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Abstract. The recently proposed set of zeroth-order moment equations to model

poloidal density asymmetries induced by temperature anisotropies in rotating tokamak

plasmas (R. Bilato et al., Nuclear Fusion 54 (2014) 072003) is here extended to

account for the effects of the localization of the ion cyclotron (IC) resonance on

the poloidal inhomogeneity of the density of the cyclotron-heated ion species. This

additional effect has a significant impact on the poloidal density asymmetries due to

radio-frequency (RF) heating, a key issue for high-Z impurity transport, leading, in

particular, to a reduced ICRF (Ion-Cyclotron Radio-Frequency) heating impact on

the in-out accumulation of high-Z impurities when the IC resonance is located on the

high-field side.

1. Introduction

Plasma heating with radio-frequency (RF) waves in the ion-cyclotron (IC) range of

frequencies has an impact on the asymmetry of impurity densities [1, 2, 3]. As a

consequence of the ICRF heating, the density of the IC-resonant species becomes

poloidally inhomogeneous. In compliance with the charge-neutrality constraint, plasma

reacts to this inhomogeneity with an electrostatic potential which varies poloidally. For

high-Z species this electrostatic potential is responsible of an in-out (on the inboard

side) asymmetry of their density also in the presence of the centrifugal force in rotating

plasmas. The possibility of influencing this electrostatic potential by ICRF heating

was already investigated in [4] (and citations therein). In the frame of neoclassical

theory in rotating axisymmetric plasmas [5], the effects of ICRF heating are taken into

account by approximating the distribution of the heated species with a bi-Maxwellian

characterized by T⊥/T‖ > 1 [6]. This produces a set of consistent zeroth-order moment

equations, which are strictly valid only on the high-field side (HFS) of the IC resonance

position. This model, however, neglects an additional effect of the inhomogeneity of

the confining magnetic field along the field lines (mirror effect) on the distribution
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function of the ICRF-heated ion species, as explained in the following. A peculiarity

of cyclotron heating is to increase the perpendicular component of the velocity of the

resonant ions (v⊥, where here parallel and perpendicular refer to the local direction of

the confining magnetic field). Because of the mirror effect associated with the magnetic

field inhomogeneity along the field lines, resonant particles become trapped when v⊥/v

is increased beyond a certain threshold. Resonating trapped particles experience an

increase of v⊥ till when the tips of their banana orbit fall on the crossing points (hereafter

tagged as resonance points) between the IC resonance surface (almost vertical) and

the magnetic surface. Increasing further v⊥ implies the exit of the ion from the IC

resonance. This peculiar feature of cyclotron heating entails an increase of the flow

of passing particles towards the trapped region in velocity space, and an accumulation

of resonating particles in the proximity of the resonance points, feature experimentally

confirmed in [7], for instance. In the previous work [6], the mirror effect on the motion of

resonant species was considered without taking into account the additional effects due

to the accumulation of resonating particles in the proximity of the resonance points.

The impact of these additional effects on the in-out asymmetry of impurity density is

precisely the object of the present study.

For clarity, in the following we reserve the name of bi-Maxwellian only to the product of

two Gaussians depending separately on v⊥ and on v‖, and characterized by two different

temperatures, T⊥ and T‖, respectively [9]. The bi-Maxwellian is the approximation for

the distribution function of the ICRF-heated species assumed in [2, 6]. However, the

bi-Maxwellian model must be modified to account for the toroidal mirror effect also

on the wave-ion resonance, responsible for the “localization” of the IC resonance. In

particular, on the LFS of the IC resonance the distribution functions of the resonating

species develop the well-known “rabbits ears” [10] due to the accumulation of trapped

ions turning just before the resonance itself (upper-left frame of figure 1). The bi-

Maxwellian model of [6] ignores these “rabbits ears”, and, therefore, accounts only

for part of the density inhomogeneity induced by ICRF heating. To overcome this

limitation, in the next Section we discuss an analytical model which accounts for these

additional effects, originally proposed by Dendy and co-workers [8] to study the impact

of ICRF on MHD stability (hereafter we call it Dendy’s model to distinguish it from

the pure bi-Maxwellian distribution function assumed in [6]), and afterwards used to

investigate the impact of ICRF on equilibria [11, 12] and on the in-out asymmetry of

the density of high-Z species [13]. Despite its unavoidable limitations, Dendy’s model is

useful to express in closed form the moments of the distribution function. In Section 3,

the parallel momentum equation (9) of [6] is extended to account for the rabbit ears.

