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The collisionality scaling of density and potential coupling together with zonal flow energy trans-
fer and spectral power is investigated at the stellarator experiment TJ-K. With a poloidal probe
array, consisting of 128 Langmuir-probes, density and potential fluctuations are measured on four
neighboring flux surfaces simultaneously over the complete poloidal circumference. By analyzing
Reynolds stress and pseudo-Reynolds stress it is found, that for increasing collisionality the cou-
pling between density and potential decreases which hinders the zonal flow drive. As a consequence
also the nonlinear energy transfer as well as the zonal flow contribution to the complete turbu-
lent spectrum decreases the same way. This is in line with theoretical expectations and is a first
experimental verification of the importance of collisionality for large-scale structure formation in
magnetically confined toroidal plasmas.
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Drift waves in toroidal plasmas as well as atmospheric
Rossby waves tend to self-generate large scale turbu-
lent structures e.g. zonal flows and jet streams respec-
tively [1–3]. With a poloidal wavenumber kθ and toroidal
wavenumber kϕ equal zero, and a finite radial extend
(i.e. kr 6= 0), the zonal flow represents an extreme case
of a convective cell. Thereby zonal flows are pure po-
tential modes and have no analogous density structure.
Like in a self-organization process, Reynolds stresses of
the drift waves drive the shear flow, which leads to a
self-amplification of the zonal flow [4–6]. In contrast
to the rotating fluid system the zonal flow drive in a
plasma crucially depends on the cross coupling of poten-
tial and density fields. The key parameter in this drift
wave zonal flow system is the collisionality C [7]. In
the two dimensional Hasegawa-Wakatani equations [8, 9],
as a model for drift-wave turbulence, it determines the
coupling strength between density and potential, and
therefore the efficiency of the driving mechanism. For
the adiabatic case (C → 0) the two equations reduce
to the Hasegawa-Mima equation [10] (Charney equation
for Rossby waves [11]), while in the hydrodynamic case
(C → ∞) density and potential decouple and the zonal
flow growth is broken. In this work for the first time, by
gradually changing the collisionality, a continuous transi-
tion between the two limiting cases has been achieved ex-
perimentally and the scaling of the spectral energy trans-
fer into the different channels is studied.
For this investigation a multitude of measurements at
different collisionalities have been performed at the low
temperature experiment stellarator TJ-K [12]. We find
that for lower collisionalities, meaning a more adiabatic
electron response, the nonlinear energy transfer into the
zonal flow and also the relative zonal flow power in the
spectrum strongly increases. This is the first direct ex-
perimental measurement of the effect of collisionality C

on the zonal flow drive.

As a characteristic of zonal flows is the homogeneous
potential perturbation on a complete flux surface, a
poloidal probe array was used to reliably distinguish
zonal flows from the residual turbulence. The array con-
sists of 128 Langmuir-probes with 32 probes on each of
four neighboring magnetic flux surfaces and is shown in
Fig. 1 (a) as used in [13]. It is designed for an outer port
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FIG. 1. (color online). (a) Picture of the poloidal probe array
with Langmuir probes on four flux surfaces. The inlet illus-
trates the measurement of radial and poloidal electric field
with which the Reynolds stress can be calculated. Logarith-
mic wavenumber frequency spectra of density (b) and poten-
tial (c) are shown below. The kθ = 0 mode is the zonal flow,
which is not present in the density.
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of the stellarator TJ-K with triangular cross section, and
placed in the confined region just inside the separatrix
(dashed white line), where the gradients are steepest.
The probes are spaced nonuniformly in order to get a
perpendicular orientation of probes on every other flux
surface. The average poloidal probe spacing is dx = 1.37,
1.49, 1.61, and 1.73 cm on the four different flux surfaces
at normalized radii ρ = 0.81, 0.85, 0.89, and 0.94 with a
radial separation of dr ≈ 0.5 cm. Also with a spatial un-
certainty of 2mm, the distances are still below the typical
structure size of 3 to 5 cm [14–16]. The use of Langmuir
probes makes it possible to acquire data with 1MHz and
up to 220 samples for all probes simultaneously. For the
poloidal probe array it is possible to switch the oper-
ation mode for all 128 probes individually from −90V
probe bias to a floating probe measuring ion saturation
current or floating potential, respectively. Since temper-
ature fluctuations are small in TJ-K [17], fluctuations in
the ion saturation current can be associated with density
fluctuations (Ĩi,sat ∝ ñ) and floating potential fluctua-

