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It is shown that the theory of the nonlinearly saturated ideal internal kink mode by Rosenbluth,
Dagazian, and Rutherford [Phys Fluids 16(11), 1894 (1973)] can be used to find the fully nonlinear
ideal plasma response to an externally applied resonant magnetic perturbation. It is also demon-
strated that the solution leads to a jump in the rotational transform across the resonant surface
caused by a zonal current sheet. Its amplitude scales linearly with the plasma perturbation despite
the nonlinearity of the solution. This confirms a recent conjecture that three-dimensional MHD
equilibria with nested magnetic surfaces generally contain discontinuities in the rotational trans-
form [J. Loizu, S. R. Hudson, et al, Phys Plasmas 22(9), 090704 (2015)]. It also lends support to
Parker’s long-standing suggestion that “almost all” MHD equilibria possess current sheets.
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The theory of ideal magnetohydrodynamics (MHD)
has no inherent length scale and thus allows current
sheets to develop and cause discontinuities in the mag-
netic field [1–3]. Mathematically, these current sheets
are represented by Dirac δ-function current densities and
are physically acceptable in the sense that their integral
is finite. Sometimes it is argued that any finite resis-
tivity, however small, will regularize the current density
singularity, whose existence is therefore merely an aca-
demic matter. However, the mere tendency to form a
true singularity in the ideal-MHD limit has fundamental
and broader consequences for reconnection and turbulent
dynamics across plasma physics [4–7].

For half a century, a quandary has existed at the heart
of theoretical plasma physics: three-dimensional MHD
equilibria with nested surfaces seem to suffer from two
intolerable pathologies: (i) pressure-driven infinite cur-
rents arise around resonant rational surfaces unless the
pressure gradient vanishes locally [8, 9] (at every reso-
nant surface!); and (ii) the equilibrium field is not an
analytical function of the shape of the boundary, since
arbitrarily small perturbations can (even linearly) result
in an unphysical overlapping of surfaces [10, 11]. Histor-
ically, the cause of these pathologies has been attributed
to the class of possible pressure profiles, but the form
of the pressure profile – whether it be smooth, continu-
ous, or pathological in some sense – is not the cause of
the problem, because the problem (ii) remains at zero
pressure.

Recently, a new class of three-dimensional ideal-MHD
equilibria with nested surfaces was proposed which allows
for arbitrary pressure profiles, including smooth ones
[11, 12]. For this class of equilibria, all current densities
are integrable and nested surfaces are preserved. These
properties are ensured by the presence of zonal (i.e. net-
current carrying) current sheets that produce a jump in
the rotational transform across resonant surfaces. Since
this seems to be the only class of equilibria that solves
both problems (i) and (ii), it was conjectured that any
physically valid equilibrium with nested resonant surfaces
must belong to this class.

In this Letter, we show that the nonlinearly saturated
internal kink mode [1] belongs to this new class of equi-
libria, i.e., that the rotational transform jumps across
the resonant surface and does so with a magnitude that
scales as predicted by the conjecture. We also demon-
strate that the same theory can be applied to find the
fully nonlinear, ideal plasma response to an externally
applied resonant magnetic perturbation (RMP), which
thus causes a discontinuity in the rotational transform at
the rational surface. This result unifies the description
of spontaneous and forced helical equilibrium states and
confirms the conjecture for a large-aspect-ratio tokamak.
It also elucidates the question of how to reliably predict
the ideal plasma response to RMPs [13], which is of cru-
cial importance for present and future magnetic fusion
devices [14].

The need for a jump in the rotational transform, ∆ι-, to
develop in three-dimensional MHD equilibria with nested
resonant surfaces follows from a sine qua non condition
for the existence of perturbed equilibria that can be writ-
ten as |dξ/ds| < 1, which states that the differential dis-
placement of magnetic surfaces, dξ, with respect to an
initial equilibrium, cannot exceed the differential distance
between surfaces, ds =

√
gψψdψ. Here ψ is a general

flux-surface label and gψψ is the corresponding metric el-
ement. This condition guarantees that nested surfaces
are preserved. From an asymptotic study of Newcomb’s
equation [15], which determines the radial profile of the
displacement in a perturbed screw-pinch, a condition was
derived [11] for the minimum magnitude of the jump in
rotational transform across a resonant rational,

∆ι- > ∆ι-min = 2ι-′sξs , (1)

which guarantees |dξ/dr| < 1. Here ξs and ι-′s are the dis-
placement and radial derivative of the rotational trans-
form, respectively, both evaluated at the resonant sur-
face. Note that this jump is associated with a zonal cur-
rent sheet, by which we mean that the surface-average of
the δ-function current density is non-zero.