Although this is achieved by renouncing a full consistency with the Fokker-Planck (FP)

equation on the LFS of the IC resonance position, the simplified extension allows us to

highlight the physical mechanisms responsible for the dependence of the poloidal density

asymmetry on the position of the IC resonance, with significant consequences on the

poloidal accumulation of high-Z impurity. A few examples of the dependence of the

in-out asymmetry of high-Z impurity on the IC resonance position are given by using
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Dendy’s model for the poloidal variation of the density of the ICRF-heated species in

place of the numerical solution of the FP equation for the distribution function of the

ICRF-heated species.

2. Model of the distribution function of ICRF-heated species

A first approximation of the distribution function of the ICRF-heated species, which

accounts for an increase of the perpendicular kinetic energy due to ICRF, is the bi-

Maxwellian with the perpendicular temperature larger than the parallel one, T⊥ >

T‖ [14],

fMaxw(v⊥, v‖) =
(m

2π

)3/2 n

T⊥T
1/2
‖

exp

{

−
mv2‖
2T‖

}

exp

{

−
mv2⊥
2T⊥

}

. (1)

However, to describe the density accumulation around the resonance points it is

necessary to go beyond the bi-Maxwellian. For this purpose, Dendy et al [8] proposed

ffast(µ, E , r) =
(m

2π

)3/2 nic(r)

T⊥,icT
1/2
‖,ic

exp

{

−
µBic

T⊥,ic

−
|E − µBic|

T‖,ic

}

, (2)

where µ = mv2⊥/2B is the magnetic moment (B the module of the local confining

magnetic field), E the particle energy, and r the magnetic surface label. The subscript

“ic” stands for the corresponding quantity evaluated a the IC resonance points on

the magnetic surface labeled by r. In the limit of zero-banana width, Dendy’s

distribution function (2) is a function of the constants of motion. For simplicity, in

the examples shown hereafter we consider the limit of circular tokamaks of large aspect

ratio characterized by magnetic field of amplitude B(r, ϑ) = B0R0/R(r, ϑ), where B0 is

its on-axis value, R(r, ϑ) = R0

(

1 + ǫ(r) cosϑ
)

with R0 the major radius of the torus,

r and ϑ the radial and poloidal coordinates, and ǫ(r) = r/R0 the inverse-aspect ratio

of the magnetic surface. However, the behaviour and trends discussed here are not

limited by this approximation, since in all generality one can use the amplitude of B as

running coordinate along the magnetic field line. Figure 1 shows the contour plots of the

distribution function of the minority ICRF-heated species according to (2) at different

poloidal angles. At the point of minimum magnetic field, here the outer midplane

point (ϑ = 0 - hereafter, values at this point are tagged with “lfs”), the distribution

function has the typical bumps (“rabbit ears”) of the ICRF-heated distribution function,

located in the domain of the trapped particles. These rabbit ears are aligned along the

boundary defined by those trapped particles with their banana tips on the IC resonances

ϑic [10, 15]. By using the constancy of E , µ and r, the distribution function can be

mapped along the magnetic field: the bumps coalesce along v‖ = 0 at the poloidal

position ϑic, and from the IC resonance points toward the HFS ffast is well described by

a bi-Maxwellian with (nic, T⊥,ic, T‖,ic).

The limited RF power per resonant particle and collisional isotropization make the
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Figure 1. Distribution function for ǫ = 0.1 and ϑic = π/3 according to Dendy’s

model (2).

ICRF heating accelerate to high energies only a finite fraction of the resonating species.

Dendy’s model (2) can describe only the fast anisotropic part of the distribution function

of the ICRF-heated species. In fact, if T⊥ic = T‖ic in (2), ffast becomes a Maxwellian only

when the IC resonance is on the minimum of the magnetic field, Bic = Blfs. Therefore,

(2) cannot describe the thermal bulk, which is typically much closer to a Maxwellian.

Thus, the whole distribution function can be described with a fast tail (2) superposed

to a Maxwellian, fMaxw, for the thermal background

f(µ, E , r) = (1− ηfast) fMaxw(E , r) + ηfast ffast(µ, E , r) , (3)

with ηfast the fraction of fast IC-accelerated ions, which can be considered as a fitting

parameter as well as T‖,ic and T⊥,ic.

