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ABSTRACT

Transcranial direct current stimulation (tDCS) is a noninvasive technique for affecting brain dynamics with
promising application in the clinical therapy of neurological and psychiatric disorders such as Parkinson's disease,
Alzheimer's disease, depression, and schizophrenia. Resting state dynamics increasingly play a role in the assess-
ment of connectivity-based pathologies such as Alzheimer's and schizophrenia. We systematically applied tDCS
in a large-scale network model of 74 cerebral areas, investigating the spatiotemporal changes in dynamic states
as a function of structural connectivity changes. Structural connectivity was defined by the human connectome.
The main findings of this study are fourfold: Firstly, we found a tDCS-induced increase in functional connectivity
among cerebral areas and among EEG sensors, where the latter reproduced empirical findings of other re-
searchers. Secondly, the analysis of the network dynamics suggested synchronization to be the main mechanism
of the observed effects. Thirdly, we found that tDCS sharpens and shifts the frequency distribution of scalp EEG
sensors slightly towards higher frequencies. Fourthly, new dynamic states emerged through interacting areas
in the network compared to the dynamics of an isolated area. The findings propose synchronization as a key
mechanism underlying the changes in the spatiotemporal pattern formation due to tDCS. Our work supports
the notion that noninvasive brain stimulation is able to bias brain dynamics by affecting the competitive interplay

of functional subnetworks.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Transcranial Direct Current Stimulation (tDCS) is a noninvasive
technique used to affect the brain's processing by sustaining a direct
current flow of up to 2 mA between scalp electrodes for a few of minutes
(Brunoni et al., 2012; Dayan et al,, 2013; Nitsche et al., 2008; Nitsche and
Paulus, 2000; Wagner et al., 2007). Several studies report effects of tDCS
on cognitive brain processes (Boggio et al., 2009) and find positive
therapeutic effects on neurological and psychiatric disorders, such as
rehabilitation after stroke or traumatic brain injury (Gomez Palacio
Schjetnan et al., 2013; Hummel and Cohen, 2005; Lindenberg et al.,
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2010), depression (Nitsche et al., 2009), and pain (Antal et al., 2010;
Bachmann et al., 2010; O'Connell et al., 2014; Valle et al., 2009; Zaghi
et al., 2009). These therapeutic effects have been attributed to long-
term alterations of NMDA receptor efficacy due to tDCS (Liebetanz
et al., 2002). Brain dynamics during or shortly after tDCS (short-term ef-
fects) show an increased excitability in response to anodal stimulation
and a decreased excitability in response to cathodal stimulation
(Ardolino et al., 2005; Dieckhofer et al., 2006; Jacobson et al., 2012;
Lang et al., 2004; Matsunaga et al., 2004). Bindman and colleagues
report on a shifting of resting state potentials and an increased rate of
spontaneously triggered action potentials in vitro (Bindman et al.,
1964). The short-term effects of tDCS have been quantified by power
changes in resting state activity in the scalp Electroencephalogram
(EEG) during tDCS (Mangia et al., 2014) and immediately after tDCS
(Ardolino et al., 2005; Polania et al., 2011a; Spitoni et al., 2013). The
alpha-band (8-13 Hz) shows increased power in the vicinity of an an-
odal tDCS site and modulations in distant electrodes (Mangia et al.,
2014; Spitoni et al., 2013). tDCS transiently and reversibly changes the
cortical activity elicited by visual stimulation (Antal et al., 2004). Our
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computational studies relate directly to the empirical findings of Polania
et al. (2011a), who showed that functional connectivity following tDCS
at rest increases among EEG sensors close to the cathode. This result
suggests a functional reorganization and the ability to bias cortical net-
works. Given that various brain diseases exhibit a characteristic change
in the brain's functional connectivity (Zhang and Raichle, 2010), a coor-
dinated stimulation of the brain holds great potential to complement
and enhance pertinent strategies of clinical therapy.

Computational models have been used recently to investigate the
mechanisms initiated by tDCS. The local tDCS effects on experimentally
observed evoked potentials (of a rabbits' somatosensory cortex in re-
sponse to air-puffs applied on the whiskers) could be reproduced
using a Jansen-Rit-like neural mass model (Jansen and Rit, 1995)
where the stimulation perturbs the membrane potential of neurons
(Molaee-Ardekani et al., 2013). To investigate changes in EEG's
rhythms, this local model has been extended by Merlet and colleagues
to a full brain setup of 66 uncoupled cerebral areas, each driven by an
additional thalamic area and selectively affected by transcranial alter-
nating current stimulation (tACS) through a biophysical forward calcu-
lation (Merlet et al., 2013). Merlet and colleagues report a significant
increase in alpha power at posterior midline scalp electrodes due to
tACS with frequencies from 8 to 12 Hz. However, Merlet and colleagues
could not succeed in generating realistic scalp topographies due to the
lack of long-range cortico-cortical connections (Merlet et al., 2013).

In this study, we stress the importance of structural connectivity of
the brain in the spatiotemporal pattern formation influenced by tDCS.
The pipeline of this study is depicted in Fig. 1. We used the structural
connectivity given by the connectivity matrix of the human
connectome, which represents myelinated nerve fiber bundles, to
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determine the coupling strengths among 74 cerebral areas. A single
Jansen-Rit model described the activity of each cerebral area in terms
of the mean activity of (i) pyramidal cells, (ii) excitatory interneurons,
and (iii) inhibitory interneurons. The strength of tDCS on each cerebral
area is obtained by a forward calculation using a high-resolution finite
element head model, where the anode is placed over the left motor
area and the cathode over the right frontal orbit. The mean postsynaptic
potentials (PSPs) of the pyramidal cells are projected onto 62 scalp EEG
electrodes using a lead field from a boundary element head model. Sig-
nificant functional connectivity and frequency components are ana-
lyzed both in source and sensor space. The pattern formation is
systematically investigated under rest (unperturbed) and tDCS
(perturbed) dependent on the scaling of structural connectivity and
tDCS. Here, we reproduced the short-time effects of tDCS in the alpha-
band and demonstrated that tDCS increases the functional connectivity
through synchronization.

Furthermore, we create a catalog of large-scale brain dynamics under
rest and tDCS. In order to characterize an area's dynamic state, we com-
pared the dynamics with the repertoire of an isolated area (bifurcation di-
agram of the local Jansen-Rit model) dependent on the dynamic network
state under rest condition. In this way, we explain the network state
transitions and underlying mechanisms. We find that a transition point
inherent in an isolated Jansen-Rit model (i.e., bifurcation) gets spread
through the interacting areas in the network, resulting in a stepwise
network state transition. In addition to such cases in which network
states (and transitions) can be traced back to the isolated local model,
the network also introduces qualitative new dynamics through point-
like transitions (with respect to the scaling of the structural connectivity)
that simply cannot be traced back to the area's dynamic repertoire.

