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Abstract:

Cell to cell variability with respect to intracellular composition as measured by flow cytometry
is a core feature of many bioprocesses.

Models of the underlying processes are often available from small scale or single cell observations
but generally fail to account for heterogeneity within the cell culture. This heterogeneity can be
incorporated using population balance equations that have to be adapted to the flow cytometric
measurements.

However, in general not the whole intracellular composition can be determined simultaneously
for technical or economical reasons with flow cytometry. Furthermore, in many cases only
integral quantities of certain compounds are measurable (e.g. overall amount of biomass in
a cell culture).

In this contribution we will present a procedure for combination of these limited measurement
informations with complex models. Application will be shown for production of biopolymer
poly(3-hydroxybutyrate) (PHB) in bacteria cultures. Starting from a single cell description a
corresponding population balance model which describes the heterogeneity on a macroscopic
scale will be derived. Afterwards an efficient approximate moment method and the Method of
Characteristics will be used to combine population balance models and limited measurement
data.
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1. INTRODUCTION 1

Cell to cell variability plays an important role in many 08 85

applications from bioprocess engineering (e.g. vaccine pro-
duction in mammalian cell cultures as presented by Miiller

0.6

g 1
et al. (2013)) and systems biology (e.g. stem cell differen- 04 z
tiation as presented by Glauche et al. (2010)). e
02 1
Flow cytometry is frequently used to determine the hetero- 05
geneity within cell cultures (Srienc, 1999). Here the cells Y By mar Y Ty BT e
are stained with fluorescent dyes which bind to certain S wm c

intracellular compounds that are of interest. The cells are
passed along a beam of light and the corresponding fluores-
cences are measured. Cells of different fluorescence classes
are counted or even sorted. Depending on the number of
measured compounds a corresponding multi dimensional ) ) o
number density distribution n can be computed which sive). In result, only a projected number density n is

gives a measure of the overall variance in the process. available (see Fig.1 for a simple example). Furthermore, for
some compounds only integral measurement are available

However, often just a subset of intracellular compounds in  on a macroscopic scale (e.g. the overall amount of a certain
which one is interested can be measured due to technical  protein in the cell culture).

reasons (e.g. no adequate fluorescent dye is available) or ) ) ) ) )
economic considerations (e.g. a specific dye is to expen- This brings up the question how to combine these lim-
ited measurements and complex models of the underlying

* Correspondence to: R. Diirr, Otto-von-Guericke-Universitit, = PTOCESSeSs. The latter are often available from small scale
Universititsplatz 2, 39106 Magdeburg, Germany (e-mail: experiments but generally fail to account for cell to cell
robert.duerr@ovgu.de) variability on a macroscopic scale. Population Balance

Fig. 1. Schematic representation of full (left) number den-
sity distribution and corresponding projected number
density distribution (right)
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Modeling represents a suitable framework for the descrip-
tion of this heterogeneity.

In this contribution we will present a methodology to
incorporate limited data from cell culture experiments and
complex models based on small scale data. This algorithm
is based on an efficient moment approximation algorithm
and numerical solution via the Method of Characteristics
(MOC) of a corresponding Population Balance Equation
(PBE). Application will be demonstrated for biopolymer
production in bacteria cultures.

2. POPULATION BALANCE MODELING

The dynamics of heterogeneous processes can be described
within the framework of population balance modeling
(Ramkrishna, 2000). The general PBE characterizes the
dynamics of the cell cultures number density distribution
n(t,x) with respect to the vector of intracellular com-

pounds x = |xq,. ..,de} and is given by
K

a” t x) Z  {lut,x,) )} (1)

= B(t, n,Xx, c) — D(x,¢c,t)n(t,x) .
Here the rates hj define the change of internal coordinates
as result of intracellular reactions. The right hand side
represents the net rate of formation of new cells. Therein,
B summarizes the production and loss of cells as an effect
of cell division and D is the cell death rate. The dimension

of n can be derived as
1
n]=———F—. (2)

[x1] ... [a:Ndi]

Additionally, in many cases intracellular reactions depend
on availability of substrates, e.g. a carbon source, which
also undergo temporal evolution. Thus the PBE is coupled
to a system of ordinary differential equations (ODEs)
characterizing the dynamics of the vector of extracellular

substrates ¢ = [cl, ey cNdJ
d
& = Plew—c)+f(c,n). (3)

Here, P represents the dilution rate, c¢;;, the concentration
of substrates in the feed and f the integral exchange with
the dispersed phase. The dimension of ¢; is given by

e = 1% (1)

3. EFFICIENT APPROXIMATION OF MOMENTS

As interpretation of the overall number density distribu-
tion is difficult, it is often advantageous to characterize
the distribution by more seizable properties like mean,
variance and skewness. Those integral quantities can be
calculated from the moments of the distribution which are
defined as

l
My, lg = /Ill' xd

X
The overall cell number is characterized by mg. Further-
more, mean and variance with respect to one specific
internal coordinate z; are defined as

n(t,x)dx. (5)

