Noor et al. [26].
The parameters which characterize the regulatory relations
between different genes were estimated online using Kal-
man filter. The parameter vector was expected to be sparse
“since a particular gene interacts with a few other genes
only, and as such, many of the system parameters model-
ling “weak” relationships are irrelevant” [26]. The authors
used both synthetic and real biological data of Drosophila
Melanogaster for learning steady state gene regulatory
networks.

Young et al. [27] introduced a Bayesian Model Averaging
method (ScanBMA) which is able to infer gene regulatory
networks using time series data. Time series data generated
from the DREAM competition [46] as well as experimental
time series S. cerevisiae data were used for estimation of
static network structures. Authors state that their method
allows inference for networks of thousands of genes to be
completed much faster respect to other competing methods.

Despite the fact that the methods for inference of steady
state gene regulatory networks still prevail, there is a positive
trend towards the study of dynamically changing relation-
ships between genes in a network. And themethod proposed
in this paper is a step forward for solving this problem.

3 MODEL

A network is assumed to be consisting of I genes. Genes are
represented by nodes in the studied network, whereas the
relationships among interacting genes are modelled by
edges which connect the related nodes. Our aim is to model
how the gene network structure evolves over time. We pro-
pose a multivariate linear regression model relating the
expression value of each gene at a given time to the gene
expression values of the previous time instant. Hence, the
observation equation describes the gene expression values
at a particular time epoch t:

xi;t ¼ ai1;t � x1;t�1 þ ai2;t � x2;t�1 þ � � � þ aiI;t � xI;t�1 þ ht

i ¼ 1; . . . ; I; I � total number of genes;
(1)

where xi;t denote set of observations for all genes in a net-
work for each time epoch t; aij;t – coefficients of regression
equation which model regulatory relations between gene i
and gene j in consequent time epochs.

Unlike classical regression, this multivariate regression is
a time-varying regression. The regression coefficients aij;t
are not constant and can be changing at each instant.

We also propose a parametric model to model the
changes in the process coefficients. For simplicity, we
assume a linear model for the time being, but it can be
extended to nonlinear models:

aij;t ¼ aij;t�1 þ nt: (2)

More explicitly, equation (1) can be written in a vector
form as:

x1;t

x2;t

. . .
xI;t

2
664

3
775 ¼

a11;t a12;t � � � a1I;t
a21;t a22;t � � � a2I;t

..

. ..
. . .

. ..
.

aI1;t aI2;t � � � aII;t

2
6664

3
7775

x1;t�1

x2;t�1

. . .
xI;t�1

2
664

3
775þ

h1;t
h2;t
. . .
hI;t

2
664

3
775: (3)

In both equations (1) and (2) noise terms ht and nt can be
of any distribution which can be decided depending on the
nature of the data. In the simplest case, they can be assumed

to be i.i.d. Gaussian such that h
ðnÞ
t � Nð0; s2

hÞ and n
ðnÞ
t �

Nð0; s2
nÞ. However, data with outliers or impulsive noise

might require a model with heavy-tailed distributions. In
such cases, models such as Cauchy or alpha-stable [47] dis-
tribution are preferable as alternatives to Gaussian distribu-
tion over other heavy-tailed distributions due to satisfying a
generalized version of the central limit theorem.

This is clearly a linear regression model and in the con-
text of Bayesian networks reminds one of how partial corre-
lations are calculated to estimate dependencies between
nodes [48]. Although, similar to partial correlations, one
tries to recover dependencies on all variables, there is a fun-
damental difference in this case, where the regression is
made over gene expressions of the previous time instant.
That is, we are trying to estimate a network which is not
describing a given instant but how the gene expressions
evolve overtime.

Hence, such a model (1) describes an inter-slice network
structure and shows what relations exist between all genes
in the network at the previous time epoch, x1;t�1; �x2;t�1;

�
. . . ; xI;t�1g, and the gene under consideration at the current

time, xi;t

� �
. That is, the network describes how a certain

gene expression at the current time epoch is influenced by
the expression level of other genes at the previous time
epoch. The coefficients aij;t approximate linearly the condi-
tional dependence of the expression of the ith gene at time t
on the expression of the jth gene at time t-1. That is,
aij;t � fðxi;tjxj;t�1Þ. An exact expression would involve also
nonlinear dependence terms as well as dependencies on
further past which are ignored in the current work.

