

Supplementary Figure 1 | Membrane-embedded mTSPO in the absence of DAA1106. (a) Solid-state ¹³C-¹³C PDSD spectra of apo mTSPO reconstituted into DMPC liposomes. Protein-to-lipid molar ratios of 1:20 (blue; recorded at 800 MHz) and 1:50 (black; recorded at 950 MHz) are shown. (b) Far-UV circular dichroism spectrum of the 1:20 sample in (a).

Supplementary Figure 2 | The GxxxG motif in bacterial TspO. Superposition of the dimeric crystal structure of TspO from *Bacillus cereus* (grey; PDB id: 4RYJ) with the canonical GxxxG inter-helix arrangement of glycophorin A (blue; PDB id: 5EH4). The relative orientation between the two helices, which contain the GxxxG motif and thereby form the dimerization interface, is highly similar.

Supplementary Figure 3 | Cholesterol causes allosteric structural changes and promotes dissociation of the mTSPO dimer. (a) Superposition of 2D $^{13}C^{-13}C$ PDSD spectra of mTSPO (bound to DAA1106) in the absence (gold) and presence (black) of a 10-fold excess of cholesterol. The mixing time was 20 ms. Residues, which underwent chemical shift changes, are labelled. (b) 1D traces for C^β A102 taken from PDSD spectra in the absence (gold) and presence (black) of cholesterol.

Supplementary Figure 4 | Solid-state NMR spectra of Y152S-mTSPO (green) reconstituted into DMPC liposomes. Before reconstitution the protein was loaded with DAA1106 following the same procedure as for the wild-type protein. (a) $2D^{15}N^{-13}C^{\alpha}$ spectrum. The spectrum of wild-type mTSPO in complex with DAA1106 is shown in black for comparison. Cross-peaks are labelled by their residue name: disappearing peaks in black, largely unperturbed peaks in blue and residues, which appear at the monomer chemical shift in Y152S-mTSPO, in green. (b) Superposition of a selected region from a ¹³C-¹³C PDSD spectrum of Y152S-mTSPO (with DAA1106) in the absence (green) and presence (orange) of a 10-fold excess of cholesterol over protein.

Supplementary Figure 5 | Secondary structure analysis of membrane-embedded G87V-mTSPO (blue) in complex with DAA1106. Positive δC^{α} - δC^{β} values are indicative of α -helix. Comparison with δC^{α} - δC^{β} values observed in wild-type mTSPO in complex with DAA1106 (red) demonstrate that the transmembrane helices are intact in both the monomeric and dimeric states of the protein.

Supplementary Figure 6 | Gaussian network analysis applied to mTSPO and its bacterial homologues. (a) mTSPO (PDB id: 2MGY). (b) TspO from *Bacillus cereus* (PDB id: 4RYJ). (c) A138T-TspO from *Rhodobacter sphaeroides* (PDB id: 4UC2). The least stable transmembrane parts of the TSPO fold are the CRAC motif in TM-V and the transmembrane helix TM-II.

Supplementary Table 1 | Solid-state NMR experiments recorded for ¹³C/¹⁵N-labelled mTSPO in complex with DAA1106. The mTSPO:DMPC molar ratio was 1:20.

Frequency	Experiment	Acquisition details:	Scans	Spinning
(MHz)	•	Complex points; t _{max}		Speed (kHz)
		(ms); SW		
950	2D NCA	ω ₁ (¹³ C): 1792; 12.5; 299	144	19
	¹ H/ ¹ ^S N Ramp CP (500µs)	ω ₂ (¹⁵ N): 80; 12.9; 32		
	¹⁰ N ¹⁰ C Tang CP (3800			
950		$(1) (1^{3}C) (1702) 12 5 (200)$	160	10
330	$^{1}\text{H}/^{15}\text{N}$ Ramp CP (500us)	$\omega_1(-C)$. 1792, 12.3, 299	100	19
	15 N/ 13 C Tang CP (4200	$\omega_2(1)$, 80, 12.9, 32		
	μs)			
950	3D NCACB	ω ₁ (¹³ C): 1500; 10.5; 299	96	19
	(CA-CB DREAM mixing	ω ₂ (¹³ C): 72; 5; 30		
	')	ω ₃ (¹⁵ N): 36; 5.9; 32		
950	2D PDSD	ω ₁ (¹³ C): 1880; 15; 262	112	11
	¹ H/ ¹³ C Ramp CP (500µs)	ω ₂ (¹³ C): 1260; 12; 220		
	20 ms mixing			
950	3D NCACX	ω ₁ (¹³ C): 1792; 12.5; 299	96	11
	25 ms PDSD mixing	ω ₂ (¹³ C): 80; 5.6; 30		
		ω ₃ (¹⁵ N): 32; 5.2; 32		
950	3D NCACX	ω ₁ (¹³ C): 1792; 12.5; 299	80	11
	100 ms PDSD mixing	ω ₂ (¹³ C): 72; 5; 30		
		ω ₃ (¹⁵ N): 36; 5.9; 32		
950	3D NCOCX	ω ₁ (¹³ C): 1792; 12.5		11
	40 ms DARR mixing ^{2,3}	ω ₂ (¹³ C): 40; 5.6	88	
	100 ms DARR mixing	ω ₃ (¹⁵ N): 32; 5.2	104	
950	3D NCOCA	ω ₁ (¹³ C): 1792; 12.5; 299		19
	CO-CA BSH transfer ⁴	ω ₂ (¹³ C): 36; 5.8; 13	128	
		ω ₃ (¹⁵ N): 36; 5.9; 32		
850	3D NCACO	$\omega_1(^{13}C)$:1200; 12.8; 220	80	20
	CA-CO BSH transfer	$\omega_2(1^{-3}C):64; 5; 30$		
950		$\omega_3((130): 36; 6.5; 32)$	140	00
000	3D CANCO	$w_1(^{-1}C): 1200; 12.8; 233$	112	20
		$\omega_{2}(^{15}N)$: 36: 6.5: 32		

