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analysis protocols. We have conducted an inter-laboratory 
study for testing chemical carcinogenicity evaluating two 
human in vitro assays: hepatoma-derived cells and hTERT-
immortalized renal proximal tubule epithelial cells, repre-
senting liver and kidney as major target organs. Cellular 
systems were initially challenged with thirty compounds, 
genome-wide gene expression was measured with microar-
rays, and hazard classifiers were built from this training set. 
Subsequently, each system was independently established 
in three different laboratories, and gene expression meas-
urements were conducted using anonymized compounds. 
Data analysis was performed independently by two sepa-
rate groups applying different protocols for the assessment 
of inter-laboratory reproducibility and for the prediction of 
carcinogenic hazard. As a result, both workflows came to 
very similar conclusions with respect to (1) identification 
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of experimental outliers, (2) overall assessment of robust-
ness and inter-laboratory reproducibility and (3) re-classi-
fication of the unknown compounds to the respective tox-
icity classes. In summary, the developed bioinformatics 
workflows deliver accurate measures for inter-laboratory 
comparison studies, and the study can be used as guidance 
for validation of future carcinogenicity assays in order to 
implement testing of human in vitro alternatives to animal 
testing.

Keywords  Carcinogenicity · In vitro assays · Pre-
validation · Inter-laboratory assessment · Bioinformatics · 
Toxicogenomics

Introduction

The development of in vitro assays as alternatives to ani-
mal testing has become a fundamental task of toxicologi-
cal research. In particular, in  vitro systems derived from 
relevant human tissues are necessary to complement the 
2-year rodent carcinogenicity bioassay, which has been 
associated with uncertainty in extrapolating from rodents to 
humans (Silva Lima and van der Laan 2000; Paules et al. 
2011). In particular, false-positive reporting by the rodent 
bioassay complicates the necessity to comply with legisla-
tive requirements across sectors, for example the regulation 
concerning the Registration, Evaluation, Authorisation and 
Restriction of Chemicals (REACH) (Annys et  al. 2014). 
Various human-based in vitro assays representing different 
target organs of chemical carcinogenicity have been pro-
posed in recent years, including the liver (Gómez-Lechón 
et al. 2010; Yildirimman et al. 2011; Doktorova et al. 2013) 
and the kidney (Jennings et al. 2012; Limonciel et al. 2012; 
Radford et  al. 2013), and their potential in predicting the 
hazard of chemical-induced cancer progression has been 
demonstrated by evaluating selected chemicals. For the 
liver, it has been shown that the human hepatoma-derived 
HepaRG cell line is a very sensitive system highly respon-
sive to carcinogenic compounds primarily activating path-
ways such as DNA damage, proliferation and apoptosis 
(Jennen et  al. 2010; Doktorova et  al. 2013). For the kid-
ney, it has been shown that human renal proximal tubular 
epithelial cells can be efficiently immortalized by TERT 
retaining cell functions similar to those of the original cells 
(Wieser et al. 2008). These cells also have specific proper-
ties that make them suitable as a testing assay for human 
carcinogenicity such as the induced loss of the primary cil-
ium upon carcinogen exposure (Radford et al. 2013), con-
tact-inhibited cell cycle arrest and a functioning p53 system 
(Aschauer et al. 2013).

The central experimental read-out in toxicogenomics 
is the transcriptome of the cells under study which can be 

measured with microarrays. With the advent of different 
microarray platforms, the issue emerged how reproduc-
ible measurements of the transcriptome actually are (Yauk 
et al. 2004; Irizarry et al. 2005; Fan et al. 2011). The larg-
est effort so far in testing reproducibility of gene expres-
sion measurement is the MAQC study. In the first phase 
of the study (MAQC-I), the major goal was to compare 
technical performance of the different microarray systems, 
with respect to the identification of differentially expressed 
genes as potential biomarkers, with the result that microar-
ray platforms were deemed highly reproducible, in particu-
lar those based on oligoprobes (MAQC consortium 2006). 
The second phase of the study (MAQC-II) evaluated the 
performance of different bioinformatics approaches. As 
a result, it was found that prediction methods varied to a 
higher degree and depended largely on (non-technical) 
factors, for example team proficiency (MAQC consortium 
2010). In addition, it has been emphasized that repeatabil-
ity and transferability of technology is still a bottleneck and 
needs major improvement when transferring omics-based 
results within the process to regulatory acceptance (Ioan-
nidis and Khoury 2011).

In the field of toxicogenomics, there is still limited 
experience with the validation of human in vitro systems. 
Nonetheless, the evaluation of transferability and inter-lab-
oratory reproducibility represent major steps in the valida-
tion of any test method (Hartung et al. 2004). Both transfer-
ability, which measures the capability, the ease, as well as 
the practicability to reproduce experimental data in a labo-
ratory that had no experience with the method before, and 
inter-laboratory reproducibility of experimental data in sev-
eral laboratories account for the reliability of a test method. 
The predictive capacity and the applicability domain of the 
test system account for the relevance of a test method for a 
particular purpose.

The findings of the MAQC-II study have shown that 
data analysis is a highly variable step in inter-laboratory 
comparisons and imposes the need for clear and robust bio-
informatics protocols in the process of evaluating toxicity 
testing assays. In this work, we describe and conduct such 
protocols in the analysis of gene expression data derived 
from two human-derived cell lines (HepaRG and RPTEC/
TERT1). The objectives of this study were to (a) imple-
ment and test measures for reproducibility and robustness 
and develop workflows for assessing the reliability of an 
in vitro assay and (b) implement approaches for predicting 
the carcinogenic potential of the compounds under study. 
The workflows were applied within a pre-validation setup 
where three coded chemicals were tested by three labora-
tories for each assay system in order to assess transferabil-
ity and reproducibility comprising a total of 204 microar-
ray experiments. Additionally, as a training set for setting 
classification parameters and assessing robustness, each 
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in  vitro assay was challenged, a priori to pre-validation, 
using 30 chemicals generated in the two lead laboratories 
(ten genotoxic (GTX) and ten non-genotoxic (NGTX) 
carcinogens as well as ten non-carcinogens (NC) for each 
assay system). Two bioinformatics groups evaluated the 
complete data independently applying different workflows 
(Suppl. Fig. 1). As the major result of the study, both work-
flows delivered similar results with respect to (1) the iden-
tification of experimental outliers, (2) the assessment of 
inter-laboratory reproducibility and (3) the prediction of the 
toxicity classes.

