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Targeted bisulfite sequencing  
of the dynamic DNA methylome
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Abstract 

Background: The ability to measure DNA methylation precisely and efficiently continues to drive our understanding 
of this modification in development and disease. Whole genome bisulfite sequencing has the advantage of theoreti-
cally capturing all cytosines in the genome at single-nucleotide resolution, but it has a number of significant practical 
drawbacks that become amplified with increasing sample numbers. All other technologies capture only a fraction of 
the cytosines that show dynamic regulation across cell and tissue types.

Results: Here, we present a novel hybrid selection design focusing on loci with dynamic methylation that captures 
a large number of differentially methylated gene-regulatory elements. We benchmarked this assay against matched 
whole genome data and profiled 25 human tissue samples to explore its ability to detect differentially methylated 
regions.

Conclusions: Our target capture design fills a major gap left by all other assays that exist to map DNA methylation. 
It maintains the ability to link cytosine methylation to genetic differences, the single-base resolution and the analysis 
of neighboring cytosines while notably reducing the cost per sample by focusing the sequencing effort on the most 
informative and relevant regions of the genome.
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Background
DNA methylation, most commonly at cytosines in the 
CpG dinucleotide, plays an important role in gene and 
genome regulation [1, 2]. Despite decades of elegant 
work, we continue to learn more about how and in what 
context DNA methylation functions through an ever-
increasing collection of data. New insights are frequently 
enabled by technical advances in our ability to effectively 
map and quantify DNA methylation [3]. While numerous 
technologies exist, the most widespread are all based on 
the principle of sodium bisulfite-induced selective deam-
ination of unmethylated cytosine to uracil [4] with either 
microarrays or sequencing as read-out. Whole genome 
bisulfite sequencing (WGBS) has the advantage of theo-
retically capturing all cytosines in the genome at single-
nucleotide resolution [5], but it has also a number of 

practical drawbacks that become amplified with increas-
ing sample numbers. These include the sequencing cost 
to achieve sufficient coverage, data storage and comput-
ing time as well as the fact that most of the genome is 
depleted of CpGs and hence many reads lack any relevant 
information. Moreover, the majority of CpGs are static 
and do not change their methylation state across cell 
and tissue types, decreasing the information content of 
WGBS reads even further [5].

Results
To overcome the limitations of WGBS while retaining its 
advantages of single-base resolution, the ability to com-
pare neighboring CpGs on the same read, assign single 
nucleotide polymorphisms (SNPs) and cover the most 
relevant parts of the genome, we developed a cost-effec-
tive targeted bisulfite sequencing assay for the Dynamic 
Methylome (DyMe-Seq) that covers CpGs known to 
change their methylation state across cell and tissue types 
(see “Methods” section). To this end, we first compiled a 
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list of loci that is highly enriched for dynamic CpGs and 
includes a large number of gene-regulatory elements 
and then implemented a hybrid-selection-based tar-
geted bisulfite sequencing strategy for this prime subset 
of the human methylome—akin to the exome for human 
genome sequencing. Targeted bisulfite sequencing can 
be performed either by bisulfite conversion of hybrid-
selected native DNA [6] or by hybrid selection of con-
verted DNA [7, 8]. We adopted the latter approach which 
is commercially available as SeqCap Epi (Roche), trading 
the superior target specificity of native hybrid selection 
for lower DNA-input requirements and the ability to cap-
ture both strands of bisulfite-converted genomic DNA 
to distinguish a C to U bisulfite conversion from a C to 
T SNP. Targeted bisulfite sequencing by post-conversion 
SeqCap Epi capture has been technically validated previ-
ously and displays no apparent capture bias due to DNA 
methylation states [7, 8]. In contrast to prior designs, 
we took full advantage of an unprecedented amount 
of multilayered data to choose the most informative 
sequencing targets. As outlined in Fig. 1a, we utilized a 
well-curated set of genome-wide data for DNA methyla-
tion (n =  60 WGBS datasets) and extensive chromatin 
maps (H3K4me3 and H3K27ac) from the Roadmap Epig-
enome Project [9], DNAse I hypersensitive sites in 92 cell 
types and tissues, and transcription factor (TF) binding 
data (n =  165 TFs across 10 cell and tissue types) from 
ENCODE [10] and our previous work [11].