F
Scalp EEG

FFT

#1

[0 Tl 1l T I o

An

HE2 A ) FC

E

Cerebral areas

9 FFT
# fo

<

Fig. 1. Analyzing the large-scale brain network model during rest and tDCS. A set of 74 cerebral areas, each described by a Jansen and Rit model, as in panel A, were linked to a network
according to a given connectome, as in panel B. The heterogeneous connectivity matrix was globally scaled by a connectivity scale factor +y. tDCS strength in the cerebral areas was
determined by the current density distribution from a forward calculation, as in panel C. Consequently, an individual constant potential was added to each area during tDCS, as in
panel D. The mean membrane potential of pyramidal cells in each area served as output signal, as in panel E, and were projected onto the 62 scalp EEG electrodes, as in panel F. For
both data sets the frequency spectra and the functional connectivity were computed, as in panel G, and compared during rest and tDCS.
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Materials and methods
Model architecture

Large-scale brain network model

Here we use a brain network model comprising 74 cerebral areas,
each modeled by an oscillator model, which accounted for the interac-
tion of the participating neural subpopulations (i.e., neural masses) in
one area according to mean field theory (Deco et al., 2008). Following
(Spiegler and Jirsa, 2013), the respective set & of the n = 2 state vari-
ables, & =[¢y, ¢,], namely the mean membrane potential and mean fir-
ing rate, of each neural mass formed a vector ¥ = [dq;dy; ... ; Py
describing the state variables of a network of m = 3 neural masses,
namely excitatory and inhibitory interneurons as well as pyramidal
cells. The neural masses were interconnected according to a local con-
nectivity matrix, Vo, Which describes whether the neural masses in a
neural population either act excitatory or inhibitory on each other. By
interconnecting [ = 74 of such neural mass models (each representing
a single cortical area) according to a heterogeneous connectivity matrix,
Wi, the state variable vector of the resulting brain network model is
QO =[W¥;¥,; ...;¥]. The heterogeneous connectivity matrix, Whe,
thus describes connectivity between all considered elements of the net-
work (i.e., cortical areas) and is well known as the connectome. Eventu-
ally, the temporal evolution of the brain network model was described
by applying a temporal differential operator P(d/dt) to Q as in:

P() 010 = SVia 00 + 2 Y Wi (Vi 10, 0

with the transfer function S(-) and an extrinsic input Z. The third term
on the right hand side of (1) described the links among network
nodes and was globally scaled by the connectivity scaling factor, vy,
which can be interpreted as a global synaptic gain signifying a neurobi-
ological parameter, such as global axon density or a chemical substance
which acts on the efficacy of synaptic connections.

Structural layout: the connectome

We used a connectome for the structural layout of the brain network
model, which is included in the neuroinformatics platform The Virtual
Brain (TVB) (Sanz-Leon et al., 2015; Sanz Leon et al., 2013). This partic-
ular connectome considered 37 cerebral areas for each hemisphere, as
listed in Table 1, resulting in a total number of N = 74 cortical areas.
The area parcellation was a hybrid based on diffusion spectrum imaging
data and data from the CoCoMac neuroinformatics database (Kotter,
2004). The connectivity matrix (Fig. S1A) weights each link with 0, 1,

Table 1
Abbreviations of cerebral areas.

Al Primary auditory cortex PFCdm Dorsomedial prefrontal cortex
A2 Secondary auditory cortex PFCm  Medial prefrontal cortex
Amyg Amygdala PFCorb Orbitofrontal cortex

CCa  Anterior cingulate cortex PFCpol Pole of prefrontal cortex

CCp  Posterior cingulate cortex PFCvl  Ventrolateral prefrontal cortex
CCr Retrosplenial cingulate cortex ~ PHC Parahippocampal cortex

CCs Subgenual cingulate cortex PMCdl Dorsolateral premotor cortex
FEF Frontal eye field PMCm Medial premotor cortex

G Gustatory area PMCvl Ventrolateral premotor cortex

HC Hippocampal cortex S1 Primary somatosensory cortex

1A Anterior insula S2 Secondary somatosensory

cortex

P Posterior insula TCc Central temporal cortex

M1 Primary motor area TCi Inferior temporal cortex

PCi Inferior parietal cortex TCpol  Pole of temporal cortex

PCip  Cortex of the intraparietal TCs Superior temporal cortex
sulcus

PCm  Medial parietal cortex TCv Ventral temporal cortex

PCs Dorsal parietal cortex Vi Primary visual cortex

PFCcl Centrolateral prefrontal cortex V2
PFCdl Dorsolateral prefrontal cortex

Secondary visual cortex

2, or 3 for being absent, weak, moderate, or strong, respectively. To
put these gradations in relation to the topology of the structural connec-
tivity matrix and to ensure the dissipation of activity in the network, we
normalized the connectivity matrix to a unity maximum in-strength.
For this each connectivity weight was divided by the maximum existing
in-strength of the considered areas.

Temporal dynamics of an area: the Jansen-Rit model

The temporal dynamics of each of the 74 cortical areas were
modeled through an isolated Jansen-Rit model in its original parameter-
ization (Jansen and Rit, 1995) with the ability to oscillate within the
alpha-band (8—12 Hz). All 74 cortical areas (i.e., network nodes)
featured the same standard parameterization. The Jansen-Rit model
comprises three neural masses, which are representative for the
cerebral cortex, namely: excitatory and inhibitory interneurons and py-
ramidal cells. Each neural mass was described by its key state variables:
the mean membrane potential u(t) and the mean firing rate m(t) as well
as their respective mutual transformations (Jansen and Rit, 1995): a
pulse-to-wave transformation via a convolution of m(t) with a convolu-
tion kernel h.(t), where index e indicates excitatory processes and
index i indicates inhibitory processes, and a wave-to-pulse transforma-
tion. The pulse-to-wave transformation describes the occurring
processes at the dendrites, where an incoming pulse of action potentials
leads to an altered membrane potential of the postsynaptic cell as in:

u(t) = fodr m(7) - he;(t—T), (2)

where he;(t) is the impulse response and is defined as.

hea() =25t exp( ) €20, 3)

ei e

where H,; is the maximum postsynaptic potential and 7; is a lumped
representation of delays occurring during the synaptic transmission.
The wave-to-pulse transformation is defined by a sigmoid function
asin:

280

S(u(t)) = 1+exp(r(vo —u(t)))’

(4)

where ey is the maximum pulse, r is the steepness of the sigmoid func-
tion, and v/ is the postsynaptic potential for which half of the maximum
pulse rate is achieved. This sigmoid function constituted the transfer
function from Eq. (1). Thus, the temporal differential operator read:

P:Di(A) = A2 + 2b;\ + b?, (5

with by = b, = 1 and bz = 1/2 for the pyramidal cells (i = 1), the excit-
atory (i = 2), and inhibitory interneurons (i = 3). Based on the intrinsic
feedback circuitry among the neural masses (see Fig. S2), the Jansen-Rit
model has a rich dynamic repertoire, which was extensively described
by Spiegler and colleagues (Spiegler et al., 2010). Fig. 3A depicts a re-
duced version of the bifurcation diagram. Four qualitatively different
dynamic states were distinguishable by means of the occurring frequen-
cy of the oscillation and the baseline of the mean PSP of the pyramidal
cells, upy(t). Those dynamic states are: a stable node, Ny, a low-
frequent limit cycle, LF;, a high-frequent limit cycle, HF;, and a stable
focus, F; (see Fig. 3A). The dynamic state depends on the incoming
input pulse rate to the pyramidal cells of each area as well as on the ini-
tialization (at t = 0) of the four state variables (because of multistable
regimes).

The time course of upy(t) of each area constituted the output of each
area in the network and was propagated to a set of 62 EEG sensors by
means of a propagation matrix, which was already included in the
according TVB dataset. The propagation matrix was calculated using
OpenMEEG implementing a boundary element method (BEM). The
three-shell BEM model was constructed with the MNI Colin 27 dataset,
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registered with the respective cortical surface from the TVB dataset.
Each area instantaneously transmitted the mean firing rate of its
pyramidal cell population to other connected areas.

To account for the influence of tDCS we relied on the fact that electric
fields affect neurons in a geometry-dependent fashion (Bikson et al.,
2004). In this context, the tDCS-induced polarization effect of the rest-
ing membrane potential was modeled through a perturbing voltage off-
set Upcs to the mean membrane potential of the pyramidal cells
subpopulation (see Fig. S2). This approach is known as the “AE model”
in comparable modeling studies (Merlet et al., 2013; Mina et al., 2013;
Molaee-Ardekani et al., 2013). In the “NE model” the influence of the
electric field is represented as perturbation (i.e., an additive voltage
AV) of the mean membrane potential of a neural mass. The model con-
siders the directionality of the electric field and an altered excitability
through the perturbed membrane potential. Although Molaee-
Ardekani indicated an effect of tDCS to interneurons, we restricted our
analysis to pyramidal cells, because the contribution of interneurons is
small (Merlet et al., 2013; Mina et al., 2013; Molaee-Ardekani et al.,
2013) and to limit the number of free parameters. A more profound de-
bate on this assumption is included in the Discussion section.

