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ABSTRACT
Manduca sexta females attract their mates with the release of a
species-specific sex-pheromone blend, with bombykal (E,Z )-
10,12-hexadecadienal and (E,E,Z )-10,12,14-hexadecatrienal being
the two major components. Here, we searched for the hawkmoth
bombykal receptor in heterologous expression systems. The
putative pheromone receptor MsexOr1 coexpressed with MsexOrco
in Xenopus oocytes elicited dose-dependent inward currents upon
bombykal application (10–300 μmol l−1), and coexpressed in HEK293
and CHO cells caused bombykal-dependent increases in the
intracellular free Ca2+ concentration. In addition, the bombykal
receptor of Bombyx mori BmOr3 coexpressed with MsexOrco
responded to bombykal (30–100 μmol l−1) with inward currents.
In contrast, MsexOr4 coexpressed with MsexOrco responded
neither to bombykal (30–100 μmol l−1) nor to the (E,E,Z )-10,12,14-
hexadecatrienal mimic. Thus, MsexOr1, but not MsexOrco and
probably not MsexOr4, is the bombykal-binding pheromone receptor
in the hawkmoth. Finally, we obtained evidence that phospholipase C
and protein kinase C activity are involved in the hawkmoth’s
bombykal-receptor-mediatedCa2+ signals in HEK293 andCHO cells.
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INTRODUCTION
Crepuscular and nocturnal moths have developed exquisitely
sensitive olfaction to locate their mates (reviewed in Kaissling,
2014). Females of the nocturnal hawkmoth Manduca sexta
(Linnaeus 1763) release pulses of a species-specific sex-
pheromone blend of eight aliphatic aldehydes while calling for
their mates. Bombykal (E,Z )-10,12-hexadecadienal (BAL) and
(E,E,Z )-10,12,14-hexadecatrienal are the two major blend
components necessary to evoke male reproductive behavior
(Starrat et al., 1979; Tumlinson et al., 1989, 1994). Conspecific
males detect their species-specific sex-pheromone blend with
olfactory receptor neurons (ORNs) on their antennae (for reviews,
see Homberg et al., 1989; Kaissling et al., 1989). The ORNs express
odorant receptors (ORs) in their dendritic cilia that innervate long,
hair-like, trichoid sensilla (Altner and Prillinger, 1980; Keil and
Steinbrecht, 1984). Odorant-binding ORs (OrX) in insects belong to

a new family of 7TM proteins with inverted membrane topology,
with an intracellular N terminus. They heteromerize with a larger,
ubiquitous, inverted 7TM protein termed olfactory receptor
coreceptor (Orco) that locates and maintains ORs in the ciliary
membranes of ORNs (Clyne et al., 1999; Vosshall et al., 1999;
Larsson et al., 2004; Benton et al., 2006; Vosshall and Hansson,
2011). In addition to this ‘chaperone-like function’, Orco forms a
non-specific, spontaneously opening Ca2+-permeable cation
channel in heterologous expression systems (Sato et al., 2008;
Wicher et al., 2008; Jones et al., 2011; Sargsyan et al., 2011; Nolte
et al., 2013). Because ORNs in Orco-mutant flies showed strongly
diminished spontaneous action potential activity, Orco controls the
membrane potential and, thus, the spontaneous activity of ORNs as
a prominent leak channel (Larsson et al., 2004; Benton et al.,
2007; Deng et al., 2011). Orco’s property as a leaky ion channel
controlling spontaneous membrane potential oscillations was
previously termed the ‘pacemaker channel function’ to distinguish
it from the ‘chaperone function’ of Orco (Stengl, 2010).
Furthermore, experiments with heterologously expessed OrX/
Orco complexes suggested that heteromers of OrX and Orco are
able to form ligand-gated ion channels (German et al., 2013;
Nakagawa et al., 2012; Sato et al., 2008; Wicher et al., 2008) that
promote ionotropic primary transduction (Sato et al., 2008; Wicher
et al., 2008), while there is slower metabotropic transduction at a
later stage of the fruitfly’s odor response (Wicher et al., 2008).
Whether and how Orco contributes to odor transduction in vivo in
different insect species is still under debate (Nakagawa and
Vosshall, 2009; Nolte et al., 2013, 2016).

