
ar
X

iv
:1

61
2.

08
51

5v
2 

 [
cs

.S
Y

] 
 1

0 
Fe

b 
20

17
1

Compositional Synthesis of Finite State Abstractions
Rupak Majumdar, Kaushik Mallik, Anne-Kathrin Schmuck

Abstract—Controller synthesis techniques for continuous sys-
tems with respect to temporal logic specifications typically use
a finite-state symbolic abstraction of the system model. Con-
structing this abstraction for the entire system is computationally
expensive, and does not exploit natural decompositions of many
systems into interacting components. We describe a methodology
for compositional symbolic abstraction to help scale controller
synthesis for temporal logic to larger systems.

We introduce a new relation, called (approximate) disturbance
bisimulation, as the basis for compositional symbolic abstractions.
Disturbance bisimulation strengthens the standard approximate
alternating bisimulation relation used in control, and extends
naturally to systems which are composed of sub-components
possibly connected in feedback; disturbance bisimulation handles
the feedback signals as disturbances. After proving this compos-
ability of disturbance bisimulation for metric systems, we show
how one can construct finite-state abstractions compositionally
for each component, so that the abstractions are simultaneously
disturbance bisimilar to their continuous counterparts. Combin-
ing these two results, we can compositionally abstract a network
system in a modular way while ensuring that the final composed
abstraction is distrubance bisimilar to the original system.

We discuss how we get a compositional controller synthesis
methodology for networks of such systems against local temporal
specifications as a by-product of our construction.

I. INTRODUCTION

Symbolic models for continuous dynamical systems enable

powerful automata-theoretic techniques for controller design

for ω-regular specifications to be applied to continuous sys-

tems. In this methodology, one starts with a continuous dynam-

ical system and an approximation factor ε, and constructs a

finite-state abstraction whose trajectories are guaranteed to be

within a distance of ε to the original system and vice versa [1],

[2], [3], [4], [5]. The approximation is usually formalized using

ε-approximate alternating bisimulation relation, which has the

property that controller synthesized for the abstraction can be

automatically refined into controller for the original system.

Under the assumption of incremental input-to-state stability,

one can algorithmically construct a finite-state discrete system

which is ε-approximately alternatingly bisimilar to the original

continuous system. Since one can also algorithmically synthe-

size controllers for ω-regular properties for discrete systems

(see, e.g., [6], [7]), this provides an automatic controller

synthesis technique for continuous systems. The methodology

is integrated into controller synthesis tools [8], [9], and has

been recently applied to large case studies in adaptive cruise

control [10] and bipedal robots [11]. It has also been extended

to systems with disturbance [12], [13] or to stochastic systems

[14], [15], [16].

The computational bottleneck of this approach is the expen-

sive abstraction step (typically exponential in the dimension)
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which limits its applicability to real systems. However, in

practice, many systems are designed using interacting net-

works of smaller dynamically coupled components. One would

imagine that each component can be abstracted separately, in

an environment consisting, abstractly, of the other components.

Very recently some efforts have been made in this direction.

Rungger and Zamani [17] presented a compositional approach

for approximate abstraction which performs a model order re-

duction from one continuous system to another continuous sys-

tem with fewer state variables. Pola et al. [18], [19] proposed a

compositional abstraction technique for networked continuous

systems based on approximate bisimulation. Unfortunately, the

use of bisimulation introduces unrealistic assumptions between

components in the compositional construction of abstractions,

as shown in Ex. 4. Furthermore, Dallal et al. [20] proposed a

compositional abstraction algorithm for discrete-time systems

based on a small-gain-theorem and rely-guarantee techniques

[21], [22], [23]. They only treat persistence specifications and

no notion of ε-closedness is employed. Hence synthesized ab-

stract controller may not be refined to the original continuous

system.

In this paper, we take a different approach towards com-

positional abstraction for networks of interacting continuous-

state dynamical systems. We assume that each component has

its own state and an external control input, but in addition, its

dynamics depends on the states of the neighboring components

in the network. When reasoning compositionally about one

component, we make no assumptions about the state of the

other components; thus, we model the state of the neighboring

components as disturbance signals.

Unfortunately, a naive application of ε-approximate alter-

nating bisimulation relations to construct abstractions of each

individual component in isolation does not work for a subtle

reason. In the abstraction procedure, each abstract component

does not see the precise disturbance signal (the states of

the other components), but the discrete abstraction of the

disturbance signal. Thus, in constructing the ε-approximate

alternating bisimulation, each matching step introduces an

additional error, ε̃, which is the difference between the actual

disturbance and its abstraction. Since the dynamics of the

systems are coupled through the network, these errors can

compound over time. To bound these errors in the abstraction

we introduce a stronger relation, called disturbance bisimula-

tion over two approximation parameters (ε, ε̃).
Disturbance bisimulation is tailored to relate systems with

different disturbance signals whose mismatch is bounded by ε̃
and strengthens the standard approximate alternating bisimu-

lation relation used in control. As its main feature, it extends

naturally to systems which are composed of sub-components

possibly connected in feedback and is therefore perfectly

suited for compositional abstraction. A similar approach was
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recently taken in [24] for solving a continuous compositional

abstraction synthesis problem using ideas from dissipativity

theory; their joint storage functions use the same quantifier

alternation as our disturbance bisimulation.

In this paper we first show that for networks of interacting

metric systems, disturbance bisimulation naturally extends

from components to their compositions. We furthermore pro-

vide conditions on the parameters (εi, ε̃i) for each component

such that they are simultaneously disturbance bisimilar to their

respective abstractions. By combining these two results we

show that there exist parameters (ε, ε̃) s.t. the composition

of the original components is disturbance bisimilar to the

composition of their locally disturbance bisimilar abstractions.

As our notion of disturbance bisimulation strengthens the

notion of ε-approximate alternating bisimulation, our approach

leads naturally to a decentralized methodology for controller

synthesis in networked systems. We can compute local ab-

stract controller for each component’s abstraction against local

temporal logic specification over the abstract state space.

Our notion of relation allows us to then refine these local

controllers, connect them to the original subsystems, and it is

guaranteed that the composition of all local closed loops will

satisfy the conjunction of all local specifications (up to the

approximation error). Thus, we get a compositional controller

synthesis algorithm as a by-product of our construction.

II. SYSTEMS

A. Control Systems

We use control systems as our underlying system model.

Definition 1. A control system Σ = (X,U,U ,W,W , f)
consists of a state space X , an input space U , a disturbance

space W , a set of input signals U , a set of disturbance

signals W , and a continuous state transition function f :
X × U ×W → X . We assume X ⊆ R

n, U ⊆ R
m, and

W ⊆ R
p are compact subsets of normed Euclidean spaces

(of appropriate dimensions) containing the origins, sets U
and W consist of measurable essentially bounded functions

µ : R≥0 → U and ν : R≥0 → W , respectively, and f satisfies

the following Lipschitz assumption: there exists a constant

L > 0 s.t. ‖ f(x, u, w) − f(y, u, w) ‖ ≤ L‖ x − y ‖ for all

x, y ∈ X , u ∈ U , and w ∈ W , where ‖ · ‖ is a norm.

