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Quantitative Comparison of Large-Scale DNA Enrichment
Sequencing Data

Matthias Lienhard and Lukas Chavez

Abstract

DNA enrichment followed by sequencing (DNA-IP seq) is a versatile tool in molecular biology with a wide
variety of applications. Computational analysis of differential DNA enrichment between conditions is
important for identifying epigenetic alterations in disease compared to healthy controls and for revealing
dynamic epigenetic modifications throughout normal and distorted cell differentiation and development.
We present a protocol for genome-wide comparative analysis of DNA-IP sequencing data to identify
statistically significant differential sequencing coverage between two conditions by considering variation
across replicates. The protocol provides a detailed description for the comparative analysis of DNA-IP
sequencing data including basic data processing, quality controls, and identification of differential enrich-
ment using the Bioconductor package “MEDIPS”.
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1 Introduction

DNA enrichment methods are widely used for genome-wide iden-
tification of many different kinds of epigenetic marks. These tech-
niques include chromatin-immunoprecipitation for localizing
transcription factor binding sites or for revealing the genomic dis-
tributions of diverse types of histone modifications. To profile chro-
matin dynamics of scarce in vivo cell populations, an indexing-first
chromatin IP approach (iChIP) has recently been developed [1].
Methylated DNA Immuno-Precipitation (MeDIP) [2] and methyl-
CpG binding domain (MBD) protein capture [3] are similar tech-
niques, but target the enrichment of DNA fragments containing
methylated cytosines. Similarly, 5-hydroxymethylcytosines can be
detected by antiserum specific to cytosine-5-hydroxymethylenesul-
fate (CMS) after treatment with sodium bisulfite [4]. To identify
genomic loci enriched for DNA fragments in the DNA-IP sample
compared to a negative control (e.g., Input-DNA), many different
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tools are available that can be categorized into the group of peak-
callers [5, 6]. While these tools are capable of identifying DNA
enrichments per sample, it is a common pitfall to rely on the identi-
fied sets of peaks for concluding sample specific and differential
DNA enrichment comparing conditions (Fig. 1c–d). This proce-
dure can cause false results due to several reasons. First, identifica-
tion of peaks depends on statistically derived thresholds for elevated
local sequencing coverage over background. This can lead to situa-
tions where a peak has been detected in one sample but not in the
other although the sequencing coverage differs only slightly
between samples (Fig. 1c–d). Second, peaks can be detected in
both conditions without considering that there exist strong imbal-
ances of DNA enrichment towards increased enrichment in one
condition compared to the other.

Third, peaks often extend over long DNA regions incorporat-
ing several sites of epigenetic marks with distinct dynamics.

Fig. 1 Critical assessment of methods that solely rely on peaks for identifying differential enrichment between
conditions. (a) Reproducible 5hmC enrichment in v6.5 wild type (wt) and Tet2 knock down (kd) mouse
embryonic stem cells [12]. (b) In an ideal situation, differential enrichment is defined by the presence of a peak
in one condition and the absence of enrichment in the other condition. (c) A peak identified in the wt condition
has not been detected in the kd condition although the enrichment appears not to be depleted (red box). A
peak detected in wt extends over a region with a highly variable enrichment profile throughout. Depletion of
DNA enrichment in kd occurs in only a fraction of the peak identified in wt (dashed red box). (d) Schematic
representation of the peak calling threshold problem that causes false positive differential enrichment. To
define differential DNA-IP enrichment between conditions, MEDIPS evaluates the difference of DNA enrich-
ment strength at distinct genomic loci instead of considering the presence or absence of previously calculated
peaks (“peak free approach”)
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Figure 1c shows an example where the genomic coordinates of the
peak identified in a control (wt) condition partly overlaps with a
peak identified in a treatment condition (kd), indicating epigenetic
alterations in only a fraction of the peak region. Appropriate segre-
gation of such peaks into small fractions and subsequent differential
enrichment analysis of each sub-region is mandatory to identify
crucial epigenetic alterations between conditions. Finally, peak call-
ers do not consider information on biological or technical variance
across replicates. We therefore propose a method that calculates
DNA-IP sequencing coverage separately for all samples at small
genome wide windows [7]. Modeling the window coverage using
negative binomial distribution allows for incorporation of
biological variation between replicates. Based on this model, we
apply a statistical test [8] to identify differentially enriched genomic
regions between conditions. Afterwards, neighboring genomic
regions with significant differential coverage into the same direc-
tion (i.e., either loss or gain of DNA enrichment) can be merged to
define distinct loci of epigenetic alterations.

In this protocol we describe the analysis of large-scale ChIP-seq
data obtained by profiling the histone modification H3K4me2 in
naive and TH2 memory (or CCR4 positive, respectively) T cells [9].
We demonstrate how to process and compare data of approx. forty
distinct ChIP-seq assays per condition to ultimately identify cell
type-specific enhancers marked by statistically significant differen-
tial H3K4me2 enrichment.