Sensitization of odor responses in intact fruitflies relied on proper
Orco function, which was impaired with insufficient Orco
phosphorylation by protein kinase C (PKC) (Sargsyan et al.,
2011). Thus, for sensitization to occur, first, Orco needed to be
phosphorylated via PKC, before it could be opened directly via
cAMP binding. Furthermore, Drosophila melanogaster Orco can
already be gated via phospholipase C (PLC) activation, even in
absence of cAMP or cGMP (Sargsyan et al., 2011). It remained
unknown whether odor stimulation first activates PLC for proper
Orco phosphorylation or whether background activity of PLC
keeps Orco phosphorylated. Patch clamp studies on primary cell
cultures of M. sexta ORNs as well as tip recordings of pheromone-
sensitive sensilla in intact hawkmoths indicated that different
PLC- and PKC-dependent ion channels in ORNs play important
roles in pheromone transduction, but it remained undetermined
whether any of these many ion channels is Orco (Stengl, 1993,
1994, 2010; Stengl et al., 1992). In addition, it has not yet been
rigorously examined whether in heterologous expression systems,
OrX/Orco-dependent odor responses are mediated via Ca2+-
dependent enzymes such as PLC and PKC.

As a prerequisite to answering open questions concerning
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whether either of the two putative hawkmoth pheromone receptor
proteins, MsexOr1 and MsexOr4, responds to the main sex
pheromone component BAL (Grosse-Wilde et al., 2011). It was
previously noticed by different research groups that it was very
difficult to obtain functional membrane insertion of MsexOrco and
MsexOrX proteins, even more difficult than in other insect species.
Therefore, the present study was dedicated to identifying the
BAL receptor in M. sexta while employing different expression
systems. Furthermore, because MsexOrco is Ca2+-permeable and
increases intracellular Ca2+ levels in the cells expressing this
protein, and because MsexOrX and MsexOrco proteins possess
putative PKC phosphorylation sites, we asked whether
manipulation of the Ca2+-dependent enzymes PLC and PKC may
modify BAL response in different heterologous expression systems.

MATERIALS AND METHODS
Odor stimulation
For the de-orphanization experiments, (E,Z )-10,12-hexadecadienal
(BAL) was employed at concentrations of 100 nmol l−1 to
300 µmol l−1. To test the specificity of the hawkmoth pheromone
receptor, the female silkworm sex pheromone bombykol (E,Z)-
10,12-hexadecadienol (BOL) was used at a concentration of
100 μmol l−1 for comparison. Because the trienal (E,E,Z )-
10,12,14-hexadecatrienal is a relatively unstable substance, a more
stable chemical mimic, (E,Z )-11,13-pentadecadienal (E11,Z13-15:
AL) (C15), was employed (Christensen and Hildebrand, 1997).

Cell culture and calcium imaging
Human embryonic kidney (HEK293) cells or Chinese hamster
ovary (CHO) cells (Leibniz Institute DSMZ-German Collection of
Microorganisms and Cell Cultures, Braunschweig, Germany) were
grown in a 1:1 mixture of Dulbecco’s modified Eagle medium and
Ham’s F-12 medium with L-glutamine (PAA, Cölbe, Germany)
containing 10% fetal bovine serum (PAA) at 37°C and 5% CO2

content. HEK293 cells or CHO cells were plated on poly-L-lysine
(0.01%, Sigma-Aldrich, Steinheim, Germany) coated coverslips in
24-well plates and cultured at a density of ∼105 per well. The
M. sexta OR constructs MsexOrco and MsexOr1 (Grosse-Wilde
et al., 2010) were transfected at a 0.5–0.7 µg well−1 concentration
using Transficient (MBL International Corporation, Woburn, MA,
USA).
For calcium imaging, cells were incubated in bath solution

containing 5 μmol l−1 fura-2 acetomethylester (Molecular Probes,
Invitrogen, Eugene, OR, USA) for 30 min. Excitation of fura-2
at 340 and 380 nm was performed with a monochromator
(Polychrome V, T.I.L.L. Photonics, Gräfelfing, Germany) coupled
via an epifluorescence condenser to an Axioskop FS microscope
(Carl Zeiss, Jena, Germany) with a water immersion objective