A trajectory ξ : (a, b) → R
n associated with the control

system Σ and signals µ ∈ U and ν ∈ W is an absolutely

continuous curve satisfying:

ξ̇(t) = f(ξ(t), µ(t), ν(t)) (1)

for almost all t ∈ (a, b). Although we define trajectories over

open intervals, we talk about trajectories ξ : [0, τ ] → X for

τ ∈ R>0, with the understanding that ξ is the restriction to

[0, τ ] of some trajectory defined on an open interval containing

[0, τ ]. We write ξxµν(t) for the state reached by the trajectory

ξ starting from the initial condition x and with input and

disturbance signals µ and ν, respectively. A control system

Σ is forward complete1 if every trajectory is defined on an

interval of the form (a,∞).

1Sufficient and necessary conditions for a system to be forward complete
can be found in [25].

B. Metric Systems

In this paper we restrict our attention to norm-induced

metric systems that are defined over an euclidean vector

space and are time sampled w.r.t. a time sampling parameter2

τ ∈ R>0. We point out that our results can be readily extended

to general metric systems at the cost of more complex notation.

Definition 2. A metric system S = (X,U,Uτ ,W,Wτ , δ)
consists of a (possibly infinite) set of states X ⊆ R

n nat-

urally equipped with the (euclidean) norm induced metric

d(x, x′) = ‖x− x′ ‖, a set of piecewise constant inputs Uτ of

duration τ taking values in the set U ⊆ R
m, i.e.,

Uτ = {µ : [0, τ ] → U | ∀t1, t2 ∈ [0, τ ] . µ(t1) = µ(t2)},
a set of piecewise constant disturbances Wτ taking values in

the set W ⊆ R
p, i.e.,

Wτ = {ν : [0, τ ] → W | ∀t1, t2 ∈ [0, τ ] . ν(t1) = ν(t2)},
and a transition function δ : X×Uτ×Wτ → X . If δ(x, µ, ν) =

x′, we write x
µ,ν−−→ x′. If X , Uτ and Wτ are finite (resp.

countable), S is called finite (resp. countable).3 We denote

the unique value of µ ∈ U and ν ∈ W over [0, τ ] by uµ ∈ U
and wν ∈ W , respectively.

In addition to a single-valued metric which is used to define

metric systems we also need vector-valued metrics in this

paper. For this, we let the relations <,≤,≥, > be defined

component-wise in R
n, i.e., a < b iff ai < bi for all

i ∈ [1, n]. Then, for any given n-dimensional space A, a

mapping d : A×A → R
n is called a vector-valued metric on A

if for all a, b ∈ A holds (i) d(a, b) ≥ 0n, where 0n is the origin

in R
n, (ii) d(a, b) = 0n implies a = b, (iii) d(a, b) = d(b, a),

and (iv) d(a, b) ≤ d(a, c) + d(c, b) for all c ∈ A.

III. SYSTEM COMPOSITION

In this section we introduce a network of interconnected

systems by allowing states of one system to be fed back to

other systems, which are treated as disturbances. We further-

more define how to generate composed systems from such

networks. To do so we first define a network of systems as

follows.

Let I be an index set (e.g., I = {1, . . . , N} for some natural

number N ) and let I ⊆ I×I be a binary connectivity relation

on I . Furthermore, let I ′ ⊆ I be a subset of systems with I ′ =
(I ′×I ′)∩I. For i ∈ I we define NI(i) = {j | (j, i) ∈ I} and

extend this notion to subsets of systems I ′ ⊆ I as NI(I ′) =
{j | ∃i ∈ I ′.j ∈ NI\I′(i)}. Intuitively, a set of systems can be

imagined to be the set of vertices {1, 2, . . . , |I|} of a directed

graph G, and I to be the corresponding adjacency relation.

Given any vertex i of G, the set of incoming (resp. outgoing)

edges are the inputs (resp. outputs) of a subsystem i, and NI(i)
is the set of neighboring vertices from which the incoming

edges originate.

2We only use one single time sampling parameter called τ everywhere in
this paper and therefore usually only implicitly assume that it is given.

3 Often, metric systems are defined with an additional output space and
an output map from states to the output space. We omit the output space for
notational simplicity; for us, the state and the output space coincide, and the
output map is the identity function.
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A. Control Systems

Let Σi = (Xi, Ui,Ui,Wi,Wi, fi), for i ∈ I , be a control

system. We say that the set of control systems {Σi}i∈I are

compatible for composition w.r.t. the interconnection relation

I, if for each i ∈ I , we have Wi =
∏

j∈NI(i)
{Xj}, i.e.,

the disturbance input space of Σi is the same as the cartesian

product of the state spaces of all the neighbors in NI(i). As

I ′ is a subset of all systems in the network, we divide the set

of disturbances Wi for any i ∈ I ′ into the sets of coupling

and external disturbances, defined by W c
i =

∏
j∈NI′ (i) {Xj}

and W e
i =

∏
j∈NI\I′ (i) {Xj}, respectively.

If {Σi}i∈I are compatible, we define the composition

of any subset I ′ ⊆ I of systems as the control system

JΣiKi∈I′ = (X,U,U ,W,W , f) where X =
∏

i∈I′ {Xi},

U =
∏

i∈I′ {Ui}, and W =
∏

j∈NI(I′) {Xj}. Furthermore,

U and W are defined as the sets of functions µ : R≥0 → U
and ν : R≥0 → W , such that the projection µi of µ on

to Ui (written µi = µ|Ui
) belongs to Ui, and the projection

νei of ν on to W e
i belongs to We

i . The composed transition

function is then defined as f(
∏

i∈I′ {xi},
∏

i∈I′ {ui}, w) =∏
i∈I′ {fi(xi, ui, w

c
i × we

i )}, where wc
i =

∏
j∈NI′ (i) {xj} and

we
i = w|W e

i
. If I ′ = I , then W and W are both ∅, and the

transition function simplifies to f : X ×U → X . It is easy to

see that JΣiKi∈I′ is again a control system.

Intuitively, the composition of a set of compatible control

systems gives the joint dynamics of the network. When

we pick a subset of systems I ′ ⊆ I , the incoming edges

from NI(I ′) become external disturbances for the composed

subsystem. Observe that our approach is modular. We can first

compose different sets of subsystems before composing the re-

sulting systems together. Our definition of system composition

is illustrated by the following example.

Example 1. Consider the following three systems

Σ1 : ẋ1 = f1(x1, u1) (2)

Σ2 : ẋ2 = f2(x2, u2, w2) (3)

Σ3 : ẋ3 = f3(x3, u3, w3) (4)

with states x1 ∈ X1, x2 ∈ X2, x3 ∈ X3, control inputs

u1 ∈ U1, u2 ∈ U2, u3 ∈ U3 and disturbances w2 ∈ W2

and w3 ∈ W3. The index set and the interconnection relation

are given by I = {1, 2, 3} and I = {(1, 2), (1, 3), (3, 2)},

respectively, and the sets of neighbors are defined by NI(1) =
∅, NI(2) = {1, 3} and NI(3) = {1}. The systems {Σi}i∈I

are compatible for composition w.r.t. I if W1 = ∅, W2 = X1×
X3 and W3 = X1. In this case the schematic representation

of this network of systems is given in Figure 1(a).