2 Materials

TheMEDIPS analysis pipeline is implemented as anR/Bioconductor
package, and therefore, runs on a wide variety of UNIX platforms,
MS Windows and MacOS. We recommend installing the latest
version of R freely available at www.r-project.org. The hardware
requirement for the analysis depends on the genome size, the tar-
geted resolution (window size), and the number of samples. We
observe that processing of 84 human samples at distinct genomic
windows of length 500bp requires approx. 40 GB of memory.

2.1 Installation of

MEDIPS

To install the latest version of MEDIPS, it is recommended to first
download and install the latest R version available at www.r-project.
org. Consequently, the latest version of the MEDIPS package will
be installed when employing the Bioconductor installer biocLite. To
install MEDIPS start R and write:

R> source("http://bioconductor.org/biocLite.R")

R> biocLite("MEDIPS")

For this protocol we have employed R version 3.1.2, which is
linked to Bioconductor version 3.0 (www.bioconductor.org)
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containing MEDIPS version 1.17.2. To start a MEDIPS workflow,
the MEDIPS library needs to be loaded into the R environment by
writing:

R> library(MEDIPS)

2.2 Preprocessing

of the Sequencing Data

The typical outputs of IP-sequencing experiments are short
sequencing reads together with quality scores in fastq format. The
H3K4me2-ChIPSeq data processed in this protocol is color-space
sequencing data produced by SOLiD sequencing and the raw data
(csfastq and qual files) but also fastq files are available at GeneEx-
pressionOmnibus under accession id GSE53646 (http://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc¼GSE53646). To repro-
duce the analysis steps described here, ChIP-seq data for naı̈ve and
TH2 samples have to be downloaded (these are the samples
GSM1297924 to GSM1298001). Subheading 3.6 shows an R
script that accomplishes this task by employing the Bioconductor
package SRAdb. In order to apply the MEDIPS analysis, the reads
first have to be aligned to a reference genome using an alignment
tool, such as bowtie [10]. For the example data, the following
alignment parameters have been applied:

> bowtie --sam -m 1 -C hg19 sample_A_runX.fastq sample_A_r-

unX.sam

The option “–sam” determines the output format, -m 1
ensures that only unique hits in the genome are reported, and -C
specifies that the reads are SOLiD colorspace encoded. The script
for aligning the sequencing data is given in Subheading 3.7. Each
sample has been multiplexed and sequenced across several sequenc-
ing lanes and runs. Therefore, data across different lanes and runs
are merged to a single sam file per sample using samtools (http://
samtools.sourceforge.net/). In order to save memory and to facili-
tate fast random access to the alignments, we recommend to sort
the sam files by genomic position, to convert the text based sam
files into a binary and compressed bam format and to create accord-
ing index files using samtools:

> samtools view -Sb sample_A_runX.sam | samtools sort – sample_A_runX

> samtools merge sample_A_runX.bam sample_A_runY.bam [. . .] sample_A

> samtools index sample_A.bam

3 Methods

In this section, we describe a MEDIPS workflow for quality control
and quantitative comparison of ChIP-seq data and explain all rele-
vant options and parameters of the given examples. The according
R script that reproduces the H3K4me2 ChIP-seq data analysis of
naı̈ve and TH2 T-cell subtypes [9] is given in Subheading 3.6. First,
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we import the table containing all sample information into R (this
table is generated in Subheading 3.6):

> samples¼read.table("Seumois_NatImmu2014_sample_table.txt",

header¼T, sep¼"\t", stringsAsFactors¼FALSE)

> head(samples)

accession name

1 GSM1297951 CCR4Neg-Donor19-rep1

2 GSM1297950 CCR4Neg-Donor18-rep2

3 GSM1297957 CCR4Neg-Donor22-rep2

4 GSM1297969 CCR4pos-Donor7-rep1

5 GSM1297977 CCR4pos-Donor11-rep2

6 GSM1297993 CCR4pos-Donor19-rep2

filename celltype

1 bam/GSM1297951_H3K4me2_ChIPSeq_CCR4Neg-Donor19-rep1.bam CCR4Neg

2 bam/GSM1297950_H3K4me2_ChIPSeq_CCR4Neg-Donor18-rep2.bam CCR4Neg

3 bam/GSM1297957_H3K4me2_ChIPSeq_CCR4Neg-Donor22-rep2.bam CCR4Neg

4 bam/GSM1297969_H3K4me2_ChIPSeq_CCR4pos-Donor7-rep1.bam CCR4pos

5 bam/GSM1297977_H3K4me2_ChIPSeq_CCR4pos-Donor11-rep2.bam CCR4pos

6 bam/GSM1297993_H3K4me2_ChIPSeq_CCR4pos-Donor19-rep2.bam CCR4pos

In addition we have to install, load, and specify a reference
BSgenome package. Here, we install and load the human reference
build hg19/GRCh37:

> biocLite("BSgenome.Hsapiens.UCSC.hg19")

> library("BSgenome.Hsapiens.UCSC.hg19")

> reference¼"BSgenome.Hsapiens.UCSC.hg19"

3.1 Parameter

Settings and Quality

Control

3.1.1 Stacked Reads

Due to PCR amplification applied during experimental processing
of ChIP-seq assays, library complexity can become low. In this case
the same DNA fragments are sequenced multiple times what can
lead to elevated amounts of “stacked” reads. Such sequencing reads
will have the same sequence and will align to the same genomic
position. High abundance of stacked reads is indicative for over-
amplification and for libraries constructed from low quantities of
input DNA. To avoid false positive differential enrichment between
conditions due to stacked reads, MEDIPS offers the option to
substitute each stack by only one representative by setting the
uniq parameter of the MEDIPS.createSet() function to TRUE
(uniq¼T). The fraction of reads that build such stacks should be
monitored by checking the standard output of MEDIPS (“Total
number of imported short reads” vs. “Number of unique short
reads”), and by visualizing the bam files in appropriate genome
browsers. Low complexity samples should be excluded from fur-
ther analyses. Please note that the concept of stacked reads is
different to the concept of unique and multiple mapping reads.
Multiple mappers cannot be assigned to a unique position of the
reference genome whereas unique mappers can be assigned to a
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unique position of the reference genome. We typically consider
only unique mappers for differential enrichment analysis although
it is in principle possible to consider multiple mapping positions per
read. However, both multiple and unique mappers can pile up to
stacked reads and will be replaced by only one representative when
setting the uniq parameter of the MEDIPS.createSet() function
accordingly.

3.1.2 Extend Reads The ChIP-seq protocol applied by Seumois et al. [9] generates and
selects DNA fragments of length 100–250 base pairs (bp) for
sequencing. By single-end sequencing, only one end of these
DNA fragments is sequenced and the exact length of the individual
fragments is unknown. Because the sequenced DNA fragments are
typically longer than the actual sequencing reads, MEDIPS offers
the option to extend the reads to the estimated average DNA
fragment length by specifying a concrete value for the extend
parameter of the MEDIPS.createSet() function. Given the DNA
fragment size distribution of 100–250 bp we decided to extend
all sequencing reads to 120 bases (extend ¼120).

3.1.3 Window Size The fine resolution of DNA-IP enrichment experiments for nar-
rowing down the exact location of the epigenetic mark, or the
transcription factor binding site of interest, is restricted by the
length of sonicated and immunoprecipitated DNA fragments.
Consequently, an optimal window size for tiling the genome into
nonoverlapping consecutive genomic regions (“windows”) is influ-
enced by the estimated average DNA fragment length and also by
the expected distribution of the analyzed epigenetic mark across the
genome (broad enrichment vs. sharp peaks). When mapping his-
tone modifications, the maximal resolution of the ChIP-seq data is
limited by the 146 bp DNA sequence that is wrapped around a
nucleosome. However, the higher the targeted resolution of the
results, the deeper sequencing is required. Decreasing the targeted
resolution of the results might compensate lower sequencing cov-
erage, but local effects might be overseen due to data smoothening.
MEDIPS allows for controlling the targeted resolution of the
results by the window_size parameter of the MEDIPS.createSet()
function.

3.1.4 Coverage

Saturation Analysis

An import quality control is to ensure that the sequence complexity
of the libraries and depth of sequencing coverage is sufficient for
subsequent data analysis. In order to assess the effect of the actual
sequencing depth of a given sample as well as the impact of the
window_size parameter on the reproducibility of the results, MED-
IPS offers a coverage saturation analysis that randomly splits the
given sequencing data into distinct subsets of increasing size and
iteratively calculates correlations between such artificially created
technical replicates. Please note that high abundance of stacked
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reads can have an undesired positive impact on the Pearson corre-
lation calculated between two data sets (or data subsets, respec-
tively). Therefore, it is recommended to either use the rank based
Spearman correlation or to remove stacked reads (uniq ¼ T). As a
rule of thumb, an estimated correlation of around 0.9 should be
observed for a sufficient sequencing coverage. If the correlation is
lesser than 0.8, either additional sequencing or a larger window
sizes should be considered. The actual number of reads necessary
for obtaining a sufficient sequencing coverage depends on the
genome size and on the genome wide abundance of the epigenetic
mark of interest or on the number of transcription factor binding
sites, respectively.