We determined a spatially distributed tDCS influence. For each cor-
tical area (i.e., each node in the network) we computed an individual

voltage offset U pcs as described by.
Uipes = Uipcs - &, (6)

The factor ti;pcs globally scaled the strength of tDCS and was restrict-
ed to not exceed an absolute value of 4 mV, corresponding to the polar-
izing effect of an electric field of 30 mV/mm (Bikson et al., 2004), as
employed in a comparable modeling study (Molaee-Ardekani et al.,

2013). The factor ?represented the spatial distribution of tDCS impact
on each cortical area. The basis for this distribution is the current density
distribution on the cortical surface - a consequence of the externally
applied field. The current density was computed by means of a finite
element model (FEM), as described below.

Because tDCS was assumed to maintain a time constant electric flow
field over the entire treatment process, U pcs Was held time constant
also. This allowed the mathematical transformation of the additive voltage
U ipcs into an equivalent tDCS-induced and area-specific additive mean fir-
ing rate U pcs that entered each pyramidal cell population through the
path of the excitatory interneurons (see Fig. S2). Thus, Eq. (6) became

—

Mincs = Pocs & ()

where pypcs scaled the maximum additional firing rate and was calculated
according to the values of iiipcs as in.

- Utpcs

Piocs = An, ®)
where Ap. was the integral over the time constant kernel of the pulse-to-
wave state transformation (see Eq. (3)) and equaled H, ;- T.;. Thus, the
input to the pyramidal cell population of each area, p’;,, comprised three
separate components: (i) a time constant driving input of 108.5 pulses
per second, which was used to tune the working point of the local
model, (ii) the time constant and area-specific tDCS perturbation i pcs,
and iii) the dynamic input which was received from connected areas.
Thus, p’;, reads.

Din= Do+ Mpcs + YWheeS (] (71&))7 9)

where the operator J(U’p,) described the processing within a Jansen-Rit
model.

Current density distribution on the cerebral surface

In ordego derive the spatial distribution of tDCS impact on each cor-
tical area, ¢, the current density distribution generated by tDCS was
simulated in a finite element model. The finite element model was de-
rived from the same cerebral surface as the large-scale brain network
model and surrounding layers comprising the inner and outer skull sur-
face as well as the scalp surface. The volumes of scalp, skull, cerebrospi-
nal fluid (CSF), and brain were meshed to about 2.2-10° geometry-
adapted hexahedral elements. Stimulating rubber electrodes of
(5 x 7) cm? were modeled in a 4 mm dilated scalp mesh (anode: left
motor area; cathode: right orbit). The cut-open FEM model visualizing
all compartments is shown in Figure S3. Homogeneous conductivity
values of 1.4 S/m, 0.43 S/m, 0.025 S/m, 1.79 S/m, and 0.33 S/m
(Wagner et al., 2014) were defined for finite elements in electrode,
scalp, skull, CSF, and brain compartments. The tDCS simulation of the
current density in all elements was performed in the open source soft-
ware SimBio (Wagner et al., 2014) with an input current strength of
1 mA applying homogeneous Neumann boundary conditions at the
scalp surface and inhomogeneous Neumann boundary conditions at
the electrode surfaces (Wagner et al., 2014).

Incorporating tDCS in the large-scale brain network model

To determine th(; area-specific spatial distribution of the tDCS in-
duced perturbation, ¢, current density values of the tDCS forward solu-
tion of the brain volume, T sy, were mapped to the 74 areas in the
following way:

The three FEM elements, T’FEMW of the forward model, which lie
closest to each of the 16,384 network vertices of the cerebral surface
mesh, i, were determined according to the Euclidian norm (i.e., spatial
mapping). The magnitude of each contributing current density vector
?FEMM was multiplied with either +1, for anodal contribution, or —1,
for cathodal contribution, according to the dot product between
?FEMM and the normal vector of the respective surface vertex ni;. This en-
sures that an anodal stimulation perturbs the membrane potential of
the respective pyramidal cell population positively, and a cathodal stim-
ulation perturbs the membrane potential of the respective pyramidal
cell population negatively. The current densities values of T’FEMM were
averaged to compute the magnitude in the respective surface vertex n;

(i.e., functional mapping). The activity of all vertices i belonging to one
area, j, were averaged and scaled to a range between —1 and +1. Thus,
the tDCS induced activity in each area, j, was determined by.

7 L P LI sign(ﬁ? ) ‘? ?
= i N 2k — i- TEEM,, ) - | T FEM
) Nj =1 Ny k=1 1 ik ik

; (10)

where Ny = 3 was the number of the considered FEM elements of the
forward model for each surface vertex, and N; was the number of verti-
ces belonging to one area j. This procedure was visualized in Fig. S4.

Connectivity strength variation

Because a single Jansen-Rit model exhibits various dynamic states
depending on the input level, the input to each area was varied
by setting the connectivity scale factor for the connectome between
—200 <y <350 with a step size of 0.1. The model equations were
solved with an improved Euler method, which was already included
in The Virtual Brain environment, and a time step size of 0.5 ms.

For y = 0, the coupling among the areas vanished and the initial
conditions for the lower and the upper stable state of the equilibrium
curve were determined analytically. Further initial conditions were
found semi-analytically by stepwise continuation of those equilibrium
conditions. For sections where this approach was not feasible
(i.e., folding of the equilibrium curve), initial conditions were found as
the last state vector in a leadoff simulation. To account for settling ef-
fects, each simulation of 65 s was run twofold with the last state vector
of the first simulation as the initial condition for the second simulation.
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For better assessment of the effect of tDCS, we included values of the
maximum voltage scaling, Uipcs, in a range between 0 and 4 mV in
0.5 mV steps in our simulation. We examined the membrane potential
upy of the pyramidal cell subpopulations in an analysis window of the
last 16 s of the time series. The baseline potential of each area was ex-
tracted and the power spectral density was calculated by means of
Welch's method (mean free signal, Hanning window, fast Fourier trans-
form (FFT) length of 8 s, no overlap). Within the frequency range of 0 to
15 Hz, the frequency component with the highest power was extracted
as the dominant rhythm of one area. To avoid artifacts from dynamic
states like a stable focus, the dominant rhythm was set to zero if the dif-
ference between the maximum and the minimum potential within the
analysis window was smaller than 1 1V (i.e., the variance criterion). This
procedure was depicted in Fig. S5. For the time courses in both the
source and the sensor space, the power spectral density was calculated
and averaged over eight segments, each of 8 s duration without overlap.
Significant functional connectivity in the source and the sensor
space was found by means of Pearson's correlation coefficient and a
p-value of less than 0.05. Positive correlation values exceeding 0.8
were extracted for the rest condition and the stimulation condition.

Results

Simulations of the large-scale brain network model were performed
under rest (unperturbed) and stimulation (perturbed) as a function of
the connectivity scale factor, vy, which globally amplified each weight
of the heterogeneous connectivity matrix given by the connectome.
Investigating changes during stimulation (with regard to rest), the
model showed: (i) an increase in functional connectivity among ce-
rebral areas and scalp electrodes; (ii) more harmonic oscillations

(a sharpening of brain areas' frequency spectrum); (iii) an accelera-
tion of brain rhythms at specific sensors, but (iv) an overall deceler-
ation of rhythms across brain areas and sensors; and (iv) a power
increase or decrease of the dominant rhythms in the vicinity of the
anode or cathode, respectively.