In the case of IC minority heating the RF power per resonating ion is typically

high enough to cause a substantial deformation of the distribution function of the

minority. Therefore, for common operational parameters, describing the whole minority

distribution function with (2) is an acceptable approximation for the minority ICRF-

heated species, and we use it in the following analysis (it corresponds to (3) with

ηfast = 1). This approximation is not always so good for the IC heating of the majority

species at harmonics of the IC frequency.

The approximation (2) makes possible to express density and temperatures in closed

forms as function of T = T⊥,ic/T‖,ic and B = Bic/B (where B < 1 and B > 1 imply to

be on the HFS and LFS of the IC resonance, respectively) [16]. The density along the

magnetic field line is

n(r,B; T ) = nic(r; T ) N (r,B; T ) , (4)
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Figure 2. Poloidal variation of the density of the ICRF-heated ion species when

mapping the distribution function from the low-field side (LFS) ϑ = 0 to the high-field

side (HFS) ϑ = π. The IC resonance position (vertical lines) is at π/4 (LFS) for solid

lines and at 3π/4 (HFS) for dashed lines.

with the density form factor, N ,

N (r,B; T ) = T−

[

1 +

(

T+

T−

− 1

)

√

T

B
(B − 1) H(B − 1)

]

, (5)

the coefficients T± = [B ± (B − 1)T ]−1, andH(x) is the Heaviside function. The density

at the IC resonance points (i.e. at B = 1) is defined with respect to its surface-averaged

value, namely nic(r; T ) = 〈n〉/〈N〉, where the angular brackets denote the surface

average. Figure 2 shows the poloidal modulation of the density when moving from

the low-field side (LFS, ϑ = 0, B = Bmax) to the high-field side (HFS, ϑ = π, B = Bmin)

through the resonance points ϑic (vertical lines). A density maximum is present around

the IC resonance points, slightly shifted on the LFS. The origin of this maximum is

easily understood from the definition of the density as zero-order moment of f in (µ, E)

coordinates

n(r;B) = 4π

∫ +∞

0

dµ

∫ +∞

µB

dE
B

v‖
f(µ, E , r) , (6)

where v‖ =
√

2(E − µB), valid in the absence of an electrostatic potential. The depen-

dence on B is equivalent to the dependence on the poloidal angle ϑ. The v−1
‖ factor in

the Jacobian (J ≡ B/v‖) weights more those particles that have one of their turning

points at ϑ, since they stay longer there having v‖ → 0. Thus, the density experiences a

maximum when the bumps coalesce at the v‖ = 0 line. In passing, we observe that the

Maxwellian is invariant with respect to the ϑ mapping, and thus the density is constant

in ϑ.

As shown in figure 2, when the IC resonance is moved from the LFS (solid lines) to the

HFS (dashed lines), the density peak moves towards the HFS, inverting the effects of
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the density inhomogeneity of the ICRF-heated minority on the high-Z impurities, and

precisely acting in favour of the centrifugal force. Additionally, the poloidal variation of

the density with increasing T is less pronounced when the IC resonance is shifted from

the LFS to the HFS.

The parallel and perpendicular energies defined as second order moments of (2)

are [16]

W‖(r,B; T )

nic(r; T )T‖,ic
=

T−

2

{

1 + H(B − 1)
[

T (1− B−1)
]3/2

(

T+

T−

− 1

)}

,

W⊥(r,B; T )

nic(r; T )T⊥,ic

= T
2
− +H(B − 1)

√

T
(

1− B−1
)

[

T+ − T−

2B
+
(

T
2
+ − T

2
−

)

]

,

(7)

The bi-Maxwellian distribution function with the same energy content as Dendy’s
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Figure 3. Poloidal variation of T⊥ of the ICRF-heated ion species for the same

parameters as in figure 2.

function has the effective parallel and perpendicular temperatures defined by W‖ and

W⊥,
T‖
T‖,ic

= 2
W‖(r,B; T )

n(r,B; T ) T‖,ic
,

T⊥
T⊥,ic

=
W⊥(r,B; T )

n(r,B; T ) T⊥,ic

. (8)

Figures 3 and 4 show the poloidal dependence of T⊥ and T‖, respectively, for the same

values of T as in figure 2. On the high field side of the IC resonance, T‖ is constant and