Supplementary Table 2 Acquisition parameters of additional NMR experiments recorded for different ¹³C/¹⁵N-labelled mTSPO samples.

Frequency (MHz)	Experiment	Acquisition details: Complex points; t _{max} (ms); SW	Scans	Spinning Speed (kHz)		
G87V-mTSPO/DAA1106:DMPC (1:20)						
950	2D NCA ¹ H/ ¹⁵ N Ramp CP (500µs) ¹⁵ N/ ¹³ C Tang CP (3800 µs)	ω ₁ (¹³ C): 1792; 12.5; 299 ω ₂ (¹⁵ N): 80; 12.9; 32	256	19		
950	2D NCO ¹ H/ ¹⁵ N Ramp CP (500µs) ¹⁵ N/ ¹³ C Tang CP (3400 µs)	ω ₁ (¹³ C): 1792; 12.5; 299 ω ₂ (¹⁵ N): 80; 12.9; 32	160	19		
850	3D NCACB (CA-CB DREAM mixing)	$\omega_1({}^{13}C)$: 1242; 10; 292 $\omega_2({}^{13}C)$: 68; 5.3; 30 $\omega_3({}^{15}N)$: 30; 5.8; 30	88	20		
950	2D PDSD ¹ H/ ¹³ C Ramp CP (500µs) 20ms mixing	$\omega_1(^{13}C)$: 1880; 15; 262 $\omega_2(^{13}C)$: 1260; 12; 220	96	11		
mTSPO/DAA1106:DMPC (1:80)						
950	2D NCA ¹ H/ ¹⁵ N Ramp CP (400μs) ¹⁵ N/ ¹³ C Tang CP (3500 μs)	ω ₁ (¹³ C): 1792; 12.5; 299 ω ₂ (¹⁵ N): 80; 12.9; 32	848	19		
950	2D PDSD ¹ H/ ¹³ C Ramp CP (400µs) 20 ms mixing	$\omega_1(^{13}C)$: 1880; 15; 262 $\omega_2(^{13}C)$: 1260; 12; 220	112	11		
mTSPO:DMPC (1:50)						
950	2D NCA ¹ H/ ¹⁵ N Ramp CP (400μs) ¹⁵ N/ ¹³ C Tang CP (4200 μs)	ω ₁ (¹³ C): 1792; 12.5; 299 ω ₂ (¹⁵ N): 88; 13.4; 34	320	19		
950	2D NCO ¹ H/ ¹⁵ N Ramp CP (400μs) ¹⁵ N/ ¹³ C Tang CP (4200 μs)	ω ₁ (¹³ C): 1792; 12.5; 299 ω ₂ (¹⁵ N): 88; 13.4; 34	320	19		
950	2D PDSD ¹ H/ ¹³ C Ramp CP (400µs) 20ms mixing	ω ₁ (¹³ C): 1880; 15; 262 ω ₂ (¹³ C): 1260; 12; 220	104	11		
mTSPO:DMPC (1:20)						
800	2D NCA ¹ H/ ¹⁵ N Ramp CP (800µs) ¹⁵ N/ ¹³ C Ramp CP (3000 µs)	ω ₁ (¹³ C): 1184; 10; 296 ω ₂ (¹⁵ N): 92; 14.2; 40	304	11		