tions with plasma potential fluctuations (φ̃fl ≈ φ̃pl) [18].
Using two neighboring probes, the electric field is mea-
sured and the poloidal E×B drift velocity is given by
vE×B ≈ (φ̃i+1

fl − φ̃i
fl)/(B dx). Measuring both velocity

components in the poloidal cross section, the Reynolds
stress is then given as the product of fluctuations in ra-
dial ṽr and poloidal ṽθ velocity

R = 〈ṽrṽθ〉 ≈

〈
(φ̃

θi+1

fl − φ̃θi
fl ) (φ̃

ri+1

fl − φ̃ri
fl )

rdθ dr B2

〉
. (1)

With the poloidal probe array the flux surface aver-
aged (indicated by 〈 . 〉) Reynolds stress can be measured
on two different flux surfaces, giving the possibility to
get a direct estimate of the zonal flow drive given by
∂t 〈vθ〉 = −∂rR [19].
In the same discharge, using a movable triple probe, ra-
dial profiles of the ion saturation current, floating po-
tential and electron temperature Te are obtained, latter
from fitting the probe characteristic. The line-averaged
density of the microwave interferometer was used to get
absolute density values ne . In order to cover a broad col-
lisionality range 90 plasma experiments were performed
with ion masses ranging frommH

i ≈ 1 u up tomKr
i ≈ 84 u.

At a 2.45GHz microwave heating frequency and a corre-
sponding magnetic field of B = 72mT [20], the neutral
gas pressure p0 and microwave power PMW were varied
resulting in densities between ne ≈ 0.7 − 3.0 · 1017 m−3

and electron temperatures ranging from Te ≈ 3.9 to
14.4 eV. For each discharge the collisionality was calcu-
lated according to [9]

C =
ν̂

k̂2‖
∝

B ne

k2‖ mi Te
5/2

, (2)

where ν̂ is the normalized collision frequency and k̂‖ the
normalized parallel wavelength [21]. Mainly by changing
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FIG. 2. (color online). The graphic (a) illustrates the change
of density (red, solid lines) and potential (dashed, blue lines)
coupling with collisionality C. For high collisionality density
and potential decouple and the tilt is not transferred to the
potential anymore. The changed density potential coupling is
also shown by the correlation of Reynolds stress and pseudo-
Reynolds stress, which is shown in (b).

ion mass, the collisionality could be varied by about two
orders of magnitude, which makes it possible to study
the transition from the hydrodynamic regime (C ≫ 1)
to the adiabatic regime (C ≪ 1).

Figure 1 (b) and (c) show typical wavenumber fre-
quency spectra (kf -spectra) of ion saturation current and
floating potential measured on the 2nd and 3rd flux sur-
face in a helium discharge. The broad turbulent spec-
trum is dominated by turbulent modes with positive
wavenumbers indicating a propagation into the electron
diamagnetic drift direction, which are associated with
drift waves. A dominant mode number of m = 4 is
plausible since drift waves have finite parallel wavelength
(k‖ 6= 0) and the experiment has a rotational transform
of -ι ≈ 1/4 [21, 22]. The kθ = 0 mode in the potential
spectrum is apparent, while not present in the density.
This is the signature of the zonal flow, which is known to
be a pure potential mode and it also excludes the possi-
bility of a pure mean background fluctuation, since the
density is not changed.

