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Chapter 15

A Systems Biology Approach for Identifying Hepatotoxicant 
Groups Based on Similarity in Mechanisms of Action 
and Chemical Structure
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Danyel G.J. Jennen, and Jos C.S. Kleinjans

Abstract

When evaluating compound similarity, addressing multiple sources of information to reach conclusions 
about common pharmaceutical and/or toxicological mechanisms of action is a crucial strategy. In this 
chapter, we describe a systems biology approach that incorporates analyses of hepatotoxicant data for 33 
compounds from three different sources: a chemical structure similarity analysis based on the 3D Tanimoto 
coefficient, a chemical structure-based protein target prediction analysis, and a cross-study/cross-platform 
meta-analysis of in vitro and in vivo human and rat transcriptomics data derived from public resources (i.e., 
the diXa data warehouse). Hierarchical clustering of the outcome scores of the separate analyses did not 
result in a satisfactory grouping of compounds considering their known toxic mechanism as described in 
literature. However, a combined analysis of multiple data types may hypothetically compensate for missing 
or unreliable information in any of the single data types. We therefore performed an integrated clustering 
analysis of all three data sets using the R-based tool iClusterPlus. This indeed improved the grouping 
results. The compound clusters that were formed by means of iClusterPlus represent groups that show 
similar gene expression while simultaneously integrating a similarity in structure and protein targets, which 
corresponds much better with the known mechanism of action of these toxicants. Using an integrative 
systems biology approach may thus overcome the limitations of the separate analyses when grouping liver 
toxicants sharing a similar mechanism of toxicity.

Key words Systems biology, 3D Tanimoto, Protein targets, Meta-analysis, iClusterPlus, Hepatotoxicity, 
Chemical structure, Mechanism of action, Similarity, diXa

1 Introduction

Systems biology is an interdisciplinary field of study that focuses on 
complex interactions within biological systems. It uses a holistic 
approach that aims at integrating data from multiple sources to 
study the interactions between the components of biological systems 
and gain a wider understanding of how these interactions give rise to 
the function and behavior of that system, e.g., a pathway, a cell, etc. 
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In other words, instead of taking apart a system and studying each of 
its individual components, systems biology focuses on integrating all 
these parts to reach a new level of understanding under the assump-
tion that the whole is more than the sum of its parts.

Omics technologies are particularly useful for this purpose 
since they cover a large part of the changes in a certain part of the 
system, such as the transcriptome, the proteome, or the metabo-
lome, thereby aiding the systems biology approach. However, 
despite the vast amount of information obtained from omics tech-
niques, single omics analysis still does not always provide sufficient 
information to understand the behaviors of, for example, a cellular 
system. Therefore, a combination of multiple omics analyses and/
or other data sources, the multi-omics (or multi-data source) 
approach, is needed to acquire a more precise picture of a system 
[1–5]. Combining multiple data types also has the advantage of 
being able to compensate for missing or unreliable information in 
any of the single data types and decreases the likelihood of false-
positive findings.

In the field of hepatotoxicity, systems biology approaches are 
also receiving much attention [6–11]. Given the liver’s vital role as 
a detoxification organ, it is not surprising that hepatotoxicity is the 
most prominent adverse reaction against drugs. As a result many 
newly developed candidate drugs fail in preclinical or clinical trials 
which is associated with a huge financial drain considering that the 
costs to develop a fully approved drug are around $800 million 
[12]. Failure to pick up hepatotoxicity in early stages is also con-
tributable to the idiosyncratic nature of many adverse reactions, 
i.e., unusual individual reactions with very low frequency likely 
associated with differences in genetic make-up between individuals 
[13]. New screening methods, able to detect (idiosyncratic) drug-
induced liver injury in the early stages of the research process, rep-
resent an important step toward efficient new drug development. 
Despite their poor predictive accuracy, animal models are still con-
sidered the gold standard toxicological approach for evaluating 
chemical toxicity and contribute substantially to the high costs 
involved in drug development [14]. In vitro systems are therefore 
increasingly studied with the ultimate goal of replacing animal 
models. Because of the time-saving nature and practicality of such 
systems, they are especially well suited to study drug metabolism, 
measure enzyme kinetics, evaluate toxicity mechanisms, and exam-
ine dose–response relationships using systems biology approaches 
[15]. The systems biology “map” of a hepatotoxic compound of 
interest may serve as a profile of its (idiosyncratic) toxicological 
mechanism. Studying large compilations of such compound pro-
files can thus assist in finding groups of compounds with similar 
(toxicological) mechanisms of action by comparing profiles and 
thereby assist in the early identification and elimination of com-
pounds with a potential hepatotoxic effect.