The triage process for differentially methylated regions 
(DMRs) and dynamic CpGs from the two main data 
sources [5, 12] is outlined in Additional file 1: Figure S1a-
d. Our final list of 119,809 DyMe-Seq targets encom-
passes 91,039,504  bp of which approximately 90  Mb 
harboring 2.3  M million CpGs constitute legitimate 
capture space of the corresponding SeqCap Epi probes 
(Additional file  2). The chosen ~3% of the genome does 
not comprise all targetable dynamically methylated loci. 
Nor is 90  Mb the upper limit of the targeting technol-
ogy. Rather, our curated DyMe-Seq target list represents a 
carefully balanced compromise between information con-
tent, number of capture probes as well as sequencing cost 
per sample. By design, our set of targets is predominantly 
enriched for differentially methylated putative regulatory 
regions and TF binding sites (TFBS) with >90% carry-
ing H3K27ac or H3K4me3 annotations, while maintain-
ing a representative coverage of classic genomic features 
such as promoters, CpG Islands (CGIs) and CGI shores 
(Fig.  1b,c). Importantly, our target set captures on aver-
age 44% of all putative enhancer regions that are enriched 
for H3K27ac chromatin marks across 87 distinct cell types 
or tissues (Additional file 1: Figure S1e). Our final list of 
prime targets still includes ~40% of our unranked initial 
list of candidate dynamic CpGs that were filtered solely by 

repeat content (≤60%), number of CpGs (≥2) and length 
(≥100  bp) of target regions, irrespective of overlap with 
genomic features (Additional file 1: Figure S1d).

The gold standard in the field remains WGBS, but as 
noted its cost and inefficiency are limiting its broad use 
despite decreasing sequencing costs. The advantage 
of sequencing only 90  Mb of highly informative targets 
instead of WGBS becomes clear when comparing the 
reads required for each sample to achieve 30× coverage 
across an increasing number of samples: 74 million ver-
sus 1.7 billion 100-base reads for 100 samples, covering 
each CpG in at least 80% of all samples (Additional file 1: 
Figure  S1f ). As would be expected, our design always 
captures a fraction of CpGs that are also covered by other 
common platforms including methylation bead arrays 
(Illumina), reduced representation bisulfite sequencing 
[13] and off-the-shelf targeted bisulfite-sequencing assays 
(Roche, Agilent). However, the overlap with any single 
one is less than 25% (Fig. 1d). Hence, DyMe-Seq fills an 
important gap between existing targeted assays and com-
prehensive WGBS (Additional file 1: Figure S1g, h).

Next, we assessed key performance properties of 
DyMe-Seq including genomic biases, coverage distribu-
tion, input requirements, off-target and PCR-duplicate 
rates (Additional file 3: Figure S2). This analysis revealed 
minimal differences in GC content distribution of the 
captured targets among technical replicates (Additional 
file  3: Figure  S2b). Lowering the amount of input DNA 
increased the PCR-duplication rates from 3% for 1 micro-
gram to 6% and 15% for 500 and 250  ng, respectively 
(Additional file 3: Figure S2c), when using a conventional 
library preparation strategy where DNA fragments are 
ligated to sequencing adapters prior to bisulfite conver-
sion (“Methods” section). This result prompted us to 
continue with an input amount of 500 ng for most subse-
quent analysis. However, we also evaluated the possibility 
of lowering the input amounts further by switching to a 
“bisulfite-first” pre-capture library protocol (Swift Biosys-
tems), yielding dramatically lower PCR-duplication rates 
essentially constant across an input range from 500  ng 
down to 160  ng (Additional file  3: Figure  S2d). Finally, 
evaluation of our off-target rate revealed that on aver-
age 30% of all reads map outside of the targeted regions 
(Additional file 3: Figure S2e, f ). Based on these analyses, 
we conclude that 30× coverage requires only 48 million 
reads for a single library (assuming a 10% duplication rate 
and 30% off-target reads). However, as noted above, com-
paring 100 samples where each CpG is covered 30× in 
at least 80 samples will require more reads (~74 M) per 
library.