T⊥/T⊥,ic = T−, as in the case of the bi-Maxwellian [6]. The poloidal variations of T⊥
and T‖ decrease when the IC resonance is shifted towards the HFS. For completeness

the dependence of T⊥/T‖ on the poloidal angle is shown in figure 5. The value of T⊥/T‖
on the outer midplane point decreases substantially when moving the IC resonance from

the LFS to the HFS. Simulations predict values of T that can be slightly larger than
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Figure 4. Poloidal variation of T‖ of the ICRF-heated ion species for the same

parameters as in figure 2. On the high-field side of the IC resonance T‖ is constant.
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Figure 5. Poloidal variation of T⊥/T‖ of the ICRF-heated ion species for the same

parameters as in figure 2.

10 for the present medium-sized plasmas, and lower for large devices, such as JET [3],

mainly as a consequence of the lower RF power per resonant particle.

3. Model equations for the density asymmetry induced by ICRF-heated

species

The density inhomogeneity along the magnetic field of the ICRF-heated ions species (see

figure 2) entails an electrostatic potential that acts on ions and electrons [2]. Especially
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for high-Z ions, such as tungsten and molybdenum, the resulting electrostatic force can

even invert the density out-in (on the outboard side) asymmetry due to the centrifugal

force in rotating plasmas.

If the distribution of the ICRF-heated species is approximated with (2), the parallel

momentum equation must have (4) as solution in the absence of centrifugal forces

and electrostatic potentials. Renouncing a consistent derivation, as done for the bi-

Maxwellian distribution functions [6], a set of approximate equations modeling the

impact on impurity asymmetries is (see appendix)

∇‖nj

nj

= −Zj

∇‖(eΦ̃)

Tj,‖
+

∇‖Nj

Nj

+
mj

2

∇‖V
2
j

Tj,‖
,

ne =
∑

j

Zj nj ,

eΦ̃

Te
= ln

ne

ne,lfs

,

N (r,B; T ) = T−

[

1 +

(

T+

T−

− 1

)

√

T

B
(B − 1) H(B − 1) H (T − 1)

]

,

(9)

where T± = [B ± (B − 1)T ]−1 and V = ωϕ(r)R is the plasma toroidal rotation with ωϕ

the corresponding angular frequency. The third term on the RHS of the first equation is

the centrifugal force. The electron force balance equation (third equation) couples the

electrostatic potential Φ̃ with the electron density, ne, which is constrained by the charge

neutrality (second equation). The main difference of the first of (9) with equation (9)

of [6] is the second term on the LHS, which now depends on the density form factor

N . The effects of ICRF heating enter via N of the resonant species. On the HFS

of the IC resonance these equations are exactly equations (13) of [6] with the first

replaced by equation (9) of [6]. The additional Heaviside function dependent on T in the

expression for N guarantees that for those plasma species not resonating with the waves

(T− = T+ = T = 1), the second term on the right-hand side of the parallel momentum

equation is equal to zero. The set of equations (9) has been solved as an initial value

problem with the concentrations nj/ne given on the outer midplane point. To keep

fixed the average concentration of the (minority) ICRF-heated species, a recursive loop

based on the secant method has been employed to solve (9) [6]. Alternatively, the first

equation (9) can be integrated in closed form,

nj

nj,lfs

=
Nj

Nj, lfs

exp

{

Zj
eΦ̃

Tj,‖
+ AjM

2
ϕ

Ti
Tj,‖

[

(

R

Rlfs

)2

− 1

]}

, (10)

with Aj = mj/mp, mp the proton mass, and Mϕ = ωϕRlfs/
√

2Ti/mp the Mach number

of protons at the background ion temperature, Ti, and on the reference LFS position,

Rlfs. When the first equation of (9) is replaced with (10), (9) becomes a set of algebraic

equations, whose solution can be found with a root finder.
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As done in [17, 6], it is worthwhile deriving an approximate solution for the density

of the high-Z impurities in closed form. We start by approximating all the ion species

with an effective species characterized by the charge, Zeff =
∑

i Z
2
i ni/ne and the mass

meff = mpAeff =
∑

j mjZjnj/ne, and with the density given by the charge neutrality

ñi = ne/Zeff . If the plasma rotates toroidally, ñi is given by (10). By using the electron

force balance ne/ne,lfs = exp{eΦ̃/Te} (in the case of electrons the centrifugal force is

neglected because of the smallness of their mass) and charge neutrality, the electrostatic

potential is linked to the plasma rotation by

eΦ̃

Te
=

Ti
Ti + ZeffTe

Aeff M
2
ϕ

[

(

R

Rlfs

)2

− 1

]