We conclude that the bioinformatics workflows 
described here are robust and reliable and that the study 
could serve as guidance for future development and valida-
tion of transcriptomics-based tests.

Materials and methods

Cell lines and chemicals

The cell lines used were: HepaRG (hepatocarcinoma cell 
line) available at Biopredic and RPTEC/TERT1 [renal 
proximal tubular epithelial cell immortalized with hTERT 
(Wieser et  al. 2008)] purchased from the developer Ever-
cyte GmbH, Vienna, Austria. For the reproducibility analy-
sis, one compound per carcinogen class (GTX: genotoxic 
carcinogens, NGTX: non-genotoxic carcinogens, NC: non-
carcinogens) was selected among the compounds tested in 
the training phase of the project and coded. The genotoxic 
carcinogens were benzo[a]pyrene (CAS 50-32-8, coded as 
compound D) for the liver and potassium bromate (CAS 
7758-01-2, compound G) for the kidney, the non-genotoxic 
carcinogens were tetradecanoyl phorbol acetate (CAS 
16561-29-8, compound E) for the liver and ochratoxin 
A (CAS 303-47-9, compound B) for the kidney, and the 
non-carcinogen was clonidine hydrochloride (CAS 4205-
91-8, compounds F and A) for both assays (see Suppl. 
material 4). The purchase, coding and distribution of the 
test chemicals to the participating laboratories were under 
the responsibility of the University of Maastricht.

Training data

A training data set was generated prior to the inter-labora-
tory comparison in order to allow identification of discrimi-
native response gene expression patterns for the carcino-
genicity classes and calculating background distributions 
for the different correlation and reproducibility meas-
ures. Both cell lines, HepaRG and RPTEC/TERT1, were 
exposed to 30 chemicals, i.e., ten GTX, ten NGTX and ten 
NC each (Vinken et  al. 2008). All data were measured at 
IC10 concentration and at different time points (6 h (kidney 

only), 24 and 72 h) and were compared with DMSO time-
matched vehicle control experiments. All treatment/con-
trol experiments were performed with three biological 
replicates. The list of compounds is summarized in Suppl. 
Table  1. Experimental procedures were as described in 
Doktorova et al. (2013, 2014), Limonciel et al. (2012) and 
Radford et al. (2012).

Inter‑laboratory study design

To assess transferability and reproducibility, the three 
coded chemicals were tested by three laboratories for each 
test model [for HepaRG: Vrije Universiteit Brussel (VUB), 
Biopredic (BPI) and University Hospital La Fee Valencia 
(HUL); for RPTEC/TERT1: University College Dublin 
(UCD), Medical University Innsbruck (IMU) and Liver-
pool John Moores University (LJM)]. VUB acted as lead 
laboratory for the liver model, and UCD was the lead labo-
ratory for the kidney model. As part of the transferability 
phase, the preparatory work included training of the partici-
pating laboratories on the respective test methods, agree-
ment on and finalization of the standard operating proce-
dures (SOPs). Microarray experiments were centralized 
and conducted at an independent site (University of Maas-
tricht, UM) as was the purchase, coding and distribution 
of the test chemicals to the participating laboratories. The 
bioinformatics analyses were done by GeneData AG (GD, 
workflow 1) and Max Planck Institute for Molecular Genet-
ics (MPI, workflow 2). Regulatory advice and study coordi-
nation were done by the European Union Reference Labo-
ratory for Alternatives to Animal Testing (EURL ECVAM) 
(Suppl. Fig. 1).

Experimental design

In both models, the IC10 concentration was established 
independently by each laboratory according to the agreed 
SOPs. However, before proceeding to the main experi-
ments, the cytotoxicity results were compared across the 
laboratories and discussed to identify potential outliers, 
based on criteria defined by the lead laboratories. In all sub-
sequent transcriptomics experiments, each laboratory used 
the respective IC10 dose found in the initial experiments. 
For the kidney model, dose range finding was performed 
in a stepwise approach. The 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide test (MTT) was initially 
carried out in three runs. An initial MTT experiment in 
96-well plates using a wide range of concentrations was 
run to establish a narrow range for the second (in 96-well 
plates) and third MTT tests (in 6-well plates and 24-well 
plates for kidney and liver, respectively). The values 
obtained in the three experiments were then used by each 
laboratory in the mean IC10 calculations. When necessary, 
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for the kidney assay the supernatant LDH and supernatant 
lactate assay were also performed (Limonciel et al. 2011). 
As a result, each laboratory treated its cells at its own IC10 
concentration. This resulted in a moderate variation of the 
concentration levels across the different laboratories (coef-
ficients of variation between 0.32 and 0.58).

To address inter-laboratory reproducibility for in  vitro 
toxicogenomics assays, the following design of the experi-
ments was employed (Suppl. Fig. 1):

•	 HepaRG cells were exposed to three blinded com-
pounds (named D, E and F) at IC10 concentration for 
24 and 72 h. Three replicate hybridization experiments 
were performed in each case. Response data were com-
pared with respective DMSO controls. Here, more rep-
licates were used per time point, six for HUL and BPI 
and nine for VUB. All experiments were independently 
conducted in parallel in three different laboratories 
(VUB lead lab, BPI and HUL), and in total, 54 treat-
ment experiments and 42 DMSO time-matched control 
experiments were generated.