Next, we compared DyMe-Seq to WGBS on a number 
of matched samples. We used high-coverage WGBS sam-
ples (1.2–1.5 billion reads) from CD8 positive primary T 
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cells and human embryonic stem cells (hESCs) as a refer-
ence and generated between 41 and 129 million targeted 
DyMe-Seq reads from each cell type. This comparison 
revealed high correlation of methylation levels of 200-bp 
tiles across the genome among DyMe-Seq technical rep-
licates (r = 0.9 for n = 4 and r = 0.96 for n = 3 distinct 
sets of technical replicates, Fig. 2a) that is comparable to 
correlation levels between biological replicates generated 
by WGBS (Fig. 2a, b). The power to discriminate between 
cell types is not different from WGBS based on CD8 ver-
sus hESC comparison (Fig.  2a). Most importantly, cor-
relation between WGBS and DyMe-Seq on independent 
biological replicates generated years apart is also very 
high (r = 0.94, Fig. 2b). Subsequently, we confirmed that 
DyMe-Seq does not exhibit capture biases based on CpG 
methylation status. To that end, we compared the distri-
bution of methylation level differences as a function of 

WGBS based methylation levels between two biological 
replicates of WGBS data and one WGBS and DyMe-Seq 
sample from the same cell type. This analysis revealed no 
difference between WGBS and DyMe-Seq (Additional 
file 3: Figure S2g). The browser shot provides a represent-
ative example of WGBS and DyMe-Seq data for a specific 
locus (Fig. 2c). Our assay covers more than one quarter 
of DMRs detectable by WGBS (Fig.  2d) and captures 
the majority of the more meaningful DMRs that directly 
overlap with known regulatory features (Fig. 2e, f ), while 
sequencing only 3% of the genome. We also note a global 
change in methylation levels from hESC (cell culture, 
74% global methylation) to primary CD8 cells (62% global 
methylation).

To further explore the utility of our assay, we pro-
filed 25 human samples representing 18 different tissues 
from the genotype-tissue expression (GTEx) cohort [14] 
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Fig. 1 a Top Genome browser shot illustrating part of the target selection process for the DyMe-Seq assay design. DNAme—DNA methylation; 
REMC H3K27ac/H3K4me3—union peak set of H3K27ac or H3K4me3 ChIP-Seq data across 70 and 71 distinct cell types each from the Roadmap 
Epigenome Project; CGI—CpG island; TFBS—transcription factor binding site data across ENCODE transcription factors and cell types; DNAse—
Union of DNAse I hypersensitivity sites across 92 cell types form the ENCODE project; Probes—footprint of the final hybrid capture probe set. 
Right Flowchart of filters and prioritization steps during the target selection process. Bottom Origin of regions selected for the DyMe-Seq targets 
by dataset. b Total number (y-axis, left chart) or percentage (y-axis, right chart) of distinct genomic features (x-axis) theoretically covered by the 
DyMe-Seq assay. Prom—promoter, CGI—CpG island, CGIShore—CpG island shore, H3K27ac—union of all H3K27ac peaks identified in 70 distinct 
cell types from the Epigenome Roadmap project, DNAase I—DNAse I hypersensitive clusters across ENCODE cell types, TFBS—transcription factor 
binding sites identified across all ENCODE TF chromatin immunoprecipitation sequencing (ChIP-Seq) experiments. c Percentage of regions covered 
by DyMe-Seq that overlap with different genomic features. Prom—promoter, CGI—CpG island, CGIShore—CpG island shore, H3K27ac—union of all 
H3K27ac peaks identified in 70 distinct cell types from the Epigenome Roadmap project, H3K4me3—union of all H3K27ac peaks identified in 70/71 
distinct cell types from the Epigenome Roadmap project, DNAase I—DNAse I hypersensitive clusters across ENCODE cell types, TFBS—transcrip-
tion factor binding sites identified across all ENCODE TF chromatin immunoprecipitation sequencing (ChIP-Seq) experiments. d CpG level overlap 
between DyMe-Seq and commonly used array or sequencing based methylation profiling methods. The y-axis is the percentage of CpGs targeted 
by the respective assays that are also part of the by DyMe-Seq target set. 27K, 450K and EPIC—Illumina Methylation bead arrays, RRBS—reduced 
representation bisulfite sequencing, CpGiant—off-the-shelf SeqCap Epi targeted bisulfite sequencing assay from Roche-NimbleGen. SureSelect—
off-the-shelf targeted bisulfite-sequencing assay from Agilent
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(Additional file 4: Figure S3a) and found reliable quanti-
fication and identification of DMRs, recovering cell type 
and inter-individual variation (Fig.  3a). Notably, and in 
contrast to WGBS data, a large fraction of the sequencing 
data (82% of 200 bp tiles with DyMe-Seq data) is inform-
ative and displays significant methylation differences 
(Fig.  3b). A subset remains static as would be expected 
since the 25 samples did not cover all possible cell and 
tissue types. Adding for instance hESC data (not part of 
GTEx) will increase the proportion of dynamic 200-bp 
tiles by another ~2.8% (Additional file 4: Figure S3b). We 
find a very high correlation between technical replicates 
(Skin nse [not sun exposed] R1 and R2) and also note 
the capacity to detect inter-individual variation (Fig. 3c; 
see lung and skin samples). Lastly, DyMe-Seq captures a 
representative fraction of the biologically relevant DMR 