Network state during rest

By characterizing the PSPs of pyramidal cells in terms of baseline and
dominant rhythm in rest condition, various network states could be iden-
tified in dependence on the connectivity scale factor. According to the
transitions across the connectivity scale factor, vy, the network states
were divided into nine regimes (see Fig. 2C). A detailed description of
the regimes and the transitions are presented in the Supplementary mate-
rial. The interactions of the areas gave rise to multistable
(e.g., 117.6 <y<143.9), synchronized (e.g., 33.4 <y<117.5) or even cha-
otic regimes (e.g., 13.6 <y < 33.3). Investigating the transitions of quali-
tatively different network states, we found stepwise (e.g., 9 <y < 13.5)
and point-like transitions (e.g., at y =~ 33.4) with respect to the connectiv-
ity scale factor, v, for the underlying connectome. Given the transitions
existing in an isolated Jansen-Rit model with respect to a constant input
level to the PSP of pyramidal cells (see Fig. 3A), the stepwise transitions
could be identified as stretched critical ranges in which areas underwent
a bifurcation (i.e., an instability) at different connectivity scale factors of
the connectome, y. The point-like network state transition, however,
could not be traced back to mechanisms in an isolated Jansen-Rit
model.

A comparison of each area's activity in the network with the reper-
toire of an isolated one revealed the emergence of qualitative new
dynamics through network interactions (see Fig. 3C). As a result of net-
work effects, both baseline potentials and dominant rhythms occur out
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Fig. 3. An area's state changes with increasing network connectivity during rest. The bifurcation diagram of an isolated Jansen-Rit model, as in panel A, shows the dynamic repertoire of four
dynamic states, i.e. Ny, LF;, HF;, and F; (Spiegler et al., 2010), distinguishable by baseline potential and occurring frequency. Panel B: Initializing an isolated Jansen-Rit model in an
unexcited state (see ret. dot in panel A), the model generates constant output in the regime of a stable node, Ny, slow and fast oscillatory output in a limit cycle regime, LF; and HF;,
and a damped oscillatory output in the regime of a stable focus, F, in dependence on the constant input to the pyramidal cell subpopulation. The dynamic state of each of the
interconnected areas in the network circuitry was classified with respect to the repertoire of an isolated area, as in panel C. The classification bins are depicted on the right side in
panel C. Classification evaluated compliance of each area's dominant rhythm (first criterion) and baseline with those in an isolated area. Note that the classified behaviors 1, 2, 3, and
10 were not exhibited within this range of the connectivity scale factor. New states were found as a result of network interactions. The probability of a state across areas is shown in
panel D. Correlation of the network structure and baseline potentials are measured by Kendall's tau in panel E. The transitions of network states show either an avalanche-like
transition or an abrupt state change of areas. With increasing connectivity scaling, the structure increasingly influenced the occurring dynamics up to critical scaling values for which

the network reorganized and structure lost ground to the dynamics.

of the usual limits of an isolated area. To assess whether a network state
was subject to the area's intrinsic properties, to the network properties,
or both, the areas’ baseline PSPs (i.e., of the pyramidal cells) were corre-
lated to the in-strengths of the connectome, representing the network
structure (see Fig. 3E). For certain ranges of the connectivity scale factor,
marked by point-like transitions or the edges of stepwise transitions,
this correlation first increased and then abruptly crashed due to reorga-
nization within the network.

Network state during tDCS

Since the structural connectivity indicates the sensitivity of areas for
activity-related changes within the network (i.e., the in-strength, see
Fig. S1), we compared the strength of tDCS on each area, U pcs, with
the in- and out-strength of the connectome (see Fig. S6). The tDCS

strength on the cerebral cortex was obtained by a high-resolution finite
element forward calculation (see section Materials and methods). The
right anterior cingulate cortex (rCCa) and left medial prefrontal cortex
(IPFCm) were most affected by tDCS (the former anodal and the latter
cathodal), and the primary motor cortex (M1) was least affected by
tDCS. Since rCCa and IPFCm featured a higher in- and out-strength
than average (across areas), while in- and out-strength were moderate
for M1, we expected rCCa and IPFCm to be more affected by tDCS than
M1.

Analogous to the resting state condition, we characterized the dy-
namic network state during tDCS dependent on the connectivity scale,
7, and the scale factor for the tDCS strength, fiipcs. The network states
during tDCS were compared to those found during rest in Fig. 4. During
tDCS, the areas expressed their individual intrinsic behavior for wider
ranges of the connectivity scaling, vy, as apparent from the spread of
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dominant rhythms and baseline PSPs over connectivity scales across
areas with increasing tDCS strength. The main differences between
the network state during rest and stimulation occurred for connectivity
scaling up to <y < 120. For higher scaling, y > 120, the network states
were qualitatively equal during rest or stimulation. Across all tDCS scal-
ing factors, tDCS gave rise to negative baseline potentials, which were
previously positive during rest. Primarily, this shift in baseline poten-
tials was caused by the selective cathodal (i.e., negative) offset and
was more prominent for small as well as negative values of vy. The higher
the scale for the tDCS strength, the lower the connectivity scale factor, v,
for which areas exhibited the first oscillations. The connectivity scaling,
7, at which areas started oscillating slowly (<4 Hz) was y = 8.9 during
rest and y =~ —30, —100, —185, and < —200 during tDCS for a tDCS
scaling, Giypcs = 0.5, 1, 1.5, and 2 mV, respectively. With increasing
strength of tDCS, fast rhythms (>8 Hz) set in with smaller connectivity
scaling, y. The connectivity scale, vy, at which areas started showing fast
rhythms (>8 Hz), was y = 13.6 during rest and 'y =~ 10, —40, —185, and
< —200 during tDCS with a scaling, i;pcs = 0.5, 1, 1.5, and 2 mV, respec-
tively. Interestingly, at {i;pcs = 1.5 mV, fast and slow rhythms started si-
multaneously from y =~ —185 on, interrupted by a silent regime
between —130 <y < —95 (almost no oscillations). Furthermore, the ex-
pansion of fast rhythms to negative connectivity scaling for increasing

A Dominant rhythm in Hz
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strength of tDCS came along with a smaller variance across areas. In
contrast, the variance of fast rhythms for connectivity scaling factors,
v > 10, during rest and stimulation was remarkable. Another qualitative
change occurred in the connectivity scaling range of 33.4 <y <117.5.
During rest, this range spanned a regime of synchronized low rhythms
(3-4 Hz) bounded by two abrupt transitions at y = 33.4 and y =
117.5 (see Fig. 4). During stimulation, these two transitions converged
(pes = 0.5 mV: 82 <y <115 and {iypcs = 1.0 mV: 83 <y <95) and
vanished ({iipcs > 1.0 mV) with increasing strength of tDCS. Slow
rhythms vanished for {i;pcs > 1.0 mV and, instead, two separate fast
rhythms (~11 Hz and 8-9 Hz) became stable, diverging with increasing
connectivity scaling. Interestingly, for G;pcs = 1.0 mV a stable slow
rhythm existed (83 <y < 95), but the two abrupt transitions were
smoothed out for the two fast rhythms forming a tristable regime
(~3.8 Hz, ~8.2 Hz, and ~10.5 Hz). For {i;pcs = 0.5 mV, similar tristable re-
gimes existed for a connectivity scaling range of 48 <y<82 and aty =
114.

Functional connectivity and synchronization during tDCS

Because the network state for a connectivity scaling range of
13.6 <y < 33.3 was found with high variance in fast rhythms during
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tDCS and in rest (see previous paragraph), we examined this chaotic re-
gime in more detail to find out whether tDCS affects the interplay in the
network or simply modulates the dynamics.