(LUMPFL 40×W/IR/0.8; Olympus, Hamburg, Germany). Emitted
light was separated by a 400 nm dichroic mirror and filtered with
a 420 nm long-pass filter. Fluorescence images were acquired
using a cooled CCD camera controlled by TILLVision 4.0 software
(T.I.L.L. Photonics). The resolution was 640×480 pixels in a frame
of 175×130 µm (40×/IR/0.8 objective). Image pairs were obtained
by excitation for 150 ms at 340 and 380 nm (ratio R); the
background fluorescence was subtracted. Free intracellular Ca2+

concentration ([Ca2+]i) was calculated according to:

½Ca2þ�i ¼ Keff
R� Rmin

Rmax � R
: ð1Þ

The parameters minimum and maximum ratio R, Rmin and Rmax, and
the effective Ca2+ dissociation constant, Keff, were determined as
described in Mukunda et al. (2014).

Fluorescence images were acquired using a cooled CCD camera
controlled by TILLVision 4.0 software (T.I.L.L. Photonics). The
resolution was 640×480 pixels in a frame of 175×130 µm (40×/IR/
0.8 objective). Image pairs were obtained by excitation for 150 ms at
340 and 380 nm; background fluorescence was subtracted. Cells
were continuously perfused with bath solution in the recording/
perfusion chamber (RC-27, Warner Instruments Inc., Hamden,
CT, USA). The bath solution contained (in mmol l−1): 135 NaCl,
5 KCl, 1 CaCl2, 1 MgCl2, 10 HEPES, 10 glucose; pH 7.4;
osmolarity=295 mOsmol l−1. BAL and the modulators were
applied using either a bath perfusion system (BPS4 from ALA,
New York, NY, USA) or a rapid solution changer (RSC160 from
Biologic, Claix, France). BOL was obtained from Pheropbank
(Wijk bij Duurstede, The Netherlands); the modulators U73122,
U73343 and Gö6976 were obtained from Calbiochem (Darmstadt,
Germany). BAL was synthesized by the working group ‘Mass
Spectrometry/Proteomics’ of theMax-Planck Institute for Chemical
Ecology (Jena, Germany). BAL, BOL and C15 were dissolved and
applied in 0.01% dimethylsulfoxide (DMSO). For the analysis, only
responding cells were used. Responses are characterized by a clear
BAL-stimulation-related increase in [Ca2+]i.

Functional analysis of ORs in Xenopus laevis oocytes
cRNA synthesis, oocyte microinjection and two-electrode voltage-
clamp recordingwere performed as previously described (Hopf et al.,
2015). Briefly, oocytes were microinjected with 6.25 ng cRNA
encoding a ligand-specific OrX protein (MsexOr1, MsexOr4 or
BmOr3) and 6.25 ng cRNA encoding Orco cRNA (MsexOrco).
Currents were recorded and amplified using an OC-725C
amplifier (Warner Instruments, Hamden, CT, USA). Before
electrophysiological recording, BAL was prepared in DMSO as 10
to 300 mmol l−1 stock solutions and C15 as 1 to 10 mmol l−1 stock
solutions, which were then diluted into the bath solution at 0.1% to
give the final desired concentration.

RESULTS AND DISCUSSION
To identify M. sexta’s BAL receptor, the pheromone receptor
candidates MsexOr1 andMsexOr4 (Grosse-Wilde et al., 2010) were
coexpressed with MsexOrco first in X. laevis oocytes and then in
HEK293 and CHO cells. Responses to different pheromone
components were examined with two-electrode voltage-clamp
recordings or with Ca2+ imaging.