features: Gene set enrichment analysis of DMRs between 
GTEx heart and nerve tissue reveals a strong enrich-
ment with a number of key pathways of heart and muscle 
development and function (Fig. 3d). Furthermore, analy-
sis of TFBS [15] within these DMRs identifies key heart 
(NKX, LMO, GATA) and neural TFs (SOX, GLI, FOXA), 
suggesting that our assay captures (by design) a repre-
sentative fraction of the tissue-specific TFBS repertoire 
(Fig. 3e).

Discussion
To meet the continuously growing need for more effi-
cient ways to capture DNA methylation information, 
we designed a hybrid selection target set for a carefully 
curated list of the most dynamically regulated CpGs (the 
set also captures 20.8 million CpAs, the predominant 
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Fig. 2 a Pearson correlation coefficient (PCC) of three distinct cell types profiled by whole genome bisulfite sequencing (WGBS, W-) and/or DyMe-
Seq (D-). The PCC was calculated across all 200-bp tiles of the target region set, excluding all tiles not covered by at least 10 reads in all samples. b 
Scatter plot of CpG methylation levels across 200-bp tiles of the DyMe-Seq target set for two replicates of human embryonic stem cells (hESCs), 
each profiled with more than 1 billion reads (left) and one hESC WGBS replicate (x-axis) and an independent replicate of hESCs profiled by DyMe-
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showing the fraction of WGBS hESC-CD8 feature DMRs that are recovered in the WGBS only or found in both WGBS and DyMe-Seq
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non-CpG methylation sites in selected cell types) and 
demonstrate its application across 20 distinct cell and tis-
sue types. Our approach is substantially more economi-
cal than WGBS in terms of sequencing cost per sample, 

while providing higher coverage of many of the same, 
relevant regions. The savings in sequencing costs will 
often far outweigh the cost of performing the additional 
enrichment step which can be multiplexed by pooling 
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Testis
Thyroid 1
Thyroid 3
Thyroid 2
Brain_Cerebellum 
Uterus
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Fig. 3 a Representative subset of differentially methylated 200-bp tiles across the 26 DyMe-Seq datasets (N = 50,000, randomly selected) gener-
ated from the entire GTEx pilot cohort (n = 25). Skin nse (not sun exposed) 1 and 2 are technical DyMe-Seq replicates from the same DNA samples. 
Thyroid 1–3, skin 1–3 and lung 1–3 are samples from three different individuals. Each row represents one 200-bp tile, and the color indicates the 
methylation level (black unmethylated, red highly methylated). b Fraction of differentially methylated (dynamic) and static 200-bp tiles across 
the GTEx cohort. A tile was called differentially methylated if the methylation difference exceeded 0.3 at a q value ≤0.05 (Fisher’s exact test, BH-
corrected) between any of the samples. c Overview of number of DMRs across all pairwise comparisons within the GTEx cohort. Here, differentially 
methylated tiles within 400 bp of each other were merged into DMRs. d Gene set enrichment analysis for comparatively hypomethylated regions 
between the GTEx sample coronary aorta and nerve tibial. Shown are selected gene set categories from the top 40 significantly enriched gene sets 
(see “Methods” section for details). e Top 15 transcription factor motifs enriched in regions differentially methylated between coronary aorta and 
nerve tibial based on the transcription factor epigenetic remodeling activity (TERA) framework using the a de-methylation score. Transcription fac-
tors with high scores are likely to bind frequently to comparatively hypomethylated regions in the respective cell type
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barcoded libraries prior to hybrid selection [8]. However, 
the choice of the appropriate DNAme profiling assay will 
ultimately depend on the specific scientific question. If it 
is critical to detect as many DMRs as possible, high-cov-
erage WGBS may be the only feasible solution.