4 PARTICLE FILTER OR SEQUENTIAL

MONTE CARLO

To construct the gene interaction network, we need to
devise an iterative algorithm to solve for aij;t‘s. This is a clas-
sical problem in signal processing: to recover hidden (possi-
bly time varying) model parameters from observations.
Classical approaches to solve the problem include Kalman
filtering which is a generalization of Wiener filtering, which
finds the optimal linear estimate to recover original signal
from noisy observations, to non-stationary data. We would
like to address the problem in a Bayesian setup which
would allow us also to utilize any prior information we
might have and also let us reason in terms of probability
distributions rather than single point estimates. This also
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allows one to make error analysis and see the success of the
modelling for a population of networks rather than a single
case. To solve Eqs. (1) and (2) and estimate unknown time
varying network parameters aij;t, we propose to utilize an
influential Sequential Monte Carlo method namely Particle
Filtering [51] which achieved important success in tracking
problems in radar signal processing and computer vision.

The Particle Filtering method was applied recently to
gene regulatory network inference by Noor et al. [26], who
used this method for estimation of the states recursively
using nonlinear state equations for the model; however, in
their formulation the hidden states to be estimated are the
gene expression values. The parameters aij;t characterizing
the regulatory relationships between genes were estimated
applying Kalman filter on gene expression values. Then,
they go on to reduce the solution space with LASSO-regu-
larized least squares estimation to obtain the steady state
network structure. Whereas in current work state equation
describes the evolution of the parameters which character-
ize the regulatory relations among genes in a network and
we use Particle Filtering method for direct inference of these
parameters at each time epoch.

For many applications, it is very important to know the
observation order of the data [49], [50]. In the case of nonsta-
tionary data, the probability density function (pdf) of the
related parameter is changing with time. Thus, in nonsta-
tionary cases, the expectations and the pdf should be
sequentially updated as the new data become available.
With this aim, the dynamic systems usually can be
described in terms of state-space equations:

aat ¼ ft aat�1; ntð Þ; (4)

xxt ¼ htðaat; htÞ; (5)

where aat and xxt are related to the hidden variables and the
observation vectors at actual time t, respectively. In this
paper, we assume a linear regression model; however, we
would like to note that Particle Filtering method can also
accurately model any kinds of nonlinearities present in the
state and observation equations. nt and ht are the process
and observation noise terms, respectively, which are mod-
elled as Gaussian or Laplace processes in this paper and
their statistics are assumed to be known. The aim is to esti-
mate sequentially the posterior distribution of unknown
variables, the hidden state parameters aat, as a set of observa-
tions become available online, i.e., p aa0:tjxx1:tð Þ, where
aa0:t ¼ aa0; aa1; . . . ; aatf g and xx1:t ¼ xx1; xx2; . . . ; xxtf g.

It is worth noting that proposed method is able to work
online, i.e., in real-time. For a real time system, data process-
ing should not be longer than data acquisition. In applica-
tions such as following, the gene interaction changes in a
circadian cycle, where the data are sampled at 1-2 hour
intervals, proposed method is definitely real-time. Even if
the data were sampled in minute intervals the method is
able to deal with it and process the data as they become
available.

The posterior distribution of parameters aatt is estimated
at each time instant in two steps: first is prediction and sec-
ond—update. In the first step, the value of the hidden
parameter, aatt, at time t is predicted from the previous time

instant t-1 according to the first order Markov process (4)
p aatjaat�1ð Þ [51]. At time instant t, the predicted parameter is
updated via Bayes rule as an observation xxt becomes avail-
able as follows:

p aatjxx1:tð Þ ¼ p xxtjaatð Þp aatjxx1:t�1ð Þ
p xxtjxx1:t�1ð Þ ; (6)

where, assuming a Gaussian observation noise, p xxtjaatð Þ is
given by

p xtjatð Þ ¼ 1

2ps2
h

� �I=2 exp � xobs
t � xt

� �2
2s2

h

 !
: (7)

The relation (6) gives the optimal Bayesian solution. In
general, this recursive solution cannot be determined ana-
lytically [49]. Particle filtering provides a stochastic recur-
sive algorithm for the solution of Eqs. (4) and (5).