The coverage saturation analysis can be applied to individual
samples using the function MEDIPS.saturation(). As input, the
function requires the alignment file of a sample, the reference
genome, and concrete settings for the parameters window_size,
extend, and uniq as described above. Typically it is sufficient to
apply the saturation analysis to only one selected chromosome what
avoids importing the entire alignment file. The results are stored in
an R list object that can be plotted by theMEDIPS.plotSaturation()
function. The following code compares the coverage saturation of an
arbitrary sample for window sizes 150 bp and 500 bp, respectively:

> sat150¼MEDIPS.saturation(file¼samples$filename[1],

reference,

uniq¼TRUE, extend¼120, window_size¼150,

chr.select¼"chr22")

> sat500¼MEDIPS.saturation(file¼samples$filename[1],

reference,

uniq¼TRUE, extend¼120, window_size¼500,

chr.select¼"chr22")

> par(mfrow¼c(1,2))

> MEDIPS.plotSaturation(sat150, main¼
paste(samples$name[1], "Saturation analysis","\nwin-

dow size 150"))

> MEDIPS.plotSaturation(sat500, main¼
paste(samples$name[1], "Saturation analysis","\nwin-

dow size 500"))

As depicted in Fig. 2, the maximal estimated saturation is 0.8 at
a window size of 150 bases, and improves to 0.85 at 500 bases.
Based on these results, we chose a window size of 500 bp for
further analyses.

3.2 Importing

Alignment Data

When having determined the required parameters for window_size,
uniq, and extend, the alignment data can be imported into MED-
IPS by applying the function MEDIPS.createSet() to each of the
samples. For each genomic window, the function counts the num-
ber of overlapping reads regardless of the fraction of the overlap.
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In addition to the three described parameters, the
MEDIPS.createSet() function requires the alignment file (typically
a bam or a bed file) and the name of the reference genome
BSgenome package. Moreover, it is possible to restrict the analysis
to a set of chromosomes by specifying the chr.select parameter.

> CCR4pos1¼MEDIPS.createSet(samples$filename[1],

BSgenome¼reference,

uniq¼FALSE, extend¼120, window_size¼500,

chr.select¼c(paste0("chr", 1:22), "chrX", "chrY") )

We have observed only a moderate level of stacked reads and
therefore, decided to set uniq¼FALSE for this data set (please note
that such a moderate level of stacked reads is rather unusual and
removal of stacked reads is typically recommended). The resulting
MSet objects of several replicates can be concatenated into an R list,
one for each experimental group. Please note, concatenating of
MSet object does notmerge the data and all replicates will be treated
separately in the downstream analysis. In this study, this procedure
results in two lists of MSets, one for naive and one for TH2 T-cells
(for the actual code please see Subheading 3.8). In principle, the
code for three replicates per condition will look similar like this
(please note that the MSets CCR4pos2, CCR4pos3, and Naive1,
Naive2, Naive3 have not been created in this example):

> MSet¼list(

CCR4pos¼c(CCR4pos1, CCR4pos2, CCR4pos3),

Naive¼c(Naive1, Naive2, Naive3))
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Fig. 2 Saturation analysis using window sizes of 150 bp (left) and 500bp (middle). Compared to 150 bp
windows, the lower resolution of 500 bp windows leads to higher correlations (y-axis) between distinct
random subsets throughout the tested range of sequencing depth (x-axis). The x-axis shows the increasing
number of reads randomly assigned to the artificial replicates in each of the iterations. The maximally obtained
estimated saturation increases from 0.8 for 150 bp windows (left) to 0.85 for 500 bp windows (right) when the
entire data set is considered (maximum of the red curve). When applying the saturation analysis to all of the
samples individually, we observe that the window size of 500 bp generally results in a higher maximal
estimated saturation compared to the smaller window size of 150bp (right, box-and-whisker plot)
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3.3 Differential

Coverage Analysis

To identify genomic regions that are significantly differentially
enriched between groups of samples, we will have to (1) normalize
the genome wide count data for different library sizes of the sam-
ples, (2) find a minimal coverage across samples to avoid extensive
unnecessary tests, (3) model variation across replicates, and (4)
apply a statistical test suitable for DNA sequencing derived count
data. An obvious choice for modeling the distribution of count data
is the Poisson distribution. However, our samples are derived from
different individuals with inherent biological variation among these
biological replicates. This variation causes an overdispersed Poisson
distribution, which can be described by the negative binomial
distribution. Please note, to estimate the biological variation, repli-
cates are required. Without replicates, biological variation will be
set to a fixed value; however, this approach will always be an
unsatisfactory approximation of unknown technical and biological
variability. To accomplish the described tasks, MEDIPS employs
the Bioconductor package edgeR [8] and its methods for library
size normalization (TMM) and estimation of common and tag-wise
dispersion. The function MEDIPS.meth() accepts two lists of MSet
objects, each containing an arbitrary number of previously
imported replicates. Moreover, the function requires further
parameter settings for determining the type of statistical test applied
(diff.method¼"edgeR"), the minimal number of read counts per
window across replicates required for a window to be tested for
differential coverage (minRowSum), and others (see also the MED-
IPS vignette at http://www.bioconductor.org/packages/release/
bioc/html/MEDIPS.html).