•	 RPTEC/TERT1 cells were exposed to three blinded 
compounds (named A, B and G) at IC10 concentration 
for 6, 24 and 72 h. Response data were compared with 
respective DMSO controls. Three replicate hybridi-
zation experiments were performed in each case. All 
experiments were independently conducted in parallel 
in three different laboratories (UCD lead lab, LJM and 
IMU), and in total, 81 treatment experiments and 27 
DMSO time-matched control experiments were gener-
ated.

Microarray quality control, probe annotation 
and pre‑processing of data

In order to test for variations induced by bioinformat-
ics protocols, two different workflows were applied inde-
pendently (Fig.  1). Workflow 1 used MAS5 condensation 
algorithm with the original chip description file (cdf) pro-
vided by Affymetrix. To assess the quality, the microarray 
data were pre-processed using the Refiner Array module 
from the GeneData Expressionist© system (GeneData AG, 

Fig. 1   Schema of the pre-validation bioinformatics workflows. Goal 
of both workflows is to judge inter-laboratory robustness and repro-
ducibility from a pair of experiments with the same chemical treat-
ments measured in two different laboratories. In each case, treatment 
and control samples undergo computational steps at different levels, 
starting from the pre-processing level where oligoprobes are assigned 
to probe sets either by using standard Affymetrix annotation or by 
remapping using custom cdf files, normalization and condensing of 
the experimental replicates. The next level consists of the judgment 
of reproducibility and contains heuristic statistics that either use the 
training set or not. Workflow 1 (left column of the schema) uses over-

lap of ranked fold-changes from the two experiments, plotting these 
overlaps as a function of the selected group size followed by evalu-
ating the AUC. Workflow 2 sets up background distributions from 
the training data with several measures of correlation and overlap 
between the two experiments followed by computing P values from 
these background distributions for the pair of experiments and sum-
marizing these P values by Fisher’s combined probability test. The 
third level uses the training data to classify the unknown chemical 
used for both experiments by using either support vector machines or 
ANOVA
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Basel, Switzerland). Workflow 2 used alternative, or “cus-
tom,” cdf files as described in Dai et al. (2005) followed by 
normalization with GC-RMA as implemented in R version 
2.13.0 on a Linux 64-bit system. It is important to point out 
that the workflows differ largely in the assignment of oligo-
probe annotation in the sense that:

1.	 probes can match multiple gene loci (workflow 1) ver-
sus probes match a unique gene locus (workflow 2),

2.	 probe sets per gene are uniform in size (i.e., 11 probes 
per probe set, workflow 1) versus probe sets are not 
uniform in size but have a varying number of probes 
(≥3, workflow 2),

3.	 the resulting number of probe sets/genes differs 
(54,613 probe sets, workflow 1; and 18,919 genes, 
workflow 2).

Measures for assessing robustness and inter‑laboratory 
reproducibility

Workflow 1 The MAS5 P value was set to 1 in order to 
avoid missing values (probe sets called “absent” using the 
recommended detection P value threshold of 0.05). The 
expression values were log-transformed and the geomet-
ric mean was determined for each group of replicates. The 
fold-changes between the treatments and the DMSO con-
trols were ranked, and the inter-laboratory reproducibility 
was determined using these ranked fold-changes for each 
treatment. Briefly, the overlaps of the top 20, 50, 100, 200, 
500, 1000, 2000, 5000, 10,000 and 20,000 ranked tran-
scripts were determined for each treatment group (there 
are overall 54,613 probe sets on the microarray). Random 
overlaps were determined using the formula

P values or Benjamini–Hochberg q values were calcu-
lated with Fisher’s exact test. The data were plotted with 
the number of top-ranked genes from the selected treat-
ment (reference) on the X-axis versus the percentages of 
overlaps with the two compared treatments on the Y-axis. 
For the resulting curves, the area under curves (AUC) 
was calculated and the resulting AUCs were used to judge 
reproducibility.

Workflow 2 The average of the treatment and control 
experiments was computed from the replicate experiments 
for each compound, and for each pair of experiments, sev-
eral measures of correlation and overlap were computed:

•	 Pearson correlation among the entire set of 18,919 
genes. The range of this measure is [−1, 1].

•	 Pearson correlation among the set of response genes 
that show a significant expression change with at least 
one compound from the training sample. Response 

#{top-ranked probe sets}/54, 613.

genes were identified with Student’s unpaired t test 
with P  <  0.05 comparing all thirty training compound 
treatments against their controls. The respective lists 
of differentially expressed genes were merged to gain 
a list of overall response genes, which resulted in 7837 
response genes for HepaRG and 10,831 response genes 
for RPTEC/TERT1 (range [−1, 1]).

•	 In addition to the two correlation measures, the com-
monality in differentially expressed genes for two treat-
ment experiments was assessed. For that, let Ni denote 
the number of differentially expressed genes in experi-
ment i, Nj the number of differentially expressed genes 
in experiment j and Nij the overlap of both lists; then, a 
measure of commonality (Cij) is defined by

Note that with perfect overlap, this measure equals 1, 
while in case of no overlap, the measure is 0, making 
the range [0,1]. This measure is called the Fowlkes and 
Mallows statistic and has the interpretation of a nor-
malized dot product (Fowlkes and Mallows 1983).