Conclusions
Our cost-effective DyMe-Seq assay will be a valuable tool 
not only for the methylation and developmental biology 
community, but specifically for many areas of clinical 
research, including prognostic and biomarker discovery 
as well as the emerging field of epigenome wide associa-
tion studies (EWAS) [16].

Methods
Identification of target set
We considered two main sources of DMRs: those identi-
fied in Ziller et al. 2013 (minus those hypomethylated in 
sperm) [5] and those defined in Schultz et al. [12] using 
the same analytical strategy. We then filtered the Schultz 
et al. list for those already found in Ziller et al. 2013 and 
used these two sets as our starting DMR set. In addition, 
we included a subset of tissue specific DMRs (T-DMRs) 
that were not included in the aforementioned sets [17]. 
We then proceeded with the analysis of these DMR sets 
separately for several steps, excluding the sex chromo-
somes from our analysis. In particular, we filtered these 
lists stringently in order to identify regions suitable for a 
hybrid capture approach. To that end, we only included 
DMRs with a repeat content below 60% based on the 
repeat masker annotation and at least two dynamic 
CpGs based on a minimum observed methylation differ-
ence of at least 30% between any two samples included 
in each DMR set. Subsequently, we computed a region-
level score based on: 1. the density of dynamic CpGs, 2. 
the maximum observed methylation difference, 3. the 
overlap with a putative enhancer regions, defined as the 
union peak set of H3K27ac peaks across 70 distinct cell 
types from the ENCODE and Epigenome Roadmap Pro-
ject, or an annotated RefSeq promoter (±1  kb of TSS). 
These three scores were each rescaled to the unit interval 
and then simply added for each DMR. We then ordered 
the DMRs within each set according to this score. In 
order to avoid that DMRs originating from one cell type 
dominate the set of selected regions, we next determined 
for each DMR the sample with its minimum methylation 
level. We then selected 53 Mb of DMRs from the Ziller 
et al. set according to the previously computed score, but 
maintaining a balanced representation of DMRs originat-
ing from all 23 cell types in the collection. This effectively 
skips regions with higher scores, if their most hypometh-
ylated sample condition was already higher represented 
in the selected capture set than other samples. Since one 

purpose of this DMR set is the application to cohorts of 
many individual such as GTEx, we also selected all DMRs 
from the remainder of the ranked list that overlapped 
with eQTLs identified by the GTEx consortium [14] in 
the following tissues: blood, lung, subcutaneous adipose 
tissue, skeletal muscle and stomach. In a similar fashion, 
we selected 30 Mb from Schultz et al. DMR set and iden-
tified a 30-Mb set of DMRs. Finally, we also included a 
set of DMRs that were identified with the Illumina meth-
ylation 450  K array across multiple tissues, exhibiting a 
methylation difference of at least 30% and were not yet 
present in our final selected DMR set. Together, the 
union of these DMR lists constituted our initial candidate 
region set for the DyMe-Seq assay, comprising a total of 
95 Mb. Next, this set was further optimized and filtered 
by Roche-NimbleGen in order to remove regions not 
suitable for capture, leaving us with 91,039,504  bp and 
119,809 target regions (Additional file 2).

Data processing
Raw reads were aligned to the human genome (hg19) 
using bsMap 2.7 [18] with the following parameters 
bsmap -v 0.1 -s 16 -q 20 -w 100 -S 1 -u –R. Subsequently, 
we used picard tools (http://picard.sourceforge.net) ver-
sion 1.139 to further process and QC the aligned data 
files. In particular, we used MarkDuplicates with stand-
ard parameter settings to mark and remove likely PCR 
duplicates, CollectAlignmentMetrics to compute basic 
alignment statistics, and CalculateHsMetrics with Addi-
tional file  2 to calculate all hybrid capture-related met-
rics, including the on target rate. In order to determine 
the methylation state of all CpGs captured and assess the 
bisulfite conversion rate, we used the mcall module in the 
MOABS [19] software suite with standard parameter set-
tings. Finally, we converted the resulting CpG level files 
to bigBed files for visualization in the IGV [20], filtering 
out all CpGs that were covered with less than five reads.