It employs a sampling scheme rather than analytically or
numerically evaluating associated probability densities. In
particular, it represents pdfs with a summation over Dirac
functions located at samples as in a histogram.

Thus, the idea of sequential Monte Carlo method is to
form a finite set of N weighted state samples, called par-
ticles, which approximates the posterior distribution [49]:

p aatjxx1:tð Þ �
XN
n¼1

w
nð Þ
t d aat � aa

nð Þ
t

� �
; (8)

where d denotes the delta-Dirac function, w
nð Þ
t are the

weights or the counts of the samples appearing at value aa
nð Þ
t .

When number of particles,N, goes to infinity, the approxi-
mation approaches the exact solution, true distribution.
Briefly, at each time epoch t the filtering starts with the sam-
ple set faa nð Þ

t�1; w
nð Þ
t�1gn¼1...N related to the previous time epoch.

Due to the lack of an exact of knowledge of the underlying
distribution, it is in general difficult to sample from the
actual distribution p aatjxx1:tð Þ, therefore the samples are gener-
ated from a proposal or importance function qwhich approx-
imates the real pdf in some sense:

aa
ðnÞ
t � q aatjaaðnÞt�1; xxt

� �
: (9)

In this case, one should take care of the samples coming

from q but not belonging to p. The care is taken by the correc-

tion factor p/q, that isw
ðnÞ
t / p ðaatjxx1:tÞ=qðaatjaaðnÞt�1; xxtÞ [51].

Sampling from qðaatjaaðnÞt�1; xxtÞ to approximate posterior
p aa0:tjxx1:tð Þ and updating with the correction factor p/q as
shown above, is known as the “sequential importance
sampling” method [49]. It can be shown that importance
sampling is a variance reduction approximation method
and hence is preferable to other sampling methods such as
rejection sampling since it needs less amount of samples to
approximate the target distribution.

When new samples aa
nð Þ
t are obtained, we estimate the

likelihood of each of the particle using the observation
model. It can be shown (see [51] for details) that the weight
updates can be turned into a sequential update avoiding
recalculation from scratch for every new data sample.
Hence, the weights are updated sequentially by
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w
nð Þ
t / w

nð Þ
t�1

p xxtjaa nð Þ
t

� �
p aa

nð Þ
t jaa nð Þ

t�1

� �
q aa

nð Þ
t jaa nð Þ

t�1; xxt

� � : (10)

Choosing a good proposal density q aatjaat�1; xxtð Þ is crucial
for the efficiency of the particle filter. State transition distri-
bution p aatjaat�1ð Þ is a convenient choice for proposal distri-
bution and reduces weight update in Eq. (10) into trivial
accumulation of likelihoods as shown below:

w
nð Þ
t / w

nð Þ
t�1 � p xxtjaa nð Þ

t

� �
: (11)

Due to its simplicity, this is the most popular proposal
distribution in the literature. After this step, the importance
weights are normalized to form a proper probability distri-
bution [49]:

~w
ðnÞ
t ¼ w

ðnÞ
tPN

n¼1 w
ðnÞ
t

: (12)

The resultant sample set faa nð Þ
t ; w

nð Þ
t gn¼1...N can give esti-

mations for the posterior distribution of current data and
information about network structure.

Algorithm. Time-Varying Network Learning

1. Input gene expression time series data xxobs
i;1:t.

2. Initialization of all parameters.
3. for n ¼ 1; . . . ;N do
4. Generating particles for aa

nð Þ
ij;t¼0 from

pðaaij;t¼0jxxt¼0Þ.
5. Assigning equal weights to the particles.
6. end for
7. for t ¼ 1; . . . ;T
8. for n ¼ 1; . . . ;N
9. Prediction of aa

nð Þ
ij;t from q

�
aatjaaðnÞt�1; xxt

�
.

10. Prediction of xxi;t using (1), aa
ðnÞ
ij;t and

observations of xxobs
i;t�1.

11. Update the weights of each particle using (11).
12. end for
13. Normalization of the weights, (12).
14. Resampling, if necessary, (13).
15. Set of

�
aa
ðnÞ
ij;t; w

ðnÞ
t

�
n¼1...N

is used for the next time
epoch, step 7.