The m = n = 1 internal kink instability occurs in a
cylindrical tokamak when the safety factor is anywhere
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q = 1/ι- < 1. As noted by Rosenbluth, Dagazian and
Rutherford [1] in their theory of the nonlinear saturation
of this instability, however, all harmonics are excited to
comparable amplitude in a boundary layer around the
q = 1 surface, and therefore perturbation theory is not
applicable. By using a full nonlinear treatment, a nearby
ideally-stable equilibrium was found that has nested sur-
faces, an axisymmetric boundary, a current sheet on the
resonant surface, and an inner helical plasma column
with helicity m = n = 1. The nonlinear solution for
the displacement of the magnetic surfaces is

ξ(x, θ) =

∫ x

0

[ |x′|√
f(x′) + g(θ)

− 1
]
dx′ + h(θ) (2)

where θ is the polar angle and ξ is the radial displace-
ment of a flux surface originally situated at a radius x
with respect to the resonant surface. The displacement
is ensured to be continuous and is fully determined by
three functions, namely f(x), g(θ), and h(θ). Before cal-
culating these functions we notice that, thanks to Eq. (2),
the equilibrium is guaranteed to satisfy the sine qua non
condition, in fact, marginally:

lim
x→0

∂ξ

∂x
= −1 . (3)

The function h(θ) = 1
2ξa cos θ is determined by asymp-

totic matching to linear theory outside the resonant
layer, i.e. by imposing ξ(x → −∞, θ) = ξa cos θ and
ξ(x → +∞, θ) = 0 in Eq. (2). Here ξa is the kink of
the magnetic axis, which is unknown a priori. The func-
tion f(x) can be determined once g(θ) is known, since it
satisfies ∮

dθ√
f(x) + g(θ)

=
1

x
(4)

where
∮
dθ =

∫ 2π

0
dθ/2π. Equation (4) is simply the

constraint (to lowest order in ξ) of conserved toroidal
magnetic flux. The most complicated task is to determine
g(θ), which is the solution to the integral equation∫ ∞

0

df
2u′(f)

u3(f)

[ 1√
f + ĝ(θ)

− u(f)
]

= cos θ , (5)

where ĝ = g/ξ2a and u(f) =
∮
dθ/

√
f + ĝ(θ). Fortu-

nately, Rosenbluth could reformulate this equation as a
variational principle, in which g(θ) is the function that
extremizes the functional

Λ[ĝ] =

∫ ∞
0

df
[ 1

u(f)
−
√
f − 1

2
√
f

∮
ĝdθ

]
+

∮
ĝ cos θdθ .

(6)
As a matter of fact, Λ possesses a maximum, Λmax ≈
0.025, which determines the amplitude of the kink, ξa
[1]. In order to maximize Λ, we rewrite the first integral
in Eq. (6) in a way that avoids subtracting two divergent
terms, namely the first two terms as f → ∞. Then,

the extremum is found numerically by writing g(θ) =
(
∑
cm cos (mθ))2 and iterating on {cm}. The quadratic

form is used to ensure that g ≥ 0. Figure 1 shows the
solution for the functions g(θ) and f(x) as well as the
corresponding displacement ξ(x, θ).

First, we observe the formation of a nonlinear layer in
ξ around the resonant surface. The width of the layer, l,
depends on θ, with a maximum scale l ∼ O(ξa) at θ = 0,
and no minimum scale, l → 0 as θ → π. This type of
solution is expected by virtue of Eq. (3). In fact, for
θ > π/2 the displacement must go from ξ(x→ −∞, θ) =
ξa cos θ < 0 to ξ(x → +∞, θ) = 0 while developing a
negative gradient, Eq. (3), at the resonant surface. Hence
a nonlinear layer, at least cubic in x, must form around
the resonant surface.