For all three measures, the training data set was used for 
the construction of background distributions and empirical 
P values were computed in order to judge the significance 
of the observation. The three P values were summarized 
using Fisher’s combined probability test that judges the sig-
nificance of independent extreme value tests. The test sta-
tistic is X = −2 * Σi ln(pi) where pi is the P value of the ith 
test, i = 1, 2, 3, and ln is the natural logarithm. The signifi-
cance of X can then be judged by a Chi-square distribution 
with 2*K (K = number of performance measures) degrees 
of freedom (in our case, 6 degrees of freedom). Since the 
performance measures were not independent, they needed 
to be corrected for dependency. This was done with the 
transformation P valuecorr  =  P value  *  (K  +  1)/(2  K). 
Thus, for a pair of reproducible experiments, we required 
that the summarized empirical P value should be <0.0333 
(=0.05 × 4/6).

Measures for predicting carcinogenic hazard

Both workflows incorporated the training set of 30 com-
pounds (ten GTX, ten NGTX and ten NC) for both cellu-
lar systems for the prediction of the unknown compounds 
using different numerical methods.

Workflow 1 Cross-validations with the training data 
sets were performed with Genedata Analyst with support 
vector machine (SVM) (Cristianini and Shawe-Taylor 
2000) as classifier (penalty =  10, kernel =  linear) and 
K-fold cross-validation with K  =  10 and 10 repeats. 
Briefly, data were divided into 10 disjoined subsets of 

Cij =
Nij

√

Ni ∗ Nj

.
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equal size, and successively, one of these subsets was 
used for validation and the others for training. In some 
cases, a critical test of the internal consistency of a ref-
erence compendium was performed with a groupwise 
cross-validation where the biological replicates of each 
compound at a certain concentration and time point 
were removed as groups into the test set. Training sets 
for cross-validations consisted of the GTX, NGTX and 
NC compounds, with or without the DMSO controls. For 
the HepaRG model, the most robust reference compen-
dium included all experiments (IC10 for 24 and 72  h). 
However, to obtain a robust reference compendium, 
the experiments had to be half-z-normalized in order to 
remove batch effects. For the kidney RPTEC/TERT1 
model, the most robust reference compendium was again 
obtained using all experiments (IC10 for 6, 24 and 72 h) 
but similarly robust was the reference compendium using 
only the 72-h experiments. Half-z normalization was 
not necessary for these data sets because no clear batch 
effect could be observed. Furthermore, supervised learn-
ing methods were used to identify the set of genes that 
minimizes the prediction error and are therefore the best 
predictors. Such genes can be used to enhance the per-
formance of a classifier and can also be used for biologi-
cal interpretation. As gene ranking method, we applied 
the recursive feature elimination (RFE) method (Guyon 
et  al. 2002). Gene rankings did not reduce significantly 
the misclassification rates but reduced the number of 
transcripts for the training sets in order to discriminate 
between the toxicity classes and for classification analy-
ses with the blinded compounds.

Workflow 2 One-way analysis of variance (ANOVA) 
was performed with the training set. Since ANOVA 
judges the inter-class variance against the intra-class 
variance, the number of significant genes (F test P 
value <0.001) indicates whether the intra-class variance 
is smaller than the variance between classes. Adding 
a new (and unknown) compound to its correct toxicity 
class would yield a larger number of significant genes 
than adding the compound to the wrong toxicity class. 
Thus, the idea of the prediction method is to assign the 
unknown compound to the toxicity class with the highest 
number of significant genes. Of course one has to take 
into account the total number of significant genes per 
compound and per toxicity class (the marginals) in order 
to account for bias. Thus, as classification score, the log2 
ratio of observed versus expected number of significant 
ANOVA genes was computed, and the unknown com-
pound was assigned to the toxicity class with the highest 
classification score.

The different steps of both workflows are summarized 
in Fig. 1.

Results

Inter‑laboratory reproducibility: experimental 
considerations

Training of the laboratories was a necessary step before 
embarking in an inter-laboratory study, and its aim was 
to ensure that all participants had a good comprehen-
sion of the purpose of the study and that SOPs were well 
understood and harmonized before the initiation of the 
experimental phase. The calculation of IC10 appeared to 
be the most challenging step of the experimental phase of 
the study. The precise IC10 determination was especially 
difficult for compounds that induce a low cytotoxicity. 
This difficulty was solved by refining and better defin-
ing the criteria for the evaluation of cytotoxicity. For the 
kidney cells, the calculation of IC10 based on the MTT 
assay alone appeared to be problematic since low concen-
trations of compounds showed increased MTT conver-
sion compared to controls, possibly due to an increase in 
redox potential. The MTT experiments were thus comple-
mented with the LDH assay, the supernatant lactate assay 
and morphological examination including loss of domes 
(indicative of loss of epithelial barrier function) where 
appropriate.

Overall, the laboratories generated acceptable and com-
parable MTT results for each of the compounds. Based on 
these IC10 values, each laboratory carried out the main 
experiments and generated the samples for transcriptome 
analyses. Among the laboratories evaluating the kidney 
model, LJM encountered some problems with the growth 
of the RPTEC/TERT1 cells, which was very slow possibly 
because of a detected bacterial infection. In this laboratory, 
3–4  weeks was necessary to fully differentiate the cells, 
compared to 2  weeks in the other laboratories. Experi-
mental results of the liver pre-validation have already been 
described in Doktorova et al. (2014).