Dennie G.A.J. Hebels et al.
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In this chapter we will demonstrate a systems biology approach 
focused on compiling compound profiles from multiple data 
sources in order to group toxic compounds based on similarity. 
There are many data types available which can be used to obtain 
such similarity  measures. Here, transcriptomics and proteomics 
data are of particular interest. While such omics data are excellent 
sources to explore the biological signaling cascades involved in 
hepatotoxic responses, including sources that focus more on the 
chemical similarities of the compounds may contribute significantly 
to the grouping of compounds with comparable hepatotoxic 
mechanisms. Given the crucial role of chemical structures with 
respect to xenobiotic metabolism in the liver, quantifying the 
chemical similarity of molecules is a very active field of research. In 
our multi-data source systems biology approach, we will therefore 
focus on a combination of these two approaches. A test data set 
will be used to illustrate an integrative analysis approach of a tran-
scriptomics analysis and two chemical structure-based analyses. 
These three analysis approaches will first be explained in more 
detail separately. They involve a chemical structure similarity analy-
sis based on the 3D Tanimoto coefficient, a chemical structure-
based protein target prediction analysis, and a comprehensive 
transcriptomics meta-analysis. A hierarchical clustering-based 
grouping of the analysis results will be used to discuss the limita-
tions of the individual methods by comparing the outcome with 
the known mode of action as described in literature. The multi-
omics tool iClusterPlus will subsequently be presented as a means 
of overcoming these limitations and integrating multiple sources of 
information to improve grouping of similarly acting hepatotoxic 
compounds.

2 Data Set

To demonstrate the application of multisource data analysis on 
hepatotoxicity data, we queried the Data Infrastructure for 
Chemical Safety Assessment (diXa) data warehouse [16]. diXa is a 
recently created robust and sustainable infrastructure designed for 
storing toxicogenomics data. The warehouse is designed to store 
any type of omics data for every disease of interest and currently 
mostly contains transcriptomics data on hepatotoxicants and neph-
rotoxicants. The warehouse is connected to a portal with links to 
chemical information and molecular and phenotype data. diXa is 
publicly available through a user- friendly web interface, and new 
data can be readily deposited into diXa (http://wwwdev.ebi.ac.uk/
fg/dixa/index.html, Fig. 1).

A selection of studies stored within diXa was downloaded to 
present as a use case in this chapter. The selection was based on an 
initial exploration of the data sets where we set out to include data 

Systems Biology-Based Hepatotoxicant Similarity

http://wwwdev.ebi.ac.uk/fg/dixa/index.html
http://wwwdev.ebi.ac.uk/fg/dixa/index.html


342

covering a wide range of experimental conditions (several doses 
and exposure times, in vitro and in vivo studies) and multiple spe-
cies (rat and human). To improve data comparability, only studies 
using the same microarray platform (Affymetrix) were considered. 
Gene annotations were adjusted to their corresponding ortho-
logues between species where needed. Using these criteria, nine 
studies were selected covering a total of 33 compounds as shown 
in Table 1.

Fig. 1 The diXa data warehouse web portal provides immediate access to a wide range of transcriptomics 
studies

Table 1 
Overview of studies included in analysis and the full list of hepatotoxic compounds

Project Species In vitro/in vivo Cell/tissue type

carcinoGENOMICS Homo sapiens In vitro HepaRG

Homo sapiens In vitro HepG2

Rattus norvegicus In vitro Primary rat 
hepatocytes

DrugMatrix Rattus norvegicus In vitro Primary rat 
hepatocytes

Rattus norvegicus In vivo Liver tissue

(continued)

Dennie G.A.J. Hebels et al.
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3 Tanimoto Similarity Score

Structural similarities between compounds may reflect similar 
mechanisms of action. Quantifying the similarity of two molecules 
is therefore a key concept in cheminformatics and pharmaceutical 
research. Although a close similarity between compounds can 
never guarantee an overlap in the mechanism of action, there is a 
strong correlation between the presence of certain structural sub-
units in a molecule and the eventual biological effect, which is a 
relationship that is often explored during the development of new 
pharmaceutical compounds. The Tanimoto coefficient [17] is a 
frequently used measure of chemical similarity and will be applied 
here to focus purely on the overlap in chemical properties of the 
compounds in the test data set.