Only MsexOr1and BmOr3 but not MsexOr4 respond to BAL
In X. laevis oocytes expressing MsexOrco and MsexOr1, BAL
stimulation activated inward currents in a concentration-dependent

List of abbreviations
BAL bombykal (E,Z )-10,12-hexadecadienal
BOL bombykol (E,Z)-10,12-hexadecadienol
[Ca2+]i intracellular Ca2+ concentration
CHO Chinese hamster ovary
HEK293 human embryonic kidney
OR odorant receptor
Orco olfactory receptor coreceptor
ORN olfactory receptor neuron
PKC protein kinase C
PLC phospholipase C
SNMP sensory neuron membrane protein
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manner, with a threshold concentration of 30 μmol l−1 (Fig. 1A). In
addition, coexpression of MsexOrco with the BAL receptor BmOr3
from the silkmoth Bombyx mori also allowed for BAL-induced
inward currents (Fig. 1B). The maxima of BmOr3-mediated BAL
responses were higher than the MsexOr1-dependent responses,
hinting at better membrane insertion of the silkmoth BAL receptor.
In contrast to MsexOr1, coexpression of the second pheromone
receptor candidate MsexOr4 with MsexOrco did not elicit BAL-
induced inward currents (Fig. 1C). Because only the highest BAL
concentration tested elicited very small responses, it is likely that
MsexOr4 is indeed expressed in the plasma membrane, but that it is
not specific for BAL. To examine whether MsexOR4 expressed in
oocytes responds to minor pheromone components such as (E,E,Z )-
10,12,14-hexadecatrienal, it was stimulated with the more stable
mimic (E,Z )-11,13-pentadecadienal at concentrations of 1 and
10 μmol l−1. However, no specific responses were obtained at any of
the concentrations tested (Fig. 1D).

Thus, further investigations focused on MsexOr1 expression. To
further examine the sensitivity of the hawkmoth BAL receptor,
MsexOrco and MsexOr1 were expressed in HEK293 cells and Ca2+

imaging was employed to monitor receptor activation. While for
femtomolar to nanomolar BAL concentrations the percentage of
cells showing a response to stimulation did not significantly differ
from the response to solvent control (0.1% DMSO, median: 0.0%),
for 1 μmol l−1 BAL there was a significantly higher percentage of
responding cells (median: 6.2%; Fig. 2A,B). To examine the
selectivity ofMsexOrco andMsexOr1 to the hawkmoth pheromone,
the receptor complex was stimulated with BOL, the sex pheromone
of female B. mori. Application of 100 μmol l−1 BOL produced only
weak responses in comparison to 100 μmol l−1 BAL (Fig. 2C).

As only coexpression of MsexOrco with MsexOr1 but not with
MsexOr4 conferred BAL sensitivity, MsexOr1 is the BAL-ligand
binding subunit. Because it was very difficult to obtain any plasma
membrane expression of any of the subunits tested, it was not
examined whether MsexOr1 expression alone is sufficient to elicit
BAL responses, as was found for OrX proteins from other species
(Wetzel et al., 2001; Sakurai et al., 2004; Nakagawa et al., 2005;
Neuhaus et al., 2005; Grosse-Wilde et al., 2006; Smart et al., 2008;
Deng et al., 2011). It still remains unknown whether MsexOr4
would detect minor components of the M. sexta pheromone
blend. Because application of (E,Z)-11,13-pentadecadienal (up to
10 μmol l−1), which mimics (E,E,Z)-10,12,14-hexadecatrienal, did
not activate a current in oocytes expressing MsexOr4+MsexOrco
constructs, the respective pheromone receptor of the second
behaviorally relevant main pheromone compound still needs to be
identified in the hawkmoth (Tumlinson et al., 1989, 1994; Kaissling
et al., 1989). Alternatively, the lack of odor responsiveness could also
indicate that MsexOr4 was not inserted into the plasma membrane.
However, the weak response to high BAL concentration (Fig. 1C)
indicates at least a minimum of membrane expression of MsexOr4.