. (11)

A minority ICRF-heated species perturbs the electrostatic potential Φ̃, Φ̃ = Φ̃(0) + δΦ̃,

with Φ̃(0) given by equation (11). Since in typical ICRF minority scenarios the

concentration nm of the minority resonating species (mm, Zm) is much smaller than

the concentration of the majority species, nmZm ≪ nMZM , δΦ̃ can be determined

pertubatively by keeping only the first-order terms in the Taylor expansions. The

perturbation δΦ̃ is obtained by equating the expression of δne from the charge neutrality,

δne = Zmnm + Zeffδñi, with δne from the electron balance force equation, δne/ne,lfs =

(eδΦ̃/Te) exp{eΦ̃(0)/Te}. To determine δñi, we observe that

Zeff ñi = (ne,lfs − Zmnm,lfs) exp

{

−Zeff
eΦ̃

Ti
+ AeffM

2
ϕ

[

(

R

Rlfs

)2

− 1

]}

, (12)

which expanded to the first-order gives

Zeffδñi = −

(

Zeffne,lfs
eδΦ̃

Ti
+ Zmnm,lfs

)

exp

{

eΦ̃(0)

Te

}

. (13)

If Am and Zm of the ICRF-heated species are not too different from Aeff and

Zeff , the density of the ICRF-heated species can be approximated with nm/nm,lfs =

Nm/Nm, lfs exp
{

eΦ̃(0)/Te

}

, and δΦ̃ is

eδΦ̃

Te
=

Zm Ti
Ti + ZeffTe

nm,lfs

ne,lfs

[

Nm

Nm, lfs

− 1

]

. (14)

To the first-order in the perturbation, an approximate expression of the density of

impurities in a rotating plasma heated with ICRF waves becomes

ln

(

nZ

nZ,lfs

)

= −ZZ
Zm Te

Ti + ZeffTe

nm,lfs

ne,lfs

[

Nm

Nm, lfs

− 1

]

+

[

1−
meff

mZ

ZZTe
Ti + ZeffTe

]

AZM
2
ϕ

[

(

R

Rlfs

)2

− 1

]

.

(15)

This is the heuristic expression for the impurity density we were looking for, where

Nm/Nm,lfs can be estimated either with Dendy’s model (5) or from the zeroth-order

moment of the numerical solution of the FP equation.
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4. Discussion

As typical ICRF scenario [2, 3], we consider ICRF heating of minority hydrogen (H)

in deuterium (D) plasmas, and its impact on the in-out asymmetry of tungsten (W).

For B < 1 (i.e. on the HFS with respect to the IC resonance position), (2) becomes a

bi-Maxwellian with T‖ constant and T⊥/T⊥,ic = T−, and equations (9) become exactly

those of [6]. At a given magnetic surface, for various values of TH = T⊥,H/T‖,H at the

LFSHFS
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Figure 6. Poloidal variation of the tungsten concentration on a given magnetic surface

as function of R/Rlfs = (1 + ǫ cosϑ)/(1 + ǫ) with ǫ = 0.1, Te = T‖ = 2 keV for an

ionization state of W equal to 33. The ICRF-heated hydrogen concentration is 5% and

the proton Mach number is 0.1. The solid lines are solution of (9), whereas the symbols

are obtained with the approximated formula (15). The colors refer to the resonance

position, as sketched in the first frame. The LFS and HFS are respectively at ϑ = 0

and ϑ = π. In the case of the red lines the distribution function of the ICRF-heated

species is a bi-Maxwellian, as in the case of [6]. The dashed-magenta line shows the

poloidal density of W in the absence of the effects of the ICRF-heated minority.

IC resonance and different positions of the IC resonance, figure 6 shows the poloidal

variations of the tungsten density in the case of deuterium plasmas rotating at the

toroidal (proton) Mach number Mϕ := ωϕ Rlfs/
√

2T‖/mp = 0.1, with 5% of ICRF-

heated hydrogen. For comparison, the magenta dashed line is calculated in the absence

of temperature anisotropies, and thus only in the presence of the centrifugal effect.

The colors refer to the resonance position, as sketched in the first frame of figure 6.