Regarding the 62-channel EEG for an exemplary connectivity scale
factor of y = 22, oscillations in the alpha-band were dominant in 53
channels during rest and 42 channels during tDCS (fiipcs = 4 mV),
where other channels showed oscillations in the delta-band (<4 Hz)
(see Fig. 5). This reflected an observation from the cerebral areas, name-
ly that tDCS slows down the dynamics. Another observation was that
tDCS made the oscillations more harmonic (indicated by a sharpening
of the frequency spectrum with clearer peaks). EEG channels covering
the region of the anode (i.e., C3, C5, CP1, CP3, and CP5) and cathode
(i.e., Fp2, AF4, AF8, F4, and F6) kept their main power in the alpha-
band during tDCS, but with considerably reduced power in the latter
and increased power in the former case (see Fig. 5). For all electrodes
in both groups, the power peak was slightly shifted to higher frequen-
cies (~11 Hz). The right parietal channels (P2, P4, P6, PO4, and PO8) be-
haved similarly to the channels covering the anodal region.
Interestingly, tDCS quashed oscillations in frontocentral channels (F1,
Fz, and F2), indicated by a dramatic power reduction in the frequency
spectrum (see Fig. 5). Contralateral to the anode, central and
centroparietal channels (C4, C6, T8, CP2, CP4, CP6, and TP8) maintained
the power in the alpha-band, but exceeded by a power increase in the
delta-band during tDCS. For occipital channels (01, Oz, and 02), the os-
cillations in the delta-band lost power, but remained dominant during
tDCS.

To assess the functional connectivity among cerebral areas (Fig. 6A)
and in the scalp EEG (Fig. 6B), we chose two exemplary connectivity
scale factors, y = 22 and y = 30. For both scaling factors, the areas es-
tablishing strong correlations (> 0.8) during tDCS (red marks in Fig. 6A)
were located more in the left (i.e., left upper quadrant) than in the right
hemisphere (i.e., right lower quadrant). Almost none of the strongly
correlated areas during rest maintained their correlation level (blue
marks) but vanished under stimulation (green marks in Fig. 6A). Please
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note the similarity of the functional connectivity pattern between the
two connectivity scale factors in Fig. 6A. On the scalp, the electrodes es-
tablishing correlations during tDCS (red lines) were clustered in three
regions for y = 22 (Fig. 6B). Two regions reflected the sites of the
anode (i.e., C3, C5, T7, CP3, and CP1) and the cathode (i.e., Fp2, AF4,
AF8, F4, F6, and F8), including neighboring areas (i.e., FC2, FC4, and
FC6) in the latter case. A third region covered the right central line,
that is, T8, C6, C4, CP2, and CPz. Since our model mainly features oscilla-
tions in the alpha band, the increased functional connectivity at the
cathode qualitatively reproduced former experimental results of resting
state activity before and after a tDCS treatment, see Fig. 3 in (Polania
et al,, 2011a). For the higher connectivity scaling, y = 30, the anodal
correlation cluster appeared as well, whereas the cathodal cluster was
much less pronounced and the central cluster no longer existed
(Fig. 6B). Although an agreement with the empirical results is
unsatisfying for the higher connectivity scaling factor, y = 30, the un-
derlying functional connectivity maps on the level of cerebral areas
were similar. For both scaling factors, y = 22 and y = 30, a correlated
parietal region on either side maintained correlated during tDCS (blue
lines), although some connections vanished (green lines).

The emergent functional connectivity among areas and EEG elec-
trodes suggested synchronization to be the underlying mechanism. In-
deed, all 74 cerebral areas oscillated within the connectivity scaling
range of 13.6 <y < 33.3, during both rest and tDCS. For y = 22, 64
areas oscillated fast during rest and 52 areas during tDCS (fiypcs =
4 mV), which indicated that tDCS slows down brain rhythms. However,
the cerebral areas contributed the most to the emerging correlated an-
odal cluster on the scalp during tDCS essentially maintained their dy-
namic behavior (see Fig. S7). The frequency spectrum of these areas
became sharpened (i.e., clearer peaks and thus more harmonic oscilla-
tions) with an increased and a slightly shifted power peak, indicating
synchronization during tDCS (see Table 2 for a comparison of the vari-
ance). In contrast, two of the four cerebral areas contributed the most
to the emerging correlated cathodal cluster on the scalp during tDCS
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Fig. 6. Functional connectivity changes during tDCS of cerebral areas and in EEG. Panel A: Functional connectivity of areas for fl;pcs = 4 mV and 'y = 22/30. White marks label correlations
that did not exceed a threshold of 0.8. Blue marks label correlations that exceeded the threshold and were present during rest and tDCS. Green marks label correlations that occurred only
during rest and red marks label correlations that arose during tDCS. Panel B: Functional connectivity in scalp EEG sensors with the identical color-coding.

(ie., left and right PFCdm) switched to a fast rhythm (see Fig. S8). The
other two areas (i.e., right PFCdl and PFCcl) continued to oscillate fast,
but with significantly less power and highly modulated with lower fre-
quencies. The baseline PSPs of the areas in the vicinity of the anode were
mostly elevated whereas the baseline PSPs of areas in the vicinity of the
cathode were mostly reduced. See Table 3 for a comparison of baseline
PSPs and variance under rest and stimulation.

Discussion

The positive clinical effects of transcranial direct current stimulation
(tDCS) are presumably caused by the complex interactions between the
brain network and the electrical current of the stimulation. In this study,
we examined the network mechanisms through which tDCS becomes
effective. Our modeling approach allows for the investigation of spatio-
temporal brain activity on the level of sources and sensors with regard
to the interplay of structure and functional behavior. We observed and

Table 2
Baseline in mV (Variance in mV?) of the areas under the anode during tDCS for y = 22.

Area Rest llippcs = 4 mV
Left S1 7.012 (1.724) 7.406 (1.361)
Left PCs 7.184 (2.862) 7.242 (1.740)
Left FEF 7.027 (3.968) 7.437 (1.759)
Left PCi 7.143 (3.917) 7.672 (1.253)
Left PCm 7.081 (1.307) 1.405 (<0.01)

cataloged various connectivity-dependent network states for further
use in other modeling scenarios. In particular, we found an increased
connectivity among cerebral areas and among EEG sensors, where the
latter reproduces the measurements by Polania and colleagues
(Polania et al.,, 2011a). A further analysis of the network dynamics iden-
tified synchronization as the main mechanism of the observed effects.
Furthermore, the frequency distribution of scalp EEG sensors was sharp-
ened and slightly shifted towards higher frequencies during tDCS. Due
to the complex interaction within the network, novel dynamic states
emerged, extending the known dynamic states of an isolated Jansen-
Rit model.

Functional connectivity during tDCS

It was possible to show that tDCS robustly induces additional func-
tional connections both on the sensor and the source level. The tDCS-
caused changes in the functional connectivity potentially bias
(e.g., activate or deactivate) certain functional networks. Evidence that

Table 3
Baseline in mV (Variance in mV?) of the areas under the cathode during tDCS for y = 22.

Area Rest liipcs = 4 mV

Right PFCdm 3.829 (2.207) 7.151 (0.969)
Right PFCdl 7.154 (6.424) 1.589 (<0.01)
Left PFCdm 3.776 (2.782) 0.224 (<0.01)
Right PFCcl 7.012 (1.724) —0.231 (<0.01)
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tDCS alters the functional organization of cortical processing was pro-
vided in former studies (Polania et al., 2011a; Sehm et al., 2012). A
targeted bias of functional networks might explain the numerous posi-
tive effects that tDCS has on neurological and psychiatric diseases (Antal
et al.,, 2010; Fregni and Pascual-Leone, 2007; Lindenberg et al., 2010;
Nitsche et al., 2009). Furthermore, stimulation effects might depend
on the current behavioral state of the brain itself (Northoff, 2012;
Northoff et al., 2010; Silvanto et al., 2008). In this study, the brain
state (i.e., the internal condition of the brain) was assumed to be a rest-
ing state, that is, the state of the brain in the absence of any given task
and overt stimuli, for instance, awake with eyes closed (Logothetis
et al., 2009; Raichle, 2010). Furthermore, there is evidence that an
increased functional interaction or connectivity leads to structural
changes in gray matter through synaptic plasticity (i.e., long-term po-
tentiation) and in white matter through changes in axon caliber and
myelination (Gibson et al., 2014).