Calculation of Tanimoto coefficient similarity scores can be per-
formed in PubChem, which is an open repository for small mole-
cules and their experimental biological activities [17]. Generating 

3.1 Tanimoto 
Coefficient Procedure

Project Species In vitro/in vivo Cell/tissue type

Predictomics Homo sapiens In vitro HepG2

TG-GATEs Homo sapiens In vitro Primary human 
hepatocytes

Rattus norvegicus In vitro Primary rat 
hepatocytes

Rattus norvegicus In vivo Liver tissue

Hepatotoxic compounds

1-Naphthyl isothiocyanate Cyclophosphamide Gemfibrozil Phenobarbital

Acetaminophen Danazol Ketoconazole Pirinixic acid

Aflatoxin B1 Diclofenac Lomustine Simvastatin

Allyl alcohol Doxorubicin Methapyrilene Sulindac

Amiodarone Ethanol Nifedipine Tamoxifen

Azathioprine Ethinyl estradiol Nimesulide Tetracycline

Carbon tetrachloride Fenofibrate N-nitrosodimethylamine Tolbutamide

Clofibrate Fluphenazine Pemoline Valproic acid

Clomipramine

Elaborate descriptions of all studies can be found in the diXa data warehouse (http://wwwdev.ebi.ac.uk/fg/dixa/index.
html)

Table 1
(continued)
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Tanimoto scores is a very straightforward procedure and requires a 
list of compounds  (compound name, PubChem compound data-
base identifier (CID)) which can be uploaded. Subsequently struc-
tural similarity data will be calculated between each pair of 
compounds (https://pubchem.ncbi.nlm.nih.gov/assay/assay.
cgi?p=clustering, Fig. 2). This resulting structure similarity matrix 
is then clustered using the single-linkage clustering algorithm.

The structural similarity in PubChem is either based on the 
Tanimoto score calculated from the 2D structure fingerprint or the 
3D shape/feature similarity [17, 18]. The 2D structure fingerprint 
is based on an ordered list of binary substructures (i.e., fragments 
of a chemical structures) for chemical structures, in which each 
substructure is counted as either present or not present in the com-
pound under investigation (e.g., an atomic element count, a type 
of ring system, atom pairing, atom neighbors, etc.). These finger-
prints are used by PubChem for similarity neighboring and similar-
ity searching [17].

A defining characteristic of 3D similarity methods, compared 
to 2D methods, is that they are applied at a conformer level instead 
of a compound level, thereby making it possible to consider the 
various distinct molecular conformations a compound can adopt in 
3D space which may have biological relevance [19]. PubChem3D 
makes a distinction between two 3D similarity measures, i.e., 

Fig. 2 The PubChem chemical structure clustering tool which generates a clustering dendrogram based on 
calculated Tanimoto scores (2D and 3D) for any list of compounds

Dennie G.A.J. Hebels et al.
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shape-Tanimoto (ST) and color-Tanimoto (CT). The ST score is a 
measure of shape similarity, while the CT score quantifies the simi-
larity of 3D orientation of functional groups or features by check-
ing the overlap of fictitious “color” atoms which represent the six 
functional group types: hydrogen- bond donors, hydrogen-bond 
acceptors, anion, cation, hydrophobes, and rings. The ST and CT 
similarity metrics attempt to cover key aspects important for locat-
ing chemical structures that may have similar biological activity. In 
other words, the ST helps to identify compounds that can adopt a 
particular 3D shape (e.g., of a neurotransmitter bound in a par-
ticular conformational orientation in a postsynaptic membrane 
protein pocket), while the CT helps to identify compounds with 
similar 3D orientation of molecular features (e.g., necessary for 
making a hydrogen or ionic bond interaction of a neurotransmitter 
with its receptor). The assumption is then that compounds with 
highly similar 3D shape and feature orientations may also display 
similarities in their biological activity [19].

Given the importance of biological activity with respect to 
hepatotoxicity, in this chapter we will focus on the 3D Tanimoto 
scores. CID identifiers of the 33 compounds in our test data set 
were retrieved from PubChem, and 3D Tanimoto scores were cal-
culated using the default options of a combined shape (ST) and 
feature (CT) similarity score (optimized for shape), which was fol-
lowed by a clustering analysis (see paragraph 6).