> resNvPos¼MEDIPS.meth(MSet1¼MSet[["CCR4pos"]], MSet2¼MSet[["Naive"]],

diff.method¼"edgeR", MeDIP¼F, minRowSum¼10)

As a result, the MEDIPS.meth() function returns a table with
test statistics for all windows. In order to depict the differences
between the sets of samples, an M-vs-A-plot can be created from
this table. The M-vs-A-plot contrasts the log ratios (M-value, y-
axis) of the column with column name edgeR.logFC and the average
log coverage (A-value, x-axis) of the column with column name
edgeR.logCPM (see Fig. 3).

While the MEDIPS.meth() function returns a data table con-
taining genome wide data, the function MEDIPS.selectSig() can be
applied to reduce the results to those windows that fulfill the
specified statistical requirements. Available parameters include a
p-value threshold (p.value), the option to apply this threshold to
either the raw (adj¼F) or the adjusted p-value (adj¼T), and a
threshold for the coverage ratio between the two conditions
(ratio). We term windows with significant differential DNA-IP
enrichment at an adjusted p-value of � 0.01 as differentially
enriched regions (DERs). For visualization purpose only (see the
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M-vs-A plot in Fig. 3), we also select windows that fulfill the relaxed
threshold of a raw p-value � 0.005:

> sigNvPos¼ MEDIPS.selectSig(resNvPos, p.value ¼ 0.01,

adj ¼ T)

> trendNvPos¼ MEDIPS.selectSig(resNvPos, p.value¼0.005,

adj¼F)

3.4 Merging

Neighboring DERs

and Annotation

DERs obtained by the MEDIPS.selectSig() function can be either
focal events with no other immediate epigenetic differences in the
vicinity, or they can be located in longer stretches of potential
regulatory regions like for example super enhancers [11]. Adjacent
DERs with imbalanced enrichment towards the same condition can
be merged into extended and distinct loci by applying the function
MEDIPS.mergeFrames(). Here, we are first dividing the DERs into
those that gain H3K4me2 in TH2 cells and those that lose
H3K4me2 in TH2 cells compared to naı̈ve T-cells. Please note,
log2 ratios are reported as log2(MSet1/MSet2):

> sigNvPosGain¼ sigNvPos[which(sigNvPos$edgeR.logFC>0),]

> sigNvPosLoss¼ sigNvPos[which(sigNvPos$edgeR.logFC<0),]
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Fig. 3 “Minus-average” (MA) plots for genomic regions with differences in H3K4me2 enrichment (DERs) for
comparing naı̈ve and TH2 T-cells. Red and orange dots indicate DERs with an adjusted P < 0.05 and raw
P < 0.005, respectively. The MA plot has been generated by processing the entire ChIP-seq data set of naı̈ve
and TH2 memory T-cells [9]

200 Matthias Lienhard and Lukas Chavez



Afterwards, we can merge neighboring DERs:

sigNvPosGainMerged ¼ MEDIPS.mergeFrames(sigNvPosGain)

sigNvPosLossMerged ¼ MEDIPS.mergeFrames(sigNvPosLoss)

To further investigate potential functions of the identifiedDERs,
MEDIPS provides functions to access the ENSEMBL database for
gene annotation and to annotate the DERs by their proximity to
known genes. The function MEDIPS.getAnnotation() connects to
the ENSEMBL database and receives exon, gene or transcription
start site information. The DERs can then be annotated by their
proximity to the obtained annotations by applying the function
MEDIPS.setAnnotation(). Here, we annotate merged DERs by
ENSEMBL transcript names, if they are located in a promoter region
(-1kb to +0.5kb around the transcription start sites):

> tss_ens ¼ MEDIPS.getAnnotation(host¼"www.biomart.org",

dataset¼"hsapiens_gene_ensembl",

annotation¼"TSS",tssSz¼c(-1000,500))

sigNvPosGainMerged ¼ MEDIPS.setAnnotation(sigNvPosGain-

Merged, tss_ens)

sigNvPosLossMerged ¼ MEDIPS.setAnnotation(sigNvPosLoss-

Merged, tss_ens)

3.5 Notes We have described a peak-free approach for identifying statistical
significant differential enrichment of DNA-IP sequencing data at
distinct genome wide small regions. The described method, imple-
mented in the Bioconductor package MEDIPS, enables the quan-
titative comparison of two conditions across an arbitrary number of
biological replicates per group. In addition, we have demonstrated
how to apply these methods for the identification of cell-type specific
enhancers by comparing large scale H4K4me2 ChIP-seq data
between naive and TH2 memory T cells [9]. Although the ChIP-
seq data processed in this protocol is single-end data, MEDIPS
provides the functionality to process paired-end sequencing data
(see the parameter paired of the MEDIPS.createSet() function).