16. end for.

However, a problem known as “degeneracy” rises when
one uses the sequential Monte-Carlo algorithm. It occurs
when the dimension of the state space is high: after few itera-
tions, most of the samples drawn from the state transition dis-
tribution may have very small weights. In such situations
sampling efficiency should be increased by performing
resampling [49], [50]. The number of effective particlesNeff is
ameasure of the degeneracy and can be calculated by

Neff ¼ 1PN
n¼1 w

ðnÞ
t

� �2 : (13)

When Neff is below a certain threshold value, the resam-
pling should be performed: samples with low importance
weights are eliminated, and those with high importance

weights are allocated to obtain n equally weighted samples

of aa
ðnÞ
t .
The algorithm used for inferring the network parameters

from Eqs. (1) and (2) is displayed below.

5 RESULTS AND DISCUSSION

5.1 Synthetic Data

The proposed algorithm was tested on time-series simu-
lated data from the DREAM competition [46]. Data were
generated from known transcriptional regulatory net-
works of S. cerevisiae using GeneNetWeaver 3.1.1 Beta
(GNW) software [52]. Gene networks were modeled by a
system of ordinary differential equations describing the
dynamics of the mRNA concentration and the protein con-
centration of every gene. Time-series experiments were
simulated by integrating the networks using different ini-
tial conditions. Both transcription and translation are mod-
elled. To model internal noise in the dynamics of the
networks the simulations are based on stochastic differen-
tial equations (Langevin equations). In addition, measure-
ment noise was added to the generated gene expression
datasets. Existing model of noise observed in microarrays,
which is very similar to a mix of normal and lognormal
noise, was also used [46], [53].

Each time series has 201 time points. The network struc-
ture used for synthetic simulation is shown in Fig. 1. Fig. 2
shows generated time series for each gene (201 time points)
and how expression levels respond to a perturbation. Per-
turbation was simulated by slightly increasing or decreas-
ing the basal activation of all genes of the network
simultaneously by different random amounts [46]. It was
applied to the data at t ¼ 0 and removed at t ¼ 100. The first
half of the time series (until t ¼ 100) shows the response of
the network to the perturbation. The second half of the time
series (until t ¼ 201) shows how the gene expression levels
go back from the perturbed to the steady-state levels.

As discussed before, the idea is to dynamically estimate
unknown regulatory coefficients aaij;t using particle filtering
method. Careful estimation of aaij;t allows us to highlight the
main gene interactions in the network. The number of par-
ticles used is N ¼ 300. The variance of the noise in the state
update equation (1), nt, is taken to be 10�2 and the variance
of measurement noise is assumed to be known and con-

stant, s2
h ¼ 10�3.

Fig. 1. A regulatory network of S. cerevisiae used for synthetic data
generation in this work (reproduced from [27]).
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It is important to specify a certain threshold in order to
estimate the strongest relations between genes. Threshold is
estimated using the level of dispersion around the average
of aaij;t (mean) at particular time epoch: For each time epoch
both mean and standard deviation (std) of estimated aaij;t
are calculated. Thus, values of aaij;t above a threshold (mean
þ std) indicate that gene i activates gene j, and values below
the threshold (mean – std) are considered as repression
activity of gene j in relation to gene i. The parameters aaij;t
whose values are between two limit thresholds indicate an
absence of relations or weak relations among the genes, and
they are not considered in further analysis. The choice of
threshold is rather arbitrary and should be chosen accord-
ing to the biological problem at hand.

5.2 Modeling Results

Results for gene expression estimation by Particle filter are
shown in Fig. 3 for a two genes network. It is clearly
observed that the proposed model, Eqs. (1) and (2), makes a
good enough estimation of the gene expression data. More-
over, the use of particle filter allows us to follow with high
accuracy all changes in gene expression data undergone
due to different external perturbations. Residuals of the esti-
mated gene expression values with respect to the synthetic
ones are shown in Fig. 4.