4 Protein Target Analysis

Biological relevance and investigation of mode of action require an 
understanding of the proteins to which the compounds bind. 
Based on the chemical structure of the compounds, we can predict 
their interaction partners (protein targets) in an organism. This is 
done by comparing the structure of the compound to large curated 
literature-based databases of known compound–protein interac-
tions such as DrugBank, ChEMBL, the Human Metabolome 
Database, and the Therapeutic Target Database [20–23]. In this 
chapter, we use the data in the ChEMBL database release 17 con-
taining approximately 12 million data points [24, 25].

A multi-category naive Bayes statistical model trained on ChEMBL 
database release 17 was used for target prediction [25]. The com-
pound structural features were encoded using extended-connectiv-
ity fingerprints with a diameter of six covalent bonds (ECFP6) as 
implemented in Pipeline Pilot (version 8.5, Accelrys Software Inc.) 
[26]. Target classes were limited to single protein targets with at 
least 30 active compounds (to ensure a robust model). Active was 
defined as having an activity better than 10 μM where the activity 
type was restricted to Ki, Kd, IC50, AC50, or EC50. In total 

4.1 Protein Target 
Procedure
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690,853 data points were used to construct the model. A multi-
category model was then built for each of these proteins; herein 
relevant molecular features correlated to activity were identified by 
comparing the structure of actives per protein versus all of the 
other compounds (assumed inactive). Subsequently, each com-
pound was scored with all 1282 models, and a ranked list of up to 
the top ten predicted protein targets for each compound was 
generated.

However, due to large differences in available data points per 
target (e.g., adenosine A2A receptor versus solute carrier organic 
anion transporter 1B1) and differences in average compound size 
per target (e.g., metabotropic glutamate receptors versus throm-
bin), the raw Bayesian score can differ significantly per protein tar-
get (per model class). To make the scores comparable, they were 
standardized in the form of z-scores [27]. The score per com-
pound–protein pair was obtained for predictions by subtracting 
the mean score for the protein considered from the raw score and 
dividing this over the standard deviation for that protein (e.g., 
[1]). To obtain these values, after model training, the model was 
used to score all compounds in ChEMBL release 17 (1.3 million 
compounds). From this, a mean score per target and standard 
deviation per target were derived. Similarly, the mean score and 
standard deviation of compounds known to be active on a protein 
were calculated. After model predictions, targets with a standard 
score ≥2 were considered as a significant protein target for the 

Fig. 3 Example output from the protein target analysis for the compound doxorubicin, showing compound 
structure and InChI key and the top 15 protein target z-scores and z-score actives

Dennie G.A.J. Hebels et al.
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compound in question and reflect the enrichment of the score over 
randomness (i.e., all compounds in ChEMBL release 17) for the 
specific target of that compound in terms of standard deviations. 
Likewise z-score actives are calculated which show the difference a 
compound scores on this target compared to the average score of 
known actives for that protein. An example output for the com-
pound doxorubicin is shown in Fig. 3. For further analyses as pre-
sented in paragraph 6, all calculated z-scores (significant and 
nonsignificant) were taken into account.

5 Gene Expression Meta-Analysis

An inherent problem of heterogeneous data sets is the experiment- 
specific variation which cannot be controlled for in a post hoc anal-
ysis. These variations stem from a variety of sources such as the use 
of different cell culture assays, differences in compound concentra-
tion and exposure time, and the use of different species (Table 1). 
To compensate for such variations, cross-study/cross-platform 
gene expression meta- analysis is a valid strategy to extract consis-
tent information from a set of individual studies across a wide 
range of experimental conditions, including in vitro and in vivo 
data. In fact, combining data from in vitro and in vivo studies on 
liver carcinogens with gene expression data from human liver can-
cers was shown to improve carcinogenicity prediction [28]. Meta-
analysis has been frequently applied in diseases with complex 
phenotypes such as cancer [29], Down syndrome [30], and diabe-
tes mellitus type 2 [31]. A meta-analysis approach on hepatotoxic-
ity-associated transcriptomics data can therefore be very valuable 
given the vast amount of heterogeneous data sets available in 
literature.

All experiments in the data set (see Table 1) have a case–control 
design comparing two groups of replicate samples. These groups 
are denoted as treatment and control, respectively, and constitute 
a test case. For a test case, the generated chips are normalized with 
each other using the R/Bioconductor framework.