_ mai;
pi = —=
mo
2
m27im0 — ml i
or = 0 i (6)
my

The dynamic moment equations can be derived from the
PBE easily

d N
LU o IS

k=1%

+ / I
X

Here the right hand side has to be expressed in terms of
moments. As a nice byproduct of this method, instead of
solving the full PBE representing a multi dimensional par-
tial differential equation (PDE), a set of ODEs has to be
solved. However, computation of the moments dynamics
using a closed set of equations is only possible under strict
assumptions. Nevertheless, an approximate closure can be
found applying approximate moment methods like the
Quadrature Method of Moments (QMOM) as presented
by McGraw (1997) or the Direct Quadrature Method of
Moments (DQMOM) as described by Marchisio and Fox
(2005). Here, it is assumed that the moments and other
more general integrals of the number density distribution
can be approximated using a weighted sum of abscissas

N N,
[emax= Y wa®) fxa®) =Y wafa (®)
X a=1 a=1

with weight w, and the corresponding abscissa x,. Thus
moment (5) approximations are given by

My, g = /

X
As a consequence of intracellular reactions, the distribu-
tion and also its corresponding moments undergo changes
during the process. Instead of describing the evolution of
any moment the main idea of the DQMOM is to track the
temporal evolution of abscissas and weights directly.

0

(B—-Dn)dx. (7)

dndx = Zwawla. xilda. 9)

Recently, we have presented an efficient method for the
approximate calculation of multi dimensional moments
(Diirr and Kienle, 2014; Diur et al., 2015). It was shown
that, under the assumption of neglible cell division (B =
0), the dynamics of the weights and abscissas are given by

dwg
— —w,D, 10
g w (10)
dzia
O p 11
Sy (11)

By using both derived equations the temporal evolution
of abscissas and weights can be calculated directly. The
abscissas move along the characteristic curves of (1).

It is obvious that the choice of the initial abscissas is
crucial for the numerical effort as well as the quality
of the approximation. The approximation will be more
accurate for a larger number of abscissas but the numerical
effort will also increase. For this reason a good trade-
off between the two has to be found. There are many
rules to determine a suitable set of weights and abscissas,
which are often referred to as cubature formulas. which
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can be categorized roughly into Random Based Rules and
Deterministic Rules. The latter can be further classified
into product formulas and non-product formulas (see e.g.
(Stroud, 1971) and (Davis and Rabinowitz, 1994)):

Product formulas are multidimensional extensions of one
dimensional quadrature rules. Here, the weight and ab-
scissa sets are constructed by ”tensoring” of one dimen-
sional quadratures weight/abscissa sets. The number of
abscissas increases exponentially with dimension of the
underlying problem. In contrast, when using non-product
formulas the abscissa set is chosen directly in the multi
dimensional space assuming a special shape of the ini-
tial distribution (e.g. symmetric distributions). For non-
product rules the size of the abscissa set scales polyno-
mially, in the best case linearly, with Ng4,. Thus they are
favorable for high dimensional applications. In case the
initial cell number density distribution can be represented
as Gaussian distribution with mean p and covariance X

n(t=0,x)=N(u,X%) (12)
a particularly efficient rule known as the Sigma-Point rule
(e.g. van der Merwe (2004)) can be found. This third order
monomial cubature rule is also used in the core routine of

the Unscented Kalman Filter. The values for the weights
and abscissas can be computed by

X0 = M
X = U+ \/W\/Ek
XNy, +k = 10— /A + Na, Vi
A

wo = 7A n Ndi

1

T T O )
For this classical Sigma Point formula the number of
abscissas scales linearly with dimension of the problem
(No = 2 Ny, + 1). In case the initial distribution is
non-Gaussian two possible approaches can be applied. For
special distributions (e.g. logarithmic normal distributions
and gamma distributions) transformation formulas can be
applied to the above presented standard Sigma Points
Schenkendorf (2014). Alternatively, any type of distribu-
tion (including multi modal ones) can be approximated as
a Gaussian Mized Density (i.e. a superposition of Gaus-
sians).

(13)

4. RECONSTRUCTION OF PROJECTED
DISTRIBUTIONS

The PBE (1) represents a first order quasi linear PDE
which can be solved with the Method of Characteristics
(MOC). Instead of the full PDE, a set of ODEs, i.e. the
characteristic system

d

de dx dn dhy,

T - . L )

- dag T de ; do, " T "
(14)

has to be solved. A detailed description can be found for

example in Ramkrishna (2000). The idea is now to use the

the following procedure:

I choose set of representative points from the initial
condition n(t = 0,x)

IT solve (14) for those points

IIT for each point in time the points are classified in
subclasses according to their intracellular states

IV based on the classifications the corresponding pro-
jected number density distributions can be computed.