As it was discussed above the idea is not only to predict
and follow expression level changes in a gene network, but
also to estimate the posterior distributions of aaij;t coeffi-
cients which model the relations between genes in time.
The relations in a network consisting of two genes are
described by four coefficients - aa11; aa12; aa21; aa22f g. Coeffi-
cients aa11 and aa22, autocorrelation terms, are related to
auto-regulation of a gene in adjacent time epochs; aa12 and
aa21 – cross-correlation terms, which show how expression
level of one gene at the time epoch (t-1) effects on expres-
sion level of other gene at time t.

Since the results obtained are stochastic and can fluc-
tuate slightly from realization to realization we launched
the algorithm for a number of runs and calculated aver-
age values of regulatory coefficients over all runs for
each time epoch.

Histograms for the distributions of the estimated net-
work coefficients aaij;T at the final time epoch (t ¼ 201) are
shown in Fig. 5. After running the algorithm 100 times the
average values of aaij;T over all runs at the final time epoch
were calculated. Running the algorithm even 1,000 times
does not change significantly the final estimates: histo-
grams become more refined, meanwhile the average
values and variance remain almost the same (see Fig. 6
and Table 1).

Fig. 2. Time evolution of gene expression data for 10 genes undergone a perturbation at t < 100.

Fig. 3. Comparison of Particle Filter estimation (red dashed lines) with
true synthetic gene expression data (blue solid lines) for two genes.

Fig. 4. Residuals between synthetic gene expression data, xxoobs, and esti-
mated by Particle Filter, xxeest, for two genes.
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Time dependence of the estimated coefficients aaij;t is
shown in Fig. 7. It can be seen that at the beginning, inferred
values are scattered and after some time (t�10) they become
more stable smoothly changing with time with some insig-
nificant fluctuations. Also in Fig. 7 we can observe an effect
of removal of the perturbation, at times exceeding 100 some
regulatory coefficients (aa12; aa21; and aa22) simultaneously
slightly change their values.

After successful gene expression data tracking and esti-
mation of coefficients aaij;t, we would like to understand
how they reflect the relations between genes. Unfortunately,
there is still no certain interpretation for the coefficients
which model the relationships in gene regulatory networks.

Some authors [26] suggest that positive value of aaij;t above
certain threshold indicates that gene i activates gene j,
whereas negative values show repression activity. How-
ever, these authors use different models and methods from
ours for inferring gene networks. The statistical interpreta-
tion we give is that the coefficients approximate the condi-
tional probabilities: aij;t � fðxi;tjxj;t�1Þ.

In our case for two-gene network, coefficients averaged
over all runs at the last time epoch (t ¼ 201) are
aa11 ¼ 0:620; aa12 ¼ 1:629; aa21 ¼ 0:152; aa22 ¼ �0:334f g: If we
assume, as was discussed above, that the threshold would
be the mean value of all four coefficients (�0.52) plus/
minus standard deviation (�0.84) we get upper threshold
value�1.36 and lower�–0.32, and take into account the val-
ues above and below that threshold, only aa12 and aa22
remains. This can suggest that in our two gene network
gene G2 at time epoch t ¼ 200 expresses gene G1 at t ¼ 201,
and gene G2 at time epoch t ¼ 200 represses itself at t ¼ 201.
Graphically the network can be shown as in Fig. 8.

In order not to cause confusion we would like to make
distinction between two modes of averaging. Since multiple
runs are performed, the mean values of regulatory coeffi-
cients are estimated first over all runs for each time epoch,
that is, we do ensemble averaging over realizations. Then,
we calculate mean and standard deviation for each time

Fig. 5. Histograms for distributions of the inferred aaij;T coefficients for
two genes network at the final time epoch averaged using 100 runs. Ver-
tical axis is the number of particles with certain value, and horizontal
axis is the values of aaij;T .

Fig. 6. Histograms for distributions of the inferred aaij;T coefficients for
two genes network at the final time epoch averaged using 1,000 runs.
Vertical axis is the number of particles with certain value, and horizontal
axis is the values of aaij;T .

TABLE 1
Average Values of aaij;T Coefficients and Their Variance

Estimated for N Runs

N of runs a11 a12 a21 a22 Standard Deviation

100 0.620 1.629 0.152 �0.334 0.837
1,000 0.632 1.538 0.152 �0.333 0.798

Fig. 7. Time dependence of coefficients aaij;t averaged using 100 runs for
two genes.