Second, we remark that the function g(θ) can be very
well approximated by

g(θ) ≈ 1

3
ξ2a cos8 (θ/2) . (7)

This is a universal solution in the sense that it does not
depend on the specific equilibrium current and pressure
profiles. Its form is inferred from an asymptotic analysis,
and the coefficient in front has been adjusted to match
the maximum of the function to the numerical solution.
We now verify that this form for g is consistent with the
asymptotics of Eq. (5) for θ → π. Taking the derivative
of Eq. (5) with respect to θ, we have that∫ ∞

0

u′(f)

u3(f)

df

[f + ĝ(θ)]3/2
ĝ′(θ) = sin θ , (8)

and for small g, the integral is dominated by contribu-
tions from small f . Assuming that around θ = π we have
ĝ(θ) ∼ λ(π − θ)n, we find that u(f) ∼ cnλ

−1/nf1/n−1/2

for f → 0, where cn =
∫∞
0

(1 + xn)−1/2dx. Thus Eq. (8)
is, for θ → π,

(
n

2
− 1)

√
λ

c2n
(π − θ)n

2−3dn = π − θ , (9)

where dn =
∫∞
0
x2/n(1 + xn)−3/2dx. Hence n = 8 and

λ = c4n/(9d
2
n), which can be evaluated using Gamma

functions, giving λ ' 10−3. The expansion of Eq. (7)
around θ = π gives ĝ(θ) ∼ (π − θ)8/768, in reasonable
agreement with the asymptotic calculation.

Finally, we remark that while the displacement, ξ, is
continuous, the poloidal magnetic field, Bθ, is not. A
jump occurs across the resonant surface [6],

[[Bθ]] = 2
rs
R
Bzι-
′
sξa

√
g(θ)/ξ2a (10)

where [[Bθ]] = Bθ(x = 0+)−Bθ(x = 0−), rs is the initial
radius of the resonant surface, 2πR is the length of the
periodic cylinder, Bz is the axial or toroidal magnetic
field, and ι-′s is the radial derivative of the equilibrium
rotational transform, ι- = RBθ/(rBz), at r = rs. Equa-
tions (7) and (10) imply the existence of a current sheet
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peaking at θ = 0 and with multiple harmonic content:
m = 0, m = 1, and m = 2 components are present. The
finite zonal component (m = 0) is what produces a jump
in the rotational transform,

∆ι- = 2ι-′sξa

∮ √
g(θ)/ξ2adθ ≈ 0.45ι-′sξa (11)

which, despite the nonlinearity of the solution, scales lin-
early with the axis kink! The scaling in Eq. (11) agrees
with the constraint given by Eq. (1), but the coefficient
in front is slightly different because in Eq. (1), ∆ι- refers
to the jump across the entire nonlinear layer whereas in
Eq. (11) it only denotes the actual discontinuity at x = 0.
There is, in fact, a nonsingular part of the current den-
sity within the boundary layer that accounts for the other
half of the total zonal current [3]. In any case, this cal-
culation proves that the saturated internal kink contains
a discontinuity in the rotational transform and thus be-
longs to the class of equilibria postulated in Ref. [11].

The nonlinear theory developed by Rosenbluth et al. is
in fact more general than previously recognized. All that
the theory does is to seek helical states of given helicity
(m,n) that satisfy ideal force-balance inside and outside a
boundary layer around a resonant rational surface. This
is carried out by applying flux-conservation constraints
with respect to an initially axisymmetric state, solving
the force-balance equation in the nonlinear layer and
matching the solution to linear theory outside the layer.
With this in mind, one can reformulate the problem for
a forced helical state produced by applying a resonant
magnetic perturbation on the boundary of a cylindrical
tokamak. For a generic boundary perturbation of the
form ξa cos (mθ − nϕ), it follows that Eqs. (2), (3) and
(4) are still valid, and Eqs. (5) and (6) are only slightly
modified, simply because the helicity is general and the
perturbation is nonzero on the boundary and zero on the
axis rather than the other way around. In particular, the
functional Λ[ĝ] becomes

Λ[ĝ] =

∫ ∞
0

df
[ 1

u(f)
−
√
f− 1

2
√
f

∮
ĝdθ

]
−
∮
ĝ cos (mθ)dθ .