This method is basically similar to the computation of
single cell dynamics for different initial conditions. Obvi-
ously, the "sample size” has an significant effect on this
procedure. To obtain a smooth projected number density
distribution, the number of representative points has to be
sufficiently large. In fact, a reasonable ”sample size” can
hardly be determined from the start and has to be chosen
depending on the initial distribution and the dynamics of
the individual process.

5. EXAMPLE: BIOPOLYMER PRODUCTION IN
BACTERIA

One important and well known bacterial polymer is
poly(3-hydroxybutyrate) (PHB) which is a cell internal
carbon and energy reserve material. It is accumulated
under unbalanced growth conditions, e.g. excess of car-
bon source or lack of growth essential nutrients, such as
nitrogen. The cell can be viewed as consisting of two
compartments, namely PHB and non-PHB biomass BIO.
Three processes (rates) have to be considered (see Figure
2) according to Franz et al. (2011):

r1 growth
ro PHB synthesis
r3 PHB metabolization

The non-PHB biomass compartment BIO includes all
the lipids, DNA, RNA and proteins and is therefore
the catalytic active component. If carbon and all other
growth essential nutrients are available, BIO will increase
(r1). Under lack of nitrogen or excess of carbon, the
external carbon source will be stored into the internal
carbon reserve material PHB (r3). If nitrogen limitation
is removed, PHB can be metabolized to BIO (r3).

T2

Carbon

T1

>7

Nitrogen

Fig. 2. Basic reactions on the single cell level: (r1) carbon
and nitrogen are metabolized, BIO is produced, (r3)
Carbon is stored in form of phb , (rs) conversion of
PHB to BIO

The reaction rates (ri, ro, r3) can be formulated with
Monod type kinetics (Monod, 1949), where ro (PHB
synthesis) is inhibited, when nitrogen is available:
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k Sc SN
T =
! ! Ko+ sc Kn + sy

Sc
ro =k , 15
2 2KC+SC+KIS2N ( )
3 :k3 Mphb SN

Konb + mpny KN+ sy

The parameters k; are the rate constants, K¢ and Ky are
saturation constants, K7 is the inhibition constant, s¢ and
sn are the substrate concentrations of carbon and nitrogen
source and mppp, is the cell internal mass of PHB.

Each reaction is catalyzed by enzymes e which also un-

dergo temporal evolution. Hence, balancing of the intracel-
lular compounds yields the single cell dynamics (Villadsen
et al., 2011):

dmy;
d:f) =1y &1 mbio + 73 €5 Mpio
dmphb rel 1 rel
=T2€ Mbio — 37— T3€3 Mhio 10
r 2 €5 bio Ybio/phb 3€3 bio ( )
de;rel rel ;
g —Cit e (Bi +pei” (i =[1,2,3]).

Here my;, is the cell internal mass of BIO and the relative
enzyme concentrations are defined as

el = e [0.1]
€;
max _ % T ke
: — A 17
i Bk (17)

with e; being the specific enzyme concentration (Baloo
and Ramkrishna, 1991). Furthermore, Yyio/pnp is a yield
coefficient, «; are constitutive enzyme synthesis rates, (;
are enzyme degradation constants and

1 dmbio dmphb
Mbio + Mphb de d¢

is the growth rate of the total cell mass (mpio+mphp ). The
enzyme synthesis rates (rg 1, 7E 2, 7E,3) are also formulated
with Monod type kinetics:

p= (18)

k SC SN
rE,1 =KE,1
Kgc+sc KN+ 5N
SC
TE,2 =KkE,2 19
KE,C+5C +K182N ’ ( )
Mphb SN
p
TE,3 =KkE,3

Kg phb + Mpny, KeN + SN

The above model formulation is not able to account for cell
to cell variability as indicated by flow cytometric measure-
ments of the intracellular amounts of PHB (Franz et al.,
2014). To improve the situation a heterogeneity can be
characterized with a correponding PBE. The intracellular
states

rel _rel rel) T

X = (mbi07 Mphb, €1, €5 , €3 (20)

directly translate to internal coordinates of the number
density distribution. Neglecting cell division and cell death
the corresponding PBE is given by

0

on(t,x >
% __ ; Gy, Ul s, sn(t. 0} . (21)

The convection velocities h; for the internal coordinates
are given by the dynamics of the single cell model

(22)

As mentioned previously, in result of the intracellular reac-
tions the extracellular substrates sc and sy are consumed.
In case of a batch experiment (P = 0), balancing yields
the dynamics of the substrates

d

B / Iy n(t, x)dx — / Mo n(t,x)dx, (23)
X X

dSN o Hl 3

— = [ T n(tx)dx — [ s n(t, x)dx,
X X

where II¥ characterize the stochiometry of the reactions.
6. SIMULATION RESULTS

It was mentioned in a prior contribution (Franz et al.,
2014) that the flow cytometric measurement of my, is
difficult. However, overall biomass of the cell culture can
be determined indirectly e.g. by optical density analysis.