Now assume that {Σi}i∈I are compatible and consider

the composition of system Σ1 and Σ2, i.e. JΣiKi∈{1,2} =
(X,U,U ,W,W , f). This composition has the interconnec-

tion relation I ′ = {(1, 2)} and the global set of neigh-

bors NI(I ′) = {3}. The coupling and external disturbance

spaces are given by W c
1 = ∅, W e

1 = ∅, W c
2 = X1 and

W e
2 = X3. The remaining sets are given by X = X1 ×X2,

U = U1 × U2, and W = X3. Given some x = (x1, x2) ∈ X ,

u = (u1, u2) ∈ U and w = x3 ∈ W , the transition relation is

given by f(x, u, w) = (f1(x1, u1, ∅), f2(x2, u2, (x1, x3))). By

Σ1 Σ2

Σ3

u1

x2

u2

u3

x1

x3

(a) The full network consisting of the compatible control systems
{Σi}i∈{1,2,3} discussed in Example 1.

JΣiKi∈{1,2} Σ3

x1

u3x2

u1

u2
x3

(b) Resulting network when replacing control systems Σ1 and Σ2 in Fig-
ure 1(a) by their composition JΣiKi∈{1,2} .

Fig. 1. Network of systems discussed in Example 1; in general the network
could have cycles.

substituting system Σ1 and Σ2 by its composition JΣiKi∈{1,2}
we obtain the network shown in Figure 1(b).

B. Metric Systems

Let Si = (Xi, Ui,Uτ,i,Wi,Wτ,i, δi), for i ∈ I , be a metric

system. Then we can extend compatibility to metric systems

in a straight forward manner. Hence, we say that {Si}i∈I are

compatible for composition w.r.t. the interconnection relation

I, if for each i ∈ I , we have Wi =
∏

j∈NI(i)
{Xj}. With this,

we extend the metric di on Xi to the vector valued metric

e : Wi ×Wi → R
|NI(i)|
≥0 s.t.

e(wi, w
′
i) :=

∏

j∈NI(i)

{dj(xj , x
′
j)} =

∏

j∈NI(i)

{‖ xj − x′
j ‖}. (5)

Intuitively, e(w,w′
i) is a vector with dimension |NI(i)|, where

the j-th entry measures the mismatch of the respective state

vector of the j-th neighbor of i.

Using the same notation as for control systems, for I ′ ⊆ I ,

the subset composition JSiKi∈I′ = (X,U,Uτ ,W,Wτ , δ) is

defined s.t. X =
∏

i∈I′ {Xi}, equipped with norm induced

metric d, U =
∏

i∈I′ {Ui}, and W =
∏

j∈NI(I′) {Xj}, where

Uτ and Wτ are defined over U and W , respectively, as in

Def. 2. Now recall that for any constant signal ν ∈ Wτ

we denote by wν its unique value ν(t) for all t ∈ [0, τ ].
Using this notation the composed transition function is de-

fined as δτ (x, µ, ν) =
∏

i∈I′{δi(xi, µi, ν
c
i × νei )} where

x =
∏

i∈I′ {xi}, µ =
∏

i∈I′ {µi}, wνc
i
=

∏
j∈NI′ (i) {xj}

and νei = ν|W e
i

. It follows immediately from this construction

that the composed system JSiKi∈I′ is again a metric system.

We extend the metric e to the set W by substituting NI(i) by

NI(I) in (5).
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IV. DISTURBANCE BISIMULATION

In this section, we introduce a new binary relation, called

disturbance bisimulation, as the basis for our compositional

symbolic abstractions.

Definition 3. Let S1 and S2 be two metric systems, with state-

spaces X1, X2 ⊆ X and disturbance sets W1,W2 ⊆ W ⊆ R
p.

Furthermore, let X admits the metric d : X × X → R≥0

and W admits the vector-valued metric e : W ×W → R
r
≥0,

1 ≤ r ≤ p. A binary relation R ⊆ X1 ×X2 is a disturbance

bisimulation with parameters (ε, ε̃) where ε ∈ R≥0 and ε̃ ∈
R

r
≥0, iff for each (x1, x2) ∈ R:

(a) d(x1, x2) ≤ ε;

(b) for every µ1 ∈ U1 there exists a µ2 ∈ U2 such that for all

ν2 ∈ W2 and ν1 ∈ W1 with e(wν1 , wν2) ≤ ε̃, we have

that (δ1(x1, µ1, ν1), δ2(x2, µ2, ν2)) ∈ R; and

(c) for every µ2 ∈ U2 there exists a µ1 ∈ U1 such that for all

ν1 ∈ W1 and ν2 ∈ W2 with e(wν1 , wν2) ≤ ε̃, we have

that (δ1(x1, µ1, ν1), δ2(x2, µ2, ν2)) ∈ R.

Two systems S1 and S2 are said to be disturbance bisimilar

with parameters (ε, ε̃) if there is a disturbance bisimulation

relation R between S1 and S2 with parameters (ε, ε̃).

Disturbance bisimulation can be intuitively understood as a

two-player game between the systems S1 and S2, where the

players take turns in picking and matching inputs as follows:

in the first round, S1 (conversely, S2) picks a control input

independently, and S2 (S1) tries to match by picking another

control input. In the second round, it is S2’s (S1’s) turn to

make an independent choice for picking disturbance inputs

both for herself and S1 (S2), such that the disturbances are

close to each other. Thus, in contrast to alternating bisimula-

tion relation introduced in [12], the control never goes back to

the starting player at the end of the second round. Having this

intuition in mind, it is easy to see that disturbance bisimulation

is a stronger relation than alternating bisimulation. Hence, if

two systems are disturbance bisimilar with parameters (ε, ε̃)
they are also ε-approximately alternatingly bisimilar to each

other.

As our first main result we show in the following theorem

that disturbance bisimulation naturally extends from related

components in a network to subsystems composed from them.

Theorem 1. Let {Si}i∈I and {Ŝi}i∈I be sets of compatible

metric systems, s.t. for all i ∈ I , Si and Ŝi are disturbance

bisimilar w.r.t. parameters (εi, ε̃i) where

ε̃i :=
∏

j∈NI(i)
{εj}. (6)

Then for any given I ′ ⊆ I , the relation

Rεε̃ ={([q̂1 . . . q̂|I′|]
T , [q1 . . . q|I′|]

T ) ∈ X̂I′ ×XI′ |
(q̂i, qi) ∈ Rεiε̃i , ∀i ∈ I ′)} (7)

is a disturbance bisimulation relation between JSiKi∈I′ and

JŜiKi∈I′ with parameters

ε = ‖ ∏
i∈I′ {εi} ‖ and ε̃ =

∏
j∈NI (I′) {εj}.