(12)
The maximum of Λ is found to be independent of m and
has the same value as for the internal kink. The numeri-
cal solution for the function g is again well approximated
by

g(θ) ≈ 1

3
ξ2a sin8 (mθ/2) , (13)

and the solutions for f(x) and ξ(x, θ) are the same as
before with the replacements x→ −x and θ → mθ+π/2.
We would like to remark that the implicit ϕ-dependence
in Eq. (13) is obtained by replacing mθ with mθ − nϕ,
as for the internal kink.

An example of nonlinear solution for an m = 2, n = 1
boundary perturbation is shown in Fig. 2. For this case,
the nonlinear layer becomes infinitesimally narrow at two

poloidal locations, but only one is shown. A jump in rota-
tional transform is also present in the nonlinear solution
and is given by

∆ι- = 2mι-′sξa

∮ √
g(θ)/ξ2adθ ≈ 0.9ι-′sξa . (14)

The jump in rotational transform obtained for a general
RMP is thus the same as for the saturated internal
kink, except for an additional linear scaling with the
poloidal mode number m and the fact that the quan-
tity ξa is the amplitude of the RMP, which is thus known.

There are several important implications of these
results for both theory and experiments. First, we
have confirmed the conjecture that MHD equilibria with
nested and resonant surfaces possess discontinuous ro-
tational transform, i.e. zonal current sheets, across the
resonances, by showing that this statement is rigorously
true in a large-aspect-ratio tokamak. An important con-
sequence is that this class of equilibria can support ar-
bitrarily smooth pressure profiles without generating in-
finite currents. The discovery of these equilibria lends
support to Parker’s long-standing suggestion that “al-
most all” MHD equilibria possess current sheets [16, 17].
Second, an explanation emerges for the apparent dis-
agreement between linear and nonlinear ideal equilibrium
codes when trying to calculate the plasma response to
RMPs in tokamaks [10]: on the one hand, linear codes
allow for current sheets to form, but as of now they have
always assumed that the zonal component of the current
sheet vanishes (thus leading to an unphysical overlapping
of surfaces and the need to artificially flatten the pres-
sure to avoid infinite pressure-driven currents); on the
other hand, nonlinear codes are by construction guar-
anteed to preserve the topology of nested surfaces, but
do not allow magnetic field discontinuities (thus the cur-
rent sheet is never resolved). Third, the presence of a
zonal current sheet has a global effect on the plasma
response: RMPs were recently predicted to penetrate
beyond the resonance and to be significantly amplified
with increasing plasma pressure [12]. This prediction was
based on the conjecture that has now been proved, but
did not provide a specific value for the jump in rotational
transform, which is now supplied by the nonlinear the-
ory. Remarkably, perhaps, the linear scaling of the rota-
tional transform with the RMP amplitude remains valid
in the nonlinear theory. The latter also makes a further
prediction, namely, that higher harmonics are excited
to comparable amplitude throughout the entire plasma
column enclosed by the resonant surface (even without
any toroidicity-induced mode coupling). Finally, we note
that, by generalizing the nonlinear theory discussed here
to non-circular and toroidal geometry, quantitative pre-
dictions can be produced for the ideal plasma response
to RMPs in tokamaks.
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FIG. 1: Nonlinear solution for the internal kink. Left: numerical solution for g(θ) (solid magenta) obtained by minimizing the
functional Λ, Eq. (6), starting from an initial guess (solid grey). The dashed-black line is the function 1

3
cos8 (θ/2). Middle:

numerical solution for f(x) obtained from Eq. (4) and using the solution for g(θ). Right: numerical solution for the radial
profile of the displacement at different poloidal locations. The location of the resonant surface is x = 0.
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FIG. 2: Nonlinear solution for an externally forced helical state with helicity m = 2, n = 1. Left: numerical solution for g(θ)
(solid magenta) obtained by minimizing the functional Λ, Eq. (12), starting from an initial guess (solid grey). The dashed-black
line is the function 1

3
sin8 (θ). Middle: numerical solution for f(x) obtained from Eq. (4) and using the solution for g(θ). Right:

numerical solution for the radial profile of the displacement at different poloidal locations. The resonant surface is at x = 0.