At first we consider that only integral measurements like
mean and variance w.r.t. mpi, and mpp, are available.
The initial number density distribution is assumed to be a
Gaussian normal distribution. In this case, the mentioned
efficient approximate moment method can be applied to
compute the corresponding moments of the model. The
dynamic equations for moments (10) have to be solved
simultaneously to (23). As N, =2 Ny, +1 =11 all in all
a coupled system of Nopg = (NVg, + 1)N, + 2 = 68 ODEs
has to be solved.

The simulation results are depicted in Fig. 3 and Fig. 4. In
analogy to the experimental procedure which was reported
in Franz et al. (2014) the simulation setup was chosen
as follows: in the first part (¢ = [0, 6]), both substrates
are available and the cells preferentially increase there
non-PHB biomass. For ¢t = [6, 15] only substrate S¢ is
available and the cells store carbon in the form of PHB.
At t = 50h nitrate is added to the reactor. In result PHB is
metabolized to non-PHB biomass. It can be seen that the
variance w.r.t. mpio in the cell culture generally increases
while variance w.r.t. mppp increases only in the first part
when PHB is produced and decreases in second part when
PHB is metabolized after adding nitrate at ¢ = 50h.
Those simulations can be used directly for adaption of
the model to integral data obtained from cell culture
experiments. Furthermore, the low computational costs
of the approximate moment method are advantageous for
possible online applications including model based process
control.

However, if distributed measurements by means of pro-
jected number distributions are available, it is often ad-
vantageous to include them to the model adaption. They
are of particular interest if the underlying models exhibit
interesting dynamic effects like a bistability or switching
behavior. On the macroscopic scale those effects may be
observed in form of multi modal distributions. Those can
not be analyzed effectively from integral properties, like
mean and variance, alone.
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Fig. 3. Mean (solid) and standard deviations (dashed)
for muio and mpn,; while the variance of the cell
population w.r.t. Mmpie 1S increasing for the whole
stmulation setup, variance w.r.t. mpn, decreases in

the case of PHB conversion to BIO

1.2

0.2 . . . .
0 20 40 60 80 100

t

Fig. 4. Dynamics of extracellular substrates, (I) preferen-
tial biomass production, (II) production of PHB, (III)
PHB metabolization

As mentioned previously the MOC was applied to 104
points, which had been randomly sampled from the ini-
tial distribution in order to obtain a sufficiently smooth

projected number density distribution. Thus, a system
of 60002 ODEs has to be solved. The simulation results
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Fig. 5. Snapshots of projected number density distributions;
it can be seem, that the wvariance of the cells w.r.t.
PHB significantly increases in the first part of the
simulation setup; after adding nitrate at t = 50h the
variance decreases

are depicted in Figure 5. The principle effects already
seen from simulation of the moment dynamics can also be
observed here: in presence of Sy and Sc¢ the intracellular
amount of mppp increases only slightly as the cells use their
capacity to increase mp;o. In the absence of nitrate the cells
store carbon in form of mpu,. In addition, the cell-to-cell
variability increases. In the last scenario the intracellular
amount of PHB decreases as result of metabolization to
non-PHB biomass mp;ce-

7. SUMMARY AND OUTLOOK

In this contribution we presented a method to combine
limited measurements from cell culture experiments and
complex models characterizing the dynamics on the single
cell level. In particular, the numerically efficient approx-
imate moment method is promising for an application
to model adaption and online applications. The method
was applied to the example of biopolymer production in
bacteria.

So far, the presented method is only applicable to biopro-
cesses in which cell division and cell death are negligible.
Thus future focus will be on extension of this method
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to cope with those effects. Furthermore, the method will
be used to adopt a model for biopolymer production to
experiments which are currently planned within our group.
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Appendix A. SIMULATION PARAMETERS

Parameter Value Parameter Value
kq 0.2500 kg1 0.2574
ko 0.1000 kg2 0.1089
ks 0.3500 kg3 0.3564

K¢ 0.01 Kg,c 0.01
Ky 0.03 Kg N 0.03
KI 10 KEJ 10
Kpnp 10 Kg phy 10

a1 0.0026 51 0.01

Qa3 0.0036 3 0.01
Hé 0.3333 1’[11\I 0.2500
H2C 0.8000 H2N 0.8000

Ybio/phb 0.65

Appendix B. INITIAL CONDITIONS

State Value
Sc(t =0) 1
Sn(t=0) 0.1
1 [1, 0.1, 0.01, 0.01, 0.01]
pi 0.025 diag(u?)