The solid lines are solution of (9), whereas the symbols are obtained with the heuristic

formula (15). The agreement between the numerical solution of (9) and the profile (15)

is very good, and the lines overlap almost everywhere. In the case of tangent resonances
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on the LFS (red lines), the distribution function of the minority is exactly the bi-

Maxwellian of the case studied in [6]. When TH increases the W density develops a

LFSHFS
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Figure 7. Akin to figure 6 for the minority ICRF-heated species.

minimum close to the IC resonance, and precisely on the LFS of the IC resonance. This

minimum corresponds to the maximum of the poloidal density profiles of the ICRF-

heated minority species, as shown in figure 7. Additionally, the amplitude of the density

variation of the ICRF-heated species increases with TH , and this increase is larger when

the IC resonance is on the LFS. The impact of ICRF heating on the in-out asymmetry

of tungsten is shown in figure 8.a as function of TH for two values of Mϕ and for the

same IC resonance positions of figures 6 and 7. The horizontal magenta lines are the

reference value of the in-out asymmetry in the absence of ICRF heating. The amplitude

and direction effect of ICRF heating depends substantially on the position of the IC

resonance. When the IC resonance is on the HFS (green and black lines), depending on

the values of Mϕ, TH and ε, the potential due to the density asymmetry of the ICRF-

heated species can even enhance the out-in asymmetry of the centrifugal force [2]. This

example shows the general trend that the effect of minority-ICRF heating on the in-out

asymmetry of high-Z impurities depends on the position of the IC resonance: This effect

is larger and acts against the centrifugal effects when the IC resonance is on the LFS.

It is worthwhile comparing the present results with those obtained in [6] assuming

bi-Maxwellian distribution functions. Figure 8.b shows the result for the bi-Maxwellian

model with the values of the temperature anisotropy TH,lfs = T⊥/T‖
)

lfs
on the external

midplane point (namely the values at ϑ = 0 in figure 5). This approach should be

close to the analysis done in [2], where TH,lfs is calculated with the FP solver embedded
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Figure 8. In-out asymmetry of W33+ as function of TH for two values of the hydrogen

Mach number. The colors refer to the IC resonance position according to figure 6. The

magenta horizontal lines are in correspondence of the in-out asymmetry in the presence

of the only centrifugal effects. The plot (b) is for the bi-Maxwellian model [6] with TH
in equations (9) equal to the values of T⊥/T‖ at ϑ = 0 of figure 5.
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Figure 9. (a) In-out asymmetry of W33+ as function of the hydrogen Mach number

Mϕ for TH = 8 and ǫ = 0.1 (the inverse-aspect ratio of the magnetic surface). The

colours have the same meaning of figures 6-8.

(b) In-out asymmetry of W33+ as function of the inverse-aspect ratio, ǫ, of the magnetic

surface tangent to the IC resonance layer and for TH = 8. In (b) the dashed lines show

the corresponding in-out asymmetry in the absence of ICRF effects.

in TRANSP that solves the bounce-averaged FP equation at Rlfs and accounts for the

trapping effects [18]. Therefore, part of the trapping effects are taken into account by

the fact that TH,lfs < TH ≡ TH,ic. Figure 8.b shows the in-out asymmetry according to

these additional approximations. Notice that in figures 8.a and 8.b the red lines are

the same, and only the others are affected by the resonance localization. In particular,

in figure 8.b all the lines are decreasing with TH and the effect of ICRF heating is

substantially reduced when the IC resonance is not tangent to the magnetic field on

the LFS. In figure 9.a the in-out asymmetry of tungsten is shown as function of the
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hydrogen Mach number for TH = 8. The range of Mϕ in figure 9.a largely covers the

possible experimental values in the present devices [19, 20, 21, 22]. The limit Mϕ = 0

corresponds to the case analyzed in [13].

In figure 9.b the in-out asymmetry, evaluated on the magnetic surface tangent to the IC

resonance on the LFS, is shown as function of the inverse-aspect ratio, ǫ. The solid blue

and red lines refer to two different values of the hydrogen Mach number, whereas, for

comparison, the black line shows the in-out asymmetry in the absence of the centrifugal

force. The dashed colored lines are the equivalent cases of the solid lines in the absence

of ICRF effects. The ICRF effects on the in-out asymmetry increase with ǫ . However, it

is important to observe that the anisotropy parameter T depends mainly on the ICRF

absorbed power per resonant particle and on the plasma collisionality. For the same

amount of ICRF absorbed power, T decreases with the plasma volume and thus with

ǫ of the magnetic surface tangent to the IC resonance. As a consequence, the increase

of the in-out asymmetry with ǫ in figure 9.b is partially compensated by the decrease

with ǫ of the temperature anisotropy of the ICRF-heated species.