Inter‑laboratory reproducibility and robustness 
of in vitro assays: workflow 1

Workflow 1 bases judgement of reproducibility of 
two laboratories on rank comparisons. For each of the 
unknown compound treatments, consisting of three rep-
licate experiments and three controls, the geometric 
means and the resulting fold-changes were computed 
and the top 20, 50, 100, 200, 500, 1000, 2000, 5000, 
10,000 and 20,000 ranked transcripts were compared 
across laboratories. In addition, the AUCs from the 20 
to the 5000 top-ranked transcripts were evaluated. The 
results from these inter-laboratory comparisons show 
for the treatments of the HepaRG cells that up to 50 % 
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overlapping transcripts can be detected using the top 
20 ranked transcripts and up to 60 % overlaps using the 
top 20,000 ranked transcripts (Fig.  2). Comparing the 
AUCs between the 20 and 5000 top-ranked transcripts 
show that up to ~35 % of the compared treatments over-
lap with the reference treatment. The procedure led to 
a clear separation of reproducible from non-reproduc-
ible experiments. For example, compound D showed 
high overlaps with all pairwise comparisons (Fig.  2a), 
whereas compound F experiment of BPI shows over-
laps close to randomness with the other two laboratories 
(Fig. 2b). The RPTEC/TERT1 assay showed high over-
laps for all compounds when comparing UCD and IMU 
data, while the overlap of LJM with the other data was 
rather poor as is shown exemplarily for compound G 
(Fig.  2c, d), reflecting the problems with the growth of 
the cells in that laboratory. Comparison of the overlap-
ping transcripts and the AUCs from the two other labo-
ratories show high overlaps of up to 45  %; the highest 
values were obtained comparing the compound B. All 
curves for both assays are shown in Suppl. Fig. 2 and 3.

Inter‑laboratory reproducibility and robustness 
of in vitro assays: workflow 2

An immediate and crucial question is whether the cells 
express the same genes when cultivated independently 
in three different laboratories. We computed the average 
detection P value for each gene across the replicated exper-
iments of each individual laboratory as provided by the 
MAS5 software. This P value indicates whether the meas-
ured intensity of the oligoprobe set is significantly different 
from the background intensity and thus whether the corre-
sponding gene is expressed (P value <0.01) or not (P value 
≥0.01) in the system under study.

Figure  3 shows the results for the genotoxic com-
pounds D (HepaRG) and G (RPTEC/TERT1): 9285 
genes were expressed upon treatment in the three inde-
pendent HepaRG cell systems, of which 8295 genes were 
expressed in all three systems (89.34  %) and 8784 genes 
(94.6  %) were expressed in at least two of the three sys-
tems (Fig.  3a). There is no significant deviation from the 
rate of genes expressed in the cell system established in 

Fig. 2   Inter-laboratory reproducibility—workflow 1: rank overlaps. 
For each pair of experiments, the transcripts were ranked according to 
their fold-changes (treatment vs. control) and the overlap of the top-
ranked transcripts was computed. a HepaRG assay from the lead lab-
oratory (VUB) compared to the other two laboratories with the geno-
toxic compound D. Reproducibility is high compared to the random 
overlap curve in grey. b Non-reproducible result from the experiment 

with compound F at BPI with the other two laboratories. c RPTEC/
TERT1 assay from the lead laboratory (UCD) compared to the other 
two laboratories with the genotoxic compound G. Overlap curve with 
IMU is significantly higher compared to the random overlap, while 
curve with LJM is not. d Non-reproducible result with LJM com-
pared to the other two laboratories
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the lead lab compared to the other two laboratories. While 
8680 genes were expressed in the HepaRG system estab-
lished at VUB, this number was 8708 at BPI (factor 1.003) 
and 8976 at HUL (factor 1.034). In the RPTEC/TERT1 
system, a slightly lower number of genes were expressed 
upon treatment (8697). Of these genes, 6046 (69.52  %) 
were expressed in all three laboratories and 7908 (90.93 %) 
were expressed in at least two (Fig. 3b). The poorer over-
all concordance of expressed genes is mainly due to results 
from one laboratory (LJM) which are less comparable with 
the other two. In consequence, there is a significant devia-
tion from the rate of expressed genes established at the 
lead lab. While 8482 genes were expressed in the RPTEC/
TERT1 system at UCD, this rate is similar at IMU (7962, 
factor 0.94) but much lower at LJM (6207, factor 0.73). 
We specifically investigated the functional characteristics 
of the 1773 genes that were exclusively expressed in the 
RPTEC/TERT1 systems at UCD and IMU and computed 

gene ontology categories (Ashburner et al. 2000) that were 
over-represented by these genes. Over-represented func-
tional categories were associated with mitochondrion (211 
genes) and organelle organization, in particular centrosome 
(62) and cilium (28). This might point to the fact that the 
LJM system might miss some important cellular functions 
(Fig. 3c). Additional investigations into the problems with 
the RPTEC/TERT1 cell culture in LJM indicated that the 
cells were consuming glucose at a much higher rate than 
normal and that glutamate and lactate were accumulating at 
a much higher rate in the cells. These findings plus the iden-
tification of gene expression relevant to an E. coli infection 
pathway in the samples from LJM but not those from UCD 
and IMU indicate that a bacterial infection could be respon-
sible for the lack of inter-laboratory reproducibility.

Finally, we investigated the overlap in expressed genes 
in all three liver and two kidney systems (Fig. 3d). Out of 
9199 genes that were expressed in both in vitro assays upon 

Fig. 3   Gene expression in the assay systems. a VENN diagram of 
genes expressed in the HepaRG assay measured in the three differ-
ent laboratories. b VENN diagram of genes expressed in the RPTEC/
TERT1 assay measured in the three laboratories. c GO functional 

classes enriched by the 1773 genes (P < 10−4) that were exclusively 
expressed in two kidney laboratories (UCD and IMU) and that were 
missed by the third (LJM). d VENN diagram of genes expressed by 
the two assays
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genotoxic treatment, a large fraction of 6915 genes was 
commonly expressed in both cellular assays (75.17 %).

Using the training data, we computed background dis-
tributions for all three performance measures based on 
pairwise comparisons of the different treatments (see 
“Materials and methods” section). Given N = 30 treatment 
experiments, these background distributions were com-
posed of N(N − 1)/2 = 435 different values derived from 
all possible pairs of experiments. The three background 
distributions describe what performance of reproducibility/
robustness one would expect if the two treatment experi-
ments were derived from different compounds, and the 
assumption is that the performance measures should be 
significantly better if the two treatment experiments are 
describing the same compound used in two different labo-
ratories. Thus, for each observation (same compound, dif-
ferent laboratories), the respective performance measure 
should be in the upper tail of the background distribution, 
and computing the empirical P value with respect to the 
background distribution should give us an indicator on how 
reproducible this measurement was.