The normalization accounts for three major influence factors 
in the hybridization data: background expression, probe binding 
affinity, and measurement variation. GC-RMA corrects for such 
effects [32]. In the background correction, it takes into account 
the GC content of the probe sequences, i.e., the number of G or C 
nucleotides in the sequence. A higher GC content is associated 
with a higher binding affinity of the probes due to three instead of 
two covalent bindings for single nucleotides. GC-RMA contains a 
position-specific model correcting the binding affinity between 
probes. Between chips unwanted effects are introduced by RNA 
extraction, pipetting, temperature fluctuations, hybridization 

5.1 Meta-analysis 
Procedure
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efficiency, and more. To reduce these effects, the quantile normal-
ization is implemented in GC-RMA. Finally probe intensities are 
summarized into probe set expressions. GC-RMA uses median 
polish which proposes a linear model of a baseline hybridization 
with two factors, a probe effect and an array effect [33]. The model 
is fitted robustly with a median decomposition.

An advantage of the Affymetrix array design is the possibility 
to calculate a presence tag, i.e., the probability that the corre-
sponding gene is effectively expressed and active in the sample 
under study. Non- expressed genes confuse the results with low 
intensities leading to high, unmotivated fold changes. The pres-
ence tag, or detection p-value, is based on a comparison of raw 
perfect-match values and corresponding mismatch values. Using a 
robust Wilcoxon test yields a p-value for each probe set which indi-
cates whether or not the perfect-match probe signals are different 
from the mismatch probe signals and thus allows judging the 
expression of the corresponding gene.

Necessary for any meta-analysis is the consolidation of the dif-
ferent identifier types, different species, or different arrays [34]. The 
Ensembl database provides a stable reference for microarray studies 
(http://www.ensembl.org; version 74) and enables orthologue 
gene searches to allow for the combination of human and rat data. 
Since comparability of chip studies is hindered by the total number 
of probes and preprocessing issues between manufacturers, the 
analysis in this chapter constrains on Affymetrix arrays for case–con-
trol studies. Expression results from the arrays are mapped to 
Ensembl by the custom chip definition file (CDF) annotations [35].

The computation of gene expressions and presence tags is fol-
lowed by a gene-wise evaluation of treatment versus control expres-
sions. Expressions are assessed by two criteria: presence and 
alteration. For the approach of a meta-analysis, as presented in this 
chapter, the two criteria are condensed into a single score for every 
gene. The test case score St of a gene is computed as follows:
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So we sum up the gene scores over all test cases related to com-
pound c. The sum is weighted by the quotient of Tg the number of 
test cases with gene scores divided by Tgc the number of test cases 
with scores for gene g and compound c. This weight compensates 
for genes which are not represented on every Affymetrix array, 
which is, for example, relevant for nonhomologous genes between 
human and rat. The results are discussed in the next paragraph 
together with the results of the other two analysis approaches.

6 Results of Individual Data Analysis Approaches

The Tanimoto 3D similarity scores are automatically processed in 
a clustering analysis, the results of which are shown in Fig. 4a. For 
comparison purposes the protein target z-scores and meta-analysis 
gene scores were also hierarchically clustered; this is shown in 
Fig. 4b, c (both Ward’s clustering, using the “minimum increase in 
the sum of squares for error” method). This also allows for a more 
straightforward comparison of the individual analysis results with 
the integrative analysis covered in the next paragraph.

If we compare the two analysis methods based on chemical 
structure, i.e., the Tanimoto similarity scores and protein target 
z-scores, there is a number of subclusters that appear to corre-
spond with certain protein target clusters. However, it is also 
apparent that the protein target scores tend to cluster into more 
distinct groups of compounds, whereas the Tanimoto dendrogram 

Fig. 4 Clustering dendrograms of the Tanimoto similarity scores (a), the protein target z-scores (b), and the 
meta-analysis gene scores (c)

Systems Biology-Based Hepatotoxicant Similarity
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does not form any separate groups with the exception of the duo 
clusters ethanol/allyl alcohol and amiodarone/tamoxifen. These 
two duo clusters can also be readily recognized in the protein tar-
get dendrogram. Other small clusters which can also be distin-
guished in the Tanimoto dendrogram include ethinyl estradiol/
danazol and pemoline/phenobarbital.

Strong disagreements between analyses become apparent when 
the meta-analysis is taken into account. Its dendrogram’s clusters 
are quite inconsistent with the Tanimoto and protein score den-
drograms, and no immediate overlap can be seen (Fig. 4). So the 
question arising is which one of these analyses is right? There is of 
course no straightforward answer to this. If we consider some of 
the grouped compounds in these dendrograms and compare them 
with what can be found in literature regarding known mechanism 
of action, we see that all three analyses cluster compounds as might 
be expected. We will use the following examples to illustrate this:
 (a) Fenofibrate and pirinixic acid.