MsexOrco and MsexOrX proteins need additional molecular
compounds for stable plasma membrane insertion
As compared with heterologous expression of Orco and OrX
proteins from other species, it was considerably more difficult
to express M. sexta receptors in the plasma membrane of the
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Fig. 1. Bombykal (BAL) stimulation activates a dose-dependent inward
current in Xenopus oocytes expressing MsexOrco+MsexOr1.
Representative current traces of oocytes injected with the indicated cRNAs at a
holding potential of −80 mV. The arrowheads mark the application of BAL (10,
30,100 and 300 μmol l−1) or control solution (buffer). (A) Oocytes coexpressing
MsexOrco andMsexOr1showed a dose-dependent inward current in response
to BAL stimulation, with a threshold concentration of approximately 30 μmol l−1.
(B) Even stronger responses to BAL stimulation were recorded from oocytes
coexpressingMsexOrco and BmOr3, the BAL receptor of the silkmoth Bombyx
mori. (C) In contrast, coexpression of MsexOrco and the putative pheromone
receptor MsexOr4 did not allow for BAL responses. (D) Oocytes coexpressing
MsexOrco and MsexOr4 showed no response to C15 (1 and 10 μmol l−1).
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Fig. 2. Test for functional expression of MsexOrco and MsexOr1
in HEK293 cells by means of Ca2+ imaging. (A,B) Images of the free
intracellular Ca2+ concentration ([Ca2+]i) in HEK293 cells expressing the
pheromone receptor before (A) and after (B) stimulation with 100 μmol l−1 BAL.
Color code gives [Ca2+] (in nmol l−1). (C) Time course of [Ca2+]i in response to
100 μmol l−1 BAL (n=24) or 100 μmol l−1 bombykol (BOL; n=50) stimulation at
50 s. Mann–Whitney test, ***P<0.001.
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different heterologous expression systems employed (Fig. 1A,B).
Apparently, more molecules next to the chaperone Orco are
necessary to insert MsexOrX proteins in the plasma membrane. In
D. melanogaster, pheromone receptors are composed of the Orco/
OrX construct and a sensory neuron membrane protein (SNMP)
(Benton et al., 2007; Jin et al., 2008; Li et al., 2014). Furthermore,
interactions between SNMP-1 and ligand-binding Ors, but not with
Orco, were found in FRET experiments (German et al., 2013). The
antennal transcriptome ofM. sexta contains the message of SNMP-1
(Grosse-Wilde et al., 2011), which is also known to be expressed in
pheromone-receptor-expressing sensory neurons in Antheraea
polyphemus and Heliothis virescens (Forstner et al., 2008). This
could indicate that SNMP-1 might be part of the M. sexta BAL
receptor complex, necessary for plasma membrane insertion.
Coexpression of MsexOr1+MsexOrco with SNMP-1 in HEK293
cells allowed for stronger Ca2+ responses upon stimulation with the
synthetic Orco agonist VUAA1 (Jones et al., 2011) as compared
with cells expressing only MsexOrco (Nolte et al., 2013). However,
in the presence of SNMP together with MsexOrco and MsexOr1,
only a few HEK293 cells appeared to express these molecules in the
plasma membrane, allowing for Orco activation via its agonist
VUAA1. Therefore, there are still more unknown molecular
components necessary for stable plasma membrane insertion and
maintenance.