Effect of tDCS on the cortex

In extension to forward modeling tDCS studies (Bikson et al., 2012;
Ruffini et al., 2014), our approach emphasizes the importance of the
spatiotemporal organization of the brain in terms of structure and
function as dynamics. Instead of relying on precise spatial current
distributions to assess tDCS effects, our approach underscores tDCS as
a neuromodulatory technique causing the brain not only to react but
also to adopt its behavior during stimulation. Nevertheless, our FEM vol-
ume conductor model for tDCS forward simulations comprises the
sensitivity-wise critical compartments: skull, CSF and the folded brain
(Opitz et al., 2015; Wagner et al., 2014). Rather than limiting tDCS ef-
fects to a spatially constrained model (Molaee-Ardekani et al., 2013),
we use a large-scale brain network model to allow for signal propaga-
tion following tDCS (Bikson et al., 2012; Fox et al., 2014; Ruffini et al.,
2014). During tDCS the mean PSP of pyramidal cells in each area was
constantly shifted towards higher or lower values according to the spa-
tial current density distribution. Because the topology of an area in the
network is unique for each area (i.e., connectivity fingerprint), two con-
sidered areas will be differently modulated by their respective connect-
ed areas and thus respond differently to the same tDCS input on the
large-scale level of global interaction. The current density distribution
was obtained with the help of a high-resolution finite element model
of two tDCS electrodes on the scalp. The observable negative baseline
PSPs during stimulation (see Fig. 4) were primarily specific for the uti-
lized oscillator model (see Fig. 3A). Furthermore, cathodal influence to
the areas reduced the PSPs for small values of |y|. For large values of y
(v > 120), the influence of connected brain areas dominated the tDCS
offset in each of the single areas. Positive high values of 'y amplified
input from connected areas while high negative values of vy led to a
complex interplay between negative amplification and damping due
to the saturation of the transfer function. This effect of tDCS on the cor-
tex generally leads to a spatially specific adjustment of cerebral areas
(see Tabs. 2 and 3).

In the absence of cortico-cortical connections, the dynamic state of
each area would be set by tDCS. However, taking cortico-cortical con-
nections into account, tDCS did not only affect a single area directly,
but also the interactions between areas of the brain (see Fig. 3). Merlet
and colleagues studied the tACS effect on the cortex by separated cere-
bral areas, but all connected via one thalamic area (Merlet et al., 2013).
This study could not provide insights in the spatial reorganization of
brain dynamics due to tACS. This is why we focused on the interplay
of tDCS and the structural connectivity of cerebral areas. Our findings in-
dicate facilitation of alpha activity in fronto-central to parieto-central
areas ipsilateral to the anodal electrode over M1. This synchronization
leads to an increased local functional connectivity in areas beneath the
anodal stimulation electrode. Local functional synchronization due to
tDCS has been reported in several studies using EEG (Polania et al.,

2011a), fMRI (Polania et al.,, 2012; Sehm et al.,, 2012) and evaluation of
paired associative stimulation (Nitsche et al., 2007).

To the best knowledge of the authors, the sharpened and shifted fre-
quency spectra (see figures S7 and S8) represent an effect that was not
described in empirical studies yet and ought thus be seen as a prediction
of the present model. The measured changes in functional connectivity
by Polania and colleagues (Polania et al., 2011a), which were partially
reproduced here, propose a modulation of the intrinsic functional net-
work dynamics as a consequence of the polarization. Thus, our study
promotes the inclination to develop the identification and understand-
ing of competing network dynamics rather than confine investigation to
a highly precise focal stimulation of one particular brain region
(Fox et al.,, 2014; Wokke et al., 2014).

Structure, function, and dynamics

We demonstrated that tDCS does not only locally polarize the mem-
brane potentials of cerebral areas, but also affects the interaction among
brain areas. Each area with its intrinsic repertoire of dynamics (e.g., of
natural rhythms) was subjected to its embedding in the brain architec-
ture given by the human connectome (input from other areas) as was
the interaction between areas, measured as functional connectivity.
This way, the topology of the network not only allowed for functional
interactions between brain areas, but also established a dynamical re-
gime in each area that was either intrinsic (included in the area's reper-
toire) or emergent from the interplay in the network. We quantified the
network topology by graph theoretical measures (Fornito et al., 2013;
Polania et al,, 2011b), see Fig. S6, and found that the areas change intrin-
sic regimes with increasing connectivity strength according to the order
of the total strength of incoming ties to an area (i.e., in-strength; see
Fig. 3E). Structurally, more dissociated areas from the network reacted
less sensitively to changes than associated ones, and thus established
inherent regimes. However, the structural topology lost ground to the
dynamics when a first brain area changed regimes with increased
connectivity scaling (see Fig. 3E). This in turn affected the others,
which adjusted dynamics through the interplay in the network and
changed regimes in an avalanche-like fashion (see Fig. S9). Because
the connectome we used here showed symmetries between the hemi-
spheres (see Fig. S1A), functional areas in both hemispheres behaved
similarly.

We found nine different dynamic states in the network by systemat-
ically scaling the connectome. If we consider our network of m = 74
areas, each with a dynamic repertoire of n = 4 qualitatively different
states, the network can feature n™ = 47 states at the maximum.
Hence, we found a far smaller number of network states than the theo-
retical maximum. The reason is that the network in our thought exper-
iment, n™ = 474 (i) simply picks an area's state out of the repertoire by
the weights of the ties, (ii) omits emergent states out of interactions
(e.g., synchronization), and (iii) does not take the specific network to-
pology into account. Considering the structural connectivity by the
number of orthogonal patterns, n = 58, explaining 95 % of the topology
still gives an enormous number of possible network states given the
nine states we observed. Once again, our conclusion is that the topology
not only constrained the resources throughout the evolution of the dy-
namics to a small number of states, but also facilitated emergent states
through interactions.

Resting-state dynamics

The observed resting-state network dynamics could be understood in
large parts in the context of the temporal dynamics of an isolated Jansen-
Rit model. Scaling of the connectivity weights among the network areas
increased the activation of the areas in terms of baseline PSPs and
modulated the intrinsic functional organization (i.e., connection between
interneurons and pyramidal cells within an area). With increasing con-
nectivity scaling, areas subsequently exhibited constant activity (Regime
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1), slow (Regime 2 and 3), and fast oscillations (Regime 3). A detailed
description of the regimes and the transitions are presented in the
Supplementary material. An insufficient interaction between areas led to
a chaotic behavior of weak synchronization and wider distributed, but
fast rhythms in Regime 3. Followed by reorganization in Regime 4, a
fully synchronized slow rhythm emerged, which is qualitatively new
comparing the baseline to the one of an isolated area. Note that almost
all dynamic network states can be ascribed to the individual bifurcations
in an area, whose undergoing depends on the history and thus causes
that hysteresis effect of network states.

These observations underline the notion that even small and short-
term variations in connectivity are able to evoke switching of network
dynamics (Hansen et al., 2015). This structure-function relationship
was also expressed in the correlation of PSPs and the in-strength rank-
ing of areas. Correlation increased with higher connectivity scaling up to
a critical value at which the network could no longer balance the func-
tional resources through the structure, and therefore reorganized.