Figure 4a shows the results for the liver assay with the 
correlation computed from all genes as performance meas-
ure. While most of the experiments were reproducible, the 
experiment with compound F of BPI was not reproducible 

with the other two laboratories. This result is also consist-
ent with respect to the performance measure of workflow 1, 
and the corrected summary P values are shown in Table 1 
for all pairwise comparisons.

Figure 4b shows the results for the RPTEC/TERT1 assay 
with the overall correlation as performance measure. While 
the experiments of UCD and IMU were judged reproduc-
ible, LJM experiments were not reproducible with the other 
laboratories. This result is also consistent with respect to 
the other performance measures, and the corrected sum-
mary P values are shown in Table 1.

Reproducibility results of the performance measures 
were also consistent with hierarchical clustering of gene 
expression data. Response patterns (log2 ratios derived 
from treatment versus control replicates) were generated 
for each experiment and combined into a gene expression 
matrix (3 compounds ×  3 labs ×  2 assays; N =  18 col-
umns). Then, hierarchical clustering was applied, and the 
resulting dendrogram is shown in Fig. 4c. While the Hep-
aRG and parts of the RPTEC/TERT1 results (UCD and 
IMU experiments) form well-defined sub-clusters sepa-
rated by cellular system (liver, kidney) and compound class 
(GTX, NGTX and NC), the LJM patterns are most distinct 
to all other experiments and are separate according to nei-
ther tissue nor compound class.

Fig. 4   Inter-laboratory reproducibility—workflow 2: extreme 
value distributions. a Background distribution derived from Hep-
aRG expression data of all pairwise treatments of the training set 
using Pearson correlation computed for all genes as quality indica-
tor. The red line shows the P value cutoff (P < 0.05). Dots refer to 
the pairwise correlations with the different compounds (red: GTX 
compound; blue: NGTX compound; green: NC compound). b Back-

ground distribution of overall Pearson correlation with the RPTEC/
TERT1 assay. c Hierarchical clustering of all gene expression data. 
Blue panel: HepaRG experiments, purple panel: RPTEC/TERT1 
experiments. Clustering was done with GeneCluster 3.0 using Euclid-
ian distance as similarity measure and complete linkage as update 
rule, and visualization of the dendrogram was done with TreeView 
(color figure online)
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Re‑classification of unknown chemicals: workflow 1

Cross-validations with the HepaRG training sets were per-
formed with or without the DMSO controls. Lowest mis-
classification rates with 91  % correctly classified experi-
ments were obtained with half-z-normalized data without 
the controls. However, all other tested training sets result 
in misclassification rates <17  %. Classifying the com-
pounds D, E and F and the corresponding DMSO con-
trols with SVM as classifier using the reference compen-
dium consisting of the thirty compounds and the top 5000 
ranked transcripts selected by the recursive feature elimi-
nation procedure showed that the DMSO controls classify 
clearly as controls (Fig. 5a). Compound D was unequivo-
cally classified as GTX, but the compounds E and F did 
not show clear tendencies of classifications into a toxicity 
class; they are classified equally well as non-genotoxic or 
as non-carcinogen but definitely not as genotoxic. E 72-h 
experiments were classified mostly as NGTX. In regard to 

reproducibility, most of the treatments from the three labo-
ratories were classified into the same toxicity class.

Cross-validations with the RPTEC/TERT1 training sets 
were performed either with all time points or for each time 
point (6, 24, 72 h) separately, with only MAS5-condensed 
data or MAS5-condensed and relative normalized data. 
Lowest misclassification rates (>80  % correctly classi-
fied experiments) were obtained using either the experi-
ments from all time points (without the DMSO controls) 
or the 72-h experiments alone. The 6- or 24-h experiments 
alone resulted in higher misclassification rates (~30  %). 
A relative normalization does not lead to lower misclas-
sification rates. Classifications with SVM as classifier of 
the compounds A, B and G into the reference compendia 
consisting of the previously described training sets can 
be summarized as follows: compound A is classified as 
NC, compound B as NGTX and compound G as GTX. 
Figure  5b shows as an example the classification results 
using the reference compendium consisting of MAS5-
condensed experiments without DMSO controls using the 
top 5000 ranked transcripts determined by RFE. In regard 
to reproducibility, most of the three compounds from the 
three laboratories were classified into the same toxicity 
class.

Re‑classification of unknown chemicals: workflow 2

Workflow 2 applied an ANOVA method (see “Materials 
and methods” section) using the training set. Blinded com-
pounds were successively assigned to each toxicity class, 
and in each case, the number of significant genes was 
recorded. This observed number was then compared to the 
expected number of significant genes, and the unknown 
compound was assigned to the toxicity class with the high-
est deviation of observed versus expected numbers (log2 
ratios). Table 2 gives an overview for both systems.

As a result of the hazard prediction for HepaRG, com-
pound D was predicted consistently as GTX by all three 
laboratories, whereas for the two other compounds, pre-
diction was not as clear. For the RPTEC/TERT1 model, all 
laboratories showed consistent predictions, i.e., compound 
G was predicted as GTX, compound B as NGTX and com-
pound A as NC.