Data analysis
Analysis of DyMe-Seq data was conducted in R using 
the methylKit [21] package and a 200-bp tiling of the tar-
get capture set. To that end, we imported the CpG level 
methylation call files from mcall into R using the meth-
ylKit function read and then computed the weighted 
methylation mean across for each 200-bp tile using the 
function getData, weighting the methylation level of each 
CpG with its coverage. We then merged the tile level 
methylation information across all samples and retained 
only those tiles covered with more than 10 reads in 70% 
or more of all samples. To compute differentially meth-
ylated tiles, we deliberately decided to choose a simple 
approach and performed Fisher’s exact test on all pairs 
of samples for each tile (see Additional file  5: R script). 

http://picard.sourceforge.net


Page 7 of 9Ziller et al. Epigenetics & Chromatin  (2016) 9:55 

Subsequently, we corrected the resulting p-values using 
Benjamini–Hochberg [22] correction and defined regions 
with a q value ≤0.05 and an absolute methylation differ-
ence ≥0.3 as differentially methylated. Finally, we merged 
differentially methylated tiles between two samples into 
larger DMRs if they were less than 400  bp apart. The 
results of this analysis are displayed in Fig. 3c.

Feature annotation
For all genomic features considered in this study, we 
defined them as overlapping with any of our regions if 
there was at least 1 shared base. Promoters were defined 
as RefSeq gene transcription start sites ±1  kb. CpG 
islands and CpG island shores were defined as previ-
ously [5] using the CpG island hunter. H3K27ac and 
H3K4me3 peak sets were defined as previously described 
[15]. Briefly, IDR [23] peaks were identified for each cell 
or tissue type from the ENCODE [10] core cell lines and 
Roadmap Epigenome Project [9] using the IDR frame-
work. The resulting peak sets were then merged, taking 
the union of all peaks and defined as the H3K27ac and 
H3K4me3 reference set. For the transcription factor 
union set, we used the transcription factor binding site 
cluster track provided by the ENCODE consortium [10].

Pathway and TERA analysis
Differentially methylated regions identified using the 
simple strategy outlined above between the GTEX 
samples artery coronary and nerve tibial were used an 
example for pathway and transcription factor binding 
analysis. For the pathway analysis, we selected all regions 
hypomethylated (according to the criteria listed above, 
see Additional file  6: Table  S2) and used the web-tool 
GREAT to identify associated biological themes. The 
results were filtered according to the GREAT [24] stand-
ard criteria and a subset plotted in Fig. 3d. For the tran-
scription factor binding site analysis, we used the ERA 
approach [15] to determine transcription factor motifs 
that are associated with differential methylation of 200-
bp tiles of differentially methylated target sites across 
the entire GTEX. We then compute the differential ERA 
scores between the artery coronary and nerve tibial 
samples and plot the top 15 motifs associated with each 
condition in Fig. 3e. In the figure, we replaced the motif 
name with one representative transcription factors asso-
ciated with each motif.

Comparison of WGBS and DyMe‑Seq
In order to compare the consistency of WGBS and our 
approach, we selected two cell types for which high-
quality WGBS data were available, HUES64 embryonic 
stem cells and CD8+ T cells, and performed DyMe-Seq 

with our capture set on the same samples. Next, we per-
formed DMR discovery across the entire genome, now 
using a state-of-the-art beta-binomial model approach 
implemented in the DSS [25] package. More specifically, 
we first ran the dmlTest function on the comparison 
HUES64 versus CD8 for WGBS and DyMe-Seq sepa-
rately, using one sample per group and smoothing turned 
on. Subsequently, we identified differentially methylated 
DMLs using the callDML function with a p value thresh-
old of 0.001. Finally, we merged DMLs and identified 
DMRs using the callDMR function with the following 
parameters: delta = 0.3, p.threshold = 0.01, minCG = 2, 
dis.merge =  200 and otherwise default parameters. For 
the DyMe-Seq comparison, we then only considered 
those DMRs that were within 300 bp of one of our tar-
get regions. The results of this analysis are displayed in 
Fig. 2d–f.