Implication to large-scale brain network modeling

The local model (Jansen and Rit, 1995) we used to describe each area
is widely used not only in population studies (David and Friston, 2003;
Spiegler et al., 2011; Wendling et al., 2002), but also for large-scale
network modeling (Merlet et al., 2013; Sotero et al., 2007) as well as
for model inversion in Dynamic Causal Modeling (Pinotsis et al., 2012).
However, a systematic study of the effects of structural connectivity
on the dynamics was missing. Here, for the first time, we cataloged
the network states depending on the connectivity scaling. This catalog
is specific for the connectome. However, the used connectome is the de-
fault one in the open-source neuroinformatics platform, The Virtual
Brain (TVB) that we used for this study [www.thevirtualbrain.org].
The script we used to perform this study will be part of a demo package
for using TVB. Therefore, the results are easy to reproduce and ready to
be used for parameterizing models in other modeling scenarios.

In general, the catalog nicely indicates the sensitivity of areas with
respect to perturbations. Several phenomena might indicate universal
effects of networks regardless of whether connectome or dynamical de-
scription is used for the area. First, the network topology and the con-
nectivity weights disperse the areas’ state from being homogeneous
(see Fig. S9). Secondly, this dispersion causes interactions among the
areas in the network, which rebalance and thus reorganize the dynam-
ics. By scaling all network weights equally, such reorganizing behavior
undergoes critical phases and divides network states into qualitatively
different regimes (see Fig. 2). Thirdly, the transitions from one network
regime to another can be abrupt or in an avalanche-like fashion with re-
spect to the connectivity scaling. The avalanche effect can be ascribed to
the dispersion effect of the network: A state transition of a single area
imposes transitions in other areas throughout the rebalancing processes
so that the network state changes stepwise with respect to the connec-
tivity scaling. This effect is likely to occur if several areas are close to an
inherent bifurcation. In contrast, the network state changes abruptly if a
critical number of areas have passed an inherent bifurcation and a stable
network state of the multistable areas cannot be found throughout the
rebalancing processes. Consequently, the areas unify to a stable network
state of less diverse areas (see Fig. 2). Note that the avalanche-like tran-
sition ties to the dynamic repertoire and bifurcations of a single isolated
area, whereas the abrupt transition is mainly an effect of the network.

Multistable regimes (see, for example, 13.6 <y <33.3 in Fig. 2) show
a variety of dynamics that cannot be understood on the basis of a single
area model. Such network regimes allow for more plausible modeling of
frequency distributions as observable in measurements. Note that in
contrast to the deterministic character of our model, other modeling
studies introduced noise to obtain realistic frequency distributions
(David and Friston, 2003; Wendling et al., 2002). Consequently, our
findings for our large-scale brain network model based on Jansen-Rit
populations motivate to test different connectomes and local models

under different parameterizations in a similar way to our approach to
account for dynamics that resemble brain activity in space and time
under different conditions.

The work presented here enables the systematic and elaborated in-
vestigation of network dynamics and synchronization phenomena
under various conditions, such as the impact of an externally applied
electrical current. Furthermore, our approach allows the assessment of
the impact of particular connectomes, such as connectomes with special
functional or structural features, to the network dynamics. In this man-
ner, there is the potential to better understand functional particularities
(e.g., focal or distributed epileptic sources) and structural deficits
(e.g., following stroke or a traumatic brain injury). In conjunction with
graph theoretical measures, network properties could be related to
changes in network dynamics or changes in the environmental condi-
tions, such as through stimulation (Luft et al., 2014; Polania et al.,
2011b).

Limitations and simplifying assumptions in the model

The brain network model utilized in this study approximates both
structural (e.g., neural circuitry) and functional (e.g., state description
solely by means of two state variables per neural mass) qualities of
the human brain. Complex and partially well investigated mechanisms
were simplified on various levels: i) on the cellular level, e.g. reduction
of manifold types of neurons to excitatory and inhibitory neurons
(Contreras, 2004) and neglect of single action potentials, ii) on the
level of interaction between subpopulations, e.g. via mean values of ac-
tivity and neglecting any higher order statistics, complex interconnec-
tivity within the laminae of the cerebral cortex, see (Thomson and
Bannister, 2003), and iii) on the level of macroscopic interaction, e.g.
cortex parcellation and long-range connectivity.

Furthermore, signal transmission via the long-range white-matter
fiber tracts is assumed to be instantaneous, neglecting any time delays.
Admittedly, such time delays are relevant for the biological plausibility
of the model and are likely to modify the dynamics (Deco et al., 2011;
Kutchko and Frohlich, 2013), for example collateral oscillations, syn-
chronization motifs, or interference (Pajevic et al., 2014). However, it
is not exactly clear under which circumstances delays play a role.
According to the Kuramoto model, which approximates the phase inter-
action of oscillators, effects of delays less than a quarter of a period of the
natural frequency of an oscillator are negligible. Because of the rich rep-
ertoire of dynamics from a biologically plausible model at each area, it is
absolutely not trivial to study the network behavior. In fact, this is the
first time that the emergent network effects are systematically analyzed
with single-node dynamics defined by Jansen-Rit elements. According
to Knock et al. (Knock et al., 2009), a slow transmission speed of v =
1.5 m/s is necessary to affect the alpha rhythm, which would be still
too fast to affect the slow wave-spike cycle (0 <f<4.7 Hz). Furthermore,
high transmission speeds do not affect the network dynamics (Knock
et al,, 2009). In fact, a transmission speed of 1.5 m/s is quite slow with
respect to an average transmission speed for white matter fiber bundles
of approximately 6-7 m/s (Nunez, 1995). The considered node dynam-
ics (i.e., Jansen-Rit) are simply too slow to be affected by time delays
resulting from biophysically plausible transmission speeds for myelin-
ated axons.

In this work, we work with a connectome-based large-scale brain
network model, which seeks to investigate network behavior at the
meso- and macroscopical scale of neural populations. The utilized
local model, a neural mass model, describes dynamics in an abstract
neural population, which is described by averaged state variables as a
result of the mean field approach. This type of modeling approach
does not aim for explaining microscopic effects of neurons (Reato
et al,, 2010, 2013) but rather approximates the effects on a mesoscopic
level. These models are informative at the large-scale of a whole brain
from the point of view: the structure of the brain network (topology)
constrains its function and thus the functioning of the brain. Information
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about long-range connections is provided by diffusion spectrum imag-
ing data and histological data of primates. Note that both modalities
possess major difficulties in terms of their applicability. While diffusion
spectrum imaging allows for noninvasive investigation of human struc-
tural connectivity, its resolution and specificity (indirect measure) is
limited. Also, data lack information on directionality of the connection.
However, invasive histological methods are not applicable in living
humans. Furthermore, both modalities provide limited information
about absolute weight of the connection. Note that due to the symmetry
of the connectivity matrix, the utilized connectome does not contain
any information on directionality of the connections. The connectome
used here did account only for cerebral areas and did not include
thalamic areas that can have an important effect on the dynamics
(Merlet et al., 2013; Sotero et al., 2007). In the present model we exclu-
sively used forward connections for which the membrane potential of
one pyramidal cell population is used as input of the pyramidal cell pop-
ulation of a connected area. The resulting dynamics for the default pa-
rameterization are well investigated (Spiegler et al., 2010). We
omitted backward and lateral connections with their more complex
local connectivity schemes (Felleman and Van Essen, 1991). Current
state-of-the-art techniques to map the human brain's large-scale con-
nectivity (i.e., white matter fiber bundles) such as diffusion MRI are
blind for connections within the cortex (because the connections in
the gray matter are too diffuse), and thus blind for the aborization of
axons entering or leaving the cortex forming the white matter fiber
bundles (Bota et al., 2015). The directionality of connections in our
large-scale brain network model stems from the CoCoMac
database(Kotter, 2004), thus based on tracer studies in macaque.