The meta-analysis suggests that fenofibrate and pirinixic acid 
induce a similar gene expression response, which indeed makes 
sense given the fact that they are both peroxisome proliferator- 
activated receptor alpha (PPARA) agonists [36]. The Tanimoto 
score analysis does not consider these compounds to be struc-
turally related. Of course structural dissimilarity does not exclude 
the possibility of having a similar biological effect and vice versa. 
Small identical substructures in two molecules can already be 
enough to exert a similar effect even when the overall composi-
tion is very different. Conversely, a good example of compounds 

Table 2 
List of significant protein targets (z-score >2) for fenofibrate and pirinixic acid compounds

Fenofibrate Pirinixic acid

Structure
Protein 
(HGNC) z-Score

Protein 
(HGNC) z-Score

Protein 
(HGNC) z-Score

Protein 
(HGNC) z-Score Structure

LSS 3.23 GLP1R 2.42 TRPA1 2.28 PTGES 4.82

PPARA 2.94 IGFBP3 2.39 CACNA1H 2.24 ALOX5 3.00

FFAR2 2.93 PPARD 2.39 P2RY1 2.22 PLA2G7 2.32

SCN2A 2.80 AKR1C2 2.39 CTSG 2.21 AKR1C2 2.24

SCN10A 2.79 CYP26A1 2.36 ELOVL6 2.20 CSNK2A2 2.16

PPARG 2.79 VCAM1 2.34 SRD5A2 2.13 PPARG 2.16

GIPR 2.60 ICAM1 2.29 SELE 2.06 CXCR2 2.10

ELANE 2.59 UTS2 2.28 MMP14 2.04 CTSA 2.00

Dennie G.A.J. Hebels et al.
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with high structural similarity but entirely different effects are 
the enantiomers of thalidomide; S-thalidomide is a severe terato-
gen, while R- thalidomide is a sedative with no teratogenic 
action. This difference in structure between fenofibrate and piri-
nixic acid also partially explains why the protein target analysis 
does not group these compounds together since this analysis is 
also based on the chemical (2D) structure using the ECFP6 fin-
gerprints. However, if we take a closer look at the calculated 
z-scores of this analysis, there are also some inconsistencies with 
literature. Despite the fact that both compounds are PPARA 
agonists, PPARA is only a significant protein target for fenofi-
brate, not pirinixic acid. Another interesting observation is the 
significance of PPARD and PPARG for fenofibrate when this 
compound is usually not considered an agonist for these two 
PPARs [37]. The two top-scoring protein targets for pirinixic 
acid, prostaglandin E2 synthase-1 (PGES-1) and 5- lipoxygenase 
(ALOX5), also show an inconsistency with literature (Table 2). 
PGES and ALOX5 are only protein targets for pirinixic acid after 
substantial modification of the structure to an aminothiazole-
featured pirinixic acid [38]. It thus appears that protein targets 
do not always reflect literature accurately, which may be related 
to drawbacks of the manual curation on which the algorithm is 
dependent.

 (b) Clofibrate, gemfibrozil, valproic acid, and simvastatin.
The compounds clofibrate, gemfibrozil, valproic acid, and 

simvastatin form an obvious cluster in the meta-analysis but are 
completely scattered across the Tanimoto and protein target 
dendrograms. Clofibrate and gemfibrozil are PPARA agonists, 
while simvastatin, a statin compound, increases expression of 
PPARA and as such can have a similar effect [39]. Indeed there 
appears to be a cross-talk of statin signaling pathways and 
(agonist- induced) PPARA activity, and combination therapies 
of fibrates and statins are being used to treat dyslipidemia [40–
42]. Valproic acid has a different mechanism of action and is 
used as an anticonvulsant and mood-stabilizing drug which has 
been attributed to the blockade of voltage-dependent sodium 
channels and increased brain levels of gamma-aminobutyric 
acid (GABA) [43]. However, it has also been found to be an 
activator of PPARD, but not PPARA or PPARG, although it is 
not a direct PPARD ligand [44, 45]. Valproic acid can there-
fore interact in the PPAR signaling cascades, which explains its 
similarity in gene expression with the other three compounds. 
Despite this similarity in gene expression and evidence in litera-
ture for overlap in mechanism of action, the Tanimoto and 
protein target analyses do not consider these compounds to be 
similar in their effect. However, a visual inspection of the 
molecular structures of these compounds does reveal a struc-