Further functionalities of the MEDIPS package, not demon-
strated in this protocol, include incorporation of Input-DNA
sequencing data. In case such control data is available and genomic
backgrounds vary between the samples (e.g., due to copy number
variations in cancer samples compared to healthy controls), the
parameter CNV of the function MEDIPS.meth() can be enabled
to calculate potential CNVs based on the given Input-seq data.
Subsequently, the fold change of the IP-DNA sequencing data
can be corrected by the fold change of the Input-DNA sequencing
data to exclude DERs that can be explained by differences in the
genomic data alone. Excluding such DERs is controlled by the
ratio and CNV parameters of the MEDIPS.selectSig() function.

The high number of statistical tests applied in such genome
wide screens at small genomic windows can cause a severe multiple
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testing problem in case the number of replicates is small. While the
number of biological replicates available in the discussed study [9]
is sufficiently high for applying stringent significance thresholds to
the corrected p-values, experimental designs with much smaller
sample numbers will likely result in almost no or only a small
number of sufficiently significant adjusted p-values. To overcome
this problem, the number of applied tests can be reduced by two
different ways. First, a minimal number of reads that fall into a
genomic window across all of the samples can be required prior to
testing. By setting the minRowSum of the MEDIPS.meth() func-
tion, the user can specify the number of reads that must fall into a
genomic window in all of the samples together, otherwise this
window will not be tested for differential enrichment. We generally
recommend a minRowSum value of at least 10 to avoid massive
amounts of tests at almost non-covered genomic regions. However,
this value depends on the sequencing depth of the individual sam-
ples and an optimal minRowSum value can be estimated by inves-
tigating the count distribution of the DNA-IP sequencing samples
or of Input-DNA sequencing samples, if available. Please note,
there is currently no method implemented in MEDIPS that esti-
mates an optimal minRowSum parameter. Second, instead of test-
ing genome wide genomic windows, MEDIPS can be applied to
any set of predefined regions of interest. Instead of a window_size
parameter, the function MEDIPS.createROIset() accepts the geno-
mic coordinates of any set of regions of interest as input for its ROI
parameter (see also the man page of this function available by
writing ?MEDIPS.createROIset in R).

Besides applying the statistical test implemented in edgeR [8],
MEDIPS allows for deriving p-values by applying the t-test to each
of the genomic windows, if at least three replicates are available per
condition (see the diff.method and type parameters of theMEDIPS.
meth() function).

Varying enrichment efficiencies of DNA-IP sequencing experi-
ments can have a negative impact on proper differential enrichment
analysis when comparing DNA-IP assays from different batches.
We have previously shown that systematic ChIP-seq batch effects
can introduce likely false positive differential enrichment between
conditions [9]. To approach this issue, MEDIPS version �1.18.0
enables Quantile normalization of the read counts across all sam-
ples prior to testing for differential enrichment between conditions.

The MEDIPS package provides further functionalities for
DNA-IP sequencing data processing, including export of Wiggle
files for visualization of DNA-IP sequencing data in genome brow-
sers (see MEDIPS.exportWig()), merging of data sets in R to avoid
unnecessary merging of bam files (see MEDIPS.mergeSets()), and
others. Moreover, MEDIPS maintains its functionalities specific for
MeDIP-seq experiments, including CpG density normalization
and calculation of relative methylation scores. The MeDIP-seq
specific functionalities can be enabled by the MeDIP parameter of
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the MEDIPS.meth() function. A complete list of functions is avail-
able in the reference manual at http://www.bioconductor.org/
packages/release/bioc/html/MEDIPS.html.

3.6 R Script to

Download the

H3K4me2 ChIP-seq

Data from SRA

#This script demonstrates how to download the entire human

ChIP-seq data (SRA id: SRP034717) presented by Seumois

et al. [9] into the designated working directory. The entire

data set consists of 1789 fastq files across several multi-

plexed lanes and runs that can be assigned to 120 distinct

ChIP-seq samples.

#Install the SRAdb package

source(’http://bioconductor.org/biocLite.R’)

biocLite(’SRAdb’)

#Load the SRAdb library and download the latest database content

library(SRAdb)

srafile ¼ getSRAdbFile() #download of a SRA database snapshot (~800 mb)

sra_con ¼ dbConnect(SQLite(),srafile)

#Fetch a table with the relevant run and sample information

runs ¼ getSRA( "SRP034717", out_types¼"sra", sra_con)

runs ¼ unlist(strsplit(paste0(runs$run,": ",runs$experiment_title),"[:;] "))

runs ¼ as.data.frame(matrix(runs,ncol¼5, byrow¼T))

#For this protocol we restrict the analysis to only a small subset of the samples.