The zonal flow driving mechanism is based on the
shearing of the drift-wave eddies in a background shear
flow [23]. The collisionality is thereby the control param-
eter which determines the efficiency of this driving mech-
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anism. In a simple model with cold ions the drift-wave
turbulence can be described with the two dimensional
Hasegawa-Wakatani equations [8, 9],

∂tn+ {φ, n}+ κn∂yφ = C−1(φ− n) , (3)

∂tΩ+ {φ,Ω} = C−1(φ− n) . (4)

Here n, φ and Ω denote the normalized density, the po-
tential and the vorticity fluctuations, respectively. κn

is the normalized background density gradient and {., .}
represents Poisson brackets. Equations (3) and (4), es-
sentially originating from the electron continuity equa-
tion and quasineutrality, respectively, are coupled via
the parallel electron dynamics included in the collision-
ality C. For an adiabatic electron response (adiabatic
regime C ≪ 1) density and potential act similar, as for
the hydrodynamic regime (C ≫ 1) the two equations de-
couple and density and potential act as separate fluids.
This dependency is illustrated in Fig. 2 (a) by an eddy
in a background shear flow. The spatial shapes of the
density (red, solid lines) and the potential perturbation
(dashed, blue lines) are shown for low and high collision-
ality C. A background shear flow (e.g. the zonal flow)
tilts the vortex in the density, and through parallel cou-
pling also the potential is deformed. In the limit of high
collisionality the vortex tilt in the density is not trans-
ferred to the potential anymore. In magnetized plasma
the potential perturbation leads, via E×B drift, to vor-
tices perpendicular to the magnetic field. A sheared eddy
has a non isotropic velocity distribution, giving a nonzero
Reynolds stress, and in turn leading to an amplification
of the initial shear flow. With this argumentation it is
clear, that with an increased collisionality the zonal flow
drive is hindered.
To get an estimate for the coupling of density and po-
tential, the so called pseudo-Reynolds stress, originally
introduced to get information about the Reynolds stress
from density measurements [24], is calculated. The den-
sity is thereby treated analog to the potential field. From
Eqs. (3) and (1) it then follows, that the density-based
pseudo-Reynolds stress has to be corrected by terms of
at least linear order in the collisionality O(C) leading to
the following relation between Reynolds stress Rφ and
pseudo-Reynolds stress Rn,

R = Rφ =

〈
(ñθi+1 − ñθi) (ñri+1 − ñri)

rdθ dr B2

〉
+O(C)

= Rn +O(C) . (5)

With a different bias setting of the poloidal probe ar-
ray it is possible to measure Reynolds stress and pseudo-
Reynolds stress at the same time over the poloidal cir-
cumference with a reduced spatial resolution. Probes
measuring ion saturation current alternate with probes
on floating potential when going around the circumfer-
ence. Since Reynolds stress and pseudo-Reynolds stress

(a)

(b)
α = −0.23±0.02
Fit µ C

α

FIG. 3. (color online). The scaling of the spectral transfer
of density fluctuation activity with collisionality (a). Relative
zonal flow power for the same experiments (b) (see text for
further information).

can be measured on two flux surfaces, the correspond-
ing zonal flow drive −∂rR of both quantities is ob-
tained. The two time traces of 220 samples for each
discharge have been cross-correlated and the scaling of
the maximal correlation between Reynolds-stress drive
and pseudo Reynolds-stress drive with collisionality is
shown in Fig. 2 (b). Although the correlation values are
small, they are significant and show a clear trend. For
lower collisionality the correlation between both parame-
ters increases, pointing to an increased coupling between
density and potential.