Systems Biology-Based Hepatotoxicant Similarity
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tural similarity, especially between clofibrate and gemfibrozil 
(Fig. 5). Moreover, the carboxylic (pentanoic) acid moiety in 
these two compounds is also present in valproic acid. This moi-
ety is essential for fibrates to function as PPAR agonists [46]. 
Since both the 3D Tanimoto analysis and the 2D ECFP6-
based protein target analysis take the entire structure into 
account, essential substructures that convey the similarity in 
working mechanism could be masked by a dissimilarity in the 
remainder of the molecule. Smaller molecules with structural 
similarities can therefore be expected to cluster together more 
readily as can be seen in the next example.

 (c)  Allyl alcohol, ethanol, carbon tetrachloride, and 
N-nitrosodimethylamine.

The compounds allyl alcohol, ethanol, carbon tetrachloride, 
and N-nitrosodimethylamine form clusters in the Tanimoto and 
protein target dendrograms but are completely scattered across 
the meta- analysis. Indeed their structures are very similar as 
shown in Fig. 6 which also contributes to the overlap in protein 
targets. While structural similarity does not guarantee similar 
gene expression responses, literature review does suggest that 
these compounds should share some common mode of action. 
For example, all four compounds are metabolized by the cyto-
chrome P450 metabolizing enzyme CYP2E1 and/or alcohol 
dehydrogenase (ADH) causing oxidative stress which (partially) 
explains their hepatotoxic effects [47–52]. An explanation for 
the scattered clustering in the meta- analysis could lay in the fact 
that some essential information in the gene expression meta-
analysis may get lost since we found that some compounds did 
cluster similarly to the protein target z-scores and Tanimoto 
scores when a distinction was made based on, for example, dose 
and exposure time (results not shown). Of course this is inher-
ent to the approach of the meta-analysis, but could lead to prob-
lems with group identification if transcriptomic responses differ 
greatly between experimental conditions.

Fig. 5 Molecular structures of clofibrate, gemfibrozil, valproic acid, and simvastatin
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7 Combined Analysis Using iClusterPlus

The individual analyses presented above reveal a number of short-
comings, which include (a) disagreements with the described 
mechanisms of action of compounds with respect to identified pro-
tein targets, (b) important similarities in compound substructures 
which are missed, and (c) a loss of important information when 
performing a cross-study/cross-platform meta-analysis. These lim-
itations may be overcome by running an integrative clustering that 
takes into account all data in one single analysis and can resolve the 
considerable heterogeneity present in individual data sets. iCluster-
Plus is an R-based tool specifically designed for such a multi-data 
source integration using a joint latent variable model [53]. It is 
designed to perform pattern discovery that can integrate diverse 
data types such as binary values (e.g., somatic mutation data), cat-
egorical values (e.g., copy number gain, normal, loss), and con-
tinuous values (e.g., gene expression, protein levels) (Fig. 7).

Given multiple data types (e.g., gene expression, Tanimoto scores, 
protein target data, etc.) measured in the same set of samples and 
specified sparsity parameter values, iClusterPlus uses generalized linear 
regression to fit a regularized latent variable model-based clustering 
that generates an integrated cluster assignment based on joint infer-
ence across data types. The common set of latent variables represents 
distinct driving factors, which, geometrically speaking, form a set of 
principal coordinates that span a lower dimensional integrated sub-
space and collectively capture major biological variations, enabling 
rigorous analysis of the integrated genomic data [53]. The iCluster-
Plus package is available for download from the open-source software 
framework Bioconductor (http://www.bioconductor.org/).

Compounds with similar toxicity and/or mode of action were 
grouped using iClusterPlus by integrating meta-analysis gene scores, 
structural similarities, and protein target predictions. In order to 
guarantee that each data type has the same weight in the analyses, 
scaled Euclidian distances were used for meta-analysis gene scores 
and target predictions in the range of 0–1 (0 = most similar; 1 = most 
dissimilar), and for structural similarities the 3D Tanimoto scores 
were used in the range 0–2 (0 = most dissimilar; 2 = most similar).