Proof. We prove all three parts of Def. 3 separately.

(a) We pick a related state tuple (q̂, q) ∈ Rεε̃ with q =

[q1 . . . q|I′|]T and q̂ = [q̂1 . . . q̂|I′|]T . Then (7) implies

for all i, (q̂i, qi) ∈ Rεiε̃i , which in turn gives ‖ q̂i −
qi ‖ ≤ εi. This immediately gives d(q̂, q) = ‖ q̂ − q ‖ =
‖ ∏

i∈I′ {‖ q̂i − qi ‖} ‖ ≤ ‖ ∏
i∈I′ {εi} ‖ = ε.

(b) We pick the same related state tuple (q̂, q) ∈ Rεε̃ . Note

that the choice of (q̂, q) automatically fixes the coupling dis-

turbances for the individual subsystems νci and ν̂ci s.t. wνc
i
=∏

j∈NI′ (i){qj} and wν̂c
i
=

∏
j∈NI′ (i){q̂j}. As (q̂j , qj) ∈ Rεiε̃i

it follows from Def. 3 that ‖ q̂j−qj ‖ ≤ εj . Using the definition

of e in (5) we therefore have e(wνc
i
, wν̂c

i
) ≤ ∏

j∈NI′ (i) {εj}.

Now pick µ = [µ1 . . . µ|I′|]T ∈ Uτ , and ν ∈ Wτ , ν̂ ∈ Ŵτ

s.t. e(wν , wν̂) ≤ ε̃. Recall from the definition of the composed

metric systems JSiKi∈I′ and JŜiKi∈I′ that we have wν =∏
j∈NI (I′) {xj} and wν̂ =

∏
j∈NI (I′) {x̂j} with xj ∈ Xj

and x̂j ∈ X̂j for j ∈ I \ I ′. Using (5) we therefore have

e(wν , wν̂) =
∏

j∈NI (I′)

{‖ xj − x̂j ‖} ≤
∏

j∈NI(I′)

{εj} = ε̃.

Moreover, using wνe
i

=
∏

j∈NI\I′ (i) {xj} and wν̂e
i

=∏
j∈NI\I′ (i) {x̂j}, we have e(wνe

i
, wν̂e

i
) ≤ ∏

j∈NI\I′ (i) {εj}.

Hence

e(wνi , wν̂i) = e

([
wνc

i

wνe
i

]
,

[
wν̂c

i

wν̂e
i

])
≤

∏

j∈NI(i)

{εj} =: ε̃i,

where the last equality follows from (6). Using these local

disturbance vectors and the fact that Si and Ŝi are disturbance

bisimilar w.r.t. (εi, ε̃i) it follows immediately from Def. 3 (b)

that for any local control input µi there exits µ̂i such that

(δ̂i(q̂i, µ̂i, ν̂i), δi(qi, µi, νi)) ∈ Rεiε̃i for i ∈ I ′. Then by (7),

it immediately follows that (δ̂i(q̂, µ̂, ν̂), δτ (q, µ, ν)) ∈ Rεε̃ .

(c) This can be shown based on the same reasoning as for

part (b) and is therefore omitted.

It should be noted that in Thm. 1 no small gain type

condition (see e.g. [26]) is needed to guarantee disturbance

bisimilarity of the two composed metric systems JSiKi∈I′ and

JŜiKi∈I′ . This is in contrast to similar results using other

types of simulation relations, as e.g. in [17]. Intuitively, the

composability of disturbance bisimilar metric systems into

disturbance bisimilar composed metric systems relies on the

particular choice of the set {ε̃i}i∈I in (6). However, when

using Thm. 1 for compositional abstraction, as discussed later

in Sec. VI, it must be ensured that given a set of precisions

{εi}i∈I one can actually calculate the set {Ŝi} of individual

disturbance bisimilar abstractions w.r.t. the parameters (εi, ε̃i),
where ε̃i depends on the precisions of all neighboring systems.

We will come back to this fact in Thm. 3 and Remark 1.

Furthermore, it is interesting to note that the proof of Thm. 1

solely relies on the fact that there exist disturbance bisimula-

tion relations between all the subsystems and their respective

abstractions (which are metric systems) w.r.t. a specific choice

of all involved parameters. This implies that Thm. 1 can be

applied in a modular fashion, i.e., first subsystems can be

abstracted before they are combined into a larger composition.



5

V. MONOLITHIC ABSTRACTION

To effectively use the results in Thm. 1 for compositional

abstraction, we first show in this section how to construct a

disturbance bisimilar abstraction of a monolithic control sys-

tem. The abstraction technique uses the notion of incremental

input-to-state Lyapunov functions, which we introduce first.

A. Input-to-state Lyapunov functions

A continuous function γ : R≥0 → R≥0 is said to belong to

class K∞ if it is strictly increasing, γ(0) = 0, and γ(r) → ∞
as r → ∞. A continuous function β : R≥0 × R≥0 → R≥0 is

said to belong to class KL if, for each fixed s, the map β(r, s)
belongs to class K∞ with respect to r and, for each fixed

nonzero r, the map β(r, s) is decreasing with respect to s and

β(r, s) → 0 as s → ∞. Let f : (a, b) → R
k be a piecewise

continuous function which is also essentially bounded to a

region B ⊂ R
k. We define the supremum norm ‖ f ‖∞ of f

as ‖ f ‖∞ := max{|s| | ∃r ∈ (a, b).f(r) = s ∧ s ∈ B}.

Definition 4. Given a control system Σ, a smooth function

V : X ×X → R is said to be a δ-ISS Lyapunov function

for Σ if there exist λ ∈ R
+ and K∞ functions α, α, σu, and

σd s.t. for any x, x′ ∈ X , u, u′ ∈ U , and w,w′ ∈ W , the

following holds:

α(‖ x− x′ ‖) ≤ V (x, x′) ≤ α(‖ x− x′ ‖) and (8)

∂V

∂x
f(x, u, w) +

∂V

∂x′ f(x
′, u′, w′) ≤

− λV (x, x′) + σu(‖ u− u′ ‖) + σd(‖w − w′ ‖). (9)

In this case we say that the control system Σ admits a

Lyapunov function V , witnessed by λ, α, α, σu, and σd.

A control system Σ is incrementally globally input-to-state

stable (δ-ISS) if it is forward complete and there exist a KL
function β and two K∞ functions ρu and ρd s.t. for any

t ∈ R≥0, any x, x′ ∈ R
n, and any µ, µ′ ∈ U , the following

inequality is satisfied:

|| ξxµν(t)− ξx′µ′ν′(t)|| ≤ β(‖ x− x′ ‖, t)
+ ρu(‖ µ− µ′ ‖∞) + ρd(‖ ν − ν′ ‖∞). (10)

Under mild assumptions, e.g., that f(0, 0, 0) = 0, and U and

W are compact and convex sets, the existence of a δ-ISS

Lyapunov function is equivalent to δ-ISS stability [27], [1].