Moreover, the connectome crucially determined the observed spa-
tiotemporal dynamics. Consequently, the quality of the connectome in
terms of content and accuracy is of general importance (Van Essen
et al., 2013). Each of the 74 cortical areas (i.e., each network node) of
the chosen cortex parcellation were modeled by a single NMM and fea-
tured the same default parameterization (Jansen and Rit, 1995). How-
ever, a single NMM is a spatially abstract and dimensionless system.
The complex processes within a biological neural area are abstracted
by the interaction of the three considered subpopulations in each
NMM. The spatial information is incorporated by the connectivity
between the areas. Thus, for the dynamics the shape and size of the
region is of lower importance. We chose the same parameterization,
adopted from (Jansen and Rit, 1995), for each NMM because: (i) we
assume the existence of generic neural mesocircuits, where the func-
tion of a region emerges from the interaction in the network, (ii) in-
terregional differences lack in appropriate a priori information, and
(iii) we strived to restrict the level of complexity in the brain net-
work model.

We would like to clarify that our model seeks to investigate network
behavior at the meso- and macroscopical scale of neural populations.
The utilized local model, a neural mass model, describes dynamics in
an abstract neural population, which is described by averaged state var-
iables as a result of the mean field approach. By that we follow an
established level of abstraction, see (Deco et al., 2008; Spiegler et al.,
2010). Admittedly, this type of modeling it not suited to explain micro-
scopic details of neurons and we acknowledge the necessity to achieve a
better understanding of microscopic properties underlying the interac-
tion of neurons and electric current, see (Reato et al., 2010, 2013).
Although we think that theoretical and experimental findings of micro-
scopic DC-studies are valuable concerning the regulatory mechanisms
of the dynamics of the cell membrane, we argue that population models
are adequate to better understand the effects on the larger scale of
whole brain dynamics.

Note that the brain network model in this work was not driven and
all the results are out of deterministic dynamics. Because we found a
chaotic network regime that we then also used for analyzing functional
connectivity during tDCS, the model provides non-stationary brain
signals.

Regarding the forward calculation for the tDCS strength on the cere-
bral surfaces, the current density distribution was spatially
undersampled due to the limited number of cerebral areas given by
the connectome. To overcome this issue one could refine the cerebral
description by a neural field considering the connectivity on the
cerebral surfaces in the vicinity of neurons or neural populations
(Sanz-Leon et al., 2015).

The directionality of the electric field relative to the spatial align-
ment of the neurons is one very important factor for the effect tDCS
one the brain network model. It determines whether a local neural pop-
ulation, that is, a network node gets excited or inhibited by stimulation
and to which degree. We chose a neural mass approach since the struc-
tural connectivity data is based on a coarse grained Brodman
parcellation. Each brain area in the network was described by means
of mean postsynaptic potentials (PSPs) emerging from the interaction
of pyramidal cells with excitatory and inhibitory interneurons, which
is the Jansen-Rit model. In this study, we limited the effect of tDCS to
the pyramidal cells. Our rationale for this is the following, namely that
neuronal currents underlying M/EEG generation are believed to be pro-
duced mainly by the membrane potentials of the PCs (Lopes da Silva
and van Rotterdam, 1999) as a result of the asymmetric shape of these
cells (with apical dendrites) and their parallel alignment perpendicular
to the cortical surface (Braitenberg and Schuez, 1991). Consequently, on
the level of description we are dealing with, an external electrical field
may primarily affect structures that are spatially aligned such as the py-
ramidal cells in layer IV of the cortex and less the diffuse structures such
as interneurons. Another argument is that most neocortical neurons
(70-80 %) are excitatory pyramidal neurons and the remaining 20-30
% are interneurons (Markram et al., 2004). These arguments are no rea-
son to exclude the case that tDCS does not also effects interneurons as
indicated by (Molaee-Ardekani et al., 2013). However, the rationale
for considering tDCS to simply affect pyramidal cells was to limit free
parameters and the conclusion by Molaee-Ardekani “that pyramidal
cells constitute the neuronal sub-population that is affected the most
by tDCS”.

The directionality of the current density relative to the normal vector
of the cortex surface represents the type of tDCS impact (i.e. anodal or
cathodal). The resultant effect strength of the current density was
accounted for in the FEM solution. We used the current density estimate
because the shapes of the cortical surface create inhomogeneities that
change the net effect of tDCS, its intensity and its location (Bestmann
et al.,, 2015; Dayan et al., 2013; Parkin et al.,, 2015). We do not assume
that anodal tDCS necessarily excites the underlying cortical tissue or
that cathodal tDCS necessarily inhibits the tissue.

Anisotropy in current flow models has been shown to have signifi-
cant influence (Gullmar et al., 2010; Haueisen et al., 2002; Windhoff
et al., 2013). However, this influence is known to vary strongly across
the brain, where in some regions it is negligible while in others it
seems important. This variation is relevant at a local scale (single sulcus
or gyrus), please see (Gullmar et al,, 2010). While we use a very detailed
current flow model, our brain activity modeling approach is restricted to
74 areas, collapsing the detailed current flow information of about
30,000 finite elements into one considered brain area. Thus, a represen-
tation of anisotropy in the detailed current flow model will likely have a
small influence on the outcome of our study. Although deep brain re-
gions were accounted for in the current flow model, they were not con-
sidered as elements of the large-scale brain network of neural masses.

For the conducted simulations we chose an absolute value of 4 mV as
maximum influence of tDCS, ilpcs, which was locally scaled according to
the current density estimation for each area. The clipping value of 4 mV
arises from the polarizing effect of an electric field of 30 V/m as de-
scribed by (Bikson et al., 2004) considering a mean dendritic length of
about 130 pm. Since there is no information about the mean length of
the considered neural masses we linearly scaled the influence of tDCS
between zero and this maximum value of 4 mV. It was assumed, that
the electric field acts on the aligned dendrites of the pyramidal cell
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population. Other studies, especially single neuron in vitro studies, re-
strict the polarization effect to the cell soma and work with maximum
polarizations of only 0.2 mV (Reato et al., 2013). The considerably
shorter extent of neural matter explains the differing employed voltage
values.

In this paper, we used the Pearson correlation coefficient as a stan-
dard measure to report functional connectivity (i) in the network of
neural masses, and (ii) in the simulated scalp EEG. Despite its known
limitations for such recordings as EEG, it is still a widely used measure.
Alternatively, measures such as imaginary coherency and phase lag
index might be used (for a discussion, see (Stam et al., 2007)).

Conclusions

Stimulation techniques such as transcranial direct current stimula-
tion (tDCS) lead to effects on cognitive processes and positive therapeu-
tic effects on neurological and psychiatric disorders such as depression,
pain, or stroke, which outlast the treatment itself. Moreover, variations
in functional brain activity at rest have been related to cognitive opera-
tions and pathologies. In this study, we demonstrated a link between
stimulation and the functional brain organization. tDCS causes a reorga-
nization of functional brain networks by coordinating the competitive
interplay of local processes over the entire brain. Thus, our study moti-
vates further modeling studies to test target-oriented activation or sup-
pression of functional sub-networks (e.g. through adapted electrode
montages) with the ultimate goal to complement clinical therapy.

Furthermore, we state that the brain is a highly adaptive complex
system and tDCS is not a mere polarization technique. Due to the inter-
connectivity of areas, it is not trivially expectable, what an unsymmetri-
cal activation/inhibition of discrete cortical areas will cause in the
dynamic behavior of the network. We showed that both connectivity
scaling (interpretable as a synaptic gain) and tDCS are major determi-
nants of dynamic behavior and lead to nontrivial alterations in terms
of characteristics of the local temporal model.

The compiled catalog of dynamic network states comprises occur-
ring dynamics specific for the topology of the utilized connectome. We
found the structure to be especially important at transitions of network
states. Numerous subsequent modeling studies are conceivable, such as
providing input into a specific sub-network or re-evaluating network
dynamics utilizing a different temporal model and with connectomes
from healthy subjects and patients.
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