Discussion

Overall assessment of inter‑laboratory reproducibility

In this study, we addressed the issue of judging reproduci-
bility of two human in vitro assays for carcinogenicity test-
ing (1) across different laboratories and (2) with different 
bioinformatics protocols. As the primary result, we found 

Table 1   Inter-laboratory reproducibility

For each pair of treatment experiments (col. “Lab 1” and “Lab 2”), 
the corresponding empirical P values with respect to three different 
performance measures were computed from the respective back-
ground distributions (c: empirical P value with respect to the correla-
tion of all genes; c*: empirical P value with respect to the correlation 
of differentially expressed “response” genes; FM: empirical P value 
of Fowlkes and Mallows statistic)

A final summary statistic was computed with Fisher’s combined 
probability test corrected for dependency of experiments (P value 
cor.)

Lab 1 Lab 2 c c* FM P value cor.

(A) HepaRG

 BPI D HUL D 0 0 0 1.583E−21

 HUL D VUB D 0.002 0.002 0.002 4.596E−04

 VUB D BPI D 0.002 0.002 0.002 4.596E−04

 BPI E HUL E 0.011 0.011 0.002 2.759E−03

 BPI E VUB E 0.011 0.011 0.007 5.006E−03

 HUL E VUB E 0.011 0.007 0.002 2.085E−03

 HUL F VUB F 0.034 0.021 0.021 2.161E−02

 BPI F HUL F 0.159 0.152 0.092 2.272E−01

 BPI F VUB F 0.207 0.143 0.117 2.724E−01

(B) RPTEC/TERT1

 IMU A UCD A 0 0 0.005 2.374E−15

 LJM A UCD A 0.908 0.899 0.253 9.099E−01

 IMU A LJM A 0.915 0.916 0.163 8.516E−01

 IMU B UCD B 0 0 0 1.583E−21

 LJM B UCD B 0.377 0.402 0.009 1.871E−01

 IMU B LJM B 0.761 0.775 0.011 3.535E−01

 IMU G UCD G 0.002 0 0.007 2.268E−09

 IMU G LJM G 0.329 0.368 0.057 3.569E−01

 LJM G UCD G 0.444 0.508 0.076 4.906E−01
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that bioinformatics protocols, although varying in essential 
parts, generate highly similar results with respect to assess-
ing inter-laboratory reproducibility, compound classifica-
tion and identification of non-reproducible experimental 
outliers. The protocols covered evaluation of response gene 
lists, correlation analyses, multivariate statistical methods 
such as support vector machine classification and analysis 
of variance.

Furthermore, the transcriptome-based comparisons 
revealed that the HepaRG model generated reproducible 
results with the exception of a single experiment in one 
laboratory. Regarding the RPTEC/TERT1 model, two labo-
ratories showed highly consistent results, while one labo-
ratory generated results which appear to be outliers. This 
outcome was in line with experimental observations that 
revealed problems related to the culturing of cells in one of 

the laboratories (much slower cell growth in comparison to 
the other laboratories). Additional metabolomics and gene 
enrichment analyses revealed that the problems were most 
likely due to an E. coli infection. Furthermore, the result 
showed the importance of SOPs for such testing assays and 
the necessity for experienced training: While two labora-
tories have had several years of prior experience with the 
RPTEC/TERT1 assays, the third laboratory used the cells 
for the first time in this study.

Overall assessment of hazard prediction

Hazard prediction was carried out with two different 
quantitative methods in our study, ANOVA and SVM, 
and both methods led to similar predictions. It should 
be noted that pivotal for such classification of unknown 

Fig. 5   Re-classification 
results—workflow 1. Classifica-
tion of the unknown compounds 
into the reference compendia 
was performed with support 
vector machine as classifier with 
a linear kernel and a penalty of 
10. The numbers in the table 
represent the distances to the 
hyperplanes determined by the 
SVM. Positive values indicate 
into which class unknowns are 
classified, and negative values 
to which class they have the 
highest distance. Values around 
zero indicate that an unknown is 
classified very close to a hyper-
plane. a Classification of D, E 
and F into HepaRG reference 
compendium consisting of the 
training set of thirty chemicals. 
MAS5-condensed IC10 experi-
ments with DMSO and the 
corresponding top 5000 ranked 
transcripts determined by recur-
sive feature elimination (RFE). 
b Classification of A, B and G 
into RPTEC/TERT1 reference 
compendium consisting of the 
training set of thirty chemicals. 
MAS5-condensed experiments 
without DMSO using the cor-
responding top 5000 ranked 
transcripts determined by RFE
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compounds is the use of a training or reference com-
pendium. This has been first conceptualized by the 
connectivity mapping approach in the domain of drug 
development (Lamb et al. 2006) and has become a help-
ful method for toxicogenomics (Caiment et  al. 2014). 
In our study, we used the gene expression signatures of 
30 chemicals (ten GTX, ten NGTX and ten NC com-
pounds) as a training set for each assay system. Most 
interestingly, in the kidney assay, both classification 
methods (SVM and ANOVA) yielded correct re-clas-
sifications of compounds that were consistent between 
laboratories (Fig. 5; Table 2) although the different cor-
relation figures indicated that most pairs of experiments 
were non-reproducible among the different laboratories 
(six out of nine, Table  1). This shows that the use of 
a proper reference set of well-characterized compounds 
is able to compensate even for high variations in gene 
expression outcome as long as certain key response sig-
nals remain activated.

However, it should be emphasized that—although 
the reference compendium is likely to grow substan-
tially over time given the number of newly generated 
data sets each year—the classification of unknown com-
pounds with no previous screening in the compendium 
remains a challenging task and it is likely that for such 
compounds, classification accuracy will decrease, in 
particular when considering different classes of carci-
nogenicity (i.e., genotoxic and non-genotoxic carcino-
gens). It has been recently shown that classification 
accuracy, when discriminating carcinogens from non-
carcinogens in rat tissue, is in the order of 75–80  % 
(Gusenleitner et  al. 2014), which can be considered as 
an upper benchmark.