Fig. 8. Possible time-varying network structure consisting of two genes.
Figures a and b show different representations of the same time-varying
network: a – all genes are shown for each time epoch and arrows indi-
cate activities from one time epoch to another; b – genes are shown only
once and all arrows directed from gene at time t-1 to the gene at current
time epoch. In both figures, red and blue arrows indicate expression and
repression activity at adjacent time epochs, respectively; red, blue and
black colors of nodes indicate self-expression, self-repression, and no
expression of a gene in adjacent time epochs (t ¼ 200 and t ¼ 201),
respectively. The representation b will be used further in this work.
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instant over such calculated ensemble averages of aaij;t.
Next, from these means and standard deviation values we
calculate a threshold at each time epoch, which is used for
the estimation of network structure, as described above.

Extending our analysis to a gene network consisting of 10
genes, we again observe very good results of data tracking
by particle filter: excellent agreement between synthetic
gene expression data and PF estimates (see Fig. 9).

The time dependence of learned coefficients aaij;t for 10
genes network is not shown here due to overlapping of 100
coefficients on each other that does not give clear picture of
what is happening with time. However, histograms for the
distributions of the estimated network coefficients aaij;t at
the final time epoch and their averaged values for 100 runs
of the algorithm are shown in Fig. 10 and Table 2, respec-
tively, together with the standard deviation. The standard
deviation in Table 2 shows an amount of dispersion of a set
of regulatory coefficients values aaij;T in the network esti-
mated for the last time epoch.

Possible gene network results for the final time epoch are
shown in Fig. 11. An animated time-varying network struc-
ture across all time epochs is available as supplemental
material (Fig. S1), which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.

org/10.1109/TCBB.2015.2496301. Red arrows in Fig. 11
indicate the expression activities of a gene where an arrow
starts at time epoch t ¼ 200 in relation to another gene
where an arrow points at time epoch t ¼ 201. On the other
hand blue arrows show the repression activities of a gene
where an arrow starts at time epoch t ¼ 200 in relation to
another gene where an arrow points at time epoch t ¼ 201.
Red, blue and black colors of the nodes indicate self-expres-
sion, self-repression and no expression of a gene in adjacent
time epochs (t ¼ 200 and t ¼ 201), respectively.

Next, in order to get smoother network changes with
time we adopted a Laplace prior instead of Gaussian.
Moreover, to investigate the sparsity of the network
we introduced a new proposal function q

�
aatjaaðnÞt�1; xxt

� ¼
p
�
aa

nð Þ
t jaa nð Þ

t�1

�
=p
�
aa

nð Þ
t

�
, which includes a Laplace prior in addi-

tion to the state transition prior.
After introduction of the new proposal function the

weight update equation (Eq. 11) becomes:

w
nð Þ
t / w

nð Þ
t�1 � p xxtjaa nð Þ

t

� �
� p aa

nð Þ
t

� �
: (14)

The Laplace prior introduces regularization with an
l1-norm metric as in the case of LASSO. In other words,
LASSO is the limit case of the Laplace prior in the Bayes
framework, which gives us much more flexibility in model
testing and error analysis when compared to LASSO. More-
over, another difference and advantage to the way LASSO
was applied in [26] is that the regularization is applied
within the time series at each time instant rather than being
applied separately after particle filtering is performed. That
is, in the current algorithm the effect of LASSO is integrated
in the learning process by sequential Monte Carlo.

The resulting network structure using Laplace prior for
the final time epoch is shown in Fig. 12. An animated time-
varying network structure across all time epochs is available
as supplemental material (Fig. S2), available online.

Comparing the networks, the original (Fig. 1) and the
reconstructed ones (Figs. 11 and 12), caremust be taken since

Fig. 9. Comparison of Particle Filter estimation (red dashed lines) with
synthetic gene expression data (blue solid lines) for 10 genes that have
undergone a perturbation at t<100.