Approximation of coverage requirements
To approximate the total per sample coverage required 
to capture each CpG with 30X, we followed the Lander–
Waterman theory [26]. In particular, we computed the 
required genome coverage to capture each CpG at 30× 
in 80% of each sample with more than 95% probability 
using Poisson statistics. Since the capture of any CpG in 
one particular sample is independent of the capture in 
a different experiment, we simply computed the prob-
ability to capture a CpG with 30 reads in N samples as 
the Nth product of the Poisson cumulative distribution 
function as a function of the lambda parameter. Subse-
quently, we determined the lowest lambda parameter 
for which the CpG was captured with 95% probability 
in 80% of the N samples and computed this number for 
N  =  1–100. The resulting lambda then represents an 
approximation of the required read coverage after per-
forming all filtering steps. This approximation does not 
take into account assay-specific biases or enrichment 
steps and likely represents more an upper bound on the 
required coverage. We used this modeling approach to 
estimate the required coverage for both WGBS and 
DyMe-Seq. For WGBS, we assumed an effective genome 
size of 2.7 × 109 and for our assay 90 Mb. To incorpo-
rate the effects of PCR duplicates, we assumed a duplica-
tion rate of 20% for WGBS and 10% for our assay, based 
on our empirical observations across many samples. For 
DyMe-Seq, we additionally assumed an off-target rate of 
30% based on our empirical observations. The approxi-
mated raw coverage per base was then multiplied by 
the respective target genome sizes, divided by the read 
length (100 bp) and adjusted for duplicate and off-target 
effects. The results are then plotted in Additional file 1: 
Figure S1f.
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Library preparation and sequencing
All human DNA samples used for this study are listed in 
Additional file  7: Table  S3. Hybrid-selected sequencing 
libraries were prepared using a custom SeqCap probe pool 
(Roche) essentially following the manufacturer’s SeqCap Epi 
protocol except that we lowered the amount of input DNA 
from 1 to 0.5, 0.25 or 0.16 µg per sample and pooled 2–4 
PCR-amplified indexed libraries prior to hybrid selection.

Unless otherwise noted in the main text, pre-capture 
libraries were constructed following the “adapter-liga-
tion-first” protocol of the Kapa Biosystems kit included 
in the SeqCap Epi reagents from Roche. Briefly, we 
sheared input genomic DNA (0.25–0.5  µg in 130  µl in 
Covaris microTUBES) for 3 min on a LE220 sonicator set 
to duty factor 30%, peak incident power 140 W and 200 
cycler per burst. The sheared DNA (mode ~200 bp) was 
concentrated with 1.7 volumes of Agencourt AMPure 
XP beads (Beckman Coulter). Beads were resuspended 
in 70  µl end repair master mix (Kapa Biosystems). End 
repair, A-tailing, ligation to indexed 5-methyl-C modified 
adapters, and dual size selection on AMPure beads to 
narrow the size distribution of the fragment library was 
performed according to the SeqCap Epi protocol. After 
EpiTect Fast bisulfite conversion (Qiagen; extending the 
two 60  °C cycles to 20  min.), the entire eluate from the 
spin column (20  µl) was PCR-amplified for 12 cycles in 
80 µl of HiFi HotStart Uracil+ ReadyMix (Kapa Biosys-
tems). AMPure cleaned-up PCR products were quanti-
fied by Qubit (Thermo Fisher).

To lower input DNA amounts, we tested the “bisulfite-
conversion first” library construction protocol of the 
Accel-NGS Methyl-Seq kit (Swift Biosciences) follow-
ing the kit instructions with the following exceptions: (1) 
To minimize the off-target sequencing rate, we sheared 
the input DNA to ~200  bp fragments using the LE220 
settings described above instead of shearing to ~400 bp 
fragments as recommended for Accel-NGS WGBS 
libraries; (2) we doubled the PCR volume and used 8 PCR 
cycles for the pre-capture library amplification in 1× 
HiFi HotStart ReadyMix (Kapa Biosystems).

SeqCap Epi hybridization reactions contained a total 
of 1  µg of a pool of 2–4 PCR-amplified pre-capture 
libraries, a total of 1  nmol of 2–4 index-specific block-
ing oligonucleotides, and the custom SeqCap probe pool 
designed for the DyMe-Seq targets listed in Additional 
file 2. After hybridization (typically 70 h), bead capture, 
low- and high-stringency washes, the entire bead-bound 
captured material was amplified by 12 cycles of PCR. 
Hybrid-selected DyMe-Seq libraries were sequenced on 
an Illumina HiSeq 2500 instrument in fast mode together 
with a 10% spike-in of a non-indexed PhiX174 library to 
generate a median of 65 million indexed 100-base purity-
filtered paired reads per library. Alignment rates ranged 

from 90 to 96%. Mean target coverage ranged from 26× 
to 63×. The bisulfite conversion rate of cytosines in non-
CpG context was 99.6% on average. Standard perfor-
mance metrics for each library are available in Additional 
file 7: Table S3.