B. Disturbance Bisimilar Metric Systems induced by Σ

Starting from a given control system Σ we define a met-

ric system as a time-sampled version of the former with

piecewise-constant input and disturbance signals.

Definition 5. Given a control system Σ = (X,U,U ,W,W , f),
and a time-sampling parameter τ ∈ R>0, the discrete-

time metric system induced by Σ is defined by Pτ (Σ) =
(X,U,Uτ ,W,Wτ , δτ ) s.t. Uτ and Wτ are defined over U
and W , respectively, as in Def. 2 and δτ (x, µ, ν) = ξxµν(τ)
for all µ ∈ Uτ and ν ∈ Wτ . We equip X with the metric

d(x, x′) := ‖ x− x′ ‖.

Next, we show how to define a countable metric

system Pτηω(Σ) which is disturbance bisimilar to

Pτ (Σ). To do so we need some notation to discretize

the state, input, and disturbance spaces of Pτ (Σ).
For any A ⊆ R

n and η > 0, we define [A]η :=
{(a1, . . . , an) ∈ A | ai = k 2√

n
η, k ∈ Z, i = 1, . . . , n}. For

x ∈ R
n and λ > 0, let Bλ(x) denote the closed ball

centered at x and of radius λ. Note that for any λ ≥ η, the

collection of sets {Bλ(q)}q∈[Rn]η
is a covering of Rn, that is,

R
n ⊆ ∪{Bλ(q) | q ∈ [Rn]η}.

Definition 6. Let Σ = (X,U,U ,W,W , f) be a control system

and W̃ ⊆ W be a countable set4 equipped with the (possibly

vector-valued) metric e : W ×W → R
r
≥0, 1 ≤ r ≤ p s.t.

∀w ∈ W . ∃w̃ ∈ W̃ . e(w, w̃) ≤ ε̃ ∧ ‖w− w̃ ‖ ≤ ‖e(w, w̃)‖
(11)

for some vector ε̃ ∈ R
r
≥0. Given three constants

τ ∈ R>0, η ∈ R>0, and ω ∈ R>0, the count-

able metric system induced by Σ and W̃ is defined

by Pτηω(Σ, W̃ ) = (Xτηω, [U ]ω,Uτηω, W̃ ,Wτηω, δτηω) s.t.

Xτηω = [X ]η, Uτηω and Wτηω are defined over [U ]ω
and W̃ , respectively, as in Def. 2 and δτηω(x, µ, ν) =
{x′ ∈ Xτηω | ‖ ξxµν(τ)− x′ ‖ ≤ η}. We equip Xτηω with the

metric d(x, x′) := ‖ x− x′ ‖.

This construction leads us to our second main result.

Theorem 2. [Symbolic Abstraction] Let Σ be a control

system, admitting a δ-ISS Lyapunov function V witnessed by

λ, α, α, σu, and σd, and let γ be a K∞ function s.t. for any

x, x′, x′′ ∈ R
n it holds that

V (x, x′)− V (x, x′′) ≤ γ(‖ x′ − x′′ ‖). (12)

Fix τ > 0 and W̃ ⊆ W s.t. (11) holds and let Pτηω(Σ, W̃ )

be the countable metric system induced by Σ and W̃ . If

η ≤ min
{
γ−1

[
(1− e−λτ )α(ε)− λ−1σu(ω)

−λ−1σd(‖ ε̃ ‖)
]
, (α)−1 ◦ α(ε)

}
(13)

then the relation

Rεε̃ = {(q̂, q) ∈ Xτηω ×Xτ | V (q̂, q) ≤ α(ε)} (14)

is a disturbance bisimulation relation with parameters (ε, ε̃)

between Pτηω(Σ, W̃ ) and Pτ (Σ).

Proof. First note that (13) and (8) imply η ≤ (α)−1 ◦ α(ε) ≤
(α)−1(α(ε)) = ε giving that η ≤ ε, hence ensuring that Rεε̃

is surjective. Furthermore, observe that Xτηω ⊂ Xτ , hence

the metric d on Xτ is also a metric on Xτηω. Now we prove

the three parts of Def. 3 separately.

(a) By definition of Rεε̃ in (14), (q̂, q) ∈ Rεε̃ implies

V (q̂, q) ≤ α(ε). Using (8) this implies α(‖ q̂ − q ‖) ≤ α(ε)
and it follows from α being a K∞-function that d(q̂, q) =
‖ q̂ − q ‖ ≤ ε.

(b) Given a pair (q̂, q) ∈ Rεε̃ , for any µ ∈ Uτ , observe that

there exists a µ̂ ∈ Uτηω s.t. ‖uµ̂− uµ ‖ ≤ ω holds. Given any

4For the results in this section one can simply pick W̃ = [W ]ε̃ and the
single-valued metric e(w,w′) = ‖w −w′ ‖.
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ν̂ ∈ Wτηω and ν ∈ Wτ s.t. e(wν̂ , wν) ≤ ε̃ holds, observe that

‖wν̂ − wν ‖ ≤ ‖ e(wν̂ , wν) ‖ ≤ ‖ ε̃ ‖ from (11). Now we can

apply transitions q
µ,ν−−→
τ

q′ and q̂
µ̂,ν̂−−→
τ

z and observe that there

exists q̂′ ∈ Xτηω s.t. ‖ q̂′− z ‖ ≤ η and hence q̂
µ̂,ν̂−−→
τηω

q̂′. Now

consider the following derivation:

V (q̂′, q′) (15)

≤ V (z, q′) + γ(‖ z − q̂′ ‖)

≤ e−λτV (q̂, q) +
σu(‖ uµ̂ − uµ ‖)

λ
+

σd(‖wν̂ − wν ‖)
λ

+ γ(η)

≤ e−λτα(ε) +
σu(ω)

λ
+

σd(‖ ε̃ ‖)
λ

+ γ(η) ≤ α(ε)

Hence by Eqn. (14), (q̂′, q′) ∈ Rεε̃ .

(c) Given a pair (q̂, q) ∈ Rεε̃ , for any µ̂ ∈ Uτηω, observe that

we can choose µ ∈ Uτ s.t. µ = µ̂, i.e., ‖ uµ̂ − uµ ‖ = 0.

Given any ν ∈ Wτ and ν̂ ∈ Wτηω s.t. e(wν̂ , wν) ≤ ε̃, we

get q
µ,ν−−→
τ

q′ and q̂
µ̂=µ,ν̂−−−−→

τ
z. Now observe that there exists

q̂′ ∈ Xτηω s.t. ‖ q̂′ − z ‖ ≤ η and hence q̂
µ̂,ν̂−−→
τηω

q̂′. With a

very similar derivation as in (15) it follows from Eqn. (14)

that (q̂′, q′) ∈ Rεε̃ .

VI. COMPOSITIONAL ABSTRACTION

We now extend the abstraction procedure presented in the

previous section to compositions of control systems.