PLC- and PKC-dependent regulation of BAL responses
in heterologous expression systems
Next, a possible dependence of the BAL response on PLC or PKC
activity was examined, as reported previously for hawkmoth

pheromone transduction (Stengl, 1993, 1994, 2010; Dolzer et al.,
2008) and for fruitfly Orco (Sargsyan et al., 2011; Getahun et al.,
2013). Thus, Ca2+ imaging experiments were performed in
HEK293 cells expressing MsexOrco and MsexOr1. Application
of 100 μmol l−1 BAL induced an immediate, transient rise of [Ca2+]i
from 100 to 500 nmol l−1 (Fig. 3A). It should be noted that the
response to BAL in HEK293 is much slower than that in oocytes.

The rise in [Ca2+]i in response to BAL application was strongly
reduced and delayed by the PLC inhibitor U73122 (Fig. 3A,B).
Within 250 s of BAL stimulation, there was a slow rise in [Ca2+]i
without reaching a clear peak in the presence of U73122. By
contrast, the inactive analog U73343 had only minor effects
(Fig. 3A,B). Also, PKC inhibition with Gö6976 significantly
reduced and delayed BAL-induced [Ca2+]i responses (Fig. 3A,B).
Thus, BAL responses depended on PLC activity, as well as on
PKC activity.

To exclude the possibility that the effect of PLC/PKC inhibition
on BAL-induced Ca2+ responses was a specific property of the
expression system, comparative experiments were performed in
CHO cells. As shown for HEK293 cells, BAL application elicited a
robust Ca2+ response in CHO cells expressing MsexOrco and
MsexOr1. Preincubation of cells with U73122 or Gö6976 nearly
abolished the BAL-dependent rise in [Ca2+]i (Fig. 3C,D).

Thus, PLC/PKC activity is a prerequisite to BAL-receptor-
mediated Ca2+ signals in HEK293 and CHO cells. This finding
could be explained by different hypotheses. It could be
hypothesized that MsexOrs and MsexOrco need to be
phosphorylated before they can be gated by BAL as an
ionotropic odor receptor–ion channel complex, as suggested
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Fig. 3. Inhibition of PLC and PKC affects the BAL response in HEK293 or CHO cells coexpressing MsexOrco+MsexOr1. (A) Ca2+ responses in HEK293
cells obtained by stimulation of MsexOr1+MsexOrco with 100 μmol l−1 BAL (arrow) under control conditions (n=24) and in the presence of the PLC inhibitor
U73122 (10 μmol l−1, n=44), its inactive analog U73343 (10 μmol l−1, n=14) or the PKC inhibitor Gö6976 (1 μmol l−1, n=34). [Ca2+]i was determined with Ca2+

imaging using the dye fura2. (B) ThemaximumCa2+ risewithin 50 s of stimulation with 100 μmol l−1 BAL under control conditions and in the presence of PLC/PKC
inhibitors. PLC inhibition and PKC inhibition reduces the fast BAL-induced rise in [Ca2+]i. Kruskal–Wallis test with Dunn’smultiple comparison test against control;
***P<0.001; ** P<0.01. (C) Ca2+ responses in CHO cells obtained by stimulation of MsexOr1+MsexOrco with 100 μmol l−1 BAL (arrow) under control conditions
(n=14) and in the presence of the PLC inhibitor U73122 (10 μmol l−1, n=24) or of the PKC inhibitor Gö6976 (1 μmol l−1, n=36). (D) The maximum of the Ca2+ rise
upon stimulation with 100 μmol l−1 BAL under control conditions and in presence of PLC/PKC inhibitors. PLC inhibition and PKC inhibition reduces the fast BAL-
induced rise in [Ca2+]i. Kruskal–Wallis test with Dunn’s multiple comparison test against control; ***P<0.001; *P<0.05.
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previously in D. melanogaster (Sargsyan et al., 2011; Getahun
et al., 2013). Alternatively, it could be hypothesized that MsexOrs
couple to Gαq proteins, requiring activation of PLC for pheromone
transduction, as suggested by previous findings in moths and
cockroaches (Breer et al., 1990; Boekhoff et al., 1993, 1994; for a
review, see Stengl, 2010). More experiments in different insect
species are necessary to resolve the still unsolved puzzle of insect
odor/pheromone transduction.
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