#Here, we select three TH2 and three naı̈ve T-cell samples:

subselection¼c("GSM1297960", "GSM1297962", "GSM1297964", "GSM1298002",

"GSM1298005", "GSM1298007")

runs¼runs[(runs[,2]%in%subselection),] #remove this line, if the entire data

set should be processed

#Create a fastq table that contains the necessary information to link the indi-

vidual fastq files to their respective samples (in this example there are 70 fastq

files that can be assigned to the six selected sample):

write.table(runs, "Seumois_NatImmu2014_run_table.txt", col.names¼F, row.

names¼F, sep¼"\t", quote¼F)

#Create a sample table that lists the sample names, their GO id and the anticipated

location of the bam files in a separate bam sub-folder. The bam files will be gener-

ated based on the downloaded fastq files as shown in Subheading 3.7.

samples ¼ unique(runs[,2:3])

samples[,2] ¼ sub("H3K4me2_ChIPSeq_","",samples[,2])

names(samples) ¼ c("accession", "name")

samples$filename ¼ paste0("bam/", samples$accession, "_H3K4me2_ChIPSeq_",sam-

ples$

name,".bam")

samples$celltype¼sub("-Donor.+$","",samples[,2])
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write.table(samples, "Seumois_NatImmu2014_sample_table.txt",

col.names¼T, row.names¼F, sep¼"\t", quote¼F)

#Download the fastq files into a fastq sub-folder:

#Note that the reduced set of 6 samples is about 7.5 gb, the complete dataset is

about 152 gb

dir.create("fastq")

for(acc in samples$accession){

sra¼runs[runs[,2]¼¼acc,1]

getSRAfile(in_acc¼sra, sra_con¼sra_con, fileType¼"fastq", destDir¼"fastq")

}

3.7 Shell Script for

the Alignment of the

H3K4me2 ChIP-seq

Data (Fastq Files)

#!/bin/bash

#Set the path to your bowtie index (here this is a hg19 color-

space index):

hg19¼/path/to/bowtie/genome/reference/hg19_CS

#specify number of cores

n_cores¼30

#Set the variable dir to the designated working directory which is supposed to be

the same working directory as for the R script in Subheading 3.6. The working

directory is supposed to contain the fastq sub-folder containing the downloaded

fastq files:

dir¼‘pwd‘

#create the sub-folder that will contain the resulting alignment bam files

mkdir bam

#Assign the information of the fastq table (created in Subheading 3.6) to three

separate list variables:

run¼($(cut -f1 Seumois_NatImmu2014_run_table.txt)) #Unique IDs for the 70 indi-

vidual fastq files

sampleAcc¼($(cut -f2 Seumois_NatImmu2014_run_table.txt)) #GEO sample IDs

sampleName¼($(cut -f3 Seumois_NatImmu2014_run_table.txt)) #Sample names

#Assuming that your PATH variable contains the path to bowtie and samtools bin-

aries and assuming that your compute server has at least 30 cores, the fastq files

can now be aligned and sorted into sample specific bam files as follows:

#The computation of the alignment takes about 30 minutes per sample on 30 cores

for s in $(printf ’%s\n’ "${sampleAcc[@]}"|sort|uniq)

do

list¼""

skip¼"no"

nrruns¼0

#get all fastq files for sample $s

for (( i¼0; i<${#run[@]}; i++ ))

do

if [ ${sampleAcc[$i]} ¼ $s ]; then

fq¼${dir}/fastq/${run[$i]}.fastq.gz

if [ -e $fq ]; then
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list¼"$list $fq"

nrruns¼$((nrruns+1))

sName¼${sampleName[$i]}

else

echo "warning: [sample $s] $fq not found"

skip¼"yes"

fi

fi

done

if [ $nrruns -ge 1 -a $skip !¼ "yes" ]; then

echo "aligning reads for $s from $nrruns runs"

#

cat $list | gunzip |bowtie –sam -n 2 -m 1 -C -p 30 $hg19 - | \

samtools view -Sb - | \

samtools sort - ${dir}/bam/${s}_${sName}

samtools index ${dir}/bam/${s}_${sName}.bam &

fi

done

#This script also creates bam index files for each of the six resulting bam files.