A. Simultaneous Approximation

Using the results in Thm. 2, we first show how to pick

state, input, and disturbance quantization parameters for each

component in a composed control system JΣiKi∈I′ , such that

we can simultaneously construct local abstractions Pτηiωi
(Σi)

using Def. 6 which are disturbance bisimilar with parameters

(εi, ε̃i) to their respective discrete-time metric system Pτ (Σi).

Theorem 3. Let I be an index set and {Σi}i∈I a set of

compatible control systems, each admitting a δ-ISS Lyapunov

function Vi witnessed by λi, αi, αi, σu,i, and σd,i. Let γi be

a K∞ function s.t. for any xi, x
′
i, x

′′
i ∈ R

n it holds that

Vi(xi, x
′
i)− Vi(xi, x

′′
i ) ≤ γi(‖ x′

i − x′′
i ‖). (16)

Let {Pτ (Σi)}i∈I be the set of discrete-time metric systems

induced by {Σi}i∈I . Furthermore, let εi ∈ R>0 and ωi ∈ R>0

be parameters for every subsystem i ∈ I which define ε̃i as

in (6), and ηi ∈ R>0 s.t. the following relation holds

0 < ηi ≤ min
{
γ−1
i

[
(1− e−λiτ )αi(εi)− λ−1

i σu,i(ωi)

−λ−1
i σd,i(‖ ε̃i ‖)

]
, (αi)

−1 ◦ αi(εi)
}
. (17)

Finally, let {Pτηiωi
(Σi)}i∈I

be the set of countable metric

systems5 induced by {Σi}i∈I and W̃i =
∏

j∈NI(i)
{[Xj]ηj

}.

Then the relation

Rεiε̃i = {(q̂i, qi) ∈ Xi,τηiωi
×Xi,τ | Vi(q̂i, qi) ≤ αi(εi)}

5In the context of composed systems we always assume W̃i =∏
j∈NI(i) {[Xj ]ηj} and omit the dependency of Pτηiωi

(Σi) from W̃i for

notational convenience.

is a disturbance bisimulation relation with parameters (εi, ε̃i)
between Pτηiωi

(Σi) and Pτ (Σi).

Proof. We show that (11) holds for the metric defined

in (5). Pick any i ∈ I , wi ∈ Wi and observe that

wi =
∏

j∈NI(i)
{xj}. By the choice of Xj,τηjωj

as

[Xj ]ηj
we furthermore know that for any xj there ex-

ists x̂j s.t. ‖ xj − x̂j ‖ ≤ ηj ≤ εj . Now recall that

W̃i =
∏

j∈NI (i) {Xj,τηjωj
} =

∏
j∈NI(i)

{[Xj]ηj
}. Us-

ing the definition of ε̃i in (6) and e in (5) we therefore

know that for any wi ∈ Wi there exists w̃i ∈ W̃i s.t.

e(wi, w̃i) =
∏

j∈NI(i)
{‖ xj − x̂j ‖} ≤ ∏

j∈NI(i)
{εj} = ε̃i.

Furthermore, ‖ wi − w̃i ‖ = ‖ ∏
j∈NI(i)

{xj − x̂j} ‖ =
‖ ∏

j∈NI(i)
{‖ xj − x̂j ‖}‖ = ‖e(wi, w̃i)‖. Hence (11) holds

for all Pτηiωi
(Σi) and ε̃i. The rest follows from Thm. 2.

Remark 1. Note that in a given network of control systems,

it is not true that for any given sets {εi}i∈I , {ωi}i∈I and τ ,

one can always find a set {ηi}i∈I s.t. (17) holds. However,

one can usually solve an optimization problem to calculate a

set of variables {εi}i∈I
6 given a maximum permissible overall

error ε for the overall network, with a set of constraints ηi > 0
for all i. A relevant objective function would be to minimize

the total size of the symbolic state space of the abstractions.

Whenever we talk about a network of control systems from

now on, we assume that a solution to such an optimization

problem was already computed.

We now illustrate Thm. 3 by an example.

Example 2. Let us assume that the systems in Fig. 1 be:

Σ1 : ẋ1 = −x1 + u1

Σ2 : ẋ2 = x1 − 2x2 + x3 + u2

Σ3 : ẋ3 = x1 − 3x3 + u3

where x1 ∈ [−0.2, 3], x2 ∈ [−0.1, 2.4], x3 ∈ [0, 1.8], and

u1, u2, u3 ∈ [−0.2, 0.2]. Suppose that we want to construct the

abstractions Σ̂1 and Σ̂2 for a given set of parameters ε1 = 1,

ε2 = 1.5, ε3 = 1, ω1 = ω2 = 0.01 and τ = 1.5.

First we start with Σ1. We choose the Lyapunov function

as V1(x1) =
√
10|x1| 7. This choice of V1 gives us the

following parameters: α1 = α1 = γ1 = σu,1 = 3.1623,

σd,1 = 0 and λ1 = 1. Then by Thm. 3 we get the bound

η1 ≤ 0.7759. Let us arbitrarily pick η1 = 0.75. This gives the

symbolic state space as X̂1 = {0, 1.5, 3} with the simulation

relation Rε1 ε̃1 = {0× [−0.2, 1], 1.5× [0.5, 2.5], 3× [2, 3]}.

The symbolic transition system in shown in Fig. 2(a).

We continue with Σ2 and Σ3. For a choice of Lyapunov

function V2(x2) =
√
5|x2| and V3(x3) =

√
3.33|x3|, we

get α2 = α2 = γ2 = σu,2 = 2.2361, σd,2 = 3.1623,

λ2 = 2 and α3 = α3 = γ3 = σu,3 = σd,3 = 1.8257,

λ3 = 3, which give η2 ≤ 0.4248 and η3 ≤ 0.6552 (by

Thm. 3). We arbitrarily pick η2 = 0.4 and η3 = 0.6, which

6One can also optimize the variables {ωi}i∈I and τ , which will give extra
degrees of freedom.

7Lyapunov function of a linear system has the form V : X → R which
satisfies for some γ ∈ R>0 the inequality V (x − x′) − V (x − x′′) ≤
γ‖ x′ − x′′ ‖ for any x, x′, x′′ ∈ X , and the K∞ functions α, α, σu and
σd in Def. 4 are replaced by positive real constants, usually represented by
the same symbols respectively [1, Def. 10.3, Prop. 10.5].
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(a) Pτη1ω1
(Σ1)
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(b) Pτη1ω1
(Σ2)

Fig. 2. Symbolic Abstractions of the systems in Ex. 2; for brevity, back-and-
forth arrows with same input labels are combined into single two-sided arrow,
and the set of all possible inputs is represented by the label ⋆.

gives us the symbolic state spaces X̂2 = {0, 0.8, 1.6, 2.4}
and X̂3 = {0, 1.2}, with the simulation relations Rε2ε̃2 =
{0× [−0.1, 1.5], 0.8× [0, 2.3], 1.6× [0.1, 2.4], 2.4× [0.9, 2.4]}
and Rε3ε̃3 = {0× [0, 1], 1.2× [0.2, 2]}. The symbolic

transition system Σ̂2 is shown in Fig. 2(b).