5. Conclusions

ICRF heating makes poloidally inhomogeneous the density of the heated species.

As back-reaction, an electrostatic potential appears in compliance with the charge

neutrality. As a consequence of this electrostatic potential, weak in-out (on the inboard

side) asymmetry of the density of high-Z impurities can appear also in the presence

of centrifugal force, which acts instead for an accumulation on the outboard side (out-

in) [1, 2]. This has beneficial effects on the impurity behaviour [23, 3]. With reference

to the model discussed in [6], here we have added the effects of the spatial localization

of the IC resonance responsible for the accumulation of resonating particle around the

IC resonance, recognizable as “rabbit ears” in the distribution function of the ICRF-

heated species. As main result of this analysis we observe that, when the IC resonance

is shifted from the LFS to the HFS, for the same value of the temperature anisotropy,

T = T⊥,ic/T‖,ic, the in-out impurity accumulation induced by ICRF heating does not

only decrease in amplitude but it even changes sign becoming an out-in asymmetry

which adds to the contribution of the centrifugal force. This behaviour can be only

partially captured by the bi-Maxwellian model also in the case that T is reduced when

shifting the IC resonance from the LFS to the HFS. For instance, this reduction of T

is accounted for when it is calculated as the ratio of the corresponding second-order

moments of the solution of the bounce-averaged Fokker-Planck (FP) equation, with

the latter including trapping effects [2]. At any rate, the bi-Maxwellian model cannot

fully capture the amplitude reduction and foresee the change of sign of the impurity

accumulation when the IC resonance is shifted on the HFS. Here, we have shown that

a preciser modeling can be achieved by using the first three equations of (9) with the

density form factor N of the ICRF-heated species calculated either directly from the

numerical solution of the FP equation or from the Dendy’s model (last equation in (9))
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with T estimated from the second-order moments of the distribution function at the IC

resonance position. Finally, to facilitate fast data analysis we have derived (15) as an

approximated solution of (9), and we have shown that the agreement is very good.
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Appendix A. Parallel momentum equation

The parallel momentum equation (the first one in (9)) follows from the constraint that

the coefficient of the term proportional to v‖ in the Fokker-Planck equation, written in

the reference frame moving with the plasma velocity V (see equation (44) in [5] or (1)

in [6]), vanishes

b̂ ·

{

∇f −
[ q

m
∇Φ +V · ∇V

] 1

v‖

∂f

∂v‖

}

= 0 , (A.1)

where f is the distribution function, b̂ = B/B and B is the confining magnetic field.

The distribution function f is split as

f(v‖, v⊥, ϑ, ψ) = ñ(ϑ, ψ) F (v‖, v⊥, ψ, ϑ)

where F accounts for the impact of the ICRF heating and ñ for the poloidal dependence

of the density caused by the centrifugal force and the potential Φ. With this choice the

zeroth-order moment of F is the form-factor of the density variation induced by the

ICRF-driven pressure anisotropy, N , defined in (5) for the case of Dendy’s function.

Thus, the total density of the ion species is n = ñN .

By defining the parallel temperature associated with F as

n

T‖
= −

1

m

∫

d3v
1

v‖

∂f

∂v‖
,

in close analogy with the definition of T‖ in the case of a bi-Maxwellian, and by observing

that
∇n

n
=

∇ñ

ñ
+

∇N

N
,

the parallel momentum equation becomes

∇‖n

n
=

∇‖ñ

ñ
+

∇‖N

N
= −q

∇‖Φ

T‖
+

∇‖(mV
2)

2T‖
+

∇‖N

N
, (A.2)

where ∇‖ñ/ñ follows from the zeroth-order moment of (A.1) in the absence of ICRF

heating, i.e. N = 1 and thus ∇N = 0.

On the HFS, it holds N = T− = T⊥/T⊥,ic and (A.2) reduces to equation (9) in [6],

∇‖n

n
= −q

∇‖Φ

T‖
+

∇‖(mV
2)

2T‖
+

∇‖T⊥
T⊥

.
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