Assay system comparison

The assay systems used in this study comprised HepaRG, 
which exerts a cancerous phenotype due to its origin, and 
the non-cancerous RPTEC/TERT1 system. It is interesting 
that the liver assay had difficulties discriminating between 
NGTX and NC compounds (Table  2; Fig.  5), which was 
already reported previously (Doktorova et  al. 2014). In 
contrast, the kidney assay was able to classify all three 
compound classes correctly.

RPTEC/TERT1 cells are derived from non-cancerous 
renal tissue and were immortalized without the use of p53 
interfering viral oncogenes (Wieser et al. 2008). The cells 
exhibit a contact-dependent differentiation, which is asso-
ciated with an increased activation of p53 (Aschauer et al. 
2013). Thus, the better discrimination between NGTX and 
NC compounds in the kidney model most likely reflects the 
normal wild-type p53 activity, which is potentially more 
suitable for detecting non-genotoxic, subtle changes in can-
cer pathways as induced by NGTX compounds.

Single time point versus time series

We have used several time points post-treatment in our 
study, and Fig. 5 shows that classification of data derived 
from these different time points yielded similar results. 
However, reproducibility analysis was mostly based on 
a single time point after chemical exposure (72  h) and 
a single dosage (IC10), and the main issue was the ques-
tion of inter-laboratory reproducibility of this static pic-
ture. It should be noted that generally toxicogenomics 
studies involve several time points and dosage regimens. 
Thus, reproducibility assessment of time series would be 

Table 2   Hazard prediction 
results for the unknown 
compounds using ANOVA

Values describe the proportion of observed vs. expected significant genes (log2 ratio) given the respective 
grouping of the compound (columns) into the respective toxicity group (rows)

Highest values in each column >0.1 are shown in bold

RPTEC/TERT1 HepaRG

LJM A B G BPI D E F

GTX −0.284 −0.298 0.463 GTX 0.179 −0.012 −0.177

NGTX 0.046 0.153 −0.229 NGTX −0.093 −0.002 0.084

NC 0.165 0.072 −0.287 NC −0.135 0.016 0.102

UCD A B G HUL D E F

GTX −0.353 −0.218 0.443 GTX 0.261 −0.032 −0.244

NGTX 0.032 0.292 −0.409 NGTX −0.144 0.009 0.109

NC 0.265 −0.168 −0.146 NC −0.231 0.029 0.153

IMU A B G VUB D E F

GTX −0.308 −0.078 0.312 GTX 0.144 −0.024 −0.133

NGTX 0.071 0.184 −0.275 NGTX −0.063 0.010 0.050

NC 0.209 −0.134 −0.117 NC −0.096 0.014 0.076



2227Arch Toxicol (2016) 90:2215–2229	

1 3

of interest but could not be addressed by this work. Build-
ing statistical models from time course and multiple dosage 
data could be done with established statistical tools such as 
limma (Ritchie et al. 2015) or STEM (Ernst and Bar-Joseph 
2006), and it is anticipated that such time series analysis 
will improve reproducibility judgement as well as hazard 
classification.

Transcriptomics as a platform for in vitro analysis 
of chemical carcinogenesis

The central read-out of our study was the transcriptome 
of the cells under study measured with microarrays. This 
is similar to large worldwide studies, such as TG-GATES 
(Kiyosawa et  al. 2009) and DrugMatrix (Ganter et  al. 
2005), and it has been shown that reliable classifiers can 
be retrieved from such data (Gusenleitner et  al. (2014)). 
Additionally, in light of technology development, there are 
attempts to improve transcriptomics-based toxicogenomics 
by the use of high-throughput sequencing platforms which 
provide more complete genomic signatures and novel infor-
mation, for example on differential splicing (van Delft et al. 
2012), and which appear increasingly efficient, both in cost 
and in accuracy (Wang et al. 2014).

Overall, our results present a proof of concept that gene 
expression analysis is a robust method for investigating 
chemical-induced injury across different laboratories. This 
study together with previous experience demonstrates the 
importance of rigorous and standardized protocols and the 
need for replicates (N = 3) and appropriate time-matched 
controls (Jennings et al. 2009).

However, we also identified several shortcomings of the 
transcriptome approach. First, it should be noted that chem-
ical exposure can induce variable outputs even for the same 
cellular system under analysis. Figure 3a, b indicates that 
in the case of the HepaRG system, 11 % of the expressed 
genes in the cells were specific for a single laboratory. In 
the case of the RPTEC/TERT1 system, where one labo-
ratory generated an outlier result, this fraction increases 
even to 30 %. The variability problem could in principle be 
solved by involving an even higher number of independ-
ent laboratories for testing the assay system, but such an 
approach seems unpractical because of the imposed costs 
and time efforts. Instead, we recommend a minimum of 
three laboratories for inter-laboratory assessment studies of 
test methods in order to be able to detect such experimen-
tal outliers. Secondly, it might become difficult to assess 
reproducibility when the compound under study induces 
only a small number of transcriptome changes. A poten-
tial solution here could be the incorporation of reference 
compounds in future experimental setups, for example the 
compounds used in this study which have a clear response 
pattern. For testing the reproducibility in liver or kidney 

systems, a list of top-ranked transcripts of a reference com-
pound could be provided and the positive control consisting 
of the same reference compound under the same conditions 
could be compared with the reference.

Finally, it should be noted that a pre-validation study is 
still a challenging task regarding time and costs. With our 
setup (i.e., three laboratories, three replicates per com-
pound with time-matched control), 18 microarray measure-
ments are necessary per time point and dose, which drives 
the cost factor. However, while experimental costs seem to 
decrease due to technology development, the time factor is 
likely to persist. As a matter of fact, the present study took 
about 1 year from training of the laboratories to the analysis 
of data. It should be noted that resources for the manage-
ment of such study (e.g., organization of training, chemical 
coding and distribution, etc.) need also to be considered.
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