Additional files

Additional file 1: Figure S1a. Overlap of differentially methylated CpGs 
identified in two independent studies based on non-overlapping sample 
sets. Figure S1b. Fraction of differentially methylated (dynamic) CpGs in 
the two independent studies from Figure S1a. Figure S1c. Fraction of 
differentially methylated regions from both studies in panel a com-
bined that are considered candidates for a hybrid capture assay, based 
on length, number of CpGs and repeat content. Figure S1d. Fraction 
of dynamic CpGs initially selected from the candidate set for targeting 
by hybrid capture based on a CpG-wise scoring approach. Figure S1e. 
Percentage (y-axis) of putative enhancer regions (H3K27ac+) across 87 
distinct cell and tissue (x-axis) types that are at least partially overlapping 
with a DyMe-Seq target region. Figure S1f. Estimate of total number 
of reads per sample required (y-axis) to cover each CpG at 30X across 
80% of a given number of samples (x-axis) assuming random unbiased 
sampling[25] and a DyMe-Seq off-target rate of 30%. Figure S1g. Total 
percentage (y-axis) of each genomic feature (x-axis) captured by the Illu-
mina 450K array. Figure S1h. Total percentage (y-axis) of each genomic 
feature (x-axis) captured by RRBS.

Additional file 2 DyMe-Seq region genomic coordinates.

Additional file 3: Figure S2 a. Distribution of CpG level read coverage 
(x-axis) across 4 technical replicates of DyMe-Seq at different mean cover-
age levels indicated (e.g. R1, c=36.2, indicating a mean CpG coverage 
of 36.2 reads). Figure S2b. Distribution of the observed fraction of GC 
content across 200-bp tiles of the target DyMe-Seq capture set across 
4 technical replicates of DyMe-Seq (R1-R4) at different mean coverage 
levels (see Figure S2a.) and the expected percentage based on analysis 
of target capture set. Figure S2c. Percentage of duplicate reads as a 
function of genomic DNA input in nanogram for DyMe-Seq using a 
standard “adapter-ligation first” library preparation method (KAPA). Error 
bars indicate standard error/range based on n≥2. Figure S2d. Percent-
age of duplicate reads as a function of genomic DNA input in nanogram 
for DyMe-Seq using a “bisulfite first” library preparation protocol (Swift). 
Error bars indicate standard error/range based on n≥2. Figure S2e. 
On-target rate for three independent DyMe-Seq experiments. On-target 
rate is defined as on and near (±250) bait bases divided by the number of 
passing filter bases aligned. Figure S2f. On-target rate for all DyMe-Seq 
experiments conducted in this study, giving a median On-target rate of 
70.3%. Figure S2g. Left: Distribution of methylation level differences 
between two biological replicates of hESC WGBS dataset (y-axis) as a func-
tion of the methylation level in WGBS replicate R1 (x-axis) across 200-bp 
tiles of the DyMe-Seq target capture set. Right: This panel depicts the 
same distribution type of distribution as on the left, but now shows the 
methylation level differences between WGBS replicate R1 and a DyMe-
Seq dataset for a different biological replicate of hESCs, again condition on 
the methylation level in WGBS hESC replicate 1.

Additional file 4: Figure S3 a. Heatmap and clustering of all GTEx 
samples based on the Pearson correlation coefficient (PCC) across the 
methylation levels of the union of all differentially methylated regions 
between any of the samples. Figure S3b. Pie chart showing the number 
of differentially methylated 200-bp tiles identified across all GTEx samples, 
those that arise in addition when adding DyMe-Seq data for hESCs 
(HUES64) and those that still remain static.

Additional file 5: Table S4 R-script to determine differentially methyl-
ated 200-bp tiles between GTEx samples.

Additional file 6: Table S2 Differentially methylated regions between 
GTEx samples artery coronary and nerve tibial.

Additional file 7: Table S3 GTEx sample list and sequencing statistics.
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