800	2D NCO	ω ₁ (¹³ C): 1660; 14; 296	300	11
	¹ H/ ¹⁵ N Ramp CP (800µs)	ω ₂ (¹⁵ N): 84; 14.4; 36		
	¹⁵ N/ ¹³ C Ramp CP (3800			
	μs)			
800	2D PDSD	ω ₁ (¹³ C): 1880; 15; 262	128	11
	¹ H/ ¹³ C Ramp CP (600µs)	ω ₂ (¹³ C): 1260; 12; 220		
	20 ms mixing			
Y152S-mTS	PO/DAA1106:DMPC (1:20)	/Y152S-mTSPO/DAA1106	DMPC:Ch	nol (1:20:10)
950		$(1)(^{13}C) \cdot 1702 \cdot 125 \cdot 200$	640/640	10
300	1 H/ 15 N Ramp CP (500us)	$\omega_1(-C)$. 1792, 12.3, 299	040/040	19
	$^{15}N/^{13}C$ Tang CP (3800	$\omega_2(1).00, 13.4, 34$		
050		() (13C) (1702) (12E) (200)	201/201	10
950	1 H/ 15 N Ramp CP (500us)	$W_1(C)$. 1792, 12.5, 299	304/304	19
	$^{15}N/^{13}C$ Tang CP (4200	$\omega_2(10): 88; 13.4; 34$		
050		(130): 4000: 45: 202	06/120	11
950	2D PD5D	$\omega_1(^{-1}C)$: 1880; 15; 262	90/120	11
	$H/C Ramp CP (500 \mu s)$	$\omega_2(1^{\circ}C)$: 1260; 12; 220		
	20 ms mixing			
mTSPO/DA	A1106:DMPC:Cholesterol (1	:20:10)		
950		(m ⁽¹³ C): 1792: 12 5: 299	144	19
000	1 H/ 15 N Ramp CP (500us)	(1) (15) $(1702, 12.0, 200)$		10
	$^{15}N/^{13}C$ Tang CP (3800	$\omega_2(10).80, 13.4, 34$		
950		(1) (13) (17) (12) $($	160	10
930	$^{1}\text{H}/^{15}\text{N}$ Ramp CP (500us)	$W_1(C)$. 1792, 12.3, 299	100	19
	$^{15}N/^{13}C$ Tang CP (4200	$\omega_2(10): 88; 13.4; 34$		
050		(130) 4000 45 000	400	4.4
950		$\omega_1(1^{\circ}C)$: 1880; 15; 262	128	11
	'H/'°C Ramp CP (500µs)	ω ₂ ('°C): 1260; 12; 220		
	20 ms mixing			

Supplementary methods

Synthesis of DAA1106. *N*-(2,5-Dimethoxybenzyl)-*N*-(5-fluoro-2-phenoxyphenyl)acetamide **5** (DAA1106) was prepared according to scheme 1 below ⁵. 2,5-Dimethoxybenzyl **7** chloride was synthesized from 2,5-dimethoxybenzyl alcohol ⁶.

Reagents and conditions: (a) PhOH, K_2CO_3 , DMF, 75 °C, 3 h, 52%; (b) Fe, AcOH, 100 °C, 30 min, 93%; (c) AcCl, *N*-methylmorpholine, CH₂Cl₂, 0-20 °C, 2 h, 97%; (d) 2,5-dimethoxybenzyl chloride, NaH, DMF, 2 h, 81%; (e) HCl conc., 20 min, 80%.

Supplementary References

- 1. Verel, R., Ernst, M. & Meier, B.H. Adiabatic dipolar recoupling in solid-state NMR: the DREAM scheme. *J Magn Reson* **150**, 81-99 (2001).
- 2. Morcombe, C.R., Gaponenko, V., Byrd, R.A. & Zilm, K.W. Diluting abundant spins by isotope edited radio frequency field assisted diffusion. *J Am Chem Soc* **126**, 7196-7 (2004).
- 3. Takegoshi, K., Nakamura, S. & Terao, T. C-13-H-1 dipolar-assisted rotational resonance in magic-angle spinning NMR. *Chem Phys Lett* **344**, 631-637 (2001).
- 4. Shi, C. et al. BSH-CP based 3D solid-state NMR experiments for protein resonance assignment. *J Biomol NMR* **59**, 15-22 (2014).
- 5. Okubo, T., Yoshikawa, R., Chaki, S., Okuyama, S. & Nakazato, A. Design, synthesis and structure-affinity relationships of aryloxyanilide derivatives as novel peripheral benzodiazepine receptor ligands. *Bioorg Med Chem* **12**, 423-38 (2004).
- 6. Mandell, L., Cooper, S.M., Rubin, B., Campana, C.F. & Day, R.A. Synthesis and electrochemical reduction of [2-(1,4-benzoquinonyl)ethyl]-1,4-benzoquinone. *The Journal of Organic Chemistry* **48**, 3132-3134 (1983).