B. Composition of Approximations

Consider a set of compatible control systems {Σi}i∈I ,

a subset composition JΣiKi∈I′ = (X,U,U ,W,W , f),
and a global time-sampling parameter τ . Then we

can apply Def. 5 and Def. 6 to each control system

Σi to construct the corresponding metric systems

Pτ (Σi) = (Xi, Ui,Uτ,i,Wi,Wτ,i, δτ,i) and Pτηiωi
(Σi) =

(Xi,τηiωi
, [Ui]ωi

,Ui,τηiωi
, [Wi]ε̃i ,Wi,τηiωi

, δi,τηiωi
). Now

it immediately follows that for any I ′ ⊆ I , the sets

{Pτ (Σi)}i∈I′ and {Pτηiωi
(Σi)}i∈I′ of metric systems are

again compatible. Therefore, combining the results from

Thm. 1 and Thm. 3 leads to the following obvious corollary.

Corollary 1. Given the preliminaries of Thm. 3 and I ′ ⊆ I ,

let JPτ (Σi)Ki∈I′ and JPτηiωi
(Σi)Ki∈I′ be systems composed

from the sets {Pτ (Σi)}i∈I and {Pτηiωi
(Σi)}i∈I

, respectively.

Then the relation

Rεε̃ ={([q̂1 . . . q̂|I′|]
T , [q1 . . . q|I′|]

T ) ∈ Xτηω ×Xτ |
(q̂i, qi) ∈ Rεiε̃i , ∀i ∈ I ′)} (18)

is a disturbance bisimulation relation between JPτ (Σi)Ki∈I′

and JPτηiωi
(Σi)Ki∈I′ with parameters

ε = ‖ ∏
i∈I′ {εi} ‖ and ε̃ =

∏
j∈NI (I′) {εj}.

Example 3. Consider the systems in Ex. 2 and their ab-

stractions. It follows from Corollary 1 that the composition

JPτηiωi
(Σi)Ki∈{1,2}, given by the product automaton of the

symbolic abstractions Pτη1ω1
(Σ1) and Pτη2ω2

(Σ2), is distur-

bance bisimilar to the composed system JPτ (Σi)Ki∈{1,2} with

parameters ε = ‖ [1 1.5]T ‖ = 1.8028 and ε̃ = ε3 = 1.

Recall that in the special case I ′ = I the composed

system replaces the overall network without extra external

disturbances, i.e. W = ∅. In this case it is easy to see that

the relation in Corollary 1 simplifies to a usual bisimulation

relation.

Corollary 2. Given the premises of Corollary 1 and that I ′ =
I , the relation Rεε̃ in (18) is an ε-approximate bisimulation

relation between JPτ (Σi)Ki∈I and JPτηiωi
(Σi)Ki∈I .

VII. RELATED SIMILARITY NOTIONS

An alternate approach to compose related metric systems,

as developed in [18], uses approximate bisimulation instead of

disturbance bisimulation. Intuitively, when using approximate

bisimulation, one uses a co-operative assumption on the distur-

bance inputs. However, this assumption is very unrealistic in

our setting, where one system is unable to influence the states

of other subsystems, as illustrated in the following example.

Example 4. Consider two control systems connected in a

network:

Σ1 : ẋ1 = −x1 + u1, (19)

Σ2 : ẋ2 = −x1 − 2x2 + u2 (20)

where [x1 x2]
T ∈ X1 × X2 = [−1, 2] × [0, 4], [u1 u2]

T ∈
U1×U2 = [−1, 2]×[0.8, 5.2], and the input signals are constant

curves. We assume that the sets X1 and X2 are invariant for

Σ.

First we construct bisimilar symbolic abstractions Σ1 and

Σ2, and then demonstrate how the abstract trajectories fail

to represent the concrete trajectories. Let us begin with Σ2.

Note that bisimilar abstraction models treat disturbances as

cooperative inputs rather than adversarial ones. So we treat x1

in Eqn. (20) as a cooperative input. It can be shown that by

choosing P2 = 1, the function V2(x2) =
√

xT
2 P2x2 = |x2| is

a valid ISS Lyapunov function of Σ2. The associated constants

are α2 = α2 = γ2 = 1, λ2 = 2, and σ2 = 1. Then, given

a precision ε2 = 1.35, time quantization τ = 1.2 and input

quantization ω2 = 0.01, we apply [1, Thm. 11.14] and choose

η2 = 1, s.t. Pτ (Σ2) and Pτη2ω2
(Σ2) are ε2-approximately

bisimilar to each other.

Similarly for subsystem Σ1, we can choose P1 = 1 s.t.

V1(x1) =
√
xT
1 P1x1 = |x1|, α1 = α1 = γ1 = 1,

λ1 = 1, σ1 = 1, and for given ε1 = 0.8, τ = 1.2,

ω1 = 0.01, we choose η1 = 0.5 s.t. Pτ (Σ1) and Pτη1ω1
(Σ1)

are ε1-approximately bisimilar to each other. The symbolic

models for Pτη1ω1
(Σ1) and Pτη2ω2

(Σ2) are shown in Fig.

3.The simulation relations are given by Rε1 ε̃1 = {−1 ×
[−1,−0.2], 0 × [−0.8, 0.8], 1 × [0.2, 1.8], 2 × [1.2, 2]} and

Rε2ε̃2 = {0× [0, 1.35], 2× [0.65, 3.35], 4× [2.65, 4]}.

Suppose our goal is to synthesize controllers that ensure Σ
satisfies �(x1 ≤ 0) ∧�♦(x2 < 1). The specification decom-

poses into two requirements, one for each component. We can

easily control for the specification on the symbolic abstractions

of Fig. 3: the strategy of controller 1 for Pτη1ω1
(Σ1) is “never

take transitions a0,1, a−1,1,” and the strategy of controller 2

for Pτη2ω2
(Σ2) is “if the symbolic states 2 and 4 appear in the

infinite run, then take b1,0 and/or b2,0 infinitely often.” As each

constructed abstraction is bisimilar to the respective original

system, we can refine these abstract controllers to ones that are
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(b) Pτη2ω2
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Fig. 3. Approximate bisimilar abstractions of Σ1 and Σ2.

applicable to original systems s.t. the individual specifications

are satisfied (see [1] for details).