7.1 iClusterPlus 
Results

Fig. 6 Molecular structures of allyl alcohol, ethanol, carbon tetrachloride, and N-nitrosodimethylamine
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The iClusterPlus analysis was performed using default settings 
except for the number of CPUs used for parallel computing (30 
CPUs) and the lasso parameter λ which was rescaled to be between 
0 and 0.1. These settings were used to determine the optimal 
number of clusters by calculating the percentage of total variation 
explained by the model for 2–21 clusters. The percentage explained 
variation typically increases as more clusters are introduced. The 
optimal number of clusters is where the curve of percentage 
explained variation levels off. Figure 8 shows the curve for the 
analysis with the three data types combined, where 16 clusters are 
indicated as the optimum number of clusters.

Fig. 8 Percentage explained variation curve for the analysis with the three data 
types combined. The arrow indicates the optimal number of clusters

Fig. 7 The basic principle of iClusterPlus analysis. Adapted with PNAS permission from Ref. [53]
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There indeed appears to be a better grouping of compounds 
when all three approaches are combined (Fig. 9). For example, 
fenofibrate and pirinixic acid now cluster together (cluster #9) 
where they previously did only in the meta-analysis (Fig. 4). Protein 
targets in this case did not fully reflect the literature (which pro-
vides sufficient evidence for a similar mechanism of action), and the 
structures, while having some similarities, were found to be con-
sidered as different when taking into account the whole structure 
in the Tanimoto score analysis.

Clofibrate, gemfibrozil, simvastatin, and valproic acid previ-
ously grouped together in the meta-analysis which was supported 
by literature to a certain degree (all involved in peroxisome signal-
ing), but structurally they are more dissimilar, and their protein 
targets are different because they work through different mecha-
nisms (i.e., clofibrate and gemfibrozil are PPARA agonists, while 
simvastatin increases PPARD expression and valproic acid affects 
PPARD signaling). This is now much better reflected by the clus-
tering in Fig. 9 where clofibrate and gemfibrozil cluster together 

Fig. 9 iClusterPlus results, showing the grouping of the 33 compounds in the data set based on an integrated 
multisource analysis of protein target z-scores (Euclidian distances), meta-analysis gene scores (Euclidian 
distances), and 3D Tanimoto scores. The order of the compounds in the table corresponds with the column 
order in the clustering heatmap
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(cluster #12), gemfibrozil forms a separate group (cluster #7), and 
valproic acid is clustered together with a set of other compounds 
(cluster #13). These compounds include the COX-2-selective, 
nonsteroidal anti-inflammatory drug nimesulide which is known 
to affect both GABA neurotransmission and PPARD signaling just 
like valproic acid [43, 54, 55] and phenobarbital, which is also an 
anticonvulsant that interacts with the GABAergic response [56].

According to literature, allyl alcohol, carbon tetrachloride, 
ethanol, and N-nitrosodimethylamine all have a somewhat similar 
metabolic mechanism and toxicity (CYP2E1/ADH metabolism, 
oxidative stress). Indeed these compounds had similar protein tar-
gets and a similarity in structure (Fig. 4, ethanol and allyl alcohol 
form a group and carbon tetrachloride and N-nitrosodimethylamine), 
but this was not reflected by the meta-analysis data. However, 
when separate doses and time points were investigated, this group-
ing was better (results not shown). The iClusterPlus analysis now 
also shows a much better grouping of these compounds with only 
NDEA forming a separate group (#11).

It thus appears that an integrated analysis of data from multiple 
sources potentially leads to an improved clustering of related hepa-
totoxic compounds.

8 Conclusion

In this chapter, we have presented an approach that focuses on 
integrating hepatotoxic compound-induced gene expression and 
(protein target- directed) chemical structural patterns in order to 
evaluate whether they can complement each other. The presented 
examples show that grouping compounds based solely on cross-
study/cross- platform gene expression, 3D chemical structure, or 
protein targets can result in wrongly clustered compounds which 
have different toxicity or mode of action. To overcome these limi-
tations, iClusterPlus is shown to be a promising tool for integrat-
ing data from several distinct sources and improving the clustering 
of related compounds which share a common mechanism of action. 
It should be pointed out though that evaluation of the identified 
groups is needed by (literature-based) expert judgment. Still, a sys-
tems biology approach where multiple data sources are used, espe-
cially when these data types focus on different aspects of compound 
(hepato)toxicity and/or chemistry, appears to be a promising way 
of handling big data sets and promoting the development of new 
pharmaceutical compounds. The flexibility of iClusterPlus with 
regard to data set types (e.g., binary, categorical, and continuous 
values) allows for many data sets to be included in the analysis if 
considered toxicologically relevant. Inclusion of other data sources, 
such as proteomics or fragment-based fingerprint methods, is likely 
to further improve the grouping of similar compounds.
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