It was shown that the turbulence in the stellarator
TJ-K is drift-wave dominated [21, 25–27] and for the fol-
lowing analysis of the energy transfer it is assumed that
the nonlinear wave-coupling equation is satisfied,

∂ϕ(k, t)

∂t
= ΛL

k (k)ϕ(k, t)

+
1

2

∑

k=k1+k2

ΛQ
k (k1, k2)ϕ(k1, t)ϕ(k2, t) . (6)
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Here ϕ(k, t) is a fluctuating quantity, ΛL
k (k) the linear

coupling coefficient and ΛQ
k (k1, k2) the quadratic cou-

pling coefficients [28]. With a discretization in time ∆t,
equation (6) leads to a set of momentum equations which
are then solved using the modified Ritz method intro-
duced by Kim et al. [29]. This approach to solve the
wave-coupling equation also considers fourth-order mo-
ments in order to avoid a closure approximation. For the
transfer of spectral power Pk, the wave kinetic equation
can be derived,

∂

∂t
Pk = 2γkPk +

∑

k=k1+k2

Tk(k1, k2) . (7)

Since the zonal flow is nonlinearly driven by the tur-
bulence, the nonlinear spectral power transfer function
Tk(k1, k2) is of interest for the subsequent analysis, which
is given as

Tk(k1, k2) = Re(ΛQ
k (k1, k2)〈ϕ(k1, t)ϕ(k2, t)ϕ

∗(k, t)〉t) .
(8)

It should be stressed, that the quantities used here are
directly calculated in wavenumber space and a condi-
tional averaging technique is used to calculate the tempo-
ral ensemble average 〈 . 〉t . Especially the power trans-
fer in the density fluctuation activity, where the non-
linearity in the E×B drift is included [7], is considered
for the scaling. Therefore the fluctuating quantities are
assigned to ϕ(k1, t) = n(k1, t), ϕ(k2, t) = n(k2, t), and
ϕ∗(k, t) = φ(k, t) [30]. To omit a reduction in k-space
resolution, the ion saturation current and the floating
potential are measured simultaneously on the second and
third flux surface, respectively. For the zonal flow (k=0)
a positive energy transfer into it is found for all measure-
ments, confirming the inverse energy transfer originally
published in [4] obtained by the Camargo method [7]. In
Fig. 3 (a) the scaling over the collisionality of this energy
transfer is shown for several discharges with a variety of
gases. With lower collisionality the energy transfer to
the zonal flow increases, showing the increased drive by
the drift-wave turbulence. To see if an increased energy
transfer into the zonal flow leads to an increased zonal
flow activity, the total power of the zonal flow is calcu-
lated. As the overall turbulence strongly depends on the
background gradients, not the absolute zonal flow power
is interesting, but the relative contribution to the turbu-
lent spectrum. Therefore the relative zonal flow power
shown in Fig. 3 (b) is calculated as

PZF /Ptotal =
∑

f≤8 kHz

Sφ(k = 0, f) /
∑

k,f

Sφ(k, f)

from the wavenumber frequency spectrum Sφ(k, f). As
indicated above for the zonal flow component only the
low frequency bandpass filtered spectral power is used.
In the adiabatic limit (C → 0), the zonal flow contribu-
tion to the complete spectrum strongly increases and the

relative power reaches values of up to 29% of the total
turbulent spectral power. To deduce a quantitative as-
sertion, the collisionality scaling of the relative zonal flow
power is fitted with a power law ∝ Cα, where we find a
value of α = −0.23± 0.02.
In summary, the collisionality dependence of the zonal

flow drive was studied in great detail. With the possi-
bility of Reynolds stress measurements in real space, it
was found, that for increasing collisionality the coupling
between density and potential decreases, which in return
makes the zonal flow driving mechanism less effective. As
a result also the nonlinear energy transfer into the zonal
flow, as well as the relative spectral power of the zonal
flow decrease with higher collisionality. This is a direct
test of fundamental mechanism in plasma turbulence on
a microscopic level of plasma turbulent fluctuations and
also represents a first verification of the importance of
collisionality for large-scale structure formation in mag-
netically confined toroidal plasmas.
We thank S.-I. Itoh and K. Itoh for fruitful discussions.
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