Essentially each transition in Pτη2ω2
(Σ2) translates to a pair

of inputs for the original system: the control input u2 and the

output (same as state in this example) of Pτη1ω1
(Σ1) given by

x1. Out of many possibilities, two such pairs corresponding to

b1,0 are: (u2 = 0.8, x1 = 1) and (u2 = 3, x1 = 1) i.e., given

any state x2 ∼ 2 8, the following holds:

x2
0.8,1−−−→
τ

x′
2 ∼ 0 x2

3,1−−→
τ

x′′
2 ∼ 0

However, note that x1 can never be equal to 1 if the closed

loop system satisfies its specification �(x1 ≤ 0). Given this

restriction on x1, consider the following situation: x1 = −0.5
and x2 = 2 ∈ [0.65, 3.35] simulated by symbolic state 2 as

before. Then

2
0.8,−0.5−−−−−→

τ
0.772 ∼ 0 2

3,−0.5−−−−→
τ

1.772 ∼ 2

Clearly u2 = 0.8 is a more robust choice than u2 = 3 for

the given control objective: but this assertion could not be

made without an explicit analysis of the first system’s behavior.

Since the refined local controller for Pτ (Σ2) has to pick u2

without seeing x1, it is possible that the controller keeps

picking u2 = 3 over u2 = 0.8 all the time, and the control

objective is never met. This is avoidable if the controllers treat

other connected subsystems as adversaries, and their outputs

as disturbances.

Motivated by similar situation as in Ex. 4, approximately

alternating bisimilar abstraction was introduced in [12] as

8x ∼ q indicates (x, q) ∈ Rεε̃ , when Rεε̃ is clear from the context.

an improvement over approximately bisimilar abstractions.

Unfortunately, a naive way of generating approximate alter-

natingly bisimilar symbolic abstractions of each subsystem in

a network does not result in a sound overall abstraction in our

setting. Contrary to the single system case of Thm. 4.6 in [12],

where the disturbance is identical in the original system and its

abstraction, there is a potential mismatch between those signals

in our composition. As each subsystem’s disturbance is actu-

ally a state trajectory of another subsystem, the disturbance to

its abstraction is given by the abstract state trajectory. Hence,

the disturbance signals applied to the original system and its

abstraction have an initial mismatch of less then ε which can

lead to deviations in the respective state trajectories. This can

jeopardize the state relation between a given system and its

abstraction even if the latter is approximately alternatingly

bisimilar to the former, as shown in the next example.

Example 5. Consider the control systems Σ1 and Σ2 given

by Eqn. (19) and Eqn. (20), and let there already exists an

approximate alternatingly bisimilar abstraction of Σ1 with pre-

cision ε1 = 3. We now construct the approximate alternatingly

bisimilar symbolic model, represented by Pτη2η2
(Σ2) (see

[1, Def. 11.17]), for subsystem Pτ (Σ2) (using the procedure

in [1, Sec. 11.4]), without taking into account the potential

mismatch between the disturbance signals for Pτ (Σ2) and

Pτη2η2
(Σ2). For constructing the latter we use the same

Lyapunov function V2(x2) = |x2| and the same associated

constants α2 = α2 = γ2 = 1 as in Example 4. For

the same given precision ε2 = 1.35 and the same time

quantization τ = 1.2, the allowable value of η2
9 is given by

η2 ≤ 0.4092. We choose η2 = 0.4. The resulting simulation

relation is given by R
′
ε2 ε̃2

= {0×[0, 1.35], 0.8×[0, 2.15], 1.6×
[0.25, 2.95], 2.4× [1.05, 3.75], 3.2× [1.85, 4]}.

0

0.8 1.6

2.4

3.2

Fig. 4. Pτη2η2 (Σ2): approximate alternating bisimilar abstraction of Σ2.
For brevity, the input labels are suppressed and bidirectional arrows are used
whenever transitions in both direction are possible (not necessarily using the
same input).

Now consider a pair of related states (x2, 1.6) ∈ R
′
ε2ε̃2

for subsystem 2 with x2 = 1.3 and suppose that a symbolic

controller connected to Pτη2η2
(Σ2) picks the input û2 = 3.2

which is refined to the same value and applied to Pτ (Σ2),
giving u2 = 3.2. If we assume that subsystem 1 is in state

x1 = 1.9 we have w2 = x1 = 1.9 and the following transition

takes place in Pτ (Σ2):

1.3
3.2,1.9−−−−→

τ
0.709.

9Thm. 11.18 of [1] gives a condition on η s.t. Pτηη(Σ) is ε-approximately
alternating bisimilar to Pτ (Σ) for any given Σ.
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As the abstraction of Σ1 was constructed with precision ε1 =
3, we now assume that the disturbance applied to Pτη2η2

(Σ2)
is given by w̃2 = −1 (with ‖ w̃2 − w2 ‖ < 3). This leads to

the transition

1.6
3.2,−1−−−−→
τη2ω2

2.4

in Pτη2η2
(Σ2) as 1.6

3.2,−1−−−−→
τη2η2

2.055 and ‖ 2.055− 2.4 ‖ < η2.

Now it is easy to see that (0.709, 2.4) /∈ Rε2ε̃2 , hence the

successor states of Pτ (Σ2) and Pτη2η2
(Σ2) are not related

even though both systems are approximate alternatingly bisim-

ilar, due to the mismatching disturbance signals generated by

Pτ (Σ1) and its abstraction, respectively.

In contrast to both approximate bisimulation and approx-

imate alternating bisimulation, our definition of disturbance

bisimulation is tailored to relate systems with different distur-

bance signals whose mismatch is bounded by ε̃ but which are

otherwise arbitrary. With this notion we are able to solve the

issues pointed out above.

VIII. DECENTRALIZED CONTROLLERS

Finally, we sketch how our compositional approach leads to

a decentralized controller synthesis methodology.

Consider a set {Σi}i∈I of compatible control systems,

the associated time-sampled versions {Pτ (Σi)}i∈I , and finite

state abstractions {Pτηiωi
(Σi)}i∈I

. Consider a set of local

specifications {Sspec,i}i∈I , where each Sspec,i is a metric

transtition system over the abstract state space Xi,τηiωi
.

Then one can solve local simulation games (see [1,

Sec. 6.5]) using iterative techniques [7] to synthesize finite

state controllers {Ci}i∈I which ensure that the feedback

composition of Pτηiωi
(Σi) and Ci (see [1, Def. 11.9]) is sim-

ulated by the specification Sspec,i in an exact way. Intuitively

this means that all trajectories generated by the controlled

abstraction Pτηiωi
(Σi) ×CL Ci are contained in the set of

trajectories the transition system Sspec,i can generate. Now

recall that it is guaranateed by the simultaneous approximation

theorem (Thm. 3) that each Pτηiωi
(Σi) is related to Pτ (Σi)

via a disturbance bisimulation with parameters (εi, ε̃i). It can

be easily observed from Def. 3 that this implies that Pτ (Σi) εi-
approximately simulates Pτηiωi

(Σi). Therefore we can apply

[1, Prop. 11.10] and use C′
i = Ci ×CL Pτηiωi

(Σi) as a local

controller for the sampled time system Pτ (Σi) and obtain

a closed loop C′
i ×CL Pτ (Σi) which satisfies Sspec,i with

an error10 1
2εi. Finally, by our composition results (Thm. 1,

Cor. 1), we can compute an ε so that the composed system

satisfies the conjunction of the specifications with an error of
1
2ε.
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