Fig. 10. Histograms for distributions of the inferred aaij;T coefficients for 10 genes network at the final time epoch averaged using 100 runs. Vertical
axis is the number of particles with certain value, and horizontal axis is the values of aaij;T .
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the original network shows static structure for the whole
time period while the inferred network indicates a dynamic
case: relations between genes at two adjacent time epochs
(between time instants, not at a particular time). From Figs.
S1 and S2 it can be observed that for the case with the new
proposal function the network structure changes smoothly,
less fluctuations of regulatory coefficients are observed with
time. The smoothness can be increased even more by fixing
the scale parameter of the Laplace prior. Sparsity can be
improved with clever choice of the thresholds which need to
be chosen according to the biological constraints.

Moreover, fluctuations present in the time varying net-
work are influenced by the magnitude of noise added after
the simulation to the generated gene expression data in [52].
Analysis has shown that for high noise magnitude (one
order higher than by default) the network inference drops
since the signal (gene expression) amplitude is less than the
amplitude of added noise which brings to a network struc-
ture which has nothing to do with that original shown in
Fig. 1. Whereas very small noise magnitude (one order less
than by default) causes numerical problems in particle fil-
tering algorithm since this method does not work with

nearly noise-free models. For the given level of noise and
carefully chosen thresholds, the obtained recall and precision
values are similar to the results given in [27].

In comparison to the network estimation methods dis-
cussed in [27], our method has the important difference of
being able to follow changes in the network structure. It is
also important to note that the threshold value selection
effects the level of sparsity very significantly that in its turn
effects on the final precision of the reconstructed network.

Summarizing, the proposed PFmethod successfully tracks
time series of gene expression data, infers online time varying
hidden parameters which are regulatory coefficients in a gene
network. Introduction of the new proposal functionwith Lap-
lace prior leads to stable and smoother network changes.

Further important problems that will be investigated in
future are adaptation of the code to large-scale time varying
gene networks, analysis of the gene network sparsity, and
application of our method to real gene expression data
which are changing with time.

6 CONCLUSION

We demonstrated the potentials of a sequential Monte Carlo
method, namely particle filtering method, to synthetic gene

TABLE 2
Mean Values of aaij;T Coefficients for 10 Genes Network at the Final Time Epoch Averaged

Using 100 Runs Together with Standard Deviation

Genes 1 2 3 4 5 6 7 8 9 10

1 �0.369 0.104 0.363 0.330 0.439 0.087 �0.068 0.181 0.290 0.178
2 0.027 �0.159 0.006 �0.014 0.140 �0.052 0.030 �0.076 0.129 0.035
3 0.092 0.188 �0.188 0.092 0.047 �0.157 0.213 0.007 0.204 0.018
4 0.182 0.208 0.354 �0.267 �0.039 0.072 0.227 0.357 0.037 0.115
5 �0.113 0.043 0.012 0.054 �0.164 0.134 0.098 0.045 0.055 0.025
6 0.075 0.183 0.163 0.119 �0.030 �0.267 �0.018 �0.026 0.057 0.145
7 0.126 �0.164 �0.118 0.024 0.332 �0.022 �0.274 0.227 0.115 0.287
8 0.174 �0.030 0.503 0.235 0.030 0.143 0.096 �0.170 0.088 0.298
9 �0.095 0.176 0.167 0.373 0.210 0.440 0.075 0.233 �0.180 0.189
10 0.172 0.068 0.277 0.260 0.257 0.192 �0.127 0.184 0.215 �0.128

Standard Deviation 0.169

Fig. 11. A snapshot of time-varying network structure with 10 genes
obtained using Gaussian prior. The network is reconstructed for
t ¼ 201 after 100 runs. Red and blue arrows indicate expression and
repression activities at adjacent time epochs, respectively; red, blue,
and black colors of nodes indicate self-expression, self-repression, and
no expression of a gene in adjacent time epochs (t ¼ 200 and t ¼ 201),
respectively.

Fig. 12. A snapshot of time-varying network structure with 10 genes
obtained using Laplace prior. Specification of the figure is the same as in
Fig. 11.
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expression time series dataset for a network of genes in
tracking with high accuracy the changes in gene expression
data undergone due to different external perturbations.
Gene expression temporal sequence data were utilized for
online learning of time varying gene network structure. The
proposed model is capable of discovering causal relation-
ships, interactions between genes that vary in time. The
method can be extended also to modelling other time-vary-
ing biological networks.
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