3.8 R Script for

Quality Control

and Differential

Enrichment Analysis

of the Aligned

H3K4me2 ChIP-seq

Data Comparing TH2

and Naı̈ve T-Cells

#Go to the designated working directory as for Subheadings

3.6 and 3.7 and start R. This working directory is supposed

to contain a bam sub-folder containing the bam files created

in Subheading 3.7.

library(MEDIPS)

library(BSgenome.Hsapiens.UCSC.hg19)

samples¼read.table("Seumois_NatImmu2014_sample_table.txt",

header¼T, sep¼"\t", stringsAsFactors¼FALSE)

dir.create("plots")

#Coverage saturation analysis for all samples and for two different window sizes

each:

reference¼"BSgenome.Hsapiens.UCSC.hg19"

saturation¼data.frame(ws150¼numeric(), ws500¼numeric())

#The saturation analysis should take < 1 minute per sample (depending on speed of

HDD)

for (i in 1:nrow(samples) ){

sat150¼MEDIPS.saturation(file¼samples$filename[i],reference,

uniq¼TRUE, extend¼120, window_size¼150,

chr.select¼"chr22")

sat500¼MEDIPS.saturation(file¼samples$filename[i],reference,

uniq¼TRUE, extend¼120, window_size¼500,

chr.select¼"chr22")
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saturation[samples$name[i],] ¼
c(sat150$maxEstCor[2],sat500$maxEstCor[2])

png(file¼paste0("plots/saturation_",samples$accession[i],".png"),

width¼800, height¼400 )

par(mfrow¼c(1,2))

MEDIPS.plotSaturation(sat150, main¼
paste(samples$name[i], "Saturation analysis","\nwindow size 150"))

MEDIPS.plotSaturation(sat500, main¼
paste(samples$name[i], "Saturation analysis","\nwindow size 500"))

dev.off()

}

#Import of bam files: for each sample an MSet object is created and the MSet objects

are concatenated into a list of two separate MSet list objects. The individual

MSets can be assigned to their respective cell types by their list names. We

restrict the imported mapping data to the major chromosomes:

#reading the alignment files and computing the coverage takes about 10 minutes per

sample (depending on speed of HDD)

MSet¼list()

for (i in 1:nrow(samples) ){

MSet[[samples$celltype[i]]]¼c(MSet[[samples$celltype[i]]],

MEDIPS.createSet(samples$filename[i],

BSgenome¼reference,

uniq¼FALSE, extend¼120, window_size¼500,

chr.select¼c(paste0("chr", 1:22), "chrX", "chrY")

) )

}

#Differential Enrichment Analysis (takes about 30 minutes)

resNvPos¼MEDIPS.meth(MSet1¼MSet[["CCR4pos"]], MSet2¼MSet[["Naive"]], diff.

method¼"edgeR", MeDIP¼F, minRowSum¼10)

#Selecting a set of highly significant DERs by applying a significance threshold to

the p-values adjusted for multiple testing:

sigNvPos¼MEDIPS.selectSig(resNvPos, p.value¼0.01, adj¼T)

#Selecting a second set of less significant windows by applying a significant

threshold to the unadjusted p-values (for visualization purpose only, see the

MvA plot below):

trendNvPos¼ MEDIPS.selectSig(resNvPos, p.value¼0.005, adj¼F)

#Dividing the DERs into those that gain H3K4me2 in TH2 cells and those that lose

H3K4me2 in TH2 cells compared to naı̈ve T-cells. Please note, log2 ratios are

reported as log2(MSet1/MSet2).

sigNvPosGain ¼ sigNvPos[which(sigNvPos$edgeR.logFC>0),]

sigNvPosLoss ¼ sigNvPos[which(sigNvPos$edgeR.logFC<0),]

#Merging neighboring DERs:

sigNvPosGainMerged ¼ MEDIPS.mergeFrames(sigNvPosGain)

sigNvPosLossMerged ¼ MEDIPS.mergeFrames(sigNvPosLoss)
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#Annotating DERs by Ensembl transcript names, if the DERs are locate in a promoter

region (-1kb to +0.5kb around the transcription start sites):

tss_ens ¼ MEDIPS.getAnnotation(host¼"www.biomart.org",

dataset¼"hsapiens_gene_ensembl",

annotation¼"TSS",tssSz¼c(-1000,500))

sigNvPosGainMerged ¼ MEDIPS.setAnnotation(sigNvPosGainMerged, tss_ens)

sigNvPosLossMerged ¼ MEDIPS.setAnnotation(sigNvPosLossMerged, tss_ens)

#Create an MvA plot. This section creates the plot shown in Fig. 3, if the complete

data set has been processed (and not only the three example samples per

condition):

png("plots/MA_Comparison_Naive_vs_CCR4Pos.png",

width¼800, height¼500)

smoothScatter(x¼resNvPos$edgeR.logCPM,

y¼resNvPos$edgeR.logFC,

xlim¼c(-3.5, 4), ylim¼c(-4.5, 4.5),

pch¼".", main¼"Genome wide 500bp windows",

xlab¼"log2(average counts per million)",

ylab¼"log2(CCR4+ / Naive)")

points(x¼trendNvPos$edgeR.logCPM, y¼trendNvPos$edgeR.logFC,

pch¼".", col¼"orange")

points(x¼sigNvPos$edgeR.logCPM, y¼sigNvPos$edgeR.logFC,

pch¼".", col¼"red")

abline(h¼0, col¼"